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How gauge covariance of the fermion and boson propagators in
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We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function
within the framework of a spectral representation for fermion propagators. When satisfied, such
requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any
covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-
Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of
three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is
independent of the gauge parameter. As an illustration, we show how the gauge technique dimensionally
regularized in four dimensions does not satisty the covariance requirement.
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I. INTRODUCTION

The infinite set of Schwinger-Dyson equations consti-
tutes the field equations of any theory. They relate Green’s
functions to each other. In QED and QCD, they relate,
for instance, the fermion propagator to the gauge boson
propagator and the fermion-boson interaction. The expan-
sion of the Schwinger-Dyson equation for each Green’s
function in powers of the coupling yields the well-known
perturbative series. However, most of the phenomena in
hadron and nuclear physics are controlled by QCD in the
regime of strong coupling [1,2]. Then alternative trunca-
tions of the Schwinger-Dyson equations are required to
capture the essence of the physics. A simple truncation,
much used in QCD for the fermion propagator equation,
combines the fermion-boson vertex and the gluon propa-
gator function in a construction proportional to y*. This
ansatz from Maris and Tandy [3] is especially successful
phenomenologically, and presumed to be appropriate in the
Landau gauge. Then the fermion mass function in the
strong coupling regime can be shown to have a character-
istic momentum dependence illustrated in Fig. 2 of Ref. [4]
(also see Fig. 1 of Ref. [5]). One realizes that whether
the current quark mass (defined at some appropriate large
momentum) is 5 or 100 MeV, the mass at low momenta is
~350 MeV heavier: an infrared behavior that matches
constituent quark masses. It has been argued that such
behavior of this gauge-dependent quantity is directly
correlated with the momentum dependence of physical
observables such as the electromagnetic formfactors of the
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pion and the proton [6-9]. It would then seem natural to
check how the mass functions shown in Ref. [4] change
with gauge.

As a simple illustration let us consider QED, in which a
purely bare fermion-boson vertex is assumed. This produ-
ces a mass function in the Landau gauge shown as the
solid line in Fig. 1. Though this is QED, the qualitative
behavior of the mass function is very like that for a light
quark in QCD in the Maris-Tandy model. Solving the QED
Schwinger-Dyson equation for the fermion in four dimen-
sions with the same bare y* vertex in the Feynman gauge
(for instance) changes the mass function as in Fig. 11 of
Ref. [10]. The corresponding three-dimensional results are
illustrated by Fig. 3.2 of Ref. [11].

However, the gauge covariance of the fermion propaga-
tor is exactly specified by the Landau-Khalatnikov-Fradkin
transformation (LKFT) [13]. As we will remind the reader
this relates the propagator functions in one gauge to those
in another. If one applies this to the four-dimensional
fermion mass functions shown in Fig. 2 of Ref. [4] for
the Landau gauge, one obtains the behavior in two other
covariant gauges plotted here in Fig. 1. One sees that the
mass function moves between gauges to produce what
appears to be a node. This in fact ensures that any fermion
condensate is gauge independent. The corresponding three-
dimensional results are given by Fig. 3.4 of Ref. [11].
However, solving the fermion Schwinger-Dyson equation
in different gauges as shown in Fig. 11 of Ref. [10] gives
mass functions that simply move up or down as the gauge
changes. There is no hint of the nodal behavior required by
the LKFT and seen in Fig. 1. This not surprisingly indicates
that a vertex as simple as y# cannot be appropriate in both
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FIG. 1. The dependence of the fermion propagator mass
function M(p?) on & The black solid line is the parametric
form of M(p?) given by Eq. (2.1) of Ref. [12] with M, = 3 MeV,
¢ = 1.239 and Agcp = 401 MeV. The red dashed line and the
blue dash-dot line correspond to what the mass function should
be when aé = 3 and aé = 6, respectively. The red dashed line
and the blue dash-dot line are obtained by the LKFT for the
fermion propagator in four dimensions within the MS renorm-
alization scheme at the scale 4 = A, with F(p?) = 1 and M(p?)
given by the black line as the initial conditions in the Landau
gauge. Notice that gauge covariance produces a node-like feature,
in this case at p?>=—0.3 GeV2. Though this example is
motivated by QCD in the choice of parameters, the calculations
are from QED.

the Landau and Feynman gauges in QED. Indeed, it may
not hold in any covariant gauge.

The purpose of this paper is to present the conditions that
ensure the solutions of the Schwinger-Dyson equation
(SDE) for the fermion propagator are gauge covariant [ 14].
We study this in QED, where particles having a physical
mass-shell means it is natural that the fermion propagator
satisfies a spectral representation. This allows the SDE to be
investigated at all momenta, and we are not restricted
to spacelike momenta (or nearby timelike momenta) as in
QCD studies.

This article is organized as the following. In Sec. II, the
spectral representation is introduced for the fermion propa-
gator. Then an abstract version of the SDE for the fermion
propagator spectral functions is obtained in terms of the
distribution €. Section III briefly reviews results of the
LKFT for the fermion propagator. In Sec. IV, the gauge
covariance requirements for the fermion propagator and the
photon propagator SDEs are derived. In Sec. V, with known
contributions to Q calculated, the consistency requirement
for the fermion equation is written for the unknown terms
of Q. As an example, the gauge technique anzatz of Salam,
Delbourgo and Strathdee [15-18] translates into an € that
is shown explicitly not to satisfy the consistency require-
ment in the quenched calculation in four dimensions.
Sec. VI is the summary.
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II. SPECTRAL REPRESENTATION OF FERMION
PROPAGATOR AND ITS SDE

A. Spectral representation of fermion propagator
as a bijective mapping

The fermion propagator Sr(p) can be decomposed into
Dirac vector and Dirac scalar components defined by

Sr(p) = S1(p*)p + S2(p?)1. (1)

Each component function is similar to a scalar propagator
function. Therefore, the spectral representation of fermion
propagator requires two scalar spectral functions;

+oo i(s;¢&

S0 - [Ta U
where j = 1, 2 and the dependence on the covariant gauge
parameter ¢ has been made explicit. The Feynman pre-
scription of a momentum space propagator is denoted by
the ie term in the denominator, while the normal writing of
€ is reserved for how far away the number of spacetime
dimensions is from 4 by d = 4 — 2e. The spectral integral
given in Eq. (2) is convergent if Sz(p) vanishes when
p* — co. That the integrals converge without the need for
subtractions is assured by the renormalizability of QED in
d < 4 dimensions.

