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We develop a seesaw model for neutrino masses and mixing with an S3 × Z3 symmetry. It
involves an interplay of type-I and type-II seesaw contributions of which the former is subdominant.
The S3 × Z3 quantum numbers of the fermion and scalar fields are chosen such that the type-II
seesaw generates a mass matrix which incorporates the atmospheric mass splitting and sets
θ23 ¼ π=4. The solar splitting and θ13 are absent, while the third mixing angle can achieve any
value, θ012. Specific choices of θ012 are of interest, e.g., 35.3° (tribimaximal), 45.0° (bimaximal),
31.7° (golden ratio), and 0° (no solar mixing). The role of the type-I seesaw is to nudge all the
above into the range indicated by the data. The model results in novel interrelationships between
these quantities due to their common origin, making it readily falsifiable. For example, normal
(inverted) ordering is associated with θ23 in the first (second) octant. CP violation is controlled by
phases in the right-handed neutrino Majorana mass matrix, MνR. In their absence, only normal
ordering is admissible. When MνR is complex, the Dirac CP phase, δ, can be large, i.e., ∼� π=2,
and inverted ordering is also allowed. The preliminary results from T2K and NOVA which favor
normal ordering and δ ∼ −π=2 are indicative, in this model, of a lightest neutrino mass of 0.05 eV
or more.
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I. INTRODUCTION

Oscillation experiments over vastly different baselines
and a range of neutrino energies have filled up a large
portion of the mass and mixing jigsaw of the neutrino
sector. Yet, we still remain in the dark with regard to CP
violation in the lepton sector. Neither do we know the
mass ordering—whether it is normal or inverted. Further
open issues are the absolute mass scale of neutrinos and
whether they are of Majorana or Dirac nature. While we
await experimental guidance for each of the above
unknowns, there have been many attempts to build
models of lepton mass which capture much of what
is known.
Here, we propose a neutrino mass model based on

the direct product group S3 × Z3. The elements of S3
correspond to the permutations of three objects.1

Needless to say, S3-based models of neutrino mass were
considered earlier [1,2]. A popular point of view [3] has
been to note that a permutation symmetry between
the three neutrino states is consistent with2 (a) a dem-
ocratic mass matrix, Mdem, all the elements of which are
equal, and (b) a mass matrix proportional to the identity
matrix, I. A general combination of these two forms,

e.g., c1I þ c2Mdem, where c1, c2 are complex numbers,
provides a natural starting point. One of the eigenstates,
namely, an equal weighted combination of the three
states, is one column of the popular tribimaximal mixing
matrix. Many models have been presented [3] which add
perturbations to this structure to accomplish realistic
neutrino masses and mixing. Variations on this theme [4]
explore mass matrices with such a form in the context of
Grand Unified Theories, in models of extra dimensions,
and examine renormalization group effects on such a
pattern realized at a high energy. Other variants of the
S3-based models, for example, Ref. [5], rely on a 3-3-1
local gauge symmetry, tie it to a (B − L)-extended
model, or realize specific forms of mass matrices
through soft symmetry breaking, etc. As discussed later,
the irreducible representations of S3 are one and two
dimensional. The latter provides a natural mechanism to
get maximal mixing in the νμ − ντ sector [6].
The present work, also based on S3 symmetry, breaks

new ground in the following directions. First, it involves
an interplay of type-I and type-II seesaw contributions.
Second, it presents a general framework encompassing
many popular mixing patterns such as tribimaximal
mixing. Further, the model does not invoke any soft
symmetry-breaking terms. All the symmetries are broken
spontaneously.
We briefly outline here the strategy of this work.

We use the standard notation for the leptonic mixing
matrix—the Pontecorvo, Maki, Nakagawa, Sakata (PMNS)
matrix—U,
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1More details of S3 can be found in Appendix A.
2Note, however, there is no three-dimensional irreducible

representation of S3 (see Appendix A). So these models entail
fine-tuning.
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U ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 þ s23s13c12eiδ c23c12 þ s23s13s12eiδ s23c13
s23s12 þ c23s13c12eiδ −s23c12 þ c23s13s12eiδ c23c13

1
CA; ð1Þ

where cij ¼ cos θij and sij ¼ sin θij. The neutrino masses
and mixings arise through a two-stage mechanism. In the
first step, from the type-II seesaw, the larger atmospheric
mass splitting, Δm2

atmos, is generated while the solar
splitting, Δm2

solar, is absent. Also, θ13 ¼ 0, θ23 ¼ π=4,
and the model parameters can be continuously varied to
obtain any desired θ012. Of course, in reality θ13 ≠ 0 [7], the
solar splitting is nonzero, and there are indications that θ23
is large but nonmaximal. Experiments have also set limits
on θ12. The type-I seesaw addresses all the above issues and
relates the masses and mixings to each other.
The starting form incorporates several well-studied

mixing patterns such as tribimaximal (TBM), bimaximal
(BM), and golden ratio (GR) mixings within its fold. These
alternatives all have θ13 ¼ 0 and θ23 ¼ π=4. They differ
only in the value of the third mixing angle θ012 as displayed
in Table I. The fourth option in this table, no solar mixing
(NSM), exhibits the attractive feature3 that the mixing
angles are either maximal, i.e., π=4 (θ23), or vanishing (θ13
and θ012).
In the following section, we furnish a description of the

model including the assignment of S3 × Z3 quantum
numbers to the leptons and symmetry-breaking scalar
fields. The consequences of the model are described
next, where we also compare with the experimental data.
A summary and conclusions follow. The scalar potential of
this model has a rich structure. In two Appendixes, we
present the essence of S3 symmetry and discuss the S3
invariant scalar potential, deriving the conditions which
must be satisfied by the scalar coefficients to obtain the
desired minimum.

II. MODEL

In the model under discussion, fermion and scalar
multiplets are assigned S3 × Z3 quantum numbers in a
manner such that spontaneous symmetry breaking naturally
yields mass matrices which lead to the seesaw features
espoused earlier. All terms allowed by the symmetries
of the model are included in the Lagrangian. No soft
symmetry-breaking terms are required.
To begin, it will be useful to formulate the conceptual

structure behind the model. Neutrino masses arise from a
combination of type-I and type-II seesaw contributions, of
which the latter dominates. In the neutrino mass basis,

which is also the basis in which the Lagrangian will be
presented, the type-II seesaw yields a diagonal matrix in
which two states are degenerate:

MνL ¼

0
BBB@

mð0Þ
1 0 0

0 mð0Þ
1 0

0 0 mð0Þ
3

1
CCCA: ð2Þ

This mass matrix results in Δm2
atmos ¼ ðmð0Þ

3 Þ2 − ðmð0Þ
1 Þ2,

while Δm2
solar ¼ 0. Later, we find the combinations m� ¼

mð0Þ
3 �mð0Þ

1 useful. m− signals the mass ordering; it is
positive for normal ordering and negative for inverted
ordering.
At this stage, the mixing resides entirely in the charged

lepton sector. We follow the convention

Ψflavour ¼ UΨΨmass; ð3Þ

for the fermionsΨ, so that the PMNSmatrix,U, is given by

U ¼ U†
l Uν: ð4Þ

TABLE I. The solar mixing angle, θ012 for this work, for the
TBM, BM, and GR mixing patterns. NSM stands for the case
where the solar mixing angle is initially vanishing.

