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We analyze a new class of FCNC processes, the f — f’# decays of a fermion f into a lighter
(same-charge) fermion f” plus a massless neutral vector boson, a dark photon 7. A massless dark photon
does not interact at tree level with observable fields, and the f — f'7 decay presents a characteristic
signature where the final fermion f” is balanced by a massless invisible system. Models recently proposed
to explain the exponential spread in the standard-model Yukawa couplings can indeed foresee an extra
unbroken dark U(1) gauge group, and the possibility to couple on-shell dark photons to standard-model
fermions via one-loop magnetic-dipole kind of FCNC interactions. The latter are suppressed by the
characteristic scale related to the mass of heavy messengers, connecting the standard model particles to the
dark sector. We compute the corresponding decay rates for the top, bottom, and charm decays (t — c7, uy,
b — sy, dy, and ¢ — uy), and for the charged-lepton decays (r — uy, ey, and u — ey) in terms of model
parameters. We find that large branching ratios for both quark and lepton decays are allowed in case the
messenger masses are in the discovery range of the LHC. Implications of these new decay channels at

present and future collider experiments are briefly discussed.

DOI: 10.1103/PhysRevD.94.115013

I. INTRODUCTION

One of the most intriguing aspects of the standard model
(SM) is the nontrivial structure of the flavor sector, which is
encoded in the corresponding structure of the Higgs-boson
Yukawa couplings. The latter seem not to be originating
from any global or gauge symmetry, and resemble effective
couplings rather than fundamental ones, their eigenvalues
spanning over almost 6 orders of magnitude for charged
fermions, and much more in case neutrinos are Dirac
particles. The Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrix in the quark sector of weak charged currents
(and the analogous one in the leptonic sector) adds further
mystery to the origin and structure of flavor.

The recent discovery of the Higgs boson [1] has
strengthened our confidence in the Higgs mechanism
[2], and in the existence of its Yukawa couplings to
fermions, necessary for the fermion mass generation
mechanism in the SM framework. All the observed
Higgs properties seem to be in good agreement with the
SM predictions [3], although there is still large room for
potential new physics (NP) contributions. In this respect,
the present experimental situation does not help, yet, to
clarify whether the Yukawa couplings are fundamental or
low-energy effective couplings, leaving space for new
conjectures about the true origin of flavor.

In case the Yukawa couplings are not fundamental, an
interesting possibility is to conjecture that the chiral
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symmetry breaking (ChSB) and flavor structure originate
from a dark sector and is communicated to the SM by some
kind of messenger fields [4,5]. The latter are by definition
fields that couple both to the SM and dark-sector fields at
tree level. Then, due to the messenger interactions, the
Yukawa couplings can be generated at one loop as effective
low-energy couplings.

In this paper, we focus on the recent proposal in [4],
aiming at solving the flavor hierarchy problem by explain-
ing the exponential spread in the Yukawa couplings at low
energy. For each SM fermion, this model predicts the
existence of a massive fermion partner in the dark sector,
singlet under the SM gauge group (dubbed dark fermion in
the following), and a set of scalar messenger fields carrying
the same SM quantum numbers of squarks and slepton in
supersymmetric models. The Yukawa couplings Y, (where
f is a flavor index) are required to be vanishing at tree level
by imposing a discrete Higgs (H) parity, H — —H. Then,
via the spontaneous breaking of this symmetry, Yukawa
couplings can be generated at one loop. In particular, they
can be induced by universal trilinear interactions that mix
SM fields, dark fermions and messenger fields. Due to
chirality, the resulting Yukawa couplings turn out to be
proportional to dark fermion masses My,

y, M (1)
/ Aeff
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where A is an (almost) flavor-universal effective scale. As
a consequence, the observed SM Yukawa hierarchy just
reflects the structure of the dark fermion spectrum.’
However, this conjecture alone is not sufficient to
naturally solve the SM flavor hierarchy problem. A new
dynamical mechanism is needed to explain the required
pattern of dark-fermion masses. In [4], a nonperturbative
mechanism has been proposed to generate exponentially
spread dark-fermion masses. It requires the existence of an
exact U(1), gauge symmetry in the dark sector, and dark
fermions F; charged under U(1) with &, quantum charges
[in units of the fundamental U(1), charge ¢]. In particular,
this mechanism, based on a Nambu-Jona-Lasinio approach
[6], predicts exponentially spread masses My, for dark

fermions according to the law [4]