Apparently when the fermion propagator takes its
free-particle form, the spectral functions are given by
p1(s) = 8(s —m?) and p,(s) = md(s —m?). When inter-
actions are present, the fermion propagator is modified by
quantum loop corrections and therefore develops branch
cuts starting at the particle production thresholds. Such
corrections add @-functions to the spectral functions.

The existence of a spectral representation, Eq. (2), is
determined by the analytic structure of the propagator
functions S;(p?) in the complex momentum plane. We
expect that apart from free-particle poles and branch cuts
along the positive real axis, propagator functions are
holomorphic everywhere else. In this scenario, the spectral
functions uniquely determine the propagator functions in
the complex momentum plane.

Meanwhile, when the analytic structure of the fermion
propagator meets such requirements, the inverse of Eq. (2)
is given by

py(538) =~ Lm(S (5 + i )). ©

The Feynman prescription combined with the limiting form
of the 6 function,

lirras/(x2 + &%) = 78(x),

specifies that any simple pole structure of the propagator
function corresponds to a o-function term in its spectral
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FIG. 2. The illustration of analytic functions with branch cuts
along the positive real axis. The contour can be used prove Eq. (2)
using Cauchy’s integral formula. When used to prove Eq. (3),
7z stands for the complex p>.

function. In addition since S;(p?* + ie) = S;(p* — ie), func-
tions calculated by Eq. (3) are indeed the spectral functions
occurring in Eq. (2), which can be verified using Cauchy’s
integral formula with the contour in Fig. 2. Therefore we
have shown that the spectral representation given by Eq. (2)
and its inverse Eq. (3) specify a bijective mapping between
the propagators as functions in the complex momentum
plane and their spectral functions.

B. SDE for fermion propagator spectral functions

The SDE for the fermion propagator in momentum space
is represented by Fig. 3. It has been solved extensively
using specific ansitze for the fermion photon vertex [19,20]
(also see Refs. [10,21-31]). Solutions in the Minkowski
space have been obtained by [32] (also see Ref. [33-37]).
Alternatively, these equations can be solved using complex
conjugate poles to represent the propagator functions
[5,38-40].

Each diagram in Fig. 3 is not obviously linear in the
spectral functions p;(s; £). However, an easier way to solve
for the spectral functions p;(s; &) directly from the propa-
gator SDE is by multiplying each term of the equation
depicted in Fig. 3 by Sg(p; &). After this multiplication, we
obtain Fig. 4, where the first term on the right-hand side is
clearly linear in p;(s; ). After decomposing this equation
into its two Dirac components, the identity in Fig. 4 becomes

FIG. 3. The diagrammatic representation of the SDE for the
fermion propagator in momentum space. The fermion-photon
vertex is unknown and an ansatz is required to solve this equation.
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FIG. 4. The diagrammatic representation of the SDE for the
fermion propagator spectral functions.

p*Si(p?) —mSy(p*) + o1 (p*) =1 (4a)

Sy(p?) = mSi(p*) + 02(p?) = 0, (4b)

where 6;(p?) are the Dirac scalar and vector components of
the loop integral. For the second term on the right-hand side
of Fig. 4, recall the Ward identity states that for QED, Z; =
Z, [41]. Therefore the fermion propagator Sp(p; &) shares
the same renormalization constant with the fermion-photon
vertex structure defined as Sp(k)I*(k, p)Sr(p), which
indicates that the latter is also linear in p;(s;&).

The gauge covariance of the solutions to the fermion
and boson propagator Schwinger-Dyson equations will
constrain the allowed forms of the fermion-boson vertex
I'*(k, p). However, the vertex in its full complexity with
its 11 nonzero components is not required. Only the
projections implied by the Schwinger-Dyson equation of
Figs. 3, 4, and the corresponding equation for the inverse
photon propagator (i.e. for the vacuum polarization) Fig. 5
are constrained. Thus, it is this effective vertex that is
restricted.

One specific spectral construction of the vertex structure
linear in p;(s;&) and satisfying the longitudinal Ward-
Green-Takahashi identity is the gauge technique [18],
which makes the ansatz

1 y
k-w' p—w

Se(p)T*(k. p)Sr(p) = / aw p(W). (5)

where p(W) = sign(W)[p;(W?) + Wp;(W?)]. In this par-
ticular case

FIG. 5. The diagrammatic representation of the SDE for the
photon propagator.
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= ie /dk/de(W

kaWp’W

o1(p?) + por(p
D,(q). (6)

Transverse supplements to the gauge technique are required
to meet various principles of QED, including renormaliza-
blility [42,43], gauge covariance [44] and transverse
Ward-Green-Takahashi identities [45-48]. However, from
the equality Z; = Z, [41] we can further assume that such
modifications are also linear in p j(s; &), and once known,
allow us to calculate the loop integral in Fig. 4, resulting in
a function of p as a linear functional of p;(s; ). Since this
one-loop integral reduces to corrections to the fermion
propagator in perturbative calculations, such p? depend-
ences must be linearly generated from the free-particle
propagator. Therefore, after taking the imaginary part of
Fig. 4, or equivalently that of Eq. (4), we obtain

91(5:8) = mapa(5:) = Tm{oy (s + ie:} =0, (7a)

1 .
pa(838) = mppy(s:8) = —Im{oy(s +ies )} = 0. (7b)
The real constant term on the left-hand side disappears.

After dividing Eq. (7a) by s, Eq. (7) can be rewritten as
/ds’(QII(S’S/;g) 912(575/§§)> (P1(S/§§))
921(&5'?5) 922(573/2‘5) /’2(5,;‘5)
S; 0
Jr(m( é))_( ) (8)
pa(s:€) 0
where the Q;;(s, s; £) encode all required linear operations

on the spectral functions p;(s;&), which are obtained by
functional derivatives similar to

o 1
Q(s,s") = —mglm{a(s +ie)}. )
The bare mass coupling in Eq. (7) is explicitly included in
the off-diagonal terms of €;;(s,s";&). When the fermion-
photon vertex is given by the gauge technique the resulting
o; is given by Eq. (6). Then my is the only coupling
between equations for p; and p,. However, when dimen-
sion-odd operators are allowed to enter the expression for
Sp(k)[*(k, p)Sp(p), they will contribute additionally to
off-diagonal elements of €;;.

For a given ansatz for the fermion-photon vertex that
ensures Sy (k)% (k, p)Sr(p) being linear in p;(s; ), there
is a corresponding Q. It is the matrix Q that is constrained
by gauge covariance. Regardless of the photon being
quenched or not, the SDE for fermion propagator spectral
functions takes the form of Eq. (8). Solutions to Eq. (8)
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found in different covariant gauges are, of course, different
because the fermion propagator is not a physical observable.
However any ansatz for the fermion-photon vertex that
respects Eq. (8) is expected to be gauge covariant. Satisfying
the Ward-Green-Takahashi identity, a consequence of gauge
invariance, however, is not sufficient to ensure the gauge
covariance of solutions to Eq. (8), as we will see explicitly
later on. In order to explore the conditions on the Q;; (s,858)
that ensure gauge covariance of solutions to Eq. (8), the
LKFT for the fermion propagator needs to be solved first.

III. LKFT FOR FERMION PROPAGATOR

Detailed discussion of the LKFT for the fermion propa-
gator has been made elsewhere [49]. Consequently in the
present article, only crucial intermediate steps are included.
Because of the existence of bijective relations among the
fermion propagator in coordinate space, in momentum
space and in spectral representation, LKFT manifests itself
as isomorphic representations for the fermion propagator in
these spaces. Being linear in the coordinate representation
suggests that LKFT in the spectral representation should
also be a linear transform. Therefore without loss of
generality,

pi(s;&) :/ds’le(s,s’;.f)pj(s';O), (10)

where distributions KC;(s, s"; &) represent linear operations
that encode & dependences of p;(s; &) to be determined by
LKFT. These operations observe closure, associativity, the
existence of the identity element and the inverse elements.

Because the LKFT is independent of the initial con-
ditions for p;(s; &), one can obtain the following differential
equations for /C;(s,s’;&) by taking the £ derivative of
the coordinate space LKFT and subsequently taking the
Fourier transform,

K528 a [ Sk
- d ]7}C' ki /; 9
85/ p? —s—l—le 4z sz—s—l-ie i{8:856)

(11)
where z = p?/s. Explicit calculations reveal that
= r drp®\ € (=2),F 1,3;3—¢;
pc—s s s (1-€)(2—¢)
= [(e) (4mp*\¢ -1 _ _
pz—s: ; p - SFi(e+ 1,22 —€;2).
(12b)

where recall ¢ is defined by d = 4 — 2¢. Equation (11) is
solved by
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K; = exp <—Z—§<I>j>, (13)

where ®; are distributions independent of & and can be
solved from

P. ’/ =. 2’/
/ds zl(ss). _ zj(p/s). ) (14)
p-—s+ie p°—s§ +ie

Equation (14) is solved once we have established how to
generate the z dependences in Eq. (12) from linear oper-
ations on the free-particle propagator with respect to the
variable s alone. To do so requires the Riemann-Liouville
definition of fractional calculus [50];

1f(z) = F(la) / Cda- @), (15)

For a > 0, the Riemann-Liouville fractional derivative is
defined as

D*f(2) = (%) ), (16)

where [a] is the ceiling function. Specifically fora € (0, 1),
[a] =1 and

1 d

D) = F =T o / “de- ) (@) (17)

Furthermore, we define the dimensionless operator ¢ such
that at the operator level [ds'® = ¢, then

6) Z2€+2—nD€Zn—1DeZe—1 . (18)

drp*\eT(1 -
—> (1 +e)

b2 =0 (%
Distributions ¢, in Eq. (18) correspond to ®; with n = 3, 2
for j =1, 2; see Egs. (12a) and (12b), respectively.

The exponential form of C; given by Eq. (13) remains
illusive even with ¢, explicitly written as Eq. (18). To see
how K; works explicitly, consider any function of the
spectral variable that can be written as a linear combination
of 7%, we can show that

K = exp(=ad,) /f_fﬂ‘m v
T P " _m=0 m! "
_ & (—a m]"(n+ﬁ+(m—l)e—l)F(ﬁ+me)Zﬂ+m6
— m! T(n+p—e—1)(P) ’
(19)

where
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aT(e)l(1 - ¢) (47m2>ﬂ (20)

4z T(1+e) P’

s )]
Il

Specifically for small ¢, the operations given by Eq. (19)
reduce to

2.\ —v 1
K;= <%) exp{—v [E+ ve +Indr + (’)(el)} }

X Z2—nluzn—l—ylvz—y—l’ (21)

where v = aé/(4x).