Model TBM BM GR NSM

θ012 35.3° 45.0° 31.7° 0.0°

TABLE II. The fermion content of the model. The trans-
formation properties under S3, Z3, and SUð2ÞL are shown.
The hypercharge of the fields, Y, and their lepton number, L,
are also indicated. Here, LT

α ¼ ðνα l−α Þ.
Fields Notations S3 (Z3) SUð2ÞLðYÞ L

Left-handed leptons Le 10ð1Þ
Lμ 10ðωÞ 2 (−1) þ1

Lτ 1 (ω)
Right-handed
charged leptons

eR 10ð1Þ� μR
τR

� 2(1) 1 (−2) þ1

Right-handed neutrinos N1R 10ð1Þ
N2R 10ðωÞ 1 (0) 0
N3R 1 (ω)

3Such a mixing pattern was envisioned earlier in a model based
on A4 symmetry [8] which built on previous work along similar
lines [9,10].
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As noted, at this level θ12 ¼ θ012, where alternate choices
of θ012 result in popular mixing patterns such as
tribimaximal, bimaximal, and golden ratio with the
common feature that θ13 ¼ 0 and θ23 ¼ π=4. θ012 ¼ 0

is another interesting alternative [8] where initially the
lepton mixing angles are either vanishing θ13 ¼ 0 ¼ θ12
or maximal, i.e., π=4 (θ23). Thus, until type-I seesaw
effects are included, the leptonic mixing matrix takes the
form

U0 ¼

0
BBB@

cos θ012 sin θ012 0

− sin θ0
12ffiffi
2

p cos θ0
12ffiffi
2

p 1ffiffi
2

p

sin θ0
12ffiffi
2

p − cos θ0
12ffiffi
2

p 1ffiffi
2

p

1
CCCA ¼ U†

l U
0
ν; ð5Þ

where U0
ν ¼ I and the charged lepton mass matrix is

Meμτ ¼ Ul

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CAI

¼

0
BB@

me cos θ012 − mμffiffi
2

p sin θ012
mτffiffi
2

p sin θ012

me sin θ012
mμffiffi
2

p cos θ012 − mτffiffi
2

p cos θ012

0
mμffiffi
2

p mτffiffi
2

p

1
CCA: ð6Þ

The identity matrix, I, at the right in the first step
above indicates that no transformation needs to be
applied on the right-handed charged leptons which
are SUð2ÞL singlets.
In this basis, the matrices responsible for the type-I

seesaw have the forms

MD ¼ mDI and

MνR ¼ mR

2xy

0
B@

0 xe−iϕ1 xe−iϕ1

xe−iϕ1 ye−iϕ2=
ffiffiffi
2

p
−ye−iϕ2=

ffiffiffi
2

p

xe−iϕ1 −ye−iϕ2=
ffiffiffi
2

p
ye−iϕ2=

ffiffiffi
2

p

1
CCA; ð7Þ

where mD and mR set the scale for the Dirac and right-
handed Majorana masses while x and y are dimensionless
real quantities of Oð1Þ. We take the Dirac mass matrixMD
proportional to the identity for ease of presentation.We have
checked that the same results can be reproduced so long as
MD is diagonal. The right-handed neutrino Majorana mass
matrix, MνR, has a N2R ↔ N3R discrete symmetry. This
choice, too, can be relaxed without jeopardizing the final
outcome.
We will show later how the mass matrices in Eqs. (2)–(7)

lead to a good fit to the neutrino data and yield testable
predictions. But before this, we must ensure that the above
matrices can arise from the S3 × Z3 symmetric Lagrangian.
The behavior of the fermions, i.e., the three lepton

generations4 including three right-handed neutrinos, is
summarized in Table II. The gauge interactions of the
leptons are universal and diagonal in this basis. A feature
worth noting is that the right-handed neutrinos have lepton
number L ¼ 0. We discuss later how this leads to a
diagonal neutrino Dirac mass matrix. The lepton mass
matrices arise from the Yukawa couplings allowed by the
S3 × Z3 symmetry.
The S3 × Z3 structure of the lepton sector is matched by

a rich scalar sector which we have presented in Table III.
The requirement of charged lepton masses and type-I and
type-II seesaw neutrino masses dictates the inclusion of
SUð2ÞL singlet, doublet, and triplet scalar fields. The S3 ×
Z3 properties of the scalars are chosen bearing in mind the
S3 and Z3 combination rules. In particular, for the former,

TABLE III. The scalar content of the model. The transformation properties under S3, Z3, and SUð2ÞL are shown. The hypercharge of
the fields, Y; their lepton number, L; and the vacuum expectation values are also indicated. wiði ¼ 1…4Þ are dimensionless.

Purpose Notations S3 (Z3) SUð2ÞL (Y) L vev

Charged fermion mass η≡ ðηþη0Þ 1 (1) 2 (1) 0 hηi ¼ vηð0 1Þ
Φa ≡

�
ϕþ
1 ϕ0

1

ϕþ
2 ϕ0

2

�
2 (1) 2 (1) 0 hΦai ¼ vaffiffi

2
p

�
0 w1

0 w2

�

Φb ≡
�
ϕþ
3 ϕ0

3

ϕþ
4 ϕ0

4

�
2 (ω) 2 (1) 0 hΦbi ¼ vbffiffi

2
p

�
0 w3

0 w4

�

α≡ ðαþ α0Þ 1 (ω) 2 (1) 0 hαi ¼ vαð0 1Þ
Neutrino Dirac mass β≡ ðβ0 β−Þ 1 (1) 2 (-1) 1 hβi ¼ vβð 1 0 Þ
Type-II seesaw mass ΔL ≡ ðΔþþ

L ;Δþ
L ;Δ0

LÞ 1 (1) 3 (2) −2 hΔLi ¼ vΔð 0 0 1 Þ
ρL ≡ ðρþþ

L ; ρþL ; ρ
0
LÞ 1 (ω) 3 (2) −2 hρLi ¼ vρð 0 0 1 Þ

Right-handed
neutrino mass

χ ≡ χ0 1 (ω) 1 (0) 0 hχi ¼ uχ
γ ≡ γ0 10ðωÞ 1 (0) 0 hγi ¼ uγ

4The scope of this model is restricted to the lepton sector.
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the representations are 1, 10, and 2 which satisfy the
multiplication rules (see Appendix A):

1 × 10 ¼ 10; 10 × 10 ¼ 1; and 2 × 2 ¼ 2þ 1þ 10:

ð8Þ
The scalar multiplets are chosen such that the mass matrices
appear with specific structures as discussed below.5 It can
be seen from Table III that all neutral scalars pick up a
vacuum expectation value (vev). The vev of the SUð2ÞL

singlets, namely, uχ and uγ, can be much higher than the
electroweak scale, v, and determine the masses of the
right-handed neutrinos. The other vev break SUð2ÞL. We
take vΔ ∼ vρ ≪ vη ∼ va ∼ vb ∼ vα ∼ vβ ∼ v.
Charged lepton and neutrino masses are obtained from

the Yukawa terms in a Lagrangian constructed out of the
fields in Tables II and III. Including all terms which respect
the SUð2ÞL ×Uð1ÞY gauge symmetry and the S3 × Z3

flavor symmetry so long as lepton number, L, is also
conserved, one is led to the Lagrangian mass terms

Lmass ¼ f1ēLðμRϕ0
2 − τRϕ

0
1Þ þ f2μ̄LðμRϕ0

4 − τRϕ
0
3Þ þ f3τ̄LðμRϕ0

4 þ τRϕ
0
3Þ

þ f4μ̄LeRα0 þ f5ēLeRη0 ðcharged lepton massÞ
þ ðh1ν̄eLN1R þ h2ν̄μLN2R þ h3ν̄τLN3RÞβ0 ðneutrino Dirac massÞ

þ 1

2
g1νTeLC

−1νeLΔ0
L þ 1

2
ðg2νTμLC−1νμL þ g3νTτLC

−1ντLÞρL ðneutrino type-II seesaw massÞ

þ 1

2
ð½k1NT

2RC
−1N2R þ k2NT

3RC
−1N3R�χ þ k3NT

2RC
−1N3RγÞ

þ 1

2
ðk4NT

1RC
−1N2R ~χ þ k5NT

1RC
−1N3R ~γÞ ðrh neutrino massÞ þ h:c:: ð9Þ

Here, ~χ and ~γ are charge conjugated fields which transform
under Z3 as ω2. For each term in the Lagrangian, the
fermion masses which arise therefrom have been indicated.
Both type-I and type-II seesaw contributions for neutrino
masses are present.
The above Lagrangian gives rise to the mass matrices in

Eqs. (2)–(7) through the Yukawa couplings in Eq. (9) and
the vevs in Table III. Before turning to these, let us note
how the quantum number assignments of the fermion and
scalar fields force certain entries in the mass matrices to be
vanishing. For example, the mass term τ̄LeR is zero in
Eq. (6) because there is no SUð2ÞL doublet field which
transforms as a 10 under S3. Similarly, the diagonal nature
of the left-handed neutrino Majorana mass matrix in Eq. (2)
is ensured by the absence of an SUð2ÞL triplet field which
transforms either as (i) a 10 under S3 or (ii) as ω2 under Z3.
The neutrino Dirac mass matrix in Eq. (7) arises from the
Yukawa couplings6 of the SUð2ÞL doublet scalar β. Since it
transforms as 1 under both S3 and Z3, it can be seen from
the left-handed and right-handed neutrino quantum num-
bers in Table II that only diagonal terms are allowed.
Finally, the NT

1RN1R term is absent in the right-handed
neutrino Majorana mass matrix in Eq. (7) since there is no
Z3 singlet among the SUð2ÞL singlet scalars.