Mg, = Aexp <_5c_712>’ (2)

€r

where @ = &2/(4x) is the U(1), fine structure constant,
and y is connected to an anomalous dimension. The A scale
is associated to the Lee-Wick term for the U(1), gauge
sector [7,8], which is responsible for triggering sponta-
neous ChSB and generating Dirac fermion masses [4].

The nonperturbative origin of the spectrum in Eq. (2) as a
function of @, is shown by the 1/& dependence in the
exponent. Then, by assuming order-O(1) nonuniversality
among the U(1)y dark-fermion charges &,, a wide expo-
nential spread among fermion masses can be easily
generated. Then Eq. (2), along with Eq. (1), can provide
the theoretical basis for a natural solution to the SM flavor
hierarchy problem.

A peculiar aspect of this model is the existence of a
dark photon associated to the unbroken U(1), gauge field,
which, being massless, does not couple at tree level to
SM fields [9]. Dark-photon couplings to the SM fields
can instead arise at one loop by means of higher-order
operators, which are suppressed by the characteristic
messenger mass scale.

In this framework, a new interesting phenomenology is
expected that can be testable at the LHC [10,11] and at
future colliders [12]. For instance, Higgs effective cou-
plings to photon (y) and dark photon (%), or to two dark
photons, can arise at one loop due to the exchange of
messenger and dark-fermion fields in [10]. These effective
couplings can lead to exotic signatures, such as the one
associated to the H — y7 decay, where the dark photon is
observed in a detector as a massless invisible system. The
LHC has an excellent potential to observe such decay for

'A similar scenario with radiatively generated Yukawa cou-
plings and a Y, pattern as in Eq. (1) has been proposed in [5],
although the latter does not include a discussion of the dynamics
responsible for the dark-fermion mass spectrum needed to give
rise to the SM Yukawa hierarchy.
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realistic branching ratios (BR’s), in particular in the run 2
[10,11]. Implications of the Higgs effective couplings to dark
photons have also been analyzed in e*e™ collisions [12].

In this paper we will focus on the dark-sector flavor
structure needed to generate the CKM matrix in a theo-
retical framework based on the model in [4]. We will show
that the required structure can potentially induce new exotic
flavor-changing-neutral-current (FCNC) processes in the
quark and lepton sectors. In particular, one foresees a new
class of FCNC decay channels, namely the fermion decays
to a lighter fermion of the same electric charge accom-
panied by a massless (invisible) dark photon,

f=f7. (3)

We will first analyze the phenomenological implications
of such FCNC decays in the top-quark, bottom-quark, and
charm-quark sectors, by studying the t — ¢y, uy, b — sy,
dy, and ¢ — uy decay channels, respectively. We will then
extend the analysis to the leptonic sector, including the tau
and muon decays T — uy, ey, and 4 — e¥. In particular, we
will compute different BR’s and discuss their correspond-
ing upper bounds coming from present phenomenological
and theoretical constraints.

As mentioned above, massless dark photons are
decoupled at tree level from SM fields, and their production
at colliders manifests as missing energy £ and momentum
p in the detector, satisfying the kinematical neutrinolike
constrain £2 — p> = 0. As a consequence, the FCNC f —
f'7 decay is characterized by an exotic experimental
signature, where the final same-charge fermion f’ is bal-
anced in a detector by an invisible system with vanishing
invariant mass. In the f rest frame, neglecting radiative
effects, f’ is monochromatic with energy E, =m;/2,
which is a very distinctive feature that would crucially
discriminate f — f’y backgrounds, where the missing
momentum is associated either to the mismeasurement
of hadronic objects or to the presence of nonmonochro-
matic neutrinos in the final states (as occurs in the y or =
decays). Altogether a f — f'7 decay would show up
experimentally by an excellent characterization.