IV. GAUGE COVARIANCE REQUIREMENTS
FOR THE PROPAGATOR SDES

A. Gauge covariance requirement on the fermion
propagator SDE

For notational convenience, when two distributions
are multiplied together, the integration over the spectral
variable is implied. After adopting this notation, only
dependences on ¢ are required to be written explicitly.
Therefore, Eq. (8) becomes

<P1(§)) n <Q11(§) Qu(f)) <P1<§)) _ (0> (22)
p2(8) ©(¢) (&) p2(&) 0

Since LKFT does not couple p; with p,, we have the
following abbreviated versions of Eq. (10),

Pj(é:) = ’Cj(é:)pj(o)' (23)

Substituting Eq. (23) into Eq. (22) gives
(" o) (o) (one oo
X<K1(§) K<¢>>(228;>:<8> @)

Since obviously

(diag{KC;(£). K2(§)}) ™" = diag{KC, (=€), Ky(=&)}
with matrix inversion defined by regular matrix multipli-
cation and distribution inversion defined by distribution

multiplication that gives a ¢ function. Combining this result
with Eq. (22) in the Landau gauge,

(i) (anio az0) (o)~ (o) 2

yields

116004-5



SHAOYANG JIA and M. R. PENNINGTON

Q11(0) Q12(0)
( )
Q_ZI(OI)CM??)(O) Q1(8) Qpp(d)
‘< i@(—a)(szzl(f) 922@))
" <IC1(5) K2<§)>' (26)

Since for different ansatz the Landau gauge solutions p(s; 0)
are allowed to be different, Eq. (26) is the necessary
condition for solutions to the SDE for the fermion propa-
gator to be consistent with its LKFT.

Meanwhile, when Q(0) is given by Eq. (26), Eq. (25)
becomes Eq. (24), which, when viewed as equations for
Ki(€)p1(0) and K,(E)p,(0), is identical to Eq. (22).
Therefore, Eq. (26) is also the sufficient condition for
solutions to the fermion propagator SDE to be consistent
with LKFT. Therefore solutions of the SDE for fermion
propagator are consistent with LKFT if and only if Eq. (26) is
satisfied.

B. Gauge covariance requirement on the photon
propagator SDE

After gauge fixing, the photon propagator becomes

w o qﬂql/
DH(q) = A" (q) +&———, (27)
q +1e
where
G(q*) q'q"
AHY — v_ 28
(‘I) q2+i£ g qz ( )

is the Landau gauge photon propagator. The dressing
function G(g?) is determined by the SDE for the photon
propagator.

As illustrated in Fig. 5, the same vertex structure
Sg(k)T#(k, p)Sg(p) appears in the SDE for photon
propagator. This allows us to derive the gauge covariance
requirement on the photon propagator SDE. Meanwhile,
the spectral representation ensures the transversality
of the vacuum polarization tensor through the translational
invariance of the loop momentum. To start with, the
dependence of the photon propagator D**(q) on the covar-
iant gauge parameter £ is completely specified by the
Eqhq’/q* term, as a direct consequence of which, G(g?)
of Eq. (28) and the transverse vacuum polarization tensor
1" (q%) = (¢ q* — q"q")11(¢*) are required to be inde-
pendent of &.

Next, one should expect the analytic structure of the
photon propagator to differ from that for the fermion
propagator, with singularities in distinct (but related)
positions. Nevertheless, we can still proceed by keeping
the external momentum dependence explicit without intro-
ducing a spectral function for the photons. Therefore the
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consistency requirement for the photon propagator SDE is
simply given by 0:I1(¢*) = 0. Since the vacuum polari-
zation function I1(g?) is linear in the fermion propagator
spectral functions. One can write

M(g?) = / AW (2. W:E)p(W:&)

pi(s:9)
- [s@i@ s aesa ("))
pa(s:&)
With the & dependence of p;(s; &) given by Eq. (13), the &
independence of T1(g?) specifies

Q;((f,s;tf)Z/ds’Q’;(qz,s’;O)exp {Z—jfbj(s’,s)], (30)

or at the operator level Qf = Qe*®. This is the consistency
requirement between the photon SDE and the LKFT.

V. THE DECOMPOSITION OF Q

The operator € can be decomposed into components from
the fermion mass, and the longitudinal and transverse parts of
the photon propagator. Some of these can be calculated
exactly. In the quenched approximation, G(¢?) = 1 and the
photon propagator is known exactly. When photons are
unquenched, the vacuum polarization produces a nontrivial
G(q?) in Eq. (28). In this case, the introduction of a spectral
representation for the photon propagator is required.
Meanwhile, since the longitudinal part of the fermion-photon
vertex is fixed by the Ward-Green-Takahashi identity, con-
tributions from the £g#¢*/q* term to Q are known exactly
regardless of either the dressing of the photon propagator or
the transverse part of the fermion-photon vertex.

While the bare mass mp contributes to off-diagonal
terms of €;; containing terms at most linear in mg, allowing
the following decomposition of Q,

Q=Q"+Qf Qb (31)

where

Q"(s,s") =

_%6(s—s’)> (32)

——

stands for the operation linear in mp that is also independent
of & Furthermore, denoting by Q¢ the contribution from the
longitudinal component of the photon propagator £g¥ ¢* / ¢*,
this can be readily computed exactly. While Q* is calculated
with the A#(q) term of the photon propagator in Eq. (27),
which remains unknown without either the photon dressing
function or the transverse part of the fermion-photon vertex.

QFf, being linear in &, vanishes in the Landau gauge.
While Q* depends on the gauge because of the transverse
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aspects of Sp(k)I['*(k, p)Sg(p). These need not be zero in
the Landau gauge, despite this being commonly assumed.

A. Exact expressions for Qf

In order to calculate Q¢ in any dimensions, based on
Eq. (9) we need to calculate the contribution to o;(p*; £) as

p(W)

( )‘H"’z

|
1
2
= ie §/dW/quk

—ag

pf—W

PHYSICAL REVIEW D 94, 116004 (2016)
functionals of p;(s;&) with explicit dependence on the
number of spacetime dimensions d = 4 — 2¢. We denote by
af- the contribution to ¢; from the longitudinal component

of the photon propagator. After replacing D,,(q) by
£49,q,/q", we have

[3e =4 + (3 —2¢)y]

4717

o o4 (e

with y being the Feynman parameter, z = p?/s and the combined denominator given by D = (1

(33)

AW
D D p—w’

—y)(1 —yz). After

applying the integral definition of hypergometric functions [51], we have

(1-y)

I'(p+1)'(g+1)

1 p q
/ dy? V'
o = (I-yz)

Then the loop-integral factor of Eq. (33) becomes

1l g  «a
/quk Wq__ 4n

2(3 = 2¢)p

T Booe-a(i-¢

2Fl(€v3;4_

Since o°

= are properly formulated Feynman diagrams
corresponding to loop corrections to the fermion propa-
gator where the p;(s;&) are given by & functions, one
expects that linear combinations of hypergeometric func-
tions in Eq. (35) are finite (at least in four dimensions)
when z — 1 such that there are contributions to fermion
propagator functions no more singular than those of a
free particle.
After numerous applications of contiguous relations for
hypergeometric functions , F| (a, b; c; z), Eq. (33) becomes

5 aé 4z \ € T'(e)
"f(P)—E/dS< . ) 1—¢
x,F1(€,2;2 —€;2)p1(s), (36a)
_aé drpu®\e  el(e)
A= ds( s > 2-e)(l-¢)
x2F1(6+1,2;3-e;z)§p2(s). (36b)

Details of the intermediate steps can be found in
Appendix A.
Next, since QFf is only linear in &, we define ® as

0 = - 1Q¢, (37)

I(p+q+2)

o) {aatmgent s ens-

€;z)+1

CJFila,p+1ip+qg+2;2). (34)

(Be—4)p
C-e(i-o°

w
T€2F1(e, 1;2; z)}

€2) + Fi(e,2;3—¢€;2)

(35)

|

(recalling v = af/4x) such that the distribution ® is
independent of . Apparently only diagonal elements of
©;; survive, therefore

1 5 1

10y (s, 5";&) = —;mzlm{of(s +ie;&)}. (38a)
1

— 10y, (s, 53 &) = —mglm{ag(s +ie; &)}, (38D)

Letus define at the operator level [ds®=diag{6,.6,}. Since
1 1 +0o0
S s
p*—s+ie p? ; &

Egs. (36) and (38) imply

au*\¢ 1 1
O e “( ”) Pl
% R (e /3—1(2)ﬁ—1 fte a
2 G-t O
Arp®\ € 1 €
=0 aman
+Z°° (€4 1)51(2)p 4. (39b)
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Therefore we have the following identities for 6,

A\ T(1—eT(B+e—1)p 4.,

o= ( P’ ) Mip-a o (0
_ (4T —e)C(B+e)f 4.,

o= () Frataa e

which completely specify ®, and consequently QF.

B. Consistency requirement as recurrence relations

Based on previous analysis, for a given ansatz for the
fermion-photon vertex that ensures the vertex structure
Sg(k)T#(k, p)Sg(p) being linear in p(W), the correspond-
ing distributions €;; can be calculated. Such an ansatz is
consistent with LKFT if and only if Eq. (26) is satisfied.
Independent of any ansatz, two terms Q" and QF are now
known exactly.

In this subsection, we explore how Eq. (26) is satisfied
incorporating QA, i.e. with Q™ and Q° explicitly included.
Straightforwardly, one could substitute Eq. (31) with known
components into the consistency requirement Eq. (26), and
obtain

QA = eP(Q" + QF)er® — Q" + 1D, (41)
as the consistency requirement on Q. Alternatively, with
LKFT for fermion propagator spectral functions given by
Eq. (13), we have

Qf = e_‘@QOe‘@, (42)

where the subscript of Q; highlights the £ dependent € in
Eq. (31), therefore Qy = lim;_,(<2;. To see how infinitesimal
changes in & affect Q2, consider taking the derivative with
respect to v (effectively &) of Eq. (42),

8DQ§ -

—Pe ™ Qpe® + e Qpe’ P = [Q;, D).

Substituting in Eq. (31) and Eq. (37) produces

0,08 + (8,08 = —[®,Q"] + O +v[P,0]. (43)
In order to recover the corresponding terms using the
spectral representation for the fermion propagator, one

calculates

1
/ dsds/mﬂ(& S/)p(sl). (44)

Since the z” expansion is in fact the p?/s expansion
of the free-particle propagator, commutators of oper-
ations on z# should be calculated with z# to the left.

PHYSICAL REVIEW D 94, 116004 (2016)

There exists an alternative convention to Eq. (44) that
locates the free-particle propagator to the right of the
operation, which subsequently modifies Eq. (26). The
net effect of adopting the alternative convention to
solutions of Eq. (43) is, however, zero compared with
the convention given by Eq. (44) because deriving
Eq. (26) using the alternative convention for the
location of free-particle propagator leads to exchanging
IS with ;¥

W1th1n th1s convention of locations, the right-hand side
of Eq. (43) operating on z” can be calculated according to
Egs. (B1) and (B2).

Since physical Q2 are generated by loop corrections to

the fermion propagator, the following criteria apply:

(i) while the dependence of Q4 on v = a/(4rx) is
allowed to be any order, Q* cannot depend on the
bare coupling alone because of the renormalizability
of fermion propagator SDE, the bare and renormal-
ized forms of a¢ being identical.

(ii) for diagonal elements of Q2 a trivial solution exists
with Q4 = 1@ = —Q¢. However, in this case there is
no correction to the free-particle propagator.

More generally, we define

Qb —mQa
Qb = ( " » ”) (45)
—m392A1 QzAz

such that QiAj correspond to dimensionless transforms.

In addition, from Eq. (13), one can easily verify
0,K¢+PK;=0. The similarity of Eq. (43) to this differential
equation for KC; indicates the following expansions for QA T

+o m 2\ me
Ap (=)™ (Aru
Q=3 m! ( 2

@i (B. ),
m=0 p

(46a)

for (ij) # (12), and

Q' = Z

<47T//l ) wlZ(ﬁ’ m)zﬂ+me+l’ (46b)

where the expansion coefficients w;;(, m) are allowed to
implicitly depend on e. The “12” component of Q* is
expanded differently from other components to ensure that
QA given by Eq. (45) translates into operations solely on
the spectral variables.

