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It is often argued that the minimal supersymmetric standard model has Oð100Þ free parameters, and the
generic parameter region is already excluded by the null observation of the flavor and CP-violating
processes as well as the constraints from the LHC experiments. This situation naturally leads us to consider
the case where all the dangerous soft supersymmetry breaking terms, such as the scalar masses and scalar
couplings, are absent, while only the unified gaugino mass term and the μ term are nonvanishing at the
grand unification scale. We revisit this simple situation taking into account the observed Higgs boson mass,
125 GeV. Since the gaugino mass and the μ term are fixed in order to explain the Higgs boson and the
Z boson masses, there is no free parameter left in this scenario. We find that there are three independent
parameter sets that exist including ones which have not been discussed in the literature. We also find that
the abundance of the dark matter can be explained by relic gravitinos which are nonthermally produced as
decay products of the supersymmetry particles while satisfying constraints from big bang nucleosynthesis.
We discuss the effects of the gravity mediation which generically gives a contribution to the soft terms of
the order of the gravitino mass. It turns out that a newly found parameter set is preferable to explain the
Higgs boson mass as well as the gravitino dark matter while satisfying the constraints from the electric
dipole moments of the electron and the nucleon.

DOI: 10.1103/PhysRevD.94.115016

I. INTRODUCTION

The Higgs boson mass 125 GeV suggests that the
physics behind the electroweak symmetry breaking is
weakly coupled, but it is not quite as light as the predictions
of TeV scale supersymmetry. In order to explain the Higgs
boson mass in the minimal supersymmetric standard model
(MSSM), the superpartner masses, especially the scalar top
quarks, need to be above Oð10Þ TeV in a generic region of
the parameter space [1–4].
In light of this situation, models with the OðPeVÞ scale

rather than the Oð10Þ TeV supersymmetry have been
discussed quite extensively [5–8]. (For earlier studies,
see [9–12].) The reason for this jump from TeV to PeV
is based on the constraints from the flavor- and CP-
violating processes [13–15]. For example, the constraint
from the CP violation in the kaon mixing provides us a
bound of the order of PeV when the CP phase and
the flavor mixing are Oð1Þ in the sfermion sector. The
PeV supersymmetry can (almost) avoid the flavor=CP
constraints, while the dark matter of the Universe can be
explained by the thermal relic of the light gauginos, in
particular, the wino [16], whose masses can be suppressed
by a one-loop factor (and, thus, the TeV scale) as in the
anomaly mediation scenario [9,17].
On the other hand, the Oð10Þ TeV supersymmetry,

which is implied by the Higgs boson mass, requires a
nongeneric feature in the flavor structures of the

superparticles. For example, there have been proposals
to achieve such structures by a flavor-blind mechanism
for supersymmetry breaking and its transmission to the
visible sector [18–21]. In any case, since we need some
mechanism to suppress large flavor and CP violations,
the gravity-mediated contributions which generically break
flavor and CP should be suppressed; i.e., the gravitino
should be much lighter than other supersymmetry (SUSY)
particles. In this case, the gravitino can be a good candidate
of the dark matter; its abundance may be explained by
the decay of other SUSY particles which are thermally
produced [22,23].
In this paper, we discuss the scenario where all SUSY

breaking parameters, except gaugino mass, are set to be
zero at the cutoff scale, and, thus, the severe flavor and CP
constraints can be alleviated. Such a setup has been studied
as the low energy effective theory of the gaugino mediation
scenario [20,21] or the no-scale supergravity Lagrangian
[24,25]. The right-handed stau tends to be the next-to-
lightest SUSY particle (NLSP), and its decay into the
gravitino may explain the observed dark matter abundance.
However, it is nontrivial whether the Higgs boson mass and
dark matter abundance can be explained simultaneously in
this simple setup. The large stau mass is required to avoid
the severe constraints from big bang nucleosynthesis
(BBN), while stop masses are bounded from above
according to the value of tan β to explain the observed
Higgs boson mass.
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We discuss the running behavior of the Higgs B term
carefully and find that a new parameter set with relatively
small tan β appears for a large SUSY breaking scale even
with a vanishing Higgs B term at the cutoff scale. This helps
to solve the above-mentioned tension; small tan β enlarges
the right-handed stau mass and also relaxes the upper bound
on the stop masses. The small gravity-mediated contribu-
tions can become the sources of flavor and CP violation in
the model. However, we find that thanks to the small value
of tan β, the predicted electron electric dipole moment
(EDM) is marginal to the present experimental bound and
should be checked in the near-future experiments.
This paper is organized as follows. In Sec. II, we explain

our model to solve the SUSY flavor and CP problems.
The renormalization group running of the Higgs B term is
examined carefully, and we identify the parameter regions
with the correct electroweak symmetry breaking (EWSB)
minimum. The spectrum of SUSY particles and the lightest
Higgs boson are also presented here. We discuss the
implications on the gravitino dark matter in Sec. III and
predictions of the electron and nucleon EDMs in Sec. IV. In
Sec. V, we discuss the thermal component of the gravitino
relic abundance. We summarize our results in Sec. VI.

II. CP- AND FLAVOR-SAFE
MINIMAL SUSY MODEL

In the MSSM, independent CP phases are expressed in
the combination of the A term, B term, μ term, and gaugino
masses Mi,

ϕμ;i¼ argðMiμð−BμÞ�Þ; ϕAf;i¼ argðMiA�
fÞ; ðf¼u;d;eÞ:

ð1Þ

Usually, we take the basis with real Bμ by the appropriate
redefinitions of fields so that the vacuum expectation values
(VEVs) of the two Higgs doublets become real. Flavor and
CP violations come from the off-diagonal terms of the
sfermion mass terms in the super Cabibbo-Kobayashi-
Maskawa basis, �

m2
~f

�
ij
; ði ≠ jÞ: ð2Þ

If the SUSY scale is below 100 TeV, random values of these
parameters predict detectable flavor-changing neutral cur-
rent (FCNC) and CP-violating phenomena.
We assume that all A terms, B terms, and sfermion soft

masses vanish at some scales,

Au;d;e ¼ B ¼ m2
~q; ~u; ~d;~l;~e

¼ 0: ð3Þ

At the low energy scale, the nonvanishing A and B terms
are generated by the radiative corrections through the gauge
interactions. Since these contributions are proportional to
gaugino masses, there appear no CP phases at the low

energy scale as long as the phases of the three gaugino
mass parameters are aligned. The off-diagonal elements of
sfermion mass are also generated only radiatively through
the Cabibbo-Kobayashi-Maskawa matrix, and the flavor
constraints can become rather weak. The remaining free
parameters are Higgs soft masses and gaugino masses,

m2
Hu
; m2

Hd
; M1;2;3: ð4Þ

We consider the minimal situation where the SUSY
breaking is directly mediated only to the gauge sectors
by the physics of grand unification theories (GUTs). Then,
we further impose the following conditions at the GUT
scale MG,

m2
Hu

¼ m2
Hd

¼ 0; M1 ¼ M2 ¼ M3 ¼ M1=2: ð5Þ
In this way, one can consider a very predictive framework
where we have only one SUSY breaking parameter M1=2

and one supersymmetric parameter μ. Here, we do not
discuss a specific mechanism for generating the μ term as a
result of supersymmetry breaking; i.e., we do not try to
solve the μ problem. As the simplest but consistent model,
we consider the case where the μ parameter is just present
as a term in the superpotential. Note here that there is no
CP-violating phase in this scenario as long as we set A ¼ 0
and B ¼ 0 at the unification scale; i.e., the μ parameter can
be taken to be real without loss of generality. The size of the
SUSY breaking is naively estimated as M1=2 ≃OðF=MGÞ,
and, thus, the gravitino becomes the lightest SUSY particle
with mass m3=2 ¼ F=ð ffiffiffi

3
p

MplÞ≃ 10−ð2–3ÞM1=2. The small
gravitino mass is also favored to suppress the possibly
dangerous gravity-mediated contributions, which are the
main sources of flavor and CP violations in our scenario.
In this model, the ratio of the VEVs tan β ¼ hHui=hHdi

is not a free parameter and is determined by the condition of
the EWSB. At the SUSY scale Oð10Þ TeV, the following
conditions should be imposed:

m2
Z

2
¼ −jμj2 þm2

Hu
þ Σu

cot2β − 1
−
m2

Hd
þ Σd

1 − tan2β
; ð6Þ

sin 2β ¼ −
Bμ

2jμj2 þm2
Hu

þm2
Hd

þ Σu þ Σd
; ð7Þ

where Σu;d includes the tadpole contributions that origi-
nated from the one-loop corrections.1 For a given choice of
M1=2, these two constraints fix the μ parameter as well as
the value of tan β by requiring that the B parameter vanish

1Here, we use the one-loop effective potential to determine
only μ, β, and masses of heavy Higgs bosons. On the other hand,
the lightest Higgs boson mass is calculated by the effective
field theory approach following [4,26,27] since we consider a
relatively high SUSY scale to explain the observed Higgs boson
mass.
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at the unification scale. We choose 0 < β < π=2 to obtain
positive VEVs of two Higgs doublets. In this convention,
the sign of the B term determines that of the μ term. The
low energy value of the B parameter is evaluated by the
following renormalization group (RG) equation,2

16π2
dB

d log μ
≃ −3g22M2 − g21M1 þ y2τAτ þ 3y2bAb þ 3y2t At:

ð8Þ
Here, the bottom Yukawa coupling receives sizable thresh-
old corrections for large tan β, and its value is sensitive to
the size of tan β and the sign of μ,

ybðμSUSYÞ≃ g2mbffiffiffi
2

p
mW

tan β
1þ εb tan β

; εb ≈
αs
3π

μM3

m2
~q

: ð9Þ

The typical running behaviors of the B parameter and
the bottom Yukawa coupling are presented in Fig. 1 (left).
At a high energy scale, the B parameter is increased by the
gauge interactions as the renormalization scale μ goes
down. Since the values of the A terms are also enhanced at
the low energy scale, the B parameter turns to be decreased
by the Yukawa interactions. We find three solutions to
satisfy the EWSB conditions,

(I) μ > 0, B < 0, and large tan β;
(II) μ < 0, B > 0, and large tan β;
(III) μ < 0, B > 0, and small tan β.
In scenario I, the values of yb and tan β are large enough to
drive the B parameter negative. The large tan β implies a

small absolute value of the B parameter according to
Eq. (7). For smaller but still large yb, the B parameter
stays positive even at the SUSY scale, and its absolute value
is small in scenario II. For much smaller yb, we obtain a
large B parameter, implying small tan β in scenario III. We
note that the large B parameter is preferable to suppress CP
phases generated by the gravity-mediated contributions,
which are estimated as ϕμ ∼m3=2=jBj.
The solutions II and III donot appearwhen theSUSYscale

is low since the contributions from Yukawa couplings
are quite effective in the low energy region, always resulting
in a negative B parameter. In Fig. 1 (right), we show the
values of the B parameter at the GUT scale as functions
of tan β for M1=2 ¼ 1 and 10 TeV. For large tan β, the B
parameter has to be large enough at the GUT scale to have
small absolute value at the SUSY scale since it receives
large negative contributions coming from the large bottom
Yukawa coupling. Then, we always have a solution of
BðMGÞ ¼ 0 for μ > 0 (red lines) irrespective of M1=2. On
the other hand, the solutions with μ < 0 (black lines) appear
only for large M1=2 since the negative contributions of the
Yukawa couplings are weakened for the high SUSY scale.
This argument shows that the appearance of parameter

regions with μ < 0 is sensitive to the precise sizes of
Yukawa couplings and also to the GUT scale MG. We take
the GUT scale as the scale with g1ðMGÞ ¼ g2ðMGÞ, which
becomes a little bit smaller for the higher SUSY scale. The
precise value of the top Yukawa couplings is also essential
to calculate the Higgs boson mass in the SUSY model.
Therefore, in the following analysis, we take a relatively
large uncertainty for the top pole mass Mt ¼ 173.3�
2 GeV compared to the result obtained by the LHC

FIG. 1. Left: The running behaviors of the Higgs B parameter (solid lines with left y axis) and the bottom Yukawa couplings (dotted
lines with right y axis) forM1=2 ¼ 10 TeV. Each colored line corresponds to the solution with (I) μ > 0 (red), (II) μ < 0 with large tan β
(blue), and (III) μ < 0 with small tan β (green). Right: The values of the B parameter at the GUT scale as a function of tan β. The red
(black) lines correspond to the solution with μ > 0 (μ < 0). The B parameters are normalized by M1=2, and the dotted (solid) lines
correspond to the case for M1=2 ¼ 1ð10Þ TeV. The red, blue, and green dots correspond to the three solutions I, II, and III
for M1=2 ¼ 10 TeV.

2In the actual calculation of the SUSY spectrum, we use two-
loop renormalization group equations above the SUSY scale.
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experiments [28–30], taking into account the possible
difference between the measured mass parameter and the
pole mass. Also, since we are focusing on high-scale SUSY
models, we adapt the effective field theory approach to

calculate the lightest Higgs boson mass. Concretely, we use
three-loop Standard Model (SM) RG equations to calculate
the Yukawa couplings at the SUSY scale (∼M1=2) and to
obtain a Higgs quartic coupling at the SM scale (∼Mt).

FIG. 2. The values of tan β (left) and jBj (right) as a function ofM1=2. The red, blue, and green lines correspond to scenarios I, II and III
respectively. The colored bands show the uncertainty coming from the top mass, Mt ¼ 173.3� 2 GeV.

FIG. 3. Contour plots for the mass of the Higgs boson as functions of M1=2 and Mt in scenario I (top left), II (top right), and III
(bottom). Gray shaded regions are favored by the measurements of the Higgs boson mass by the LHC experiments. Green regions
indicate the uncertainty of the top mass.
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Appropriate threshold corrections are included according to
[4,26,27] both at the EW scale and at the SUSY scale. The
SUSY spectrum is calculated by solving two-loop RG
equations.3 Here, we stress again that our model now has
only one parameter M1=2 that can be determined uniquely
for each of the solutions, I, II, and III to reproduce the
observed Higgs boson mass 125 GeV up to the current
experimental uncertainties in the determinations of the
Higgs boson mass and the top quark mass as well as the
theoretical uncertainties in the calculations of the mass
spectrum of the superparticles.
In Fig. 2, we show the values of tan β and jBj at the

SUSY scale for each solution. In the case of solutions I and
II, tan β is a monotonically increasing function of M1=2.
This is because negative contributions from the top Yukawa
coupling are weakened for the large SUSY scale, and the
bottom Yukawa coupling has to be larger to obtain small
jBj. On the other hand, tan β becomes smaller for large
M1=2 in the case of solution III, simply because we obtain
larger jBj=M1=2 for larger M1=2 due to the smaller con-
tributions from Yukawa couplings, and it implies smaller
tan β according to Eq. (7). The obtained size of jBj is about
Oð100Þ GeV, which is much smaller than M1=2 ∼ 10 TeV
because of the large cancellation between gauge inter-
actions and Yukawa interactions. However, jBj could be
large enough jBj≳ 1 TeV in the case of solution III
because negative contributions from Yukawa couplings
are weakened thanks to the high SUSY scale and the low
value of tan β.
In Fig. 3, we show the parameter regions which explain

the correct Higgs boson mass, mh ¼ 125.09� 0.24 GeV
[32], in the (M1=2,Mt) plane for scenarios I (top left), II (top
right), and III (bottom). Because of the uncertainty of the
top mass, M1=2 is not determined uniquely, and instead we
obtain an upper and lower bound on it. For solution I, the
observed Higgs boson can be explained in the range of
3.5 TeV≲M1=2 ≲ 12 TeV depending on the top mass. In
the case of solutions II and III, the SUSY scale has to be
large enough to realize the EWSB, and also a little bit larger
M1=2 is required for solution III since tan β is relatively
small. We find 6.5 TeV≲M1=2 ≲ 13 TeV for solution II
and 6.5 TeV≲M1=2 ≲ 20 TeV for solution III. We find
that the top mass should be less than 174 GeV in scenarios
II and III. As the top mass becomes smaller, a largerM1=2 is
necessary to have enough radiative corrections to the Higgs
mass. In particular, the requiredM1=2 is increased rapidly in
solution III since the tree-level contributions to the Higgs
mass, which is proportional to cos 2β, are also decreased for

larger M1=2. This figure shows that the precise measure-
ments of the masses of the top quark and the Higgs boson
are essential to confirm or exclude our model.
Since our model contains only one SUSY breaking

scale which is much larger than the EW scale, most
SUSY parameters are roughly proportional to M1=2.
Typical SUSY parameters for each solution are presented
in Table I. The NLSP particle is the right-handed stau,
which decays to the LSP gravitino dark matter. Stau mass
is rather sensitive to tan β, i.e., the tau Yukawa coupling,
since the flavor-independent contribution from gauge
interactions is smaller than other sfermion mass terms.
In the case of solution I, the right-handed stau mass is much
smaller than the selectron mass since the tau Yukawa
coupling is effective. The mass difference between the stau
and the selectron becomes smaller for solution II and they
are almost degenerate in the case of solution III. This means
that the right-handed stau gets heavier in solution III
compared to the other solutions for a fixed M1=2, as shown
in Fig. 4. In the last row of Table I, we present the gravitino
mass which explains the observed dark matter abundance
by the decay of other SUSY particles, as will be explained

TABLE I. Typical mass parameters in each scenario. In the
last row, we present the expected mass of the gravitino which
explains the whole observed dark matter abundance through the
production by the decay of other SUSY particles.

I ðμ > 0Þ II ðμ < 0Þ III ðμ < 0Þ
MtðGeVÞ 173.3 172.0 172.0
M1=2ðTeVÞ 5.0 10.0 15.0
tan β 36.5 30.3 10.5
BðGeVÞ −127 312 1776
MhðGeVÞ 124.5 125.4 125.6
MAðTeVÞ 4.85 9.29 15.5
M1ðTeVÞ 2.30 4.73 7.21
M2ðTeVÞ 4.05 8.19 12.4
M3ðTeVÞ 9.65 18.6 27.3
μðTeVÞ 4.64 −8.38 −12.1
m~eRðTeVÞ 1.80 3.58 5.35
m~τRðTeVÞ 1.39 3.17 5.27
m~eLðTeVÞ 3.16 6.22 9.24
m~τLðTeVÞ 3.06 6.11 9.22
m ~uRðTeVÞ 8.08 15.3 22.3
m~tRðTeVÞ 6.84 13.1 19.0
m ~dR

ðTeVÞ 8.02 15.2 22.1
m ~bR

ðTeVÞ 7.64 14.6 22.0
m ~uLðTeVÞ 8.50 16.2 23.6
m~tLðTeVÞ 7.76 14.9 22.1
Au (TeV) 9.22 17.3 25.0
At (TeV) 7.33 14.0 20.7
Ad (TeV) 10.3 19.4 29.0
Ab (TeV) 9.26 17.6 27.5
Ae (TeV) 2.16 4.42 7.65
Aτ (TeV) 1.96 4.21 7.61
mNT

3=2ðGeVÞ 509 179 76

3We compared our results with those obtained by a modified
version of SOFTSUSY [31], which reproduces the gauge and
Yukawa couplings derived by the effective field approach at the
high energy scale, and we found that the difference of the
obtained SUSY masses is within 1%.
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in detail in the next section. This gravitino mass is roughly
inversely proportional to M1=2.

III. GRAVITINO DARK MATTER

As is explained in the Introduction, the gravitino mass
is assumed to be small to suppress the gravity-mediated
contributions. Thus, the gravitino can be a good dark matter
candidate in this model.
We assume that the NLSP stau is produced thermally in

the history of the Universe, and its thermal relic abundance
reads as

Ω~τRh
2 ≈

1.1 × 109 GeV−1ffiffiffiffiffi
g⋆

p
mplhσvixf

≈ 0.17

�
10ffiffiffiffiffi
g⋆

p
��

1=20
xf

��
10−9 GeV−2

hσvi
�
; ð10Þ

where g⋆ is the effective number of relativistic degrees of
freedom at the freeze-out temperature Tf, xf ¼ Tf=m~τR ,

and mpl ¼
ffiffiffiffiffiffi
8π

p
Mpl ¼ 1.22 × 1019 GeV. The right-handed

staus mainly annihilate into the gauge boson pairs
~τ~τ� → γγ, γZ, ZZ, WW, and also they annihilate into the
tau lepton pairs through the bino exchange, ~τ ~τ → ττ [33].
Furthermore, since we find that the contribution through the
left-right mixing described below cannot be neglected for
the large tan β case, we include the effects as denoted
by yeff. Then the thermally averaged annihilation cross
section of the right-handed staus is estimated as4

hσvi≃ πα2

m2
~τR

�
1þ 2t2W þ

�
t4W þ ð1 − y2effÞ2

32c4W

�
þ ð1 − y2effÞ2

16c4W

�

þ 8πα2M2
B

c4Wðm2
~τR
þM2

BÞ2
: ð11Þ

Each term in the square bracket of the first term corre-
sponds to the contributions from γγ, Zγ, ZZ, andWW final
states, respectively, and the last term is the contribution
from the ττ mode. Here, cW ¼ cos θW , tW ¼ tan θW , and
yeff stands for the term proportional to the tau Yukawa
coupling,

yeff ¼
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
~τR
þm2

~τL

q mτ tan β
tWmWð1þ ετ tan βÞ

; ð12Þ

where ετ is the threshold corrections to the tau Yukawa
coupling and ετ ≃ −3α2=ð16πÞμM2=m2

~τR
for degenerate

SUSY masses. This term is generated by the mixing effect
between the left-handed and right-handed staus, it becomes
relevant for large tan β, and it does not decouple in the limit
of the large SUSY scale as one can see from the formula. In
particular, it can remain significant in the limit of small left-
right mixing θτ, which is suppressed by the heavy SUSY
mass, θτ ≃Oðmτ tan β=mSUSYÞ. In scenarios I and II, yeff
can be much larger than

ffiffiffi
2

p
, and, thus, the annihilation

cross sections are enhanced. Especially in scenario I, the
enhancement is as large as 50% compared with the case of
ignoring the left-right mixing. In the case of scenario III
where tan β is small, the cross section tends to be slightly
decreased by considering nonvanishing yeff . On the con-
trary, the enhancements of the annihilation into the hh [37]
and tt [38] final states are irrelevant for us since they
require both large tan β and large θτ.
The gravitinos are generated nonthermally through the

decay of the staus. The relic density of the gravitino dark
matter is given as

ΩNT
~G
h2 ¼ m3=2

m~τR

Ω~τRh
2: ð13Þ

The minimal scenario is to consider that the observed cold
dark matter density Ωch2 ¼ 0.12 [39] is explained by
the gravitino dark matter produced in this way. Thus,
we can predict the gravitino mass as mNT

3=2 ¼ m~τRΩc=Ω~τR ,
which is roughly inversely proportional to the right-handed
stau mass from Eqs. (10) and (11). In Fig. 5 (left), we
show the predicted masses of gravitino dark matter for
each scenario. We find the gravitino masses sit in the
right parameter range anticipated by a naive estimation
m3=2=M1=2 ≈OðMG=MplÞ≃Oð0.01Þ, and it gives the
strong implication on the concrete ultraviolet model
construction. In scenario III, the gravitino can become
relatively light, below 100 GeV for M1=2 > 12 TeV, since

FIG. 4. The right-handed stau mass normalized by M1=2 as a
function ofM1=2 in scenarios I (red), II (blue), and III (green). The
black line represents the selectron mass normalized by M1=2.

4Here we show only S-wave contributions and drop the terms
suppressed by tan β and/or mSUSY. In the numerical calculation,
we include remaining minor decay channels and solve the
Boltzmann equations to include both the coannihilation effects
and P-wave contributions according to [34,35]. We have checked
that Sommerfeld effects discussed in [36] give only negligible
modifications in our setup.
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the right-handed staumass tends to be heavy due to the small
tan β. In the following, we will see that light gravitinos are
favored by the constraints from the BBN and also from the
EDM experiment. Then, in scenarios I and II, the entire dark
matter cannot be identified as nonthermally produced grav-
itinos, and we must consider other production mechanisms
and/or other darkmatter candidates. In a later section,wewill
consider the case where gravitinos are also thermally
produced in the early stage of the Universe and discuss
the implications on the reheating temperature after inflation.
Next, we consider the BBN constraints on this model.

Since the lifetime of the stau NLSP is relatively long in our
model, its late-time decay may destroy the successful
predictions of the standard BBN scenario [40,41]. The
stau lifetime is estimated as

τ~τR ≃
48πm2

3=2M
2
pl

m5
~τR

≃ 10 sec

	
m3=2

100 GeV



2
	

m~τR

3 TeV



−5
:

ð14Þ

For τ~τR < 1 sec, the NLSP stau can decay before the BBN
starts. For 1 sec < τ~τR < 100 sec, the hadronic particles
produced by the NLSP decay are potentially dangerous
since they interconvert the protons and neutrons and
may change the helium abundance. Especially in the stau
NLSP case, since the staus mainly decay to the tau lepton
and gravitino pairs ~τR → ~Gτ, sizable amounts of pions are
produced through the hadronic decay of tau leptons.
However, the produced pions are less effective to inter-
convert the protons and neutrons than the pp̄ and nn̄ pairs.
From the figures of [42], we find that the stau abundance
considered here is not problematic. Although these
analyses are performed for lower stau masses, produced
taus are stopped immediately with losing their energy
electromagnetically, and, therefore, the constraint is less

sensitive to the stau mass itself in this time range. On the
other hand, the case with τ~τR > 100 sec is excluded by the
overproduction of D as one can see from Ref. [42]. Then,
in the following, we assume that thermally produced NLSP
staus are allowed as long as τ~τR < 100 sec, and clearly
more detailed analyses of BBN constraints on heavy NLSP
masses are desirable.
We show the stau lifetime as a function of M1=2 in

Fig. 5 (right). Comparing with the predictions of the Higgs
mass (Fig. 3), we can conclude that the parameter region
explaining the correct Higgs mass is in tension with the
BBN constraint in scenario I. In scenario II, we need
M1=2 ≳ 9 TeV, and the top quark mass is preferably a little
bit smaller than the currently measured central value, and a
further wider parameter region survives in scenario III.

IV. ELECTRIC DIPOLE MOMENTS

Although we assume the favor- and CP-safe condition
Eq. (3) at the tree level, the additive gravity mediation
effects of the order of the gravitino mass are not negligible
in our model if the abundance of the gravitino dark matter
is explained by the decay of NLSP stau particles. Such
gravity-mediated contributions become new sources of the
flavor and CP violation.
For m3=2 ∼ 100 GeV and mSUSY ∼ 10 TeV, as in the

case of scenarios II and III, the size of the flavor mixing is
suppressed as

m2
3=2=m

2
SUSY ∼Oð10−4Þ: ð15Þ

The constraints from the FCNC processes, such as the kaon
mixing and μ → eγ, can be satisfied for such a small mixing
as well as heavy sfermion masses [13–15]. The most
important signature of the model is the flavor diagonal

FIG. 5. The predicted mass of the gravitino LSP (left) and the lifetime of the right-handed stau NLSP (right) as functions of M1=2 for
scenarios I (red), II (blue), and III (green). Here, the gravitino dark matter is assumed to be mainly produced by the decay of other SUSY
particles and becomes the dominant component of the cold dark matter in our Universe.
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CP-violating phenomena, i.e., the EDMs of the electron
and the nucleon.5

The CP violation arises from the mismatch of the phase
in the two different contributions to the B term, i.e., from
the gravity mediation effects of Oðm3=2Þ and from the
radiatively generated B term ofOðαM1=2Þ. As we discussed
in Eq. (1), the mismatch causes a nonvanishing physical
phase ϕμ that can appear in the EDMs’ measurements.6

In the following, we assume that ϕμ is shifted by the
gravity-mediated contribution as

ϕμ ¼ ϕð0Þ
μ þmin

�
m3=2

jBj ;
π

2

�
; ð16Þ

where the ϕð0Þ
μ is the phase without the gravity-mediated

contributions: ϕð0Þ
μ ¼ 0 for scenario I and ϕð0Þ

μ ¼ π for
scenarios II and III.
The leading SUSY contributions to the electron EDM

come from the loop diagrams with chargino-sneutrino
and neutralino-selectron exchange. They are well approxi-
mated as

de
e
¼ α2

4π

metβ
m4

~eL

jM2μj sinϕμ

1þ ε2et2β þ 2εetβ cosϕμ

×

�
FðeÞ
2 ðx2L; xμLÞ þ

αY jM1j
α2jM2j

FðeÞ
1 ðx1L; xμL; x1R; xμRÞ

�
;

ð17Þ
with tβ¼ tanβ, x1L=1R¼jM1j2=m2

~eL=R
, x2L=2R ¼ jM2j2=m2

~eL=R
,

and xμL=μR ¼ jμj2=m2
~eL=R

. The loop functions FðeÞ
2 and FðeÞ

1

are defined in the Appendix. The coefficient εe stands for
the tan β-enhanced threshold corrections to the electron
mass and it reads

εe ¼ −
3α2
16π

jμM2j
m2

~eL

×

�
IðeÞ2 ðx2L; xμLÞ þ

αY jM1j
α2jM2j

IðeÞ1 ðx1L; xμL; x1R; xμRÞ
�
;

ð18Þ

where the loop functions IðeÞ2 and IðeÞ1 are listed in the
Appendix. In the limit of the common SUSY breaking

masses, we find FðeÞ
2 ð1; 1Þ ¼ −5=24, FðeÞ

1 ð1;1;1;1Þ¼
−1=24, and IðeÞ2 ð1; 1Þ ¼ 1, IðeÞ1 ð1; 1; 1; 1Þ ¼ −1=3.
In Fig. 6, we show the expected values of the electron

EDM, assuming the CP phase as Eq. (16). We find that
the entire parameter region that explains the observed
Higgs mass is disfavored by the EDM measurement in
scenarios I and II. On the other hand, the constraint
becomes milder for scenario III thanks to small tan β and
small sinϕμ ≃m3=2=jBj. Although these predictions of
the electron EDM contain O(1) uncertainty because
the exact size of gravity-mediated contributions is
unknown, it is plausible that the Higgs mass is explained
in scenario III with 10 TeV≲M1=2 ≲ 20 TeV, and the
electron EDM is expected to be detected in the near-
future experiments.
Since the SUSY spectrum is controlled by a common

parameter M1=2, one can obtain rigid predictions for
the ratios between the electron EDM, quark EDMs, and
quark Chromo-EDMs (CEDMs) irrespective of the actual
size of the CP-violating phase. In this model, dominant
contributions to the hadronic EDMs come from down-
quark (C)EDMs, and they read

dd
e

¼ α3
4π

mdtβ
m4

~dL

jM3μj sinϕμ

1þ ε2dt
2
β þ 2εdtβ cosϕμ

×

�
FðdÞ
3 ðy3L; y3RÞ þ

α2jM2j
α3jM3j

FðdÞ
2 ðy2L; yμLÞ

þ αY jM1j
α3jM3j

FðdÞ
1 ðy1L; yμL; y1R; yμRÞ

�
; ð19Þ

FIG. 6. The predicted electron EDMs as a function of M1=2 in
scenarios I (red), II (blue), and III (green). The dotted line shows
the current experimental upper bound [43].

5In the small mSUSY region in scenario I, there can be
significant flavor mixings that may also be visible in FCNC
processes. Also, in the calculations of the electron and nucleon
EDMs, there can be significant contributions enhanced by heavy
fermion masses through the sfermion mixings [13–15]. Since
such parameter regions are anyway severely constrained by the
flavor diagonal contributions, which we discuss in this section,
we do not consider the flavor nondiagonal CP violation in the
following analyses.

6The gravity-mediated contributions to the A term can be
another source of the CP violation. Here we assume that their
sizes are somehow controlled by the corresponding Yukawa
couplings in order to avoid the color and charge breaking
minimum. With this assumption, the dominant contribution to
the EDM comes from the phase of the μ term thanks to the
enhancement of tan β.
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dcd ¼
α3
4π

mdtβ
m4

~dL

jM3μj sinϕμ

1þ ε2dt
2
β þ 2εdtβ cosϕμ

×

�
GðdÞ

3 ðy3L; y3RÞ þ
α2jM2j
α3jM3j

GðdÞ
2 ðy2L; yμLÞ

þ αY jM1j
α3jM3j

GðdÞ
1 ðy1L; yμL; y1R; yμRÞ

�
; ð20Þ

where the tan β-enhanced threshold corrections to down-
quark mass are parametrized by

εd ¼
α3
3π

jμM3j
m2

~dL

�
IðdÞ3 ðy3L; y3RÞ þ

α2jM2j
α3jM3j

IðdÞ2 ðy2L; yμLÞ

þ αY jM1j
α3jM3j

IðdÞ1 ðy1L; yμL; y1R; yμRÞ
�
: ð21Þ

Here, y1L=1R ¼ jM1j2=m2
~dL=R

, y2L=2R ¼ jM2j2=m2
~dL=R

, and

yμL=μR ¼ jμj2=m2
~dL=R

. The loop functions FðdÞ
i , GðdÞ

i , and

IðdÞi (i ¼ 1, 2, 3) are defined in the Appendix. For the
common SUSY breaking masses, the functions become

FðdÞ
f1;2;3g¼f11=648;−7=24;−2=27g, GðdÞ

f1;2;3g¼f−11=216;
−1=8;−5=18g, and IðdÞf1;2;3g ¼ f−11=48;−9=16; 1g. Simi-

larly, the CP phase also generates the strange quark (C)
EDMs, which are estimated as ds=dd ≃ dcs=dcd≃
ms=md ≃ 18, but their contributions to the hadronic
EDMs are still uncertain [44]. These quark (C)EDMs
are evaluated at the SUSY scale, and their values at the
hadronic scale μH ¼ 1 GeV are obtained by the renorm-
alization evolution [45].
From Eqs. (17), (19), and (20), the electron EDM and

down-quark (C)EDMs are almost proportional to the
imaginary part of the phase sinϕμ, and their ratios have
rather weak dependence on the size of the phase. In

scenarios I and II, the naive expectation of the phase
can be Oð1Þ. However, this uncertainty becomes almost
negligible once the size of the phase is restricted to satisfy
the current experimental bound. In Fig. 7, we show the
predicted ratios of the down-quark (C)EDMs to the electron
EDM, with setting the CP phase to be small enough
to satisfy the experimental bound. For cosϕμ < 0, the
down-quark (C)EDMs are enhanced by the threshold
corrections to the down-quark mass term, while the electron
EDM is decreased. Therefore, the down-quark (C)EDMs
can become relatively large in scenarios II and III.
The experimental sensitivities of the electron EDM

[46–48] and the nucleon EDMs [49–53] are expected to
be improved by several orders of magnitude in the next-
generation experiments, and the measurements of these
EDMs are essential to confirm or reject our model. The
nucleon EDMs are induced by the quark (C)EDMs, and
their contributions are estimated by using the QCD sum
rules as follows [44,54]7:

dn ¼ −0.20du þ 0.78dd þ eð0.29dcu þ 0.59dcdÞ; ð22Þ

dp ¼ 0.78du − 0.20dd þ eð−1.2dcu − 0.15dcdÞ: ð23Þ

Note, while the quark EDM contributions to the neutron
EDM are well consistent with the recent result obtained by
the lattice simulation [55], the quark CEDM contributions
contain large theoretical uncertainties, and they should
be fixed ultimately by the lattice QCD calculation.
With the expressions of Eqs. (22) and (23), the sizes of
nucleon EDMs are predicted as dn=de ≃ 1.8; 3.5; 3.0 and

FIG. 7. Predicted ratios of down-quark EDM (left) and CEDM (right) to the electron EDM as a function ofM1=2 in scenarios I (red), II
(blue), and III (green).

7This formulas are obtained with the assumption that the
Peccei-Quinn symmetry works to suppress the contribution from
the QCD θ term.
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dp=de ≃ −0.5;−0.9;−0.8 for M1=2 ¼ 15 TeV8 in scenar-
ios I, II, and III, respectively.

V. THERMALLY PRODUCED GRAVITINOS

As we have seen in earlier subsections, if most of the
cold dark matter in our Universe consists of the gravitinos
produced by the decay of other SUSY particles, scenarios I
and II are disfavored by the BBN constraint and/or the
EDM measurement. These constraints can be alleviated if
the gravitino is much lighter than those expected by the
calculation of the nonthermal production.
In the actual ultraviolet physics, it is nontrivial whether

light gravitinos can be realized with satisfying the boundary
conditions Eqs. (3) and (5) at the GUT scale. For example,
the models using the gaugino mediation are primary
candidates of our UV complete model, but the gravitino
mass has lower bounds depending on the number of extra
dimensions [56].

Here, we leave aside such difficulty of the model
building and discuss phenomenological implications of
the model with much lighter gravitinos. In this case,
nonthermally produced gravitinos cannot be the main
constituent of the cold dark matter. The gravitinos can
be also produced thermally by scattering processes with
particles in the thermal bath. The resultant abundance is
approximately proportional to the reheating temperature
after the inflation TR, and it reads [42]

Ωth
~G
h2 ≃ 0.41

	
m3=2

100 GeV



−1
	

M1=2

10 TeV



2
	

TR

107 GeV



:

ð24Þ

Requiring that the total gravitino abundance is smaller than
the observed dark matter abundance ΩNT

~G
þΩth

~G
< Ωc, we

obtain the upper bounds on the reheating temperature.
In Fig. 8, we show the upper bounds on the reheating

temperatures in the ðM1=2; m3=2Þ plane for scenarios I, II,
and III. The gray shaded regions cannot explain the Higgs
mass even if the top mass is chosen in the range of
Mt ¼ 173.3� 2 GeV. The gravitino abundance exceeds

FIG. 8. Upper bounds on the reheating temperature TR as functions of M1=2 and m3=2 in scenarios I (top left), II (top right), and III
(bottom). Colored regions are excluded by the following conditions: gray, explanation of the Higgs mass; blue, overabundance of the
gravitino dark matter relic density; brown, no EWSB minimum; purple, BBN constraints; yellow, no observation of the electron EDM,
assuming ϕB ¼ m3=2=B (light yellow) and ϕB ¼ 0.1m3=2=B (dark yellow).

8Since M1=2 dependence of dn=de and dp=de is not so
significant, we have shown values at the sample point.
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the observed dark matter abundance in the blue regions.
The purple regions are excluded by the BBN constraints,
which imply τ~τ > 100 sec, and the correct EWSB mini-
mum cannot be obtained in the brown regions. The yellow
regions are disfavored by the electron EDM constraint,
assuming ϕB ¼ m3=2=B (light yellow) and ϕB ¼ 0.1m3=2=B
(dark yellow). Apart from the calculation of the Higgs
mass, we choose Mt ¼ 171.3 GeV in this plot, and its
precise value is less sensitive to the predictions of the
reheating temperature and other constraints.
We find that the gravitino mass should be less than

about 10 GeV in scenarios I and II to suppress the SUSY
contributions to the electron EDM. With this small grav-
itino mass, the reheating temperature becomes relatively
low, less than about 105 GeV. In scenario III, the constraint
from the EDM becomes weaker, and the upper bound on
the reheating temperature increases to 106 GeV.