Before proceeding further, it may be useful to comment
on the sizes of the various vacuum expectation values in
Table III. The SUð2ÞL doublets acquire vevs vη;a;b;α;β which
areOðMWÞ, while the triplet vevs vΔ;ρ are several orders of
magnitude smaller. This is in consonance with the small-
ness of the neutrino masses and also the ρ parameter of
electroweak symmetry breaking. Needless to say, the
SUð2ÞL singlet fields χ and γ can acquire vevs well above
the electroweak scale.
The nonvanishing entries in the mass matrices in

Eqs. (2)–(7) which arise from the Yukawa couplings entail
the following relationships:
(1) Charged lepton masses—On matching the Lagran-

gian inEq. (9), the scalar doublet vevs inTable III, and
the charged lepton mass matrix in Eq. (6), one gets

f1hϕ0
1i ¼ −

mτffiffiffi
2

p sin θ012; f1hϕ0
2i ¼ −

mμffiffiffi
2

p sin θ012;

ð10Þ
f2hϕ0

3i ¼
mτffiffiffi
2

p cos θ012; f2hϕ0
4i ¼

mμffiffiffi
2

p cos θ012;

f3hϕ0
3i ¼

mτffiffiffi
2

p ; f3hϕ0
4i ¼

mμffiffiffi
2

p ; ð11Þ

and

f4hα0i ¼ me sin θ012; f5hη0i ¼ me cos θ012:

ð12Þ

Notice that Eqs. (10) and (11) imply

5In general, the multiple scalar fields in models based on
discrete symmetries also result in flavor changing neutral currents
induced by the neutral scalars. Discussions of this aspect in the
context of S3 can be found, for example, in Ref. [11].

6As the NiR carry L ¼ 0, conservation of the lepton number
forbids any contribution to the Dirac mass from the SUð2ÞL scalar
doublets which generate the charged lepton masses.
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w2

w1

¼ w4

w3

¼ mμ

mτ
: ð13Þ

(2) Left-handed neutrino Majorana mass—Similarly,
the mass matrix in Eq. (2) is obtained when

g1hΔ0
Li ¼ m0

1 ¼ g2hρ0Li; g3hρ0Li ¼ m0
3: ð14Þ

The first equation above requires a matching be-
tween two sets of Yukawa couplings and vevs. This
is to ensure the degeneracy of two neutrino states,
implying the vanishing of the solar mass splitting at
this stage. Notice that the relatively large size of the
atmospheric mass splitting requires g2 and g3 to be
of different order.

(3) Neutrino Dirac mass—The Dirac mass matrix in
Eq. (7) is due to the relations

h1 ¼ h2 ¼ h3 ¼ h and hhβ0i ¼ mD: ð15Þ
The equality of the three Yukawa couplings, hi, above
is only a simplified choice. We have checked that
deviations from this relation, i.e., a diagonalDiracmass
matrix but not proportional to the identity, can also
readily lead to the resultswhichwediscuss in this paper.

(4) Right-handed neutrino Majorana mass—Finally, the
right-handed neutrino Majorana mass matrix follows
from

k1hχ0i ¼
mRe−iϕ2

2
ffiffiffi
2

p
x

¼ k2hχ0i;

k3hγ0i ¼ −
mRe−iϕ2

2
ffiffiffi
2

p
x

;

k4h~χ0i ¼
mRe−iϕ1

2y
¼ k5h~γ0i: ð16Þ

We show in Appendix B how from a minimization
of the scalar potential the required scalar vevs may
be obtained.

A. Type-I seesaw contribution

In the previous section, we have shown that the S3 model
results in a diagonal left-handed neutrino mass matrix given
in Eq. (2) through a type-II seesaw. The charged lepton
mass matrix as given in Eq. (6) is not diagonal and induces
a mixing in the lepton sector. This mixing, Eq. (5), receives
further corrections from a smaller type-I seesaw contribu-
tion to the neutrino mass matrix as we discuss.
The type-I seesaw arising from the Dirac and right-

handed neutrino mass matrices in Eq. (7) is

M0 ¼ ½MT
DðMνRÞ−1MD� ¼

m2
D

mR

0
BB@

0 yeiϕ1 yeiϕ1

yeiϕ1 xeiϕ2ffiffi
2

p −xeiϕ2ffiffi
2

p

yeiϕ1 −xeiϕ2ffiffi
2

p xeiϕ2ffiffi
2

p

1
CCA:

ð17Þ

III. RESULTS

We have given above the contributions to the neutrino
mass matrix from the type-I and type-II seesaw. Of these,
the former is taken to be significantly smaller than the latter.
As we have noted, in the absence of the type-I seesaw, the
leptonic mixing matrix in this model is determined entirely
by the charged lepton mass matrix. It has θ13 ¼ 0,
θ23 ¼ π=4, and θ12 arbitrary. We will be considering four
mixing patterns which fall within this scheme and in each
ofwhich the value of θ012 is specified, namely, the TBM,BM,
GR, and NSM cases. In addition, in this model, the type-II
seesaw sets the solar mass splitting to be zero. The type-I
seesaw, the effect of which we incorporate perturbatively,
brings all the above leptonic parameters into agreement with
their values preferred by the data. Beforewe proceed further
with this discussion, it will be useful to summarize the global
best-fit values of these mass splittings and angles.

A. Data

From global fits, the currently favored 3σ ranges of the
neutrino mixing parameters are [12,13]

Δm2
21¼ð7.02–8.08Þ×10−5 eV2; θ12¼ð31.52–36.18Þ°;

jΔm2
31j ¼ ð2.351–2.618Þ×10−3 eV2; θ23¼ð38.6–53.1Þ°;
θ13¼ð7.86–9.11Þ°; δ¼ð0−360Þ°: ð18Þ

These data are from NuFIT2.1 of 2016 [12]. Here,
Δm2

ij ¼ m2
i −m2

j , so that Δm2
31 > 0ð< 0Þ for normal

(inverted) ordering. The data indicate two best-fit points
for θ23 in the first and second octants. Later, we also remark
about the compatibility of this model with the recent T2K
and NOVA hints [14,15] of δ being near -π=2.

B. Real MνR (ϕ1 = 0 or π, ϕ2 = 0, or π)

A limiting case, with less complications, corresponds to
no CP violation. This happens when MνR is real, i.e., the
phases ϕ1;2 in Eq. (17) are 0 or π. These cases can be
compactly considered by keeping x and y real but allowing
them to be of either sign, i.e., four alternatives. We show
below how the experimental data pick out one or the other
out of these.
Without the phases ϕ1;2, i.e., for real MνR, one gets

M0 ¼ m2
D

mR

0
BB@

0 y y

y xffiffi
2

p − xffiffi
2

p

y − xffiffi
2

p xffiffi
2

p

1
CCA: ð19Þ

The equality of two neutrino masses from the type-II
seesaw requires the use of degenerate perturbation theory
to obtain corrections to the solar mixing parameters. The
2 × 2 submatrix of M0 relevant for this is
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M0
2×2 ¼

m2
D

mR

�
0 y

y x=
ffiffiffi
2

p
�
: ð20Þ

This results in

θ12 ¼ θ012 þ ζ; tan 2ζ ¼ 2
ffiffiffi
2

p �
y
x

�
: ð21Þ

A related quantity, ϵ, which is found useful later, is given by

sin ϵ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

p and cos ϵ ¼ x=
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

p ;

i:e:; tan ϵ ¼ 1

2
tan 2ζ: ð22Þ

Once a mixing pattern is chosen, i.e., θ012 fixed, the
experimental limits on θ12 as given in Eq. (18) set bounds
on the range of ζ and also from Eq. (22) on ϵ. These are
displayed for the four mixing patterns in Table IV. If ζ is
positive (negative), then the ratio (y=x) will also be positive
(negative). In addition, from Eq. (22), the sign of y is fixed
by the value of ϵ. Taking these points into account, one can
conclude that x is always positive, i.e., ϕ2 has to be zero,
while y must be positive, ϕ1 ¼ 0 (negative, ϕ1 ¼ π) for
NSM (BM). For the other mixing patterns, i.e., TBM and
GR, both signs of y are possible.
The solar mass splitting arising from the type-I seesaw is

also obtained from Eq. (20).

Δm2
solar ¼

ffiffiffi
2

p
m2

D

mR
mð0Þ

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 8y2

q
¼

ffiffiffi
2

p
m2

D

mR
mð0Þ

1

x
cos 2ζ

:

ð23Þ

Furthermore, incorporating the leading order corrections to
neutrino mixing from Eq. (19), one gets from Eq. (4),

U ¼ U0Uν with

Uν ¼

0
B@

cos ζ − sin ζ κr sin ϵ

sin ζ cos ζ −κr cos ϵ
κr sinðζ − ϵÞ κr cosðζ − ϵÞ 1

1
CA; ð24Þ

with

κr ≡ m2
D

mRm−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

q
¼ m2

D

mRm−
xffiffiffi

2
p

cos ϵ
: ð25Þ

The third column of the leptonic mixing matrix becomes

jψ3i ¼

0
BB@

κr sinðϵ − θ012Þ
1ffiffi
2

p ½1 − κr cosðϵ − θ012Þ�
1ffiffi
2

p ½1þ κr cosðϵ − θ012Þ�

1
CCA: ð26Þ

Since, as noted, x is always positive, κr is positive
(negative) for normal (inverted) ordering.
The right-hand side of Eq. (26) has to be matched with

the third column of Eq. (1). This yields

sin θ13 cos δ ¼ κr sinðϵ − θ012Þ; ð27Þ

and

tanðπ=4 − θ23Þ≡ tanω ¼ κr cosðϵ − θ012Þ: ð28Þ

For ready reference, the ranges of (ϵ − θ012) allowed
for the different mixing patterns are presented in
Table IV. For normal ordering,7 the CP phase δ is zero
(π) when sinðϵ − θ012Þ is positive (negative). From Table IV,
one can then observe that δ ¼ 0 for the NSM mixing
pattern and is π for the three other cases. Needless to say,
both correspond to CP conservation.
Combining Eqs. (23), (25), and (27), one can write

Δm2
solar ¼ 2m−mð0Þ

1

sin θ13 cos δ cos ϵ
cos 2ζ sinðϵ − θ012Þ

: ð29Þ

Equation (29) leads to the conclusion that inverted ordering
is not allowed for this case of real MνR. To establish this
property, one can define

z≡m−mð0Þ
1 =Δm2

atmos and tanξ≡m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

atmosj
q

; ð30Þ

where z is positive for both mass orderings. From Eq. (29),
one has

z ¼
�

Δm2
solar

jΔm2
atmosj

��
cos 2ζ sinðϵ − θ012Þ
2 sin θ13j cos δj cos ϵ

�
: ð31Þ

It is easy to verify from Eq. (30) that

TABLE IV. The ranges of ζ [Eq. (21)], ϵ [Eq. (22)], and (ϵ − θ012) allowed by the data for the different popular mixing patterns.

Model (θ012) TBM (35.3°) BM (45.0°) GR (31.7°) NSM (0.0°)

ζ −4.0° ↔ 0.6° −13.7° ↔ −9.1° −0.4° ↔ 4.2° 31.3° ↔ 35.9°
ϵ −4.0° ↔ 0.6° −14.5° ↔ −9.3° −0.4° ↔ 4.2° 44.0° ↔ 56.7°
ϵ − θ012 −39.2° ↔ −34.6° −59.5° ↔ −54.4° −39.2° ↔ −30.0° 44.0° ↔ 56.7°

7We show in the following that inverted ordering is not
consistent with real MνR.
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z¼ sinξ=ð1þ sinξÞ i:e:; 0≤ z≤
1

2
ðfor normal orderingÞ;

z¼ 1=ð1þ sinξÞ i:e:;
1

2
≤ z≤ 1 ðfor inverted orderingÞ:

ð32Þ

There is a one-to-one correspondence of z with the lightest
neutrino mass m0. The quasidegeneracy limit, i.e., m0 →
large, is approached as z → 1

2
for both mass orderings.

In Eq. (31), j cos δj ¼ 1 for realMνR. Using the global fit
mass splittings and mixing angles given in Sec. III A and
Table IV, one finds z ∼ 10−2 or smaller for all four mixing
patterns. This excludes the inverted mass ordering option
for real MνR.
From Eqs. (27) and (28), one has

tanω ¼ sin θ13 cos δ
tanðϵ − θ012Þ

: ð33Þ

The noteworthy point is that for normal ordering Eq. (28)
implies that ω is always positive irrespective of the mixing
pattern. So, in this model, θ23 is restricted to the first octant
only for real MνR.
Equations (21) and (22) can be used to express ϵ in terms

of θ12 and thereby put ω in Eq. (33) as a function of θ12 and
θ13 only. In Fig. 1, ω is shown as a function of θ12 for the
NSM (thick green lines) and BM (thin pink lines) mixing
patterns. The ranges of θ12 and ω have been kept within

their 3σ allowed limits from global fits as given in
Sec. III A. The TBM and GR cases are excluded because
for the allowed values of θ12 they predict θ23 beyond the 3σ
range. The solid lines in the figure correspond to the 3σ
limiting values of θ13, and the dashed line is for its best-fit
value. The blue dot-dashed horizontal and vertical lines
display the 3σ experimental bounds on θ23 and θ12.
Using Eq. (31), any allowed point in the ω − θ12 plane

and the associated θ13 can be translated to a value of z or
equivalently m0, provided the solar and atmospheric mass
splittings are given. We find that for both the allowed
mixing patterns the range of variation of m0 is very small.
For the NSM (BM) case, this range is 2.13 meV ≤ m0 ≤
3.10 meV (3.20 meV ≤ m0 ≤ 4.42 meV) when both neu-
trino mass splittings and all mixing angles are varied over
their full 3σ ranges.
To summarize the real MνR case:
(1) Only the normal mass ordering is allowed.
(2) θ23 can lie only in the first octant.
(3) The TBM and GR alternatives are inconsistent with

the allowed ranges of the neutrino mixing angles
even after including the type-I seesaw corrections.

(4) For the NSM and BM mixing patterns, realMνR can
give consistent solutions for the neutrino masses and
mixings. The ranges of allowed lightest neutrino
masses are very tiny.

C. Complex MνR

Keeping MνR real eliminates CP violation. Further,
inverted ordering is disallowed. Also, the TBM and GR
mixing patterns cannot be accommodated. These restric-
tions can be ameliorated by taking MνR in its general
complex form giving rise to the type-I seesaw contribution
M0 as given in Eq. (17). Recall that this introduces the
phases ϕ1;2 and x, y take only positive values.
With its complex entries, M0 is now not Hermitian

any more. To address this, we consider the combination
ðM0þM0Þ†ðM0þM0Þ and treat M0†M0 as the leading term
with ðM0†M0þM0†M0Þ acting as a perturbation at the lowest
order, both Hermitian by construction. The unperturbed

eigenvalues are thus ðmð0Þ
i Þ2. The perturbation matrix is

ðM0†M0 þM0†M0Þ

¼m2
D

mR

0
BBB@

0 2ymð0Þ
1 cosϕ1 yfðϕ1Þ

2ymð0Þ
1 cosϕ1

ffiffiffi
2

p
xmð0Þ

1 cosϕ2 − xffiffi
2

p fðϕ2Þ
yf�ðϕ1Þ − xffiffi

2
p f�ðϕ2Þ

ffiffiffi
2

p
xmð0Þ

3 cosϕ2

1
CCCA:

ð34Þ

In the above,

fðφÞ ¼ mþ cosφ − im− sinφ: ð35Þ

 4.5

 5

 5.5

 6

 6.5

 7

 31  32  33  34  35  36

ω
 =

 (
π/

4−
θ 2

3)
 in

 d
eg

re
es

θ12 in degrees

BM

NSM

Real MνR, Normal Ordering, First Octant

FIG. 1. ω ¼ ðπ=4 − θ23Þ as a function of θ12 for normal
ordering. The solid lines indicate the range for the 3σ allowed
variation of sin θ13, while the dashed line corresponds to the best-
fit value. Thick green (thin pink) lines are for the NSM (BM)
case. The horizontal and vertical blue dot-dashed lines delimit the
3σ allowed range from data. Note that ω is always positive; i.e.,
the first octant of θ23 is preferred. For the TBM and GR mixing
patterns, ω, still positive, lies beyond the 3σ range. Best-fit values
of the solar and atmospheric splittings are used. For MνR real,
there is no allowed solution for inverted ordering.
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The remaining calculation proceeds in much the same
manner as for realMνRwhile keeping the distinctive features
of Eq. (34) in mind.
In place of Eqs. (21) and (22) for the real MνR case, we

get from (34)

θ12 ¼ θ012 þ ζ; tan 2ζ ¼ 2
ffiffiffi
2

p y
x
cosϕ1

cosϕ2

; ð36Þ

and

sin ϵ ¼ y cosϕ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

p ;

cos ϵ ¼ x cosϕ2=
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

p ; tan ϵ ¼ 1

2
tan 2ζ:

ð37Þ

The allowed ranges of ζ and ϵ depend on the mixing
pattern and are given in Table IV. It is seen that for all
patterns cos ϵ is positive. Therefore, from Eq. (37), we can

immediately conclude that ϕ2 must be always in the first or
fourth quadrant. The possible quadrants of ϕ1 are also
determined from the range of ϵ for the different mixing
patterns. From the first relation in Eq. (37), we find that ϕ1

has to be in the first or fourth (second or third) quadrant if ϵ
is positive (negative). Using the results in Table IV, we
conclude that the first (second) option is valid for the NSM
(BM) patterns. For the TBM and GR cases, ϵ spans a range
over positive and negative values, and so both options are
included.
The solar mass splitting is induced entirely through the

type-I seesaw contribution. From Eq. (34), one finds

Δm2
solar ¼

ffiffiffi
2

p
mð0Þ

1

m2
D

mR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2cos2ϕ2 þ 8y2cos2ϕ1

q

¼
ffiffiffi
2

p
mð0Þ

1

m2
D

mR

x cosϕ2

cos 2ζ
¼

ffiffiffi
2

p
mð0Þ

1

m2
D

mR

2
ffiffiffi
2

p
y cosϕ1

sin 2ζ
:

ð38Þ
Equation (26) is now replaced by

jψ3i ¼

0
BBB@

κc½ sin ϵcosϕ1
fðϕ1Þ cos θ012 − cos ϵ

cosϕ2
fðϕ2Þ sin θ012�=mþ

1ffiffi
2

p f1 − κc½ sin ϵcosϕ1
fðϕ1Þ sin θ012 þ cos ϵ

cosϕ2
fðϕ2Þ cos θ012�=mþg

1ffiffi
2

p f1þ κc½ sin ϵcosϕ1
fðϕ1Þ sin θ012 þ cos ϵ

cosϕ2
fðϕ2Þ cos θ012�=mþg

1
CCCA; ð39Þ

where

κc ¼
m2

D

mRm−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

q
; ð40Þ

Eq. (37) has been used, and the complex function fðϕ1;2Þ is
defined in Eq. (35).
κc is positive (negative) for normal (inverted) ordering.

Comparing the right-hand side of Eq. (39) with the third
column of Eq. (1), we find

sin θ13 cos δ ¼ κc sinðϵ − θ012Þ; ð41Þ

sin θ13 sin δ ¼ κc
m−

mþ cosϕ1 cosϕ2

× ½sin ϵ sinϕ1 cosϕ2 cos θ012

− cos ϵ cosϕ1 sinϕ2 sin θ012�: ð42Þ

As indicated in Table IV, (ϵ − θ012) always remains in the
first (fourth) quadrant for the NSM (BM, TBM, and GR)
mixing pattern. For normal ordering, Eq. (41) then implies
that for the NSM (BM, TBM, and GR) case(s) δ lies in the
first or fourth (second or third) quadrant. For inverted
ordering of masses, κc changes sign, and so the quadrants
are accordingly modified. The different possibilities are
indicated in Table V. For any mixing pattern and mass
ordering, there are two allowed quadrants of δ which have
sin δ of opposite sign. Which of these is chosen is deter-
mined by the phases ϕ1;2 through the sign of the right-hand
side of Eq. (42). As noted above, ϕ2 can be in either the first
or fourth quadrants, and the quadrant of ϕ1 is determined by
the mixing pattern in such a way that sinϕ1 can be of either
sign. Thus, the phases ϕ1 and ϕ2 can always be chosen such
that sin δ can be of any particular sign. Therefore, the two
alternate quadrants of δ for every case in Table Vare equally
viable in this model.

TABLE V. Quadrants of the leptonic CP phase δ and the octant of θ23 for both mass orderings for different mixing patterns.

Normal ordering Inverted ordering

Mixing pattern δ quadrant θ23 octant δ quadrant θ23 octant

NSM First/fourth First Second/third Second
BM, TBM, GR Second/third First First/fourth Second
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The perturbative type-I seesaw contribution to θ23 can
also be extracted from Eq. (39). One finds

tanω ¼ sin θ13 cos δ
tanðϵ − θ012Þ

: ð43Þ

Recalling that Eq. (41) correlates δ and (ϵ − θ012) through
κc, one can readily conclude that for all mixing patterns θ23
always lies in the first (second) octant for normal (inverted)
ordering. This important conclusion from these models is
shown in Table V.
In the expression for the solar mass splitting in Eq. (38),

one can trade the factor m2
D=mR in terms of κc and use

Eq. (41) to get

Δm2
solar ¼

2m−mð0Þ
1 sin θ13 cos δ cos ϵ

sinðϵ − θ012Þcos2ζ
: ð44Þ

The strategy that we have followed to extract the
predictions of this model relies on utilizing Eqs. (43)
and (44). We take the three mixing angles θ13, θ12, and
θ23 as inputs. With these at hand, Eq. (43) fixes a value of
the CP phase δ. Using these and the experimentally
determined solar mass splitting, one can calculate from

Eq. (44) the combination mð0Þ
1 m−, or equivalently the

variable z, which fixes the lightest neutrino mass m0. It

might appear that arbitrarily large values of m0, and hence

mð0Þ
1 m−, may be admitted by taking cos δ to smaller and

smaller values. However, this is not the case. Experimental
data require ω ¼ ðπ=4 − θ23Þ to lie within determined
limits. Since all other factors have experimentally allowed
ranges, Eq. (43) also gives lower and upper bounds on δ.
Consequently, for any mixing pattern, m0 lies within a
fixed range.
In the left (right) panel of Fig. 2, we show the mixing

angle θ23 (the CP phase δ) as a function of the lightest
neutrino mass m0 as obtained from this model for different
mixing patterns when the best-fit values of the various
measured angles and mass splittings are used. The NSM,
BM, TBM, and GR correspond to the green solid, pink
dashed, red dot-dashed, and violet dotted curves respec-
tively. The thick (thin) curves of each type indicate normal
(inverted) mass orderings. Note that normal and inverted
orderings are always associated with the first and second
octants of θ23 respectively. For normal (inverted) ordering
with the NSM mixing pattern, δ lies in the first (second)
quadrant, while for the other cases, it is in the second (first)
quadrant. As expected, for inverted ordering, jδj stays close
to π=2 for the entire range of m0. For normal ordering, δ is
near π=2 for m0 larger than around 0.05 eV.
Of course, as indicated in Table V, if δ is a solution for

some m0, then by suitably picking alternate values of the
phases ϕ1;2 which appear inMνR, one can also get a second
solution with the phase −δ. We have not shown this mirror
set of solutions in Fig. 2. The T2K [14] and NOVA [15]
experiments have presented data which may be taken as a
preliminary hint of normal ordering associated with
δ ∼ −π=2. As seen from Fig. 2, this is consistent with
our model, with δ ∼ −π=2 favoring m0 in the quasidegen-
erate regime, i.e., m0 ≥ Oð0.05 eVÞ, for normal ordering.
If this result is confirmed by further analysis, then the
model will require neutrino masses to be in a range to
which ongoing experiments will be sensitive [16,17].

TABLE VI. The group table for S3.

I A B C D F

I I A B C D F
A A I C B F D
F F C I D A B
C C F D I B A
D D B A F I C
B B D F A C I
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FIG. 2. θ23 (left) and the CP phase δ (right) as a function ofm0 from this model for different mixing patterns when the best-fit values of
the input data are used. The NSM, BM, TBM, and GR cases correspond to the green solid, pink dashed, red dot-dashed, and violet dotted
curves respectively. Thick (thin) curves of each type indicate normal (inverted) mass orderings.

NEUTRINO MASS MODEL WITH S3 SYMMETRY AND … PHYSICAL REVIEW D 94, 115028 (2016)

115028-9



The correlation between the octant of θ23, the quadrant of
the CP phase δ, and the ordering of neutrino masses is a
smoking-gun signal of this S3 × Z3-based model.

IV. CONCLUSIONS

In this paper, we have put forward an S3 × Z3 model for
neutrino mass and mixing. After assigning the flavor
quantum numbers to the leptons and the scalars, we write
down the most general Lagrangian consistent with the
symmetry. Once the symmetry is broken, the Yukawa
couplings give rise to the charged lepton masses as well
as the Dirac and Majorana masses for the left- and right-
handed neutrinos. Neutrino masses originate from both
type-I and type-II seesaw terms of which the former can be
treated as a small correction. The dominant type-II seesaw
results in the atmospheric mass splitting, no solar splitting,
while keeping θ23 ¼ π=4, and θ13 ¼ 0. By a choice of the
Yukawa couplings, θ12 can be given any preferred value.
Thus, at this level, this model can accommodate any of the
much-studied tribimaximal, bimaximal, golden ratio, and
“no solar mixing” patterns. The smaller type-I seesaw
contribution acting as a perturbation generates the solar
mass splitting and nudges the mixing angles to values
consistent with the global fits. The octants of θ23 are
correlated with the neutrino mass ordering—the first
(second) octant is allowed for normal (inverted) ordering.
The model is testable through its predictions for the CP
phase δ and from the relationships between mixing angles
and mass splittings that it entails. Further, inverted mass
ordering is correlated with a near-maximal CP phase δ, and
arbitrarily small neutrino masses are permitted. For normal
mass ordering, δ can vary over a wider range, and
maximality is realized in the quasidegenerate limit. The
lightest neutrino mass must be at least a few meV in
this case.
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APPENDIX A: ESSENTIALS OF
THE S3 GROUP

S3 is a discrete group of order 6 which consists of
all permutations of three objects. It can be generated
by two elements A and B satisfying A2¼I¼B3 and
ðABÞðABÞ ¼ I. The group table is given in Table VI.
The group has two one-dimensional representations

denoted by 1 and 10 and a two-dimensional representation.
1 is inert under the group, while 10 changes sign under the
action of A. For the two-dimensional representation, a
suitable choice of matrices with the specified properties can
be readily obtained. We choose

I¼
�
1 0

0 1

�
; A¼

�
0 1

1 0

�
; B¼

�
ω 0

0 ω2

�
; ðA1Þ

where ω is a cube root of unity, i.e., ω ¼ e2πi=3. For
this choice of A and B, the remaining matrices of the
representation are

C¼
�
0 ω2

ω 0

�
; D¼

�
0 ω

ω2 0

�
; F¼

�
ω2 0

0 ω

�
: ðA2Þ

The product rules for the different representations are

1×10 ¼ 10; 10×10 ¼ 1; and 2×2¼ 2þ1þ10: ðA3Þ

One can see that each of the 2 × 2 matrices Mij in
Eqs. (A1) and (A2) satisfies

X
j;l¼1;2

αjlMijMkl ¼ αik; ðA4Þ

where αij ¼ 0 for i ¼ j and αij ¼ 1 for i ≠ j.
If Φ≡ ðϕ1

ϕ2
Þ and Ψ≡ ðψ1

ψ2
Þ are two field multiplets

transforming under S3 as doublets, then using Eqs. (A1)
and (A4),

ϕ1ψ2 þ ϕ2ψ1 ≡ 1; ϕ1ψ2 − ϕ2ψ1 ≡ 10 and�
ϕ2ψ2

ϕ1ψ1

�
≡ 2: ðA5Þ

Sometimes, we have to deal with Hermitian conjugate
fields. Noting the nature of the complex representation [see,
for example, B in Eq. (A1)], the conjugate S3 doublet is

Φ† ≡ ðϕ†
2

ϕ†
1

Þ. As a result, one has in place of (A5)

ϕ†
2ψ2 þ ϕ†

1ψ1 ≡ 1; ϕ†
2ψ2 − ϕ†

1ψ1 ≡ 10 and�
ϕ†
1ψ2

ϕ†
2ψ1

�
≡ 2: ðA6Þ

Equations (A5) and (A6) are essential in writing down the
fermion mass matrices in Sec. II.

APPENDIX B: THE SCALAR POTENTIAL
AND ITS MINIMUM

As seen in Table III, this model has a rich scalar field
content. In this Appendix,wewrite down the scalar potential
of the model, keeping all these fields, and derive conditions
whichmust bemet by the coefficients of the various terms so
that the desired vevs can be achieved. These conditions
ensure that the potential is locally minimized by this choice.
Table III displays the behavior of the scalar fields under

S3 × Z3 besides the gauged electroweak SUð2ÞL ×Uð1ÞY .
The fields also carry a lepton number. The scalar potential
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is the most general polynomial in these fields with up to
quartic terms. Our first step will be to write down the
explicit form of this potential. Here, we do not exclude any
term permitted by the symmetries. SUð2ÞL ×Uð1ÞY invari-
ance of the terms as well as the Abelian lepton number and
Z3 conservation are readily verified. It is only the S3
behavior which merits special attention.
There are a variety of scalar fields in this model, e.g.,

SUð2ÞL singlets, doublets, and triplets. Therefore, the
scalar potential has a large number of terms. For simplicity,
we choose all couplings in the potential to be real. In this
Appendix, we list the potential in separate parts: (a) those

belonging to any one SUð2ÞL sector and (b) intersector
couplings of scalars. The SUð2ÞL singlet vevs, which are
responsible for the right-handed neutrino mass, are sig-
nificantly larger than those of other scalars. So, in the
second category, we retain only those terms which couple
the singlet fields to either the doublet or the triplet sectors.

1. SUð2ÞL singlet sector

The SUð2ÞL singlet sector comprises of two fields χ and
γ transforming as 1ðωÞ and 10ðωÞ of S3ðZ3Þ respectively.
They have L ¼ 0. The scalar potential arising out of these is

Vsinglet ¼ m2
χχ

†χ þm2
γ γ

†γ þ Λs
1fγ2χ þ h:c:g þ λs1

2
½χ†χ�2 þ λs2

2
½γ†γ�2 þ λs3

2
ðχ†χÞðγ†γÞ þ λs4fðγ†χÞðγ†χÞ þ h:c:g; ðB1Þ

where the coefficient of the cubic term, Λs
1, carries the same dimension as mass while the λsi are dimensionless.

2. SUð2ÞL doublet sector

The SUð2ÞL doublet sector of the model has two fields Φa;b that are doublets of S3, in addition to α, β, and η which are S3
singlets. Among them, all fields except Φb and α (∈ ω of Z3) are invariant under Z3.

Vdoublet ¼ m2
Φa
Φ†

aΦa þm2
Φb
Φ†

bΦb þm2
ηη

†ηþm2
αα

†αþm2
ββ

†β þ λd1
2
ðΦ†

aΦaÞ2 þ
λd2
2
ðΦ†

bΦbÞ2 þ
λd3
2
ðΦ†

aΦaÞðΦ†
bΦbÞ

þ λd4
2
ðΦ†

aΦbÞðΦ†
bΦaÞ þ

λd5
2
ðΦ†

aΦaÞðη†ηÞ þ
λd6
2
ðΦ†

aΦaÞðα†αÞ þ
λd7
2
ðΦ†

aΦaÞðβ†βÞ þ
λd8
2
ðΦ†

bΦbÞðα†αÞ

þ λd9
2
ðΦ†

bΦbÞðβ†βÞ þ
λd10
2

ðΦ†
bΦbÞðη†ηÞ þ

λd11
2

ðα†αÞ2 þ λd12
2

ðα†αÞðη†ηÞ þ λd13
2

ðα†ηÞðη†αÞ

þ λd14
2

ðα†αÞðβ†βÞ þ λd15
2

ðη†ηÞ2 þ λd16
2

ðη†ηÞðβ†βÞ þ λd17fðΦ†
aΦbÞðα†ηÞ þ h:c:g þ λd18

2
ðβ†βÞ2: ðB2Þ

Leaving aside S3 properties for the moment, to which we
return below, out of any SUð2Þ doubletΦ, one can construct
two quartic invariants ðΦ†ΦÞðΦ†ΦÞ and ðΦ†~τΦÞðΦ†~τΦÞ.
Needless to say, this can be generalized to the case where
several distinct SUð2Þ doublets are involved. In order to
avoid cluttering, in Eq. (B2), we have displayed only the first
combination for all quartic terms.
The quartic terms involving λ1 to λ4 in Eq. (B2) are

combinations of two pairs of S3 doublets. Each pair can

combine in accordance with 2 × 2 ¼ 1þ 10 þ 2 resulting
in three terms. The S3 invariant in the potential arises from a
combination of the 1, 10, or 2 from one pair with the
corresponding term from the other pair. Thus, for each such
term of four S3 doublets, three possible singlet combina-
tions exist [recall, Eq. (A3)], and we have to keep an
account of all of them. We elaborate on this using as an
example the λd1 term which actually stands for a set
of terms:

λd1
2
ðΦ†

aΦaÞ2 → λd11 ½ðΦ
†
1Φ1Þ þ ðΦ†

2Φ2Þ�2 þ λd110 ½ðΦ
†
1Φ1Þ − ðΦ†

2Φ2Þ�2 þ λd12 ½ðΦ
†
1Φ2ÞðΦ†

2Φ1Þ þ ðΦ†
2Φ1ÞðΦ†

1Φ2Þ�: ðB3Þ

Substituting vevs, hΦ1i ¼ v1, and hΦ2i ¼ v2 and defining λd11 þ λd110 ¼
λda1
2
, and 2ðλd11 − λd110 þ λd12Þ ¼

λda2
2
, we get

λd1
2
ðΦ†

aΦaÞ2 ⟶
λda1
2

½ðv�1v1Þ2 þ ðv�2v2Þ2� þ
λda2
2
ðv�1v1Þðv�2v2Þ: ðB4Þ

Similarly,
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λd2
2
ðΦ†

bΦbÞ2 ⟶
λdb1
2

½ðv�3v3Þ2 þ ðv�4v4Þ2� þ
λdb2
2
ðv�3v3Þðv�4v4Þ; ðB5Þ

where hΦ3i ¼ v3 and hΦ4i ¼ v4. Further,

λd3
2
½ðΦ†

aΦaÞðΦ†
bΦbÞ� → λd31 ½ðΦ

†
1Φ1 þ Φ†

2Φ2ÞðΦ†
3Φ3 þ Φ†

4Φ4Þ� þ λd310 ½ðΦ
†
1Φ1 − Φ†

2Φ2ÞðΦ†
3Φ3 − Φ†

4Φ4Þ�
þ λd32 ½ðΦ†

1Φ2ÞðΦ†
4Φ3Þ þ ðΦ†

2Φ1ÞðΦ†
3Φ4Þ�: ðB6Þ

Substituting the respective vevs and defining λd31 þ λd310 ¼
λdab1
2
, λd31 − λd310 ¼

λdab2
2
, and λd32 ¼ λdab3 , we get

λd3
2
½ðΦ†

aΦaÞðΦ†
bΦbÞ� ⟶

λdab1
2

½ðv�1v1Þðv�3v3Þ þ ðv�2v2Þðv�4v4Þ� þ
λdab2
2

½ðv�1v1Þðv�4v4Þ þ ðv�2v2Þðv�3v3Þ�
þ λdab3 ½ðv�1v2Þðv�4v3Þ þ ðv�2v1Þðv�3v4Þ�: ðB7Þ

In a similar fashion, the λd4 term when expanded will lead to

λd4
2
½ðΦ†

aΦbÞðΦ†
bΦaÞ� ⟶

~λdab1
2

½ðv�1v3Þðv�3v1Þ þ ðv�2v4Þðv�4v2Þ� þ
~λdab2
2

½ðv�1v3Þðv�4v2Þ þ ðv�2v4Þðv�3v1Þ�
þ ~λdab3 ½ðv�1v4Þðv�4v1Þ þ ðv�2v3Þðv�3v2Þ�: ðB8Þ

Adding Eqs. (B7) and (B8), we get

λd3
2
½ðΦ†

aΦaÞðΦ†
bΦbÞ� þ

λd4
2
½ðΦ†

aΦbÞðΦ†
bΦaÞ� ¼

λ̂dab1
2

½ðv�1v1Þðv�3v3Þ þ ðv�2v2Þðv�4v4Þ� þ
λ̂dab2
2

½ðv�1v1Þðv�4v4Þ þ ðv�2v2Þðv�3v3Þ�
þ λ̂dab3 ½ðv�1v2Þðv�4v3Þ þ ðv�2v1Þðv�3v4Þ�; ðB9Þ

where
λ̂dab1
2
≡ ~λdab1

2
þ λdab1

2
,

λ̂dab2
2
≡ ~λdab3 þ

λdab2
2
, and λ̂dab3 ≡

~λdab2
2
þ λdab3 . Also, summing up the λd12 and λd13 terms leads to

λ̂d123
2
ðv�αvαÞðv�ηvηÞ, where λ̂d123 ≡ λd12 þ λd13.

3. SUð2ÞL triplet sector

Both the SUð2ÞL triplets present in our model (ΔL, ρL) that are responsible for Majorana mass generation of the left
handed neutrinos happen to be S3 invariants and differ only in their Z3 properties, i.e., ΔLð1Þ and ρLðωÞ.

V triplet ¼ m2
ΔL
Δ†

LΔL þm2
ρLρ

†
LρL þ λt1

2
½Δ†

LΔL�2 þ
λt2
2
½ρ†LρL�2 þ

λt3
2
ðΔ†

LΔLÞðρ†LρLÞ

þ λt4
2
ðΔ†

LρLÞðρ†LΔLÞ þ
λt5
2
ðΔLρLÞðΔLρLÞ†: ðB10Þ

It is noteworthy that when we write the minimized potential in terms of the vacuum expectation values the λt3, λ
t
4, and λt5

terms will be providing the same contribution as far as potential minimization is concerned. Thus, we can club these
couplings together as λt345 ≡ λt3 þ λt4 þ λt5.

4. Intersector terms

So far, we have listed those terms in the potential which arise from scalars of any specific SUð2ÞL behavior—singlets,
doublets, or triplets. In addition, there can be terms which couple one of these sectors to another. Since the vacuum
expectation values of the singlet scalars are the largest, we only consider here the couplings of this sector to the others. The
SUð2ÞL triplet sector vev is very small, and we drop the doublet-triplet cross-sector couplings.
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a. SUð2ÞL singlet-doublet cross-sector

Couplings between the SUð2ÞL singlet and doublet scalars in the potential give rise to the terms

Vds ¼ Λds
1 ½ðΦ†

bΦaÞ10γ þ h:c:� þ Λds
2 ½ðΦ†

bΦaÞ1χ þ h:c:� þ Λds
3 ½ðα†ηÞχ þ h:c:� þ λds1

2
ðΦ†

aΦaÞðχ†χÞ þ
λds2
2

ðΦ†
aΦaÞðγ†γÞ

þ λds3
2

ðΦ†
bΦbÞðχ†χÞ þ

λds4
2

ðΦ†
bΦbÞðγ†γÞ þ

λds5
2

ðα†αÞðχ†χÞ þ λds6
2

ðα†αÞðγ†γÞ þ λds7
2

ðη†ηÞðχ†χÞ þ λds8
2

ðη†ηÞðγ†γÞ
þ λds9 ½ðΦ†

aΦbÞχ2 þ h:c:� þ λds10½ðΦ†
aΦbÞγ2 þ h:c:� þ λds11½ðη†αÞχ2 þ h:c:� þ λds12½ðη†αÞγ2 þ h:c:�

þ λds13½ðΦ†
aΦbÞ10 ðχγÞ þ h:c:� þ λds14

2
ðβ†βÞðχ†χÞ þ λds15

2
ðβ†βÞðγ†γÞ: ðB11Þ

b. SUð2ÞL singlet-triplet cross-sector

The terms in the potential which arise from couplings
between the SUð2ÞL singlet and triplet scalars are

Vts ¼ Λts
1 ½ðρ†LΔLÞχ þ h:c:� þ λts1

2
ðΔ†

LΔLÞðχ†χÞ

þ λts2
2
ðΔ†

LΔLÞðγ†γÞ þ
λts3
2
ðρ†LρLÞðχ†χÞ

þ λts4
2
ðρ†LρLÞðγ†γÞ þ λts5 fðΔ†

LρLÞχ2 þ h:c:g
þ λts6 fðΔ†

LρLÞγ2 þ h:c:g: ðB12Þ

5. Minimization conditions

The vevs of the scalar fields are given in Table III.
Using these,

SUð2ÞL singlets: hγ0i ¼ uγ and hχ0i ¼ uχ .
SUð2ÞL doublets:

hΦai ¼
�
0 v1
0 v2

�
;

hΦbi ¼
�
0 v3
0 v4

�
;

hηi ¼ vηð 0 1 Þ, hαi ¼ vαð 0 1 Þ and hβi ¼ vβð 1 0 Þ.
Recall that from the structure of the charged lepton

mass matrix Eq. (13) requires v2=v1 ¼ v4=v3 ¼ A where
the real quantity A ¼ mμ=mτ. We often also need
B≡ ð1þ A2Þ.
SUð2ÞL triplets: hρ0Li ¼ vρ and hΔ0

Li ¼ vΔ.

a. SUð2ÞL singlet sector

∂Vsingletjmin

∂u�χ ¼ 0 ⇒ uχ ½m2
χ þ λs1u

�
χuχ � þ Λs

1ðu�γÞ2 þ uγ

�
λs3
2
uχu�γ þ 2λs4u

�
χuγ

�
¼ 0; ðB13Þ

and

∂Vsingletjmin

∂u�γ ¼ 0 ⇒ uγ½m2
γ þ λs2u

�
γuγ� þ 2Λs

1ðu�γu�χÞ þ uχ

�
λs3
2
uγu�χ þ 2λs4u

�
γuχ

�
¼ 0: ðB14Þ

b. SUð2ÞL doublet sector

Define VD ¼ Vdoublet þ Vds:

∂VDjmin

∂v�α ¼ vα

�
m2

α þ
λd6
2
ðv�1v1ÞBþ λd8

2
ðv�3v3ÞBþ λd11ðv�αvαÞ þ

λ̂d123
2

ðv�ηvηÞ þ λd14ðv�βvβÞ
�

þ vα

�
λds5
2

ðu�χuχÞ þ
λds6
2

ðu�γuγÞ
�
þ vη½λd17ðv�1v3ÞBþ Λds

3 uχ þ λds11ðu�χÞ2 þ λds12ðu�γÞ2� ¼ 0; ðB15Þ
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∂VDjmin

∂v�β ¼ vβ

�
m2

β þ
λd7
2
ðv�1v1ÞBþ λd9

2
ðv�3v3ÞBþ λd14

2
ðv�αvαÞ þ

λd16
2
ðv�ηvηÞ þ λd18ðv�βvβÞ

�
þ vβ

�
λds14
2
ðu�χuχÞ þ

λds15
2
ðu�γuγÞ

�
¼ 0;

ðB16Þ

∂VDjmin

∂v�η ¼ vη

�
m2

η þ
λd5
2
ðv�1v1ÞBþ λd10

2
ðv�3v3ÞBþ λ̂d123

2
ðv�αvαÞ þ λd15ðv�ηvηÞ þ

λd16
2

ðv�βvβÞ
�
þ vη

�
λds7
2

ðu�χuχÞ þ
λds8
2

ðu�γuγÞ
�

þ vα½λd17ðv�3v1ÞBþ Λds
3 u�χ þ λds11ðuχÞ2 þ λds12ðuγÞ2� ¼ 0; ðB17Þ

∂VDjmin

∂v�1 ¼ v1

�
m2

Φa
þ ðv�1v1Þ

�
λda1 þ A2

λda2
2

�
þ ðv�3v3Þ

�
λ̂dab1
2

þ A2
λ̂dab2
2

þ A2λ̂dab3

��

þ v1

�	
λd5
2
ðv�ηvηÞ þ

λd6
2
ðv�αvαÞ þ

λd7
2
ðv�βvβÞ



þ
	
λds1
2

ðu�χuχÞ þ
λds2
2

ðu�γuγÞ

�

þ v3½fλd17ðv�αvηÞg þ fΛds
1 u�γ þ Λds

2 u�χ þ λds9 ðuχÞ2 þ λds10ðuγÞ2 þ λds13ðuχuγÞg� ¼ 0; ðB18Þ

∂VDjmin

∂v�2 ¼ Av1

�
m2

Φa
þ ðv�1v1Þ

�
A2λda1 þ

λda2
2

�
þ ðv�3v3Þ

�
A2

λ̂dab1
2

þ λ̂dab2
2

þ λ̂dab3

��

þ Av1

�	
λd5
2
ðv�ηvηÞ þ

λd6
2
ðv�αvαÞ þ

λd7
2
ðv�βvβÞ



þ
	
λds1
2

ðu�χuχÞ þ
λds2
2

ðu�γuγÞ

�

þ Av3½fλd17ðv�αvηÞg þ f−Λds
1 u�γ þ Λds

2 u�χ þ λds9 ðuχÞ2 þ λds10ðuγÞ2 − λds13ðuχuγÞg� ¼ 0; ðB19Þ

∂VDjmin

∂v�3 ¼ v3

�
m2

Φb
þ ðv�3v3Þ

�
λdb1 þ A2

λdb2
2

�
þ ðv�1v1Þ

�
λ̂dab1
2

þ A2
λ̂dab2
2

þ A2λ̂dab3

��

þ v3

�	
λd8
2
ðv�αvαÞ þ

λd9
2
ðv�βvβÞ þ

λd10
2

ðv�ηvηÞ


þ
	
λds3
2

ðu�χuχÞ þ
λds4
2

ðu�γuγÞ

�

þ v1½fλd17ðv�ηvαÞg þ fΛds
1 uγ þ Λds

2 uχ þ λds9 ðu�χÞ2 þ λds10ðu�γÞ2 þ λds13ðu�χu�γÞg� ¼ 0; ðB20Þ

∂VDjmin

∂v�4 ¼ Av3

�
m2

Φb
þ ðv�3v3Þ

�
A2λdb1 þ

λdb2
2

�
þ ðv�1v1Þ

�
A2

λ̂dab1
2

þ λ̂dab2
2

þ λ̂dab3

��

þ Av3

�	
λd8
2
ðv�αvαÞ þ

λd9
2
ðv�βvβÞ þ

λd10
2

ðv�ηvηÞ


þ
	
λds3
2

ðu�χuχÞ þ
λds4
2

ðu�γuγÞ

�

þ Av1½fλd17ðv�ηvαÞg þ f−Λds
1 uγ þ Λds

2 uχ þ λds9 ðu�χÞ2 þ λds10ðu�γÞ2 − λds13ðu�χu�γÞg� ¼ 0: ðB21Þ

c. SUð2ÞL triplet sector

Define VT ¼ V triplet þ Vts:

∂VT jmin

∂v�Δ ¼ vΔ

�	
m2

ΔL
þ λt1ðv�ΔvΔÞ þ

λt345
2

ðv�ρvρÞ


þ
	
λts1
2
ðu�χuχÞ þ

λts2
2
ðu�γuγÞ


�
þ vρ½Λts

1 u
�
χ þ λts5 u

2
χ þ λts6 u

2
γ � ¼ 0; ðB22Þ

∂VT jmin

∂v�ρ ¼ vρ

�	
m2

ρL þ λt2ðv�ρvρÞ þ
λt345
2

ðv�ΔvΔÞ


þ
	
λts3
2
ðu�χuχÞ þ

λts4
2
ðu�γuγÞ


�

þ vΔ½Λts
1 uχ þ λts5 ðu�χÞ2 þ λts6 ðu�γÞ2� ¼ 0: ðB23Þ
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