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The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA, offers a unique signature of
chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry,
which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as
exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry
breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit
and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to
nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit
sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in
the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of
subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger
sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section
parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at OðM4

πÞ in the
chiral expansion, this work finds gA ¼ 1.248� 0.010� 0.007� 0.013.

DOI: 10.1103/PhysRevD.94.116002

I. INTRODUCTION

The success of the Adler-Weisberger (AW) sum rule
[1,2] in calculating the nucleon axial-vector charge, gA, was
important historically [3] as it provided a striking pre-QCD
confirmation of the importance of chiral symmetry in
understanding nucleon structure through the strong inter-
action. The original derivation of the sum rule used some of
the language of the infinite momentum frame as well as
then-available knowledge of current algebra low-energy
theorems.1 These two technologies have substantially
advanced and evolved, and therefore it is interesting to
reassess the theoretical basis for the AW sum rule. In
addition, knowledge of the experimental total cross sec-
tions in the resonance region [5]—which is essential for a
confrontation of the sum rule with experiment—as well as
overall knowledge of the pion-nucleon interaction [6] have
advanced to a high level. Therefore, an updated analysis of
the experimental validity of the AW sum rule and its
implications for the nucleon axial-vector charge, with
controlled uncertainties, is timely.
It is worth summarizing the standard view of how the

AW sum rule is obtained. Firstly, soft-pion theorems are
derived using current algebra methods or chiral perturba-
tion theory χPT) [7–11] to obtain the crossing-odd, forward
scattering amplitude at a special low-energy kinematical
point. The Regge model of asymptotic behavior is then
invoked to argue that this amplitude vanishes sufficiently
quickly at high energy to guarantee an unsubtracted
dispersion relation, and the optical theorem is used to
replace the absorptive part of the scattering amplitude with

the total cross section. While there is nothing wrong
with this perspective of the sum rule, one goal of this
paper is to stress that it is not necessary to invoke Regge
lore in deriving the AW sum rule [12], as the scattering
amplitude in question is explicitly calculable in the Regge
limit (s ≫ −t), and is found to vanish as a consequence
of the chiral symmetry of QCD [13,14]. The convergence
of the AW sum rule is therefore a direct consequence of
the chiral symmetry of QCD and does not depend on
model input.
In the original derivations, the major theoretical hurdle in

confronting the AW sum rule with experiment was the
ambiguity in extrapolating from the world of massless
pions to the physical world [15], as χPT did not yet exist.
Here, the leading chiral corrections to the chiral-limit
expression of the AW sum rule are obtained. Of course,
these chiral corrections are universal. However, there is no
unique analog of theAWsum rule away from the chiral limit,
as there is freedom to evaluate the underlying dispersion
relation at the threshold point, or in the subthreshold region,
in such a way that the resulting sum rule reduces to the AW
sum rule in the chiral limit. In the language of effective field
theory, these variants are equivalent, up to distinct resum-
mations of pion-mass effects. It is natural to formulate the
AW sum rule in a manner that leaves the chiral-limit form
invariant and includes chiral corrections perturbatively
using χPT. This sum rule can then be treated as a constraint
on gA that is rigorous inQCDup to subleading corrections in
the chiral expansion.
This paper is organized as follows, Sec. II introduces the

basic pion-nucleon scattering conventions that are essential
for our investigation. Section III reviews the connection
between algebraic chiral symmetry and the soft asymptotic1For a detailed description of these methods, see Ref. [4].
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behavior of the crossing-odd, forward pion-nucleon scat-
tering amplitude. In Sec. IV, the well-known, crossing-odd,
forward dispersion relation is written down and evaluated at
several kinematical points. While the results of this section
are well known, they are essential for what follows. The
leading chiral corrections to the chiral-limit form of the AW
sum rule are derived in Sec. V. A confrontation of the AW
sum rule with experimental data requires detailed knowl-
edge of the total pion-nucleon cross sections. Therefore, a
parametrization of the cross sections across all relevant
ranges of energies is constructed in Sec. VI and used to put
the AW sum rule to the test. Finally, we state our
conclusions in Sec. VII.