The plan of the paper is the following. In Sec. II, we
present the theoretical framework, and provide the relevant
Feynman rules for the computation of the FCNC f — f'y
decay amplitudes. In Sec. III, we give the analytic expres-
sions for the amplitude of a generic f — f'7 decay, and
corresponding BR. In Secs. [V-VIII, we will analyze the
phenomenological implications for the FCNC decays in the
top-quark, bottom-quark, charm-quark, z and p sectors,
respectively. Our conclusions will be given in Sec. IX.

II. THEORETICAL FRAMEWORK

In this section we summarize the main aspects of the
flavor model in [4], providing the relevant interaction terms
for the FCNC f — f’7 decays in the Lagrangian, and
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corresponding notation. More details on the model can be
found in [4,12].

As mentioned, the model extends the SM theory in order
to generate radiatively Yukawa couplings at one loop,
assuming vanishing tree-level Yukawa couplings. The
corresponding total Lagrangian is made up of three sectors

L=LE"+ Lps + Lys. (4)

where Eﬁo is the SM Lagrangian for vanishing tree-level
Yukawa couplings, Lpg is the dark-sector (DS) Lagrangian,
containing the dark-fermion interactions with the U(1),
dark-photon gauge field, and L5 describes the messenger
sector with its couplings to both SM and dark fields. The
Lys interactions also communicate the ChSB and flavor
structure of the dark sector to the observable SM sector,
through the generation of Yukawa couplings at one loop.

A. The dark-quark sector

We start by recalling the Lpg Lagrangian related to the
dark fermions associated to quarks (which we call dark
quarks) and their interactions with the U(1), gauge sector,
including the mechanism to generate exponentially spread
fermion masses. Its generalization to the leptonic sector
will then be straightforward.

For each SM quark ¢Y+Pi (with i a family index), a quark
replica QVi-Pi is assumed in the dark sector, which is singlet
under SM gauge interactions, and charged under an exact
U(1) gauge symmetry. The corresponding Lagrangian is
given by

Lps = zZ (QU'D, QY + QP D,y Q")
1
- ZF,,DF"” + W&‘FW&,F”’, (5)

where D, = 8,, + ngA” is the usual covariant derivative
associated to the U(1) dark-photon A, gauge field, with 0
the corresponding charge operator acting on the QUi and
QP quark fields, and F,, the U(1) field-strength tensor.
The higher-derivative last term in Eq. (5) is the so-called
Lee-Wick term, where A is the associated energy scale.
As shown in [13], because of the Lee-Wick term, which
implies a massive spin-1 ghost particle in the spectrum,
chiral symmetry turns out to be spontaneously broken, and
dark fermions acquire mass nonperturbatively. In particular,
by following the Nambu-Jona-Lasinio approach, one can
show that a Dirac quark mass M , solution of the fermion
mass-gap equation corresponding to the true vacuum of the
theory, exists in the weakly coupled regime in the form [13]

2 1
M2 4} (6)

My, = Aexp{
€y
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where ¢, stands for the U(1), charge eigenvalue of a
generic dark quark of flavor f, Qf, in unit of the
fundamental charge e, and a(A) is the effective fine
structure constant (associated to e) evaluated at the scale
A. As already stressed, this solution is truly nonperturbative
(as shown by the @ dependence in the exponent) and is
associated to the true (nonperturbative) vacuum of the
theory. For Ny dark quarks with e charges (f = 1,...Np),
an exponentially spread M, , spectrum can be generated by
Eq. (6), just by requiring nonuniversality among the
corresponding & charges. Indeed, since the M, hierarchy
in Eq. (6) will reflect into the actual SM fermion Yukawa
hierarