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We of Q-balls in Dirac-Born-Infeld type k field theory, whose action includes a nonlinear kinetic term,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bgμν∂μϕ

a∂νϕ
a

p
=b. Specifically, for two potentials, V3 ¼ m2ϕ2=2 − μϕ3 þ λϕ4 and V4 ¼ m2ϕ2=2−

λϕ4 þ ϕ6=M2, we survey equilibrium solutions for the whole parameter space and analyze their stability
through the use of catastrophe theory. Our analysis shows that V3 and V4 models fall into fold catastrophe
and cusp catastrophe types, respectively, just as for canonical Q-balls. We also find that, as long as the
absolute minimum of VðϕÞ is located at ϕ ¼ 0, equilibrium solutions exist without any additional
constraint on charge Q no matter how large b (nonlinearity) is.
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I. INTRODUCTION

Q-balls are the leading nontopological solitons in field
theories. The original nontopological solitons were found
by Freedberg et al. [1] in a model with a U(1) complex
scalar field coupled to a real scalar field. Subsequently,
Coleman found such solutions in a simpler model with an
SO(2) [viz. U(1)] scalar field only, and called themQ-balls.
[2]. In contrast to topological defects such as monopoles,
these are stabilized by a Noether chargeQ, and their energy
is localized in a finite space.
It has been shown that Q-balls could form in the non-

renormalizable ϕ6 potential model [3] or in the minimal
supersymmetric standard model [4]. If Q-balls are formed
efficiently by the Affleck-Dine mechanism [5], they could be
responsible for baryon asymmetry [6] and the dark matter
content of the Universe [7]. Moreover, the fate of neutron
stars may be affected by Q-balls [8]. Thus, Q-balls may be
important in particle physics, cosmology, and astronomy.
Based on those physical motivations, the stability of

Q-balls has been intensively studied [9–11]. Paccetti
Correia and Schmidt showed that the sign of
ðω=QÞdQ=dω may play a role [10]. Later, Sakai and
Sasaki discussed the stability through the use of catastrophe
theory [11]. Their research was done not only on Q-balls
but also Q-bubbles, which have absolute minima at ϕ ≠ 0,
and they claimed that catastrophe theory is useful for
analyzing the stability of Q-balls (and Q-bubbles) for the
whole parameter space. They considered some potential
models in their research.
Although previous work on Q-balls has been restricted

to canonical scalar field theories, there is no reason that
scalar fields in nature should be canonical. There may exist
scalar fields with a nonlinear kinetic term, which are called
k field theories. Here we focus on Dirac-Born-Infeld (DBI)

theories because they are motivated by string theory [12]
and many other phenomenological theories as discussed
below.
The original DBI theory was suggested by Born and

Infeld [13] for electromagnetic vector fields; however, their
idea was subsequently extended to scalar or tensor field
theories. Heisenberg introduced the DBI type k field theory
to calculate hadron scattering in the fireball model [14].
Then, Dirac pointed out that the theory is an extensible
electric models [15]. DBI type k field theories were also
discussed in strong interaction physics [16] and topological
defects [17]. In cosmology, k field theories were first
introduced in the context of inflation [18] and then
k-essence models were suggested as a solution to the
cosmic coincidence problem [19].
It should be mentioned that nontopological solitons in k

field theories were first studied by Diaz-Alonso and
Rubiera-Garcia [20]; they established static soliton solu-
tions, not Q-ball-like solutions with phase rotation.
In this article, we study Q-ball solutions in DBI type k

field theory for two typical potentials.Wealsodiscuss stability
by catastrophe theory, following Sakai and Sasaki [11].
We adopt the natural system of units, c ¼ ℏ ¼ 1, and the

sign convention for metric ðþ − −−Þ.

II. BASIC EQUATIONS AND ANALYSIS METHOD

A. Field equation in DBI type k field theory

Let us consider an SO(2) symmetric k field,
ϕa ¼ ðϕ1;ϕ2Þ, which is based on DBI theory. Its action
is given by

S ¼
Z

d4xL;

L≡ −
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2bX

p
þ 1

b
− VðϕÞ;

ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕa

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ1Þ2 þ ðϕ2Þ2

q
; ð2:1Þ
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where b is a constant which represents the nonlinearity of
the field, and X is defined as

X ≡ 1

2
gμν∂μϕ

a∂νϕ
a: ð2:2Þ

We assume that the field configuration is spherically
symmetric and its phase rotates homogeneously,

ðϕ1;ϕ2Þ ¼ ϕðrÞðcosωt; sinωtÞ: ð2:3Þ

The theory (2.1) has SO(2) symmetry; Noether’s theorem
tells us there is a conserved charge,

Q ¼
Z

d3x
ϕ1

_ϕ2 − ϕ2
_ϕ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2bX
p ¼ ωI;

I ≡
Z

d3x
ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2bX
p ; · ≡ ∂

∂t : ð2:4Þ

Canonical momentum is defined by

Πa ¼
_ϕaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2bX
p : ð2:5Þ

Then, the Hamiltonian of the system is given by

E ¼
Z

d3xðΠa _ϕa − LÞ

¼ Q2

I
þ
Z

d3x

�
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2bX

p
−
1

b
þ VðϕÞ

�
: ð2:6Þ

The variation of S with respect to ϕ under fixed ω, or
equivalently, the variation of E with respect to ϕ under
fixed Q, derives the field equation

�
ϕ0ffiffiffiffi
F

p
�0

þ 2

r
ϕ0ffiffiffiffi
F

p þ ω2ϕffiffiffiffi
F

p ¼ dV
dϕ

;

F≡ 1 − bðω2ϕ2 − ϕ02Þ; 0 ≡ d
dr

: ð2:7Þ

To solve the field equation (2.7) numerically, it is conven-
ient to introduce an auxiliary variable, ψ ≡ ϕ0=

ffiffiffiffi
F

p
. Then

Eq. (2.7) is rewritten as

ψ 0 ¼ −
2

r
ψ −

ω2ϕffiffiffiffi
F

p þ dV
dϕ

;

ϕ0 ¼ ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bω2ϕ2

1 − bψ2

s
: ð2:8Þ

B. Q-ball solutions

In preparation for studying Q-balls in DBI generalized
SO(2) k field theory, we briefly review Q-ball solutions in

the canonical scalar field (b ¼ 0). The field equation (2.7)
with b → 0 reduces to

ϕ00 ¼ −
2

r
ϕ0 − ω2ϕþ dV

dϕ
: ð2:9Þ

This is equivalent to the field equation for a single static
scalar field with the potential Vω ≡ V − ω2ϕ2=2. Q-ball
solutions are supposed to be monotonically decreasing
functions that satisfy boundary conditions

ϕ0ð0Þ ¼ 0; ϕð∞Þ ¼ 0: ð2:10Þ

If one regards the radius r as “time” and the scalar
amplitude ϕðrÞ as “the position of a particle,” one can
understand Q-ball solutions in terms of Newtonian
mechanics, as shown in Fig. 1. Equation (2.9) describes
a one-dimensional motion of a particle under the conserved
force due to the potential Vω and the “time”dependent
friction −ð2=rÞϕ0. If one chooses the “initial position” ϕð0Þ
appropriately, the static particle begins to roll down the
potential slope, climbs up, and approaches the origin over
infinite time.
Figure 1 tells us the existence condition of solutions

as follows. First, the initial position of the particle must
be higher than the final position, which means
min ½VωðϕÞ > Vωð0Þ ¼ 0. Second, −VωðϕÞ is convex
upward about r ¼ 0, which means d2Vω=dϕ2ð0Þ < 0.
These two conditions are summarized as

ω2
min < ω2 < ω2

max;

ω2
min ¼ min

�
2V
ϕ2

�
; ω2

max ¼ m2 ≡ d2V
dϕ2

ð0Þ: ð2:11Þ

The two limits ω2 → ω2
min and ω2 → ω2

max correspond to
the thin-wall limit and the thick-wall limit, respectively.
Now we consider the field equation (2.7) with the

boundary conditions (2.10). Because the effective potential

FIG. 1. Interpretation ofQ-ball solutions in the canonical scalar
field (b ¼ 0) by analogy with a particle motion in Newtonian
mechanics.
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Vω cannot be well defined, we cannot apply the above
argument by analogy with a particle motion to this general
case. However, as long as Q-ball solutions exist, ϕ
approaches zero as r goes to infinity. Accordingly, the
field equation (2.7) asymptotically becomes

ϕ00 ≈ −
2

r
ϕ0 − ω2ϕþm2ϕ; ðϕ ∼ 0Þ: ð2:12Þ

Therefore, the convex condition d2Vω=dϕ2ð0Þ < 0 applies
to this case and we obtain the same condition for ωmax,

ω2 < ω2
max ¼ m2: ð2:13Þ

Although it is difficult to discuss ω2
min analytically, we

speculate that thin-wall solutions appear in the case
ω2 ≈ ω2

min. In the thin-wall limit, the scalar amplitude
should take the form

ϕðrÞ ∼
�
ϕ0; ðr > RÞ
0; ðr < RÞ ; ð2:14Þ

where ϕ0 and R are constants. Then the field equation (2.7)
becomes

ω2ϕ0

1 − bω2ϕ2
0

≈
dV
dϕ

ðϕ0Þ; ðr ≤ RÞ: ð2:15Þ

We notice that the effect of the nonlinear term bω2ϕ2 is
significant in the thin-wall case.
Moreover, there is one more constraint,

1 − bω2ϕ2 > 0; ð2:16Þ

to obtain real-number solutions in Eq. (2.7). However, as
we shall show later, the inequality (2.16) never violate in
equilibrium solutions no matter how large b is for the
following reason: as we increase b, ϕðrÞ in equilibrium
solutions decrease so that bω2ϕ2 does not exceed 1.

C. Applying catastrophe theory

In this subsection, we review how we apply catastrophe
theory to the system ofQ-balls, following Sakai and Sasaki
[11]. The important point is to appropriately choose
behavior variable(s), control parameter(s), and a potential
in the present system. Here we italicize technical terms in
catastrophe theory. For a given b, potential VðϕÞ, and
charge Q, we consider a one-parameter family of perturbed
field configurations (virtual displacement) ϕωðrÞ near the
equilibrium solution ϕðrÞ. The one-parameter family is
chosen to satisfy I½ϕω� ¼ Q=ω. Then the energy is regarded
as a function of I½ϕω� ¼ Q=ω: EðωÞ≡ E½ϕω�.
When ϕω is an equilibrium solution, it satisfies

δE=δϕω ¼ 0; because dE=dω ¼ ðδE=δϕωÞdϕω=dω ¼ 0,
we can regard ω as a behavior variable and E as a potential.

On the other hand, because the charge Q and the model
parameters [b and the parameters in VðϕÞ] are given by
hand, we can regard them as control parameters. Hereafter
the model parameters are labeled by Piði ¼ 1; 2;…Þ. Then,
we analyze the stability of Q-balls as follows.

(i) We solve the field equations (2.8) that satisfy the
boundary conditions (2.10) for various values of ω
and the model parameters Pi.

(ii) We calculateQ by Eq. (2.4) for each solution to find
the equilibrium spaceM ¼ fðω; Pi; QÞg. We denote
the equation that determines M by fðω; Pi; QÞ ¼ 0.

(iii) We find folding points ofM, where ∂Pi=∂ω ¼ 0 and
∂Q=∂ω ¼ 0, which correspond to the stability-
change points Σ¼fðω;Pi;QÞj∂f=∂ω¼ 0;f¼ 0g.
This correspondence is a great advantage in applying
catastrophe theory.

(iv) We calculate the energy (2.6) for some solutions
around Σ to find whether each solution is a local
maximum or a local minimum. Around the stability-
change points Σ, two solutions with different E share
the same Q; in most cases the solution with smaller
E is stable while the other solution is unstable. Thus,
we find the stability about the whole M.

The stability of Q-balls in the canonical scalar field
(b ¼ 0) has been studied intensively and is accordingly
understood very well. In this paper we focus on how b
changes the stability structure.

D. Potential

As for the potential VðϕÞ, we consider two typical
models that allow Q-ball solutions. One is what we call
the V3 model,

V3 ¼
m2

2
ϕ2 − μϕ3 þ λϕ4; ð2:17Þ

where λ, μ, and m2 are positive constants. Kusenko and
Shaposhnikov showed that Q-balls in this model are stable
even in the thick-wall limit [8]. For our numerical analysis,
we rescale the quantities as

~r ¼ μffiffiffi
λ

p r; ~ϕ ¼ λ

μ
ϕ; ~ω ¼

ffiffiffi
λ

p

μ
ω; ~m ¼

ffiffiffi
λ

p

μ
m;

~b ¼ μ4

λ3
b; ~Q ¼ λQ; ~E ¼ λ3=2

μ
E: ð2:18Þ

The other is what we call the V4 model,

V4 ¼
m2

2
ϕ2 − λϕ4 þ ϕ6

M2
; ð2:19Þ

where M2; λ, and m2 are positive constants. We rescale the
quantities as
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~r ¼ λMr; ~ϕ ¼ ϕffiffiffi
λ

p
M

; ~ω ¼ ω

λM
; ~m ¼ m

λM
;

~b ¼ λ3M4b; ~Q ¼ λQ; ~E ¼ E
M

: ð2:20Þ

For both models, when ~m2 < 1=2, the absolute mini-
mum is located at ϕ ≠ 0 and, accordingly, true vacuum
bubbles may appear. Therefore, in this case Q-balls are
called Q-bubbles.
Hereafter we omit the tilde ∼.

III. NUMERICAL RESULTS

A. Review of canonical Q-balls (b = 0)

For reference, we review the main results in [11] for
canonical Q-balls (b ¼ 0). Figures 2 and 3 show the
structures of the equilibrium spaces M ¼ fðω; m2; QÞg
and their catastrophe map χðMÞ to the control planes
C ¼ fðm2; QÞg for the V3 and V4 models, respectively.
Only the results for ω > 0 are presented; the sign trans-
formation ω → −ω changes nothing but Q → −Q. The
dash-dotted lines in M denote stability-change points Σ.
Because the equilibrium space alone does not tell us

which lines (solid or dashed) represent stable solutions, one
should evaluate the energy E for several equilibrium
solutions. When there are double or triple values of E
for a given set of the control parameters ðm2; QÞ, by
energetics the solution with the lowest value of E should
be stable and the others should be unstable. In the following
subsection we shall discuss this point again by showing the
Q-E diagrams in Figs. 8 and 11.
According to the configurations of χðΣÞ in the control

planes in Figs. 2 and 3, it was found that the V3 model falls
into fold catastrophe form while the V4 model falls into
cusp catastrophe form. In the control planes, the numbers of
stable and unstable solutions for each ðm2; QÞ are repre-
sented by No, S, U, SU, and SUU (see the figure captions
for their definitions).
These figures let us understand the stability structures of

the two models as follows. In the V3 model:
(i) m2 ≥ 1=2: All equilibrium solutions are stable.
(ii) m2 < 1=2 (Q-bubbles): For each m2 there is a

maximum charge, Qmax, above which equilibrium
solutions do not exist. For Q < Qmax, stable and
unstable solutions coexist. StableQ-bubbles exist no
matter how small Q is.

In the V4 model:
(i) m2 ≥ 1=2: For each m2 there is a minimum charge,

Qmin, below which equilibrium solutions do not
exist. For Q > Qmin, stable and unstable solutions
coexist.

(ii) m2 < 1=2 (Q-bubbles): For each m2 there is a
maximum charge, Qmax, as well as a minimum
charge, Qmin, where stable solutions do not exist
if Q < Qmin or Q > Qmax. For Qmin < Q < Qmax,

there are one stable and two unstable solutions. As
m2 becomes smaller, Qmax and Qmin come close to
each other, and finally merge at m2 ≈ 0.26, below
which there is no stable solution.

B. Q-balls in DBI type k field theory: V3 model

Now we investigate Q-balls in DBI type k field theory,
the field equation for which is given by Eq. (2.7) or
Eq. (2.8). In this subsection we consider the V3 model.
We show some profiles of ϕðrÞ in Fig. 4. We fix m2 ¼

0.7 and ω2 ¼ 0.36, and see how the profile depends on b.
Interestingly, though the amplitude with b ¼ 10 is larger
than that with b ¼ 0, the amplitude becomes smaller as b
increases further. To see the b dependence more clearly, we
plot ϕð0Þ as a function of b in Fig. 5. As b increases, ϕð0Þ

FIG. 2. Structures of the equilibrium space M ¼ fðω; m2; QÞg
and their catastrophe map χðMÞ to the control plane C ¼
fðm2; QÞg for the V3 model. The dash-dotted lines in M denote
stability-change points Σ, and the dash-dotted lines in C denote
their catastrophe map χðMÞ. Solid lines in M (on the light-cyan-
colored surface) and dashed lines (on the light-magenta-colored
surface) represent stable and unstable solutions, respectively. The
arrows indicated by “thin” and “thick” show the thin-wall limit,
ω2 → ω2

min, and the thick-wall limit, ω2 → m2, respectively. In
the regions denoted by S, SU, and No on C, there are the
following solutions, respectively: one stable solution, one stable
solution and one unstable solution, and no equilibrium solution,
for fixed ðm2; QÞ. This figure is adapted from Ref. [11].
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temporarily increases until b ∼ 7. However, as b goes to
infinity, ϕð0Þ approaches to zero. Because of this suppres-
sion mechanism, equilibrium solutions do not violate the
condition (2.16) no matter how large b is.
Next, we discuss how the existence domain of the

equilibrium solutions and their stability depends on b.
Now the equilibrium space is M ¼ fω; m2; b; Qg and the
control space isC ¼ fm2; b; Qg. Because we cannot draw a
4D picture of M, we plot only its catastrophe map χðMÞ to
C in Fig. 6(a). Recall that χðΣÞ means the catastrophe map
of the stability-change points Σ to C. To compare with the
b ¼ 0 case in Fig. 2, we show the cross section of χðMÞ at
several b ¼ const planes in Fig. 6(b). Furthermore, to see
the effect of b on the solution structure clearly, we also
show the cross section of C at m2 ¼ 0.35 in Fig. 7. These
figures tell us the following:

FIG. 3. The same as Fig. 2, but for the V4 model. Because the
structure of M is complicated in this case, we show two pictures
of M. The upper panel shows the upper (front) sheet of the
equilibrium space, while the middle figure shows the lower
(back) sheet. In the regions denoted by No, U, SU, and SUU on
C, there are the following solutions, respectively: no equilibrium
solution, one unstable solution, one stable solution and one
unstable solution, and one stable solution and two unstable
solutions, for fixed ðm2; QÞ. This figure is adapted from Ref. [11].

FIG. 4. Profiles of ϕðrÞ for the V3 model. We fix m2 ¼ 0.7 and
ω2 ¼ 0.36, and see how the profile depends on b.
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FIG. 5. ϕð0Þ as a function of b for m2 ¼ 0.7 and ω2 ¼ 0.36.
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(i) m2 ≥ 1=2: All equilibrium solutions are stable
regardless of b.

(ii) m2 < 1=2 (Q-bubbles): For fixed b andm2 there is a
maximum charge, Qmax, above which equilibrium

solutions do not exist. For Q < Qmax, stable and
unstable solutions coexist. As b increases for fixed
m2, Qmax also increases. This means that nonlinear-
ity of DBI type k field extends the existence domain
of (both stable and unstable) solutions.

(iii) The configuration of χðΣÞ indicates that the V3

model falls into fold catastrophe. This means that the
nonlinearity of the DBI type k field theory does not
change the catastrophe type.

Although we have already shown the stability of the
equilibrium solutions by labeling them with S, U, etc., it
is necessary to evaluate the energy E to understand the
stability. Figure 8 is the Q-E diagram around a folding
point on Σ. When there are double values of E for a given
set of the control parameters ðQ; b;m2Þ, by energetics the
solution with the lowest value of E should be stable and
the other should be unstable. We thus find the stability for
the whole equilibrium space M.

C. Q-balls in DBI type k field theory: V4 model

In the same way as for the V3 model, we show the
catastrophe map χðMÞ to the control space C ¼ fm2; b; Qg
and its cross sections at several b ¼ const planes in
Figs. 9(a) and 9(b), respectively. We also plot the cross
section of C atm2 ¼ 0.3 in Fig. 10. These figures tell us the
following.

(i) m2 ≥ 1=2: For fixed b and m2 there is a minimum
charge, Qmin, below which equilibrium solutions do
not exist. For Q > Qmin, stable and unstable sol-
utions coexist. As b increases for fixedm2,Qmin also
increases. This means that the nonlinearity of the
DBI type k field theory shrinks the existence domain
of (both stable and unstable) solutions.

(ii) m2 < 1=2 (Q-bubbles): For fixed b andm2 there is a
maximum charge, Qmax, as well as a minimum
charge, Qmin, where stable solutions do not exist
if Q < Qmin or Q > Qmax. For Qmin < Q < Qmax,

(a)

(b)

FIG. 6. Catastrophe map χðΣÞ to the control space C ¼
fðm2; b; QÞg for the V3 model. The meanings of S, SU, and
No are the same as in Fig. 2. (a) Three-dimensional diagram of
χðMÞ in C. (b) Cross sections of χðMÞ at several b ¼ const
planes. This shows how the Q-m2 relation on χðΣÞ depends on b,
as compared to Fig. 2.

FIG. 7. Cross section of the control space in Fig. 6(a) at m2 ¼
0.35. χðΣÞ means the catastrophe map to the fðb;QÞg plane.

FIG. 8. Q-E diagram for V3 Model with m2 ¼ 0.2. A and B
denote the thin- and thick-wall limit, respectively.
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there are one stable solution and two unstable
solutions. As b increases for fixed m2, Qmax and
Qmin come close to each other and, finally, merge at
one point, below which there is no stable solution.
This means that the nonlinear effect of DBI type k
field may kill Q-bubbles with large b and/or
small m2.

(iii) The configuration of χðΣÞ indicates that the V4

model falls into cusp catastrophe, which is the same
as in the canonical scalar field (b ¼ 0).

Figure 11 is the Q-E diagram around a folding point on
Σ. When there are triple values of E for a given set of the
control parameters ðQ; b;m2Þ, by energetics the solution
with the lowest value of E should be stable and the others
should be unstable. This figure lets us understand how the
SUU region appears in the control space in Fig. 10 and how
it shrinks as b increases.

IV. CONCLUSION AND DISCUSSIONS

We have studied nontopological solitons in DBI type k
field theory and have found new solutions of Q-balls,
which we call k-balls. For two potentials, (2.17) and (2.19),
we have surveyed equilibrium solutions for the whole
parameter space. Except for Q-bubbles, min½VðϕÞ� <
Vð0Þ ¼ 0, equilibrium solutions exist without any addi-
tional constraint on charge Q no matter how large b
(nonlinearity) is. The reason is that the amplitude of the
scalar field ϕð0Þ becomes larger as b becomes smaller so
that the condition (2.16) is not violated.
We have also analyzed the stability of the Q-balls in

DBI type k field theory through the use of catastrophe
theory. Our analysis have shown that the V3 and V4

models fall into fold catastrophe and cusp catastrophe
form, respectively, just as for the canonical Q-balls.
In the V3 model, as b increases, the existence domain
of the solutions expands; that is, additional solutions are

14

FIG. 10. Cross section of the control space in Fig. 9(b) at
m2 ¼ 0.3. No stable solution exists when b≳ 3.5. χðΣÞ means
the catastrophe map to the fb;Qg plane.

16

E

17 18

FIG. 11. Q-E diagram for the V4 model with m2 ¼ 0.3. A and
B correspond to the thin- and thick-wall limit, respectively.

(a)

(b)

FIG. 9. Catastrophe map χðΣÞ to the control space C ¼
fm2; b; Qg for the V4 model. The meanings of No, S, SU,
and SUU are the same as in Fig. 3. (a) Three-dimensional
diagram of χðMÞ in C. (b) Cross sections of χðMÞ at several
b ¼ const planes. This shows how the Q-m2 relation on χðΣÞ
depends on b, as compared to Fig. 3.
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generated by the nonlinear k term. In the V4 model, on
the other hand, it shrinks as b increases; that is, some
solutions are killed by the nonlinearity. Our results as a
whole suggest that catastrophe theory is a useful tool for
noncanonical field theories.

Although we have investigated Q-ball solutions of DBI
type k field theory in flat spacetime for only the two types
of potential models, it may be interesting to extend our
analysis to other phenomenological models or gravitating
noncanonical Q-balls.
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