II. NOTATION AND CONVENTIONS

We use the standard conventions of Ref. [16]. The four
momenta of the incoming nucleon and pion are p and q
and the four momenta of the outgoing nucleon and pion are
p0 and q0. Therefore, s ¼ ðpþ qÞ2, t ¼ ðq − q0Þ2, and u ¼
ðp − q0Þ2 with sþ tþ u ¼ 2M2

π þ 2m2
N . The lab energy of

the incoming pion is ω ¼ ðs −m2
N −M2

πÞ=2mN and the lab

momentum of the incoming pion is k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −M2

π

p
. It is

convenient to express the energy in terms of the crossing-
symmetric variable ν ¼ ðs − uÞ=4mN . In the forward limit,
ν ¼ ω. We denote the chiral-limit values of gA, Fπ ,mN , and
Mπ as g, F, m, and M. The scattering amplitude can be
expressed as

Tαβ ¼ δαβTþ þ 1

2
½τα; τβ�T−; ð2:1Þ

T� ¼ ūðp0Þ
�
D�ðν; tÞ − 1

4mN
½q0; q�B�ðν; tÞ

�
uðpÞ; ð2:2Þ

where α, β are isospin indices. This paper is about crossing-
odd forward scattering and therefore concerns itself solely
withD−ðν; 0Þ, which is related to the total pion-proton (πp)
scattering cross sections via the optical theorem:

ImD−ðν; 0Þ ¼ kσ−ðνÞ ¼ k
1

2
ðσπ−pðνÞ − σπ

þpðνÞÞ: ð2:3Þ

As crossing symmetry implies that D−ðν; 0Þ=ν is even in ν,
the expansion of the amplitude about ν ¼ 0 in the forward
direction is

D−ðν;0Þ
ν

¼ g2πN
mN

νB
ν2B−ν2

−
g2πN
2m2

N
þd−00þd−10ν

2þ�� � ; ð2:4Þ

where νB ≡ −M2
π=2mN , gπN is the pion-nucleon coupling

constant, and the d−n0’s are subthreshold amplitudes. The
scattering length a−0þ is defined via

4πa−0þ

�
1þMπ

mN

�
≡D−ðν; 0Þjν¼Mπ

: ð2:5Þ

It will prove useful to give the chiral expansions of
various quantities [11,17]. The pion-nucleon coupling
constant may be expressed as

gπN ¼ gAmN

Fπ
ð1þ ΔGTÞ; ð2:6Þ

where ΔGT is the Goldberger-Treiman (GT) discrepancy
[18,19], whose chiral expansion is

ΔGT ¼ −
2d̄18M2

g
þOðM4Þ: ð2:7Þ

The chiral expansion of the leading subthreshold amplitude
is [20]

d−00 ¼
1

2Fπ
2
þ 4ðd̄1 þ d̄2 þ 2d̄5ÞM2

π

F2
π

þ g4AM
2
π

48π2F4
π

−M3
π

�
8þ 12g2A þ 11g4A

128πF4
πmN

−
4c1 þ g2Aðc3 − c4Þ

4πF4
π

�

þOðM4
πÞ; ð2:8Þ

where the ci’s and d̄i’s in Eqs. (2.7) and (2.8) are (scale-
independent) low-energy constants (LECs) that are uncon-
strained by chiral symmetry.

III. ASYMPTOTIC BEHAVIOR AND
CHIRAL SYMMETRY

The existence of a sum rule hinges on the asymptotic
behavior of the crossing-odd forward amplitude. As men-
tioned above, this amplitude is special in QCD as its
asymptotic behavior is constrained by chiral symmetry.
This constraint is most easily derived by considering the
light-cone current algebra that naturally arises when QCD
is quantized on lightlike hyperplanes. Remarkably, there is
a set of scattering amplitudes whose Regge-limit values can
be expressed as matrix elements of the current algebra
moments [13,14]. The Regge-limit value of the crossing-
odd, forward, πp scattering amplitude is given by [13]

D−ðν;0Þ
ν

����
ν¼∞

¼ 1

F2
π

Z
dkþd2k⊥
2kþð2πÞ3

× hp;λ;kjð2 ~Q3− ½ ~Qþ
5 ðxþÞ; ~Q−

5 ðxþÞ�Þjp;λ;ki;
ð3:1Þ

where p denotes the proton, k ¼ ðkþ; k⊥Þ is the null-plane
momentum, and ~Q�

5 ðxþÞ≡ ~Q1
5ðxþÞ� i ~Q2

5ðxþÞwith ~Qα
5ðxþÞ

the null-plane axial-vector charge [13]. The conserved null-
plane vector charge is ~Qα. The null-plane axial-vector
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charges are not conserved, even in the chiral limit, and
therefore they carry explicit dependence on null-plane time,
xþ. This property allows the charges to mediate transitions
between states of different energies, and is, in a fundamental
sense, responsible for the existence of the AW sum rule, as
will be further discussed below. As QCD with two massless
flavors has an SUð2ÞL ⊗ SUð2ÞR invariance, for any initial
quantization surface, there exist charges satisfying the
associated Lie algebra. In particular, if one works with null
planes then the following Lie bracket is clearly satisfied at
the operator level:

½ ~Q5αðxþÞ; ~Q5βðxþÞ� ¼ iϵαβγ ~Qγ; ð3:2Þ

which guarantees, via Eq. (3.1), the vanishing asymptotic
behavior of the crossing-odd, forward πp scattering ampli-
tude.2 In the chiral limit, theAWsum rule then follows either
through direct evaluation of the matrix element of the Lie
bracket of Eq. (3.2) [4,13] or by using dispersion theory (see
below), and is given by

g2 ¼ 1 −
2F2

π

Z
∞

0

dν
ν
½σπ−pðνÞ − σπ

þpðνÞ�; ð3:3Þ

where it is understood that the cross section in the integrand
is evaluated from the chiral-limit amplitude. Replacing all
chiral-limit parameters and amplitudes with the physical
ones yields a sum rule that can be confronted with experi-
ment:

g2A ¼ 1 −
2F2

π

π

Z
∞

Mπ

dν
ν2

k½σπ−pðνÞ − σπ
þpðνÞ�: ð3:4Þ

Of course this sum rule is valid only toOðM0
πÞ and receives a

nontrivial correction at each order in the chiral expansion. It
is the main purpose of this paper to compute the leading
chiral corrections and confront the corrected sum rule
with data.

IV. SUM-RULE REVIEW

A. Crossing-odd forward dispersion relation

Away from the chiral limit, the asymptotic behavior
of the crossing-odd, forward scattering amplitude guaran-
teed by the chiral symmetry algebra is unchanged3 and
therefore the scattering amplitude satisfies the dispersive
representation

D−ðν; 0Þ
ν

¼ g2πN
mN

νB
ðν2B − ν2Þ þ

2

π
P
Z

ImD−ðν0; 0Þdν0
ν02 − ν2

; ð4:1Þ

where P denotes the principal value. Apart from general
physical principles, the sole ingredient that enters the
derivation of Eq. (4.1) is the asymptotic behavior implied
by chiral symmetry via Eqs. (3.1) and (3.2). In the chiral
limit, this dispersion relation is profitably exploited only at
threshold, νth ¼ 0, which leads to Eq. (3.3) using the
formulas of Sec. II. However, away from the chiral limit,
both the threshold point, νth ¼ Mπ, and the subthreshold
point, ν ¼ 0, provide useful sum rules.

B. Threshold evaluation

Evaluating the general dispersion relation, Eq. (4.1), at
νth ¼ Mπ gives the sum rule

a−0þ

�
1þMπ

mN

�
¼ g2πN

2π

Mπ

ð4m2
N −M2

πÞ

þMπ

4π2

Z
∞

Mπ

k½σπ−pðνÞ−σπ
þpðνÞ�dν

ν2−M2
π

: ð4:2Þ

Equation (4.2) is the Goldberger-Miyazawa-Oehme (GMO)
sum rule [21] which predates the AW sum rule. Note that the
GMO sum rule follows only from the asymptotic constraint
of Eq. (3.1). Therefore, while this sum rule is a consequence
of the chiral symmetry algebra, it has nothing to dowith χPT
unless one chooses to expand the various physical quantities
that enter the sum rule in the chiral expansion. Recent
analyses of this sum rule can be found in Refs. [22–24].

C. Subthreshold evaluation

Evaluating the general dispersion relation at the sub-
threshold point, ν ¼ 0, gives the sum rule [11,16]

d−00 ¼
g2πN
2m2

N
þ 1

π

Z
∞

Mπ

dν
ν2

k½σπ−pðνÞ − σπ
þpðνÞ�: ð4:3Þ

Again, this sum rule relies solely on chiral symmetry to
validate the soft asymptotic behavior of the cross section.

D. Higher moments

There are also sum rules that follow from the higher
moments (n > 0) of the general dispersion relation,
Eq. (4.1), around ν ¼ 0:

d−n0 ¼
1

π

Z
∞

Mπ

dν

ν2ðnþ1Þ k½σπ
−pðνÞ − σπ

þpðνÞ�: ð4:4Þ

These moment sum rules are not related to chiral symmetry
as they rely solely on unitarity via the Froissart-Martin
bound [25,26], which requires σðνÞ < ln2ν at large ν (see
also Ref. [16]). These moments will prove to be useful

2This soft asymptotic behavior is consistent with the Regge
model which suggestsD−ðν;0Þ=ν→ν→∞ν

αρð0Þ−1 with αρð0Þ ∼ 0.5.
3This claim rests on the simple observation that turning on

light-quark masses with mu;md ≪ ΛQCD does not alter the
asymptotic behavior of scattering amplitudes when s ≫ Λ2

QCD.
Note that throughout this paper only χPT with two light flavors is
pertinent.
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checks of the parametrization of the total cross section that
is developed below.