With Eq. (46), the left-hand side of Eq. (43) can be
calculated according to Eq. (B3). Then recurrence relations
for w;;(B,m) are obtained by the comparison of O(v")
terms in Eq. (43). As a result, we have
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o (Bom+ 1) + () L= {F(Z + AT+ )

w1 (B +e,m) — o (f,m)

PHYSICAL REVIEW D 94, 116004 (2016)

Fr2+p+me'(f+ (m+ ])6)}

I'(l14e¢€) ([(24p-¢€)(p) CR4+p+ (m—1)e)L(f+ me)
T(f+e—1)I(p+1) .
F(I—E)W form—(),
= T(e)[T(1—-e) [ p+1 14p+e \ T(f+2e)I(f+e+1) . 47
T T T(lte) (ﬂ+2€_ B+ ) F—erorg form =1, (47a)
0 for m > 2.

~wp(fom + 1)+ T(e) B9 {F(Z +AI(B+ )

I'(l14e¢€) (['(24p-¢)(p)
I'(2+p)(f+e o
_ F(]—E)W form—(),
0 for m > 1.

—wy(f.m+1)+T(e)

I'(l—e¢) {F(l +AT(f+e¢)

I'(l1+4e¢€) (I(14+p-¢€)(p)
C(1+8)T(f+¢) .
_ I'(l-e¢) T eI ) for m =0,
0 for m > 1.

—wn(om+ 1) + () =) {FO + P+ )

wp(B+e,m) —w,(f,m)

1 (B +€,m) — 3 (B, m)

(B + e, m) — (B, m)

FC+p+mel(p+1+ (m+ 1)6)}
F2+p+ (m—1e)(f+ 1+ me)

(47b)

C2+p+me)l(f+ (m+ 1)6)}
L2+ p+ (m—1)e)(B+ me)

(47¢)

C(1+p+me'(f+ (m+ 1)6)}
C(1+p+ (m—1)e)l'(f + me)

(47d)

)
T(1+e) \D(1+p-e)l(p) =
I'(p+e)T(f+1 B
F(1 - riarg for m =0,
= D(e)r(i=e) (1 1\ D26 (f+et1) B
T (e </f+l B 1+ﬂ—s> T(f—e+ )T (B) for m =1,
0 for m > 2.
These recurrence relations specify how gauge

covariance is satisfied when distributions QiAj are
expanded as Taylor series in v = af/4rx written in
Eq. (46). On one hand, when the QiAj are only known
in the Landau gauge, Eq. (47) can be used to calculate
QiAj in any other covariant gauge. On the other hand,
when an ansatz for Sp(k)I*(k, p)Sp(p) is known, the
operations of QiAj on z# can be calculated. Equation (47)
then works to verify if this ansatz ensures that
solutions to fermion propagator SDE are consistent
with LKFT.

C. Example: The gauge technique in the quenched
approximation in four dimensions

In the quenched approximation with the gauge tech-
nique ansatz for Sg(k)I%(k,p)Sg(p) [18], we deduce the
Q;; to be

3 1 4 2
Qn(s,s';é):——a ——yE+ln4zz—|———|—lnM—
4z | \e 3 s

X 8(s — ') —::—;9(5 —s’)} —a—lé(s —s'),

Qi (s,55¢) = —@5(3 - '),
Ky

Qi (s,5"58) = —mpd(s —s'),

3a [ (1 4 2
Qo (s, 556 = _E{<E_yE+ln4ﬂ+§+ln%)

s 2

x 8(s —s") —le(s—s’)} —Z—ij—le(s -5,

(48)

where my is the bare mass and d = 4 — 2¢. Equivalently
written as operators on z, £;; become
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Q (&) = —i—z [C+In(z) —z7'1) - glz‘l,
Qpp = —m—fz,
p
Q) = —mg,
Q (&) = _3a [C+1In(z) — Iz7Y] - “—‘fz—ll, (49)
4 Az

where C = 1/e —yp + In(4mu?/ p?) + 4/3.
Meanwhile, since in four dimensions the LKFT for the
fermion propagator reduces to Eq. (21), we have

DK, () = (Zé) —” exp{—y E +re+ 1n(47z)} }

CB-v)IQ2+p-v) 5y

R (302)
2\ —v
20306 = (%) " exp{ v |1+ 1+ man)| |
Xr(ﬁ_y)r(l +:H_V) ﬁ—u. (SOb)

C(AT(1 +p)

For the consistency requirement, it is more convenient to
write Eq. (26) as

<Qll (é:) 912(5) >
921(5) 922(6)
_ (/Cl(f)Qn(O)/Cl(—f K1(£)Q12(0)K5(=¢ )
K (£) Q1 (0)K1(=8)  K(£)€02(0)C5 (=)

(51)

With the assistance of the following four identities for
fractional calculus,

F(ﬂ + 1) Z(Hr[f

I”Zﬁ = m s (523)
wy LB+ at
Dzf = mz s, (52b)
1"In(z) = %{w(ﬁ +1)—yla+p+1)
+ In(z) }z**7, (52¢)
D% In(z) = % {wB+1)
—p(—atp+ ) +In(@)}zw (524)

where (/) is the digamma function, one then obtains

PHYSICAL REVIEW D 94, 116004 (2016)
ZﬁKl (f)gll(O)Kl (—5)

3a [ ~ 1
Z—E{C—m+w(ﬂ)—‘ﬁ(ﬁ—y)

+l//(ﬂ+2)—z//(ﬂ+2—v)+lnz}zﬂ, (53a)
PR (—8) = T2 Lo (s
1
LA O (—8) = —my T (530)
Zﬁ/Cz(é)sz(O)’Cz(—f)
3a [ ~ 1
e v -vp-n
+l//(/i+1)—u/(ﬂ+1—u)+lnz}zﬂ. (534d)
While from Eq. (49), we have
3a |~ 1
Q8 = {—ﬁ [C—m+lnz] —%}zﬂ, (54a)
PQp(¢) = _%Zﬁﬂ’ (54b)
Zﬁgﬂ (é) = —mBZ/}, (54C)

P(8) = {_431_: {6—%+lnz} _ﬁ—li/— l}zﬁ (54d)

Observe that the digamma functions only occur in Eq. (53),
not in Eq. (54). Additionally, the dependence on v is only
linear in Eq. (54), but not in Eq. (53). Therefore the
consistency requirement given by Eq. (51) is not satisfied
by the gauge technique in four dimensions. The same
conclusion has been realized by Delbourgo, Keck and
Parker [52] in a completely different approach.

VI. SUMMARY

In this paper we have formulated the fermion propagator
SDE in terms of propagator spectral functions. With the
fermion-photon vertex structure S (k)I'*(k, p)Sr(p) being
linear in the p;(s; &) as implied by the equality of renorm-
alization factors Z, = Z,, we have derived the necessary and
sufficient condition for the solutions of the fermion propa-
gator SDE to be consistent with LKFT in covariant gauges.
With known contributions to the fermion propagator SDE
calculated, this reduces the consistency requirement to that
for the contribution to Q in Eq. (8) from the Landau gauge
photon propagator. Next, an expansion of the operator Q4
[defined in Eq. (31)], similar to that of K; in Eq. (19), has
been postulated in Eq. (46). The consistency requirements
can then be converted into the form of recurrence relations
of this expansion, shown in Eq. (47). The requirement on
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Sp(k)[*(k, p)Sp(p) to ensure the gauge invariance of
I1(g?) was also derived.

We observe that the gauge technique [15-18] does not
ensure gauge covariance for the fermion propagator in
QED. In fact, when fermions are massive, dimension-odd
operators are required in Sp(k)[*(k, p)Sp(p) to ensure
gauge covariance. Our formalism for the SDEs using a
spectral representation allows propagators to be solved in
Minkowski space. Furthermore, our consistency require-
ments can be used as criteria for truncating the SDEs for
QED propagators.

Importantly, our calculations have been performed in
arbitrary dimensions. Keeping ¢ = 2 — d/2 explicit to the
end turns out to give concise and meaningful results in the
case of the o-‘J: in Eq. (33), the fermion Schwinger-Dyson
equation, as well as the LKFT for the fermion propagator.
Results are concise in the sense that one hypergeometric
function describes the p? dependence for each Dirac com-
ponent of every loop integral. Meaningful in the sense that the
results apply to any number of spacetime dimensions as long
as hypergeometric functions converge. Based on these two
merits, one might suspect that dimensional regularization
evaluated by keeping e explicit to the last step is intrinsic to
QED itself.

This work marks a path towards ensuring consistent
truncations of the Schwinger-Dyson equations for the
fermion and boson propagators yield gauge covariant
fermion mass functions like that in Fig. 1: an essential
requirement for validating any truncation scheme used.
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APPENDIX A: SIMPLIFICATION OF o‘f (p*:€)

To simplify Eq. (35), we will need contiguous relations
for hypergeometric functions from Ref. [51] and the
following identity

(Ap+BW)(p+ W)
= 5(Az+B) + (A + B)pW

:s(z_l)[<A+A+B>

z—1
Equations referred to by Eq. (15.2.XX) are identities in
Ref. [51]. Witha=3,b=1+¢,¢c =4 —¢, Eq. (15.2.19)
becomes

A+B
s(z—1

)er} (A1)

PHYSICAL REVIEW D 94, 116004 (2016)
2(3 - 2¢)
B-¢€)2-€)(l—¢)
2
_mzﬂ(l l+e4d4—¢2)
2(1—2)
TBool-9

SFi(€,3;4—¢€;2)

F1(3.1+€e4—€2). (A2)

Explicitly then,

A:mzﬂ(lnﬁ,z%_e;z)
Lo %4
(2-e)(1-¢)

+ 2(3 = 2€)
B-o2-e)(l—¢)
_%2&(1—&—6,3;4_6%)

1
—i-ﬁzFl(l +€,2;4—¢7)

PGl S
2-¢)(1-¢)

SFi(€,2;3—¢€;2)

,Fi(e,3;4 —¢€;2)

,Fi(€.2;3 —€;2), (A3)

where Eq. (A2) is used to derive Eq. (A3). From
Eq. (15.2.17) with a =1, b = ¢, ¢ = 3 — ¢ we have

1
B:E2F1(6,1;2—€;Z)

1
:2_€2F1(€,1;3—€;z)
1

mzﬂ(eﬂﬂ -€2).

+ (A4)
Next, witha =€, b =2, c = 3 — ¢, Eq. (15.2.15) becomes

1
—F(e,1;3—¢;2)

2—¢?
:(Z_IJ(TG_G)ZFI(ZGQ—Q@
+%2F1(2,6+1;3—6;Z). (AS)

With a =¢, b =3, c =4 —¢, Eq. (15.2.17) becomes

-1
7€2F1(€,2;3 —E;Z)

1 -
=62 pae
= Goo-eg2ied-a)
+W2F1(6+1,2;4—€;Z). (A6)

Witha=2,b=1+¢, ¢c=4—¢, Eq. (15.2.15) becomes

116004-11



SHAOYANG JIA and M. R. PENNINGTON
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—(3-2¢),F(€.2;4—¢€;2)+ (1 —=2¢),F (e +1,2;4—¢€;2) where Eqgs. (A5), (A6), and (A7) are used to derive
_ ) ) Egs. (A8a), (A8b), and (A8c), respectively. In addition,
=—2(1-2),Fy(e+1.3:4-e2). (A7) Githa=e b=2, c=4—e Eq. (15.2.14) becomes