VI. SUMMARY AND DISCUSSION

In this paper, we have discussed a model where the SUSY
breaking effects aremediated only to the gauginomass terms
at the leading order as a simple solution for the SUSY flavor
and CP problems. The gravitino mass should be smaller
than other SUSY breaking parameters to suppress the
gravity-mediated contributions, which are the main sources
of flavor andCPviolation in ourmodel. Thus, in the presence
of the R-parity conservation, the gravitino becomes a good
candidate of the cold dark matter in our Universe.
We have carefully examined the RG running of the B

parameter and have found that the parameter region with
small tan β appears as the SUSY scale increases. Thanks to
the smallness of tan β, the SUSY breaking scale to explain
the Higgs boson mass is pushed up, and, particularly, the
NLSP right-handed stau mass is increased. Then, since the
lifetime of the NLSP staus is shortened in this parameter
region, the entire observed dark matter abundance can
be explained by the gravitinos produced by the decay of
other SUSY particles without destroying the successful
predictions of the standard BBN scenario.
Since the B parameter is relatively small compared to

other SUSY breaking parameters, it is affected by the small
gravity-mediated contributions. Thus, we expect non-
negligible SUSY contributions to the electron and nucleon
EDMs.We have found that the naively expected sizes of the
electron EDM are on the edge of the current experimental
limit, and it should be checked in the near-future experi-
ments. In particular, the ratios of the nucleon EDMs to the
electron EDM become the key ingredients for the discrimi-
nation of our model with others.
Our model is very predictive, and the entire SUSY mass

spectrum is fixed if the top Yukawa coupling is measured
precisely and the theoretical errors in the Higgs mass
calculation are reduced. Then it is important to measure the
mass of the lightest MSSM SUSY particle, right-handed
stau at the future collider experiments such as in the future

100 TeV hadron colliders [57,58]. We expect that our
model will be tested by the combination of the future
collider and EDM experiments.
Finally, we comment on the UV theory of the model. In

this analysis, the μ term is assumed to be a fundamental
parameter which is comparable to the SUSY scale and
tuned to generate the correct electroweak scale. Also, the
gravitino mass is treated as a free parameter. To understand
the whole picture of our model, it is desirable to construct
the UV model which explains the origin of the μ term and
predicts the preferable gravitino mass.
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APPENDIX: LOOP FUNCTIONS

We list the loop functions relevant to the calculation of
EDMs:

FðeÞ
1 ðx1L;xμL;x1R;xμRÞ¼

1

4
D0ðx1L;xμLÞ−

x21R
2x21L

D0ðx1R;xμRÞ

−
x1R
2x1L

E0ðx1L;x1RÞ;

FðeÞ
2 ðx2L;xμLÞ¼−

1

2
D1ðx2L;xμLÞ−

1

4
D0ðx2L;xμLÞ;

FðdÞ
1 ðy1L;yμL;y1R;yμRÞ¼

y1R
54y1L

E0ðy1L;y1RÞ

−
1

36
D0ðy1L;yμLÞ

−
y21R
18y21L

D0ðy1R;yμRÞ;

FðdÞ
2 ðy2L;yμLÞ¼−

1

2
D1ðy2L;yμLÞþ

1

4
D0ðy2L;yμLÞ;

FðdÞ
3 ðy3L;y3RÞ¼−

4y3R
9y3L

E0ðy3L;y3RÞ;

GðdÞ
1 ðy1L;yμL;y1R;yμRÞ¼−

y1R
18y1L

E0ðy1L;y1RÞ

þ 1

12
D0ðy1L;yμLÞ

þ y21R
6y21L

D0ðy1R;yμRÞ;

GðdÞ
2 ðy2L;yμLÞ¼

3

4
D0ðy2L;yμLÞ;

GðdÞ
3 ðy3L;y3RÞ¼−

y3R
6x3L

E0ðy3L;y3RÞ

þ3y3R
2y3L

E1ðy3L;y3RÞ: ðA1Þ

MSSM WITHOUT FREE PARAMETERS PHYSICAL REVIEW D 94, 115016 (2016)

115016-11



Here, we define

Diðx; yÞ ¼
fiðxÞ − fiðyÞ

x − y
; Eiðx; yÞ ¼

xfiðxÞ − yfiðyÞ
x − y

; ðA2Þ

for i ¼ 1, 2 and

f0ðxÞ ¼
1 − x2 þ 2x log x

ð1 − xÞ3 ; f1ðxÞ ¼
3 − 4xþ x2 þ 2 log x

ð1 − xÞ3 : ðA3Þ

In the limit of degenerate arguments, we obtain D0ð1; 1Þ ¼ −1=6, D1ð1; 1Þ ¼ 1=2, E0ð1; 1Þ ¼ 1=6, and E1ð1; 1Þ ¼ −1=6.
The following functions are used to calculate threshold corrections to the electron and down-quark masses,

IðeÞ1 ðx1L; xμL; x1R; xμRÞ ¼ −
4x1R
3x1L

H2ðx1R; xμRÞ þ
2

3
H2ðx1L; xμLÞ þ

4

3
H2ðx1L; x1L=x1RÞ;

IðeÞ2 ðx2L; xμLÞ ¼ −2H2ðx2L; xμLÞ;

IðdÞ1 ðy1L; yμL; y1R; yμRÞ ¼
y1R
4y1L

H2ðy1R; yμRÞ þ
1

8
H2ðy1L; yμLÞ þ

1

12
H2ðy1L; y1L=y1RÞ;

IðdÞ2 ðy2L; yμLÞ ¼
9

8
H2ðy2L; yμLÞ;

IðdÞ3 ðy3L; y3RÞ ¼ −2H2ðy3L; y3L=y3RÞ; ðA4Þ

where

H2ðx; yÞ ¼
x log x

ð1 − xÞðx − yÞ þ
y log y

ðy − 1Þðx − yÞ ; ðA5Þ

and the function becomes H2ð1; 1Þ ¼ −1=2 for the degenerate arguments.
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