V. THE AW DISCREPANCY

The chiral corrections to the (chiral limit) AW sum rule
of Eq. (3.4) are obtained by noting that the exact sum rule,
Eq. (4.3), contains the same integral over cross sections.4

Expanding the pion-nucleon coupling constant and the
subthreshold amplitude, d−00, using the results of Sec. II,
leads to

g2A ¼ 1 −
2F2

π

π

Z
∞

Mπ

dν
ν2

k½σπ−pðνÞ − σπ
þpðνÞ� þ ΔAW; ð5:1Þ

with the dimensionless AW discrepancy given by

ΔAW ¼ −1þ 2F2
πd−00 þ 4gAM2

πd̄18 þOðM4
πÞ ð5:2Þ

¼ M2
π

�
8

�
d̄1 þ d̄2 þ 2d̄5 þ

gAd̄18
2

	
þ g4A
24π2F2

π

�

−M3
π

�
8þ 12g2A þ 11g4A

64πF2
πmN

−
4c1 þ g2Aðc3 − c4Þ

2πF2
π

�

þOðM4
πÞ: ð5:3Þ

Values of d−00 and the d̄i and ci LECs (with their correlation
matrix) may be obtained from the Roy-Steiner equation
analysis of Ref. [6].
In what follows, the OðM3

πÞ-corrected sum rule,
Eq. (5.1), will be analyzed using a parametrization of
the total cross section together with both dependent and
independent determinations of the AW discrepancy.

VI. THE AW SUM RULE CONFRONTS
EXPERIMENT

A. Parametrization of total cross sections

In order to confront the chirally corrected AW sum rule,
Eq. (5.1), with experimental data in a controlled manner, it
is necessary to construct a parametrization of the cross-
section difference σ− of Eq. (2.3) over all energies. In what
follows, four distinct energy regions are considered, as
outlined in Table I. The cross section at very-low energies
(region I), where there is no PDG data [27], is constrained
by the effective-range expansion supplemented with the
partial-wave expansion, while the cross section at very-high

energies (region IV) is parametrized using a Regge-
model function fit to PDG πp total cross-section data.
The resonance region (region II) is parametrized by the
recent SAID solution of partial wave fits to πp scattering [5]
(see Fig. 1) while the transition region (region III) from the
resonance region to the Regge region is constructed from an
interpolation of PDG data.

1. Region I

While no experimental data exists for σ− below
k ¼ 0.16 GeV, the total cross section is constrained by
various partial-wave analyses and—within its realm of
applicability—the effective-range expansion, whose input
parameters can be independently determined both experi-
mentally and from Roy-Steiner-equation analyses [6,17,28].
As the lab-frame momentum of the pion approaches

zero, the open π0n channel causes the π−p total cross
section to diverge. However, the integrated contribution in
the region between the π0n and π−p thresholds has been
determined to be small [24,29]. Therefore, isospin invari-
ance is assumed at k ¼ 0. This allows an effective-range
expansion of the cross section, including the leading
momentum dependence, to model the region around
k ¼ 0. The first two terms in the effective-range expansion
are conventionally parametrized by combinations of isospin
even and odd (upper indices þ;−) S-wave threshold
parameters. In the center-of-mass frame [16],

2σ−ðqcmÞ ¼ 8π

�
ða−0þÞ2 þ 2aþ0þa

−
0þ þ 2q2cm

×

�
a−0þb

−
0þ þ a−0þb

þ
0þ þ aþ0þb

−
0þ

þ 1

24
ða41 − a43Þ

�	
; ð6:1Þ

where qcm is the c.m. momentum, a�0þ (b�0þ) are scattering
lengths (effective ranges) defined in Ref. [16], a1;3 are
isospin 1

2
; 3
2
S-wave scattering lengths, and the subscripts

TABLE I. Regions of the πp total cross sections. The distin-
guishing characteristics of these regions are the types of data
available and the theoretical considerations that enter the para-
metrization. PDG data does not exist in region I. This region is
further divided into Ia where the effective-range expansion is
valid and Ib where parametrizations based on partial wave
analyses accurately extend.