Therefore

& F(e+1,2;4—¢€:2)
A+B:—(32(1)(_1Z) )2F1(1+€,3;4—€;Z) (A8a) =2,F|(e.3;4—€;2)— (2—¢),F(e.2;4—¢€;2). (A9)
—e)(l—¢
e(l-72) With a =¢, b =2, c =3 —¢, Eq. (15.2.14) becomes
+m2F1(€+1,2;3—€;Z)
—1 Fi(e+1,2;3—¢;7)
— F(e,2;3 —¢;
Fioeafile 62) =2,F\(e.3:3—¢€;2)— (2—¢),F\(e.2:4—€12).  (AL0)
1
+—F (1 +¢€24—-¢2)
3-¢ With a =€, b =2, c =4 —¢, Eq. (15.2.24) becomes
2(1 —
:3(—16)2F1(1+€,3;4—€;Z) (Agb)
(B-e)(1-¢) (1 —€),Fi(e,2;4 —€;2) +2,F(e,3;4 —€;2)

e(l-z =3-¢),F(e,2;3—¢;2). All
+7(2_(€)(126)2F1(€+1,2;3—€;Z) ( )21 ( ) ( )
—(3-2¢) With a =€, b =2, c =3 — ¢, Eq. (15.2.24) becomes

+m2F1(€,2;4—€;Z)
1-2 —6,F (6,23 —¢; 2,F(€,2;3 —¢;
+7€ L Fi(e+1,2;4—¢€;z2) e File €2) + 2 F1(e €2)
(B3-¢€)(1-¢) = (2—¢),F(e.2:2— ;7). (A12)
e(l-2)
=——“% Fi(e+1,2;3—¢;2), (A8c)
(2—6)(1—6)2 : Then
|
A+ B —€ 3¢ —4
A Fi(1 2:4 —¢; — Fi(e,2;3—¢;
+<Z_1) Boo@—e> (1 +e, ez)+(2_€>(1_€)2 1(e €;2)
(3 2¢) —€
Fi(e 3;4— - F 1,2;3 —¢€;
G- au- >2 eFd-edt o gagnet a3z
2(2 -
= - 2F1€34—€ 2)+(2—-¢),Fi(e,2;4 —¢€;2) (Al13a)
1
+m{—22F1(€,3;3—€;Z)+2(€—1)2F1(€,2;3—€;Z)}
2
=— —Fi(6,3;4 —¢; — L F(€,2;4 —¢; A13b
(3—6)(1—6)2 1(6 €Z)+3_€2 1(6 €Z) ( )
+ = Fi(e.3:3—e:2) + =2 Fi(e.2:3 - e:2)
a-g-g eI medtaahlen3ma
€ -2
- F(e23-e)+ e F (633 - ¢ Al3
(1—6)(2—6)2 1(6 €Z)+(2_€)(1_€>2 1(€ €Z) ( C)
|
::2F1(€,2;2—€;Z), <A13d)

where Egs. (A9), (A10), (All), and (A12) have been utilized to derive Egs. (Al3a), (A13b), (Al3c), and (A13d),

respectively. Finally, we obtain
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1 —a§ drpP\e [ -1 —€ 574
2 e S - e s 2N
ie af/dk W I (e)( ; > {1_€2F1(€,2,2 €,Z)+(2_6)(1_€)2F1<€+1,2,3 e,z)W}.

APPENDIX B: OPERATIONS ON z# FROM TERMS IN EQ. (43)

For commutators on the right-hand side of Eq. (43), explicit calculation shows that

_T(EL =) (4mP\* p+1T(B+2e)0(B+e+1) 4,
0 =" () peae Toeearg 2 (Bla)
L(e)[T(1—¢)* (4mp*\*¢ 1+ B+ eD(B+2e)(+e+1)
s e
e e (B1b)
T —e)? (4mp*\* 1 T(F+2e(+e+1) 4.,
0= g () T TG et (Bl
Ce)[C(1—e) (4np®\* 1  TR+2TB+e+1) 4.
=" Ui () Teime Taeetirg (B19)
and
B B 47;”2)61“(1 —¢) [ C+ALB+e) TR+AT(B+1 —l—e)] pret]
2= =10 () 76} [T T TG+ 1)
iy (AN TRQHPTB+e) 4,
=r-0(%5) ms ot (B22)
<¢ — ) <471' 2>€F1—€ |: + P +e) F(2+ﬂ)r(ﬂ+€)]zﬂ+e
e p* ) T(1+e) [T +p-eT(f) T2+p-el(p)
- 4\ T+ PP+ €) 4.,
=-r-0 () Rt (B20)
Up until now all terms on the right-hand side of Eq. (43) are explicit. For the left-hand side, we have
+0o0 m m
20,0 = > O (4I0) " g+ i (i) #012), (B30
m=0 .
+o m m
20,0 = Z(_}'ZV) (4Z—éﬂ>( o [—w1y (B, m + 1))z P+ (B3b)
m=0
R (=) A\ r0e - T(1—e) (T2 4TS +e)
e - oh) =3 O () o T R e gt e em)
TF2+p+me)L(f+ (m+1)e) mtl)e
_w”wmwr2+ﬁ+0n—ndﬂﬂ+m@}fﬂ+” (B3c)

o dap®\ (mthe (1 —¢€) (T2 + T (S +€)
(398 — Qo) = Z < ) I(e) T(1+e¢) {F(2 Y p—eT(p) w2(B + e, m)

Q+p+meT(B+1+(m+ 1))\ s imene
F@+ﬂ+0n—ﬂdﬂﬁ+l+m@}lﬁ(+) (B3d)

—wpp(f,m)
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Zﬂ(¢292A1 - Q§1¢3) =

E2 (<) (4md\ e T(1 =) (T(1+HT(B+ )
( > F(G)F(He){
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Mt p—orp P rem

m=0
LR+ p+me)lB+(m+DE)\ s imrne
oM g G e e (B3
R (=)™ (AP (mtDe - T(1—¢) (T(1+ (B +e)
p A QA = ® e, m
20000 =3 S () rom g {ra gy oa e m
L1+ g+ me)L(f+ (m+1)e) (e 1)e
o) G (B30
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