k (GeV) Source

Ia Threshold [0.0,0.02] Effective range
Ib [0.02,0.16] PWA [5]
II Resonance [0.16,2.0] SAID [5]
III Transition (2.0,3.3) PDG [27]
IV Regge ½3.3;∞� PDG [27]

4One can also expand the GMO sum-rule equation (4.2) in
powers of Mπ . However, expanding the integrand to match
Eq. (3.4) results in a subthreshold expansion evaluated at
ν ¼ Mπ that sits on the radius of convergence of the expansion.
While truncating this expansion may be a good approximation
[16], it does not result in a rigorous chiral expansion. As current
interests lie in the systematic calculation of chiral corrections to
the AW sum rule, such an expansion of the GMO sum rule will
not be used here.
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l� denote total angularmomentum states of j ¼ l� 1
2
. The

relevant isovector and isoscalar scattering lengths are well
known from the spectra of pionic atoms [24]. In addition,
recently an extraction of scattering lengths and effective
ranges for the πp system (with virtual photons removed) has
been conducted using Roy-Steiner equations [17]. Using
these latter determinations, one finds (in millibarns)

2σ−ðqcmÞ ¼ 3.56ð14Þ − 2q2cm86ð3Þ; ð6:2Þ
where qcm is expressed in GeV. This parametrization is
plotted in Fig. 2 together with the results of partial-wave
analyses (PWAs) by the Jülich group [30] and by the SAID
group [5]. The region of applicability of the effective range
expansion is less than that suggested by a naive estimate of
its radius of convergence. Figure 2 illustrates that this is due
to the influence of the P33 (Δð1232Þ) partial wave, which
contributes even at low values of the pion momentum. Both
the SAID and Jülich S-wave determinations follow the
S-wave effective-range expansion throughout this region.

However, the correct structure of σ− is captured only
after the P-wave contributions are included. Varying the
demarcation of regions Ia and Ib between k ¼ 0.02 GeVand
k ¼ 0.08 GeV is treated as a means to estimate parametri-
zation-related systematic uncertainties to the sum rule in the
low-energy region.

2. Region IV

The behavior of σ− at large momenta (region IV) is
effectively parametrized by a simple power-law decay,
consistent with expectations from the Regge model. This
is sufficient for the purposes of this paper, and a χ2 fitting to
PDG data above k ¼ 3.3 GeV gives (in millibarns)

2σ−ðkÞ ¼ 5.76ð2Þk−0.459ð1Þ; ð6:3Þ

where again k is in GeV.
Though other parametrizations of the data have been

explored (see Fig. 3), the high-energy contributions to the

FIG. 1. The SAID parametrization [5] superposed on the PDG data [27]. This SAID solution is used only in the resonance region
(region II).
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sum rule are suppressed in the integrand, rendering
differences between this simple parametrization and vari-
ous other models indistinguishable. We treat these alternate
fits as a means to estimate systematic uncertainties to the
sum rule in the high-energy region.

B. Testing the parametrization: Integral moments

Given the size of the uncertainties due to the integral
parametrization and the GT discrepancy, there are several

sources of uncertainty that are not treated as, comparatively,
they constitute fine structure: isospin violation is not
considered, and uncertainties associated with interpolations
of cross-section data are not treated systematically. One
option in the latter case would be to implement a Gaussian
process to interpolate between the πþp and π−p cross-
section data, propagating the resulting uncertainties to σ−

and to the integral of Eq. (5.1). Thus, the error bars quoted
in this paper are a representation of expectations under
reasonable variation of the dominant sources of uncertainty

FIG. 2. Parametrization of σ− in the threshold region with respect to the lab momentum, k, of the incoming pion. The dashed and solid
lines correspond to S-wave and S/P-wave determinations of this quantity. Clearly, the P-wave is an essential contributor. The low-energy
dashed region of the SAIDWI08 observables solution has not been corrected for Coulomb effects and is thus replaced with the effective
range expansion in this region.

FIG. 3. Three distinct (Hendrick [31], Höhler [16], and PDG [27]) power-law fits to the high-energy region of the sum-rule integrand
with respect to lab momentum of the incoming pion, k, as in Eq. (6.3). The dashed lines of corresponding color represent the lower limit
to the parametrization’s claimed domain of validity. The sporadic black line (ending at the right, black, dashed vertical line) is a
raw depiction of the PDG data through Oð1Þ interpolation of the individual πp cross sections contributing to 2σ− as in the
decomposition of Eq. (2.3).
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(neither necessarily Gaussian nor defined by a definite
probability to encompass the true value).
Calculating the subthreshold amplitudes through evalu-

ation of the moment sum rules, Eqs. (4.3) and (4.4), and

comparing results to other determinations establishes
confidence in the parametrization of σ− developed above.
Table II displays the subthreshold parameters as calculated
from (i) the work of Höhler [16], (ii) a recent analysis of the

TABLE II. Calculated values of subthreshold parameters. Uncertainties represent systematic uncertainties associated with alternative
parametrizations of regions I and IV and the GT discrepancy, as described in the text. Listed also are estimates of the Δð1232Þ-pole
contributions to the moment integrals of Eqs. (4.3) and (4.4). This paper has constructed two independent estimates of this contribution
by (1) saturating the πp cross sections with a Δð1232Þ δ function and (2) considering the πp cross sections to be constructed only of S
and P partial waves. The two values stated for d−00 correspond to the gπN contribution and integral contribution to Eq. (4.3), respectively.

d−00½Mπ
−2� d−10½Mπ

−4� d−20½Mπ
−6� d−30½Mπ

−8�
Höhler [16] 1.53(2) −0.167ð5Þ −0.039ð2Þ � � �
Δð1232Þ −0.91þ 1.17 −0.18 −0.04 � � �
Roy-Steiner equations [6] 1.41(1) −0.159ð4Þ � � � � � �
This paper 1.50(3) −0.150ð5Þ −0.033ð2Þ −0.0075ð8Þ
Δð1232Þ δ-function 1.9–1.36 −0.25 −0.046 −0.0084
S, P wave 1.9–0.77 −0.15 −0.034 −0.0089

FIG. 4. Integrands expressed in the integration variable k associated with the first two subthreshold coefficients. Note that k is not the
variable chosen to express these coefficients in Eqs. (4.3) and (4.4). Thus, the solid vertical line is placed at theΔð1232Þ contribution as a
pertinent reference. For higher moments, the integrand tends to increase the influence of the threshold region as well as the influence of
the Δð1232Þ relative to higher Δ and N resonances. This is consistent with the numerical findings that the value of subthreshold
parameters in Table II are closely approximated when considering only the Δð1232Þ resonance.
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πp amplitude with Roy-Steiner equations [17], and (iii) the
moment sum rules using the cross-section parametrization
of Sec. VI A. The uncertainty estimate of d−00 is dominated
by the uncertainty in the value of gπN stemming from the
GT discrepancy. This explains the order of magnitude
larger uncertainties as compared to the higher moments. To
construct this estimate, we have used the 2% upper limit
expected on the GT discrepancy as discussed in Ref. [32].
Contributions to the uncertainty arising from alternative
Regge fits or from modifying the threshold values of the
effective-range parameters are comparatively insignificant,
although they are incorporated into the table above.
The higher moments are only sensitive to the cross

section very near threshold and the Δð1232Þ peak.
Evidently, several of the coefficients are effectively satu-
rated by the Δð1232Þ resonance contribution to the sum
rule. These observations are illustrated in Fig. 4 as well as
in Table II, where saturation with the P33 partial wave
results in a 3% difference for d−20 and even less for d−10.
These statements are based on replacing the full PWA of the
resonance region with S and P partial waves only.
Saturation of the integrand with a δ function constructed
from PDG values for the Δð1232Þ resonance leads to
similar agreement and will be discussed in greater detail in
Secs. VI C and VI D where, for comparison with the full
continuous parametrization, the integrand is saturated with
N and Δ resonances of three and four star PDG signifi-
cance. It is reasonable to conclude that beyond these two
coefficients, d−00 and d−10, even the dominant peak of the Δ
begins to lose its significance in light of the increased
weighting of the threshold region.
We stress that the goal of this section is not to achieve

precision but rather to test the parametrization of the cross
section for consistency against existing data and theoretical
constraints. It is encouraging that the values of the
subthreshold parameters found here from the moment
sum rules are comparable to those found from independent
sources. The combination of these internal and external
consistencies is taken as license to make use of the
parametrization of Sec. VI A in evaluating the OðM3

πÞ-
corrected AW sum rule for gA.

C. Results: The axial-vector coupling constant

With a controlled parametrization of the total cross
section over all energies in hand, the AW sum rule can
now be used to determine gA. Note that gA appears within the
value of the AW discrepancy itself [see Eq. (5.2)]. Hence,
one can treat the AW sum rule as a nonlinear equation for gA,
and then use this calculated value to determine the con-
tribution from ΔAW . Having done this with the current
parametrization and coefficients from Roy-Steiner equa-
tions leads to the value gA ¼ 1.248� 0.010� 0.007�
0.013, where uncertainties are from the parametrization
of the integral in the sum rule, the GT discrepancy, and the
truncation of the chiral expansion. Table III presents the

results of this calculation from Eq. (5.2) with alternate
sets of the subthreshold parameters detailed in Table II and
Eq. (5.3) using the LECs of Ref. [6]. The distribution of
uncertainties for these estimates are comparable to that
stated above. In what follows, wewill discuss the sources of
uncertainty in some detail.
The nonlinear equation for gA was solved usingGaussian-

approximated, correlated uncertainties for d̄1 þ d̄2, d̄5, c1,
c3, and c4 as well as uncorrelated uncertainties for d−00, d̄18,
and the 2012 PDG value ofFπ . These sources of uncertainty
are associated with specific parametrization choices and the
GT discrepancy (2% as discussed in Ref. [32]), and are
represented by the first two numbers of the quoted, parti-
tioned uncertainty for gA. For the third source of uncertainty,
we considered the truncation of ΔAW at OðM3

πÞ. Note that
estimating the truncation uncertainty from, for instance, a
number of order unity times ðMπ=4πFπÞ4 leads to uncer-
tainties much smaller than those that are quoted. Instead, the
uncertainty due to truncation is estimated by the consistency
of the analysis in the event that one returns to the dispersion
relation, Eq. (4.1), and derives a new AW discrepancy. The
alternate expansion that we considered occurs when the
pion-mass dependence of the lab momentum, k, appearing
in the sum-rule integrand is also expanded in powers ofMπ .
While this no longer arrives at a correction to the chiral-limit
AW sum rule, this resummation allows for an estimate of the
influence of neglected higher-order terms. Using this
method leads to an estimated truncation uncertainty slightly
larger than that implied by naive dimensional analysis.
Included also in this estimate of the truncation error is the
higher-order difference between Eqs. (5.2) and (5.3).
Together, the three dominant sources of uncertainty combine
to yield the overall uncertainty stated in Table III.
Focusing on the independent evaluations which rely on

recent Roy-Steiner calculations of d−00 and the correlated
LECs, one finds that the two OðM3

πÞ evaluations of gA are
internally consistent. More importantly, one finds that the
magnitude and sign of ΔAW are in agreement with the

TABLE III. Calculations of the axial-vector coupling constant
and AW discrepancy [Eq. (5.1)] using the subthreshold coef-
ficients of Table II. Uncertainties, as discussed in the text, are
estimated from the parametrization, the GT discrepancy (2.7),
and the truncation of the AW discrepancy beyond OðM3

πÞ. The
third column corresponds to the relative contribution of the AW
discrepancy to calculations of gA at this order in χPT.

Eq. (5.2) gAOðMπ
2Þ ΔAW %

Höhler 1.282(12) 0.28(3) 21.8
Roy equations 1.242(10) 0.18(3) 14.5
This paper 1.272(15)a 0.257(36) 20.2
Eq. (5.3) gAOðMπ

2Þ ΔAW %
Roy equations 1.255(10) 0.21(2) 16.7

aThis value arises from a dependent calculation of ΔAW in
which the integral of Eq. (5.1) and the subthreshold parameter d−00
of Eq. (5.2) are both sourced by the parametrization of Sec. VI A.
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experimental observation that the value of gA is approx-
imately 25% larger than its chiral limit value. In the next
section, we will examine this symmetry breaking in greater
detail.

D. The physical picture

The AW sum rule is a constraint on the flow of null-
plane, axial-vector charge between the nucleon and all
other states that the nucleon can transition to through the
emission or absorption of a pion. The transitions can occur
only because the charges are not conserved (they depend on
xþ) and therefore they are able to mediate the energy
transfer that is necessary for the processes to take place. Of
course, physically, the nonconservation of the null-plane
axial-vector charge signals spontaneous chiral symmetry
breaking. This picture is, strictly speaking, correct only in
the chiral limit and therefore in this case the deviations of
gA from unity are a measure of spontaneous symmetry
breaking. As we have seen here, χPT allows the quanti-
tative inclusion of corrections to this picture due to non-
vanishing light-quark masses via ΔAW. An intuitive visual
representation of the sum rule gives the value of gA as a
function of the upper value of the integration momentum
(kmax) as it is increased from zero to its asymptotic value.
(See Fig. 5.) As one sees in the plot, methodically adding
states of higher energy under the integral (increasing kmax)
adds or subtracts chiral charge, depending on the inter-
mediate state.

When the chiral-limit sum rule [Eq. (3.3)] is expressed in
terms of physical quantities to produce the leading, OðM0

πÞ
contribution [Eq. (3.4)], the axial-vector coupling constant
at kmax ¼ Mπ is exactly 1. With the introduction of chiral
corrections, this value is shifted to 1þ ΔAW. Once the
chiral symmetry is spontaneously broken, intermediate
states that transition to the nucleon via the nonconserved
axial-vector charge can and do appear. In the interest of
gaining understanding of the weightings associated with
these states, depicted by the evolution of the integral in
Fig. 5, the integrand can be modeled with a finite number of
known resonances which couple strongly to the pion-
nucleon system. This process, δ-saturation, was carried
out in Ref. [35], where the cross sections participating in
the AW sum rule were approximated by δ functions of the
appropriate N and Δ resonances using the chiral-limit form
of the sum rule. Here, this exercise is repeated, but while
including the effect of the AW discrepancy. Figure 5 shows
that the delta functions lead to a series of step functions in
the calculation of gA that, as expected, qualitatively track
the curvature of the actual integrand obtained from the
parametrization of the cross sections.
While the δ-saturation of Ref. [35] neglected the AW

discrepancy, the analysis resulted in an evaluation of
gA ≃ 1.26—a value surprisingly close to the experiment,
albeit with no measure of uncertainty. Saturating the AW
sum rule using the same set of resonances but with Breit-
Wigner line shapes and a threshold region as discussed in

FIG. 5. Calculated value of gA with increasing upper bound of the integrated total cross section within the AW sum rule, Eq. (5.1).
Results in the main plot are from the evaluation of Eq. (5.3) with the LEC values of Ref. [6]. The subplot includes the corresponding
evaluation with Eq. (5.2) as well as two recent measurements of gA from neutron β-decay [33,34] for comparison. The light gray line
represents a similar analysis with the total cross section saturated by δ-function resonances [35] and this paper’s evaluation of
subthreshold parameters. The light-blue band is the 2012 PDG value for gA.
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Sec. VI Ayields the value gA ≃ 1.27 (with ΔAW ¼ 0). With
the now-improved understanding of the chiral corrections
to the AW sum rule, these past successes of δ-saturated
models may seem more fortuitous than illuminating.
However, both this “leading-order” agreement and the
qualitative agreement of Fig. 5 indicate that models of
pion-nucleon scattering, and more generally of the nucleon
null-plane wave function, that implement a finite number of
resonances provide an approximate description that could
prove useful for modeling the internal axial structure of the
nucleon.
The subplot of Fig. 5 provides a comparison between

sum-rule determinations of gA and current experimental
measurements of the coupling constant. According to the
2012 PDG review, gA ¼ 1.2701ð25Þ. Recent experimental
measurements of the neutron β-decay asymmetry param-
eter gives gA ¼ 1.276ð3Þ [33,34]. While the uncertainties
that arise in the AW sum-rule determination of gA presented
in this paper are not particularly aggressive (claiming high
precision), the results bring the sum-rule determination of
gA into consistency with current measured values of gA and
emphasize the physical mechanism of QCD that is respon-
sible for the axial-vector charge’s deviation from unity.

VII. CONCLUSIONS

TheAWsum rule is a unique signature of chiral symmetry
and its breaking in QCD, as its validity resides in both the
algebraic content of chiral symmetry, which guarantees the
convergence of the sum rule, and the dynamical content of
chiral symmetry, which allows the systematic inclusion of
light-quark mass effects. In this paper, it has been shown
how, using results of χPT, the chiral-limit sum rule may be
systematically extended to include corrections up toOðM3

πÞ.
In addition, the introduction of the AWdiscrepancy allows a

nonunique but useful means of separating the contributions
to the deviation of gA from unity into distinct parts that arise
from spontaneous and explicit chiral symmetry breaking.
While the calculation presented here is, by construction,

independent of experimental measurements of gA, the
parametrization we have established may be useful
beyond the determinations of ΔAW and gA provided here.
Considering the current precision of gA measurements, it is
reasonable to consider rearranging the OðM3

πÞ sum rule to
take the value of gA as experimental input for a determi-
nation of LECs. For example, recall that ΔAW may be
expressed in terms of a linear combination of LECs of the
πp system [Eq. (5.3)]. Thus, gA is a physical quantity with
direct dependence on the LEC correlation matrix—a now
essential piece of any LEC extraction. Similarly, the AW
sum rule may be used to constrain the LEC d̄18, which
parametrizes the GT discrepancy, a significant source of
uncertainty in many calculations, including those of gπN .
Whether the AW sum rule (with the correction ofΔAW) will
provide significant constraints on such LECs will be left as
a question for future research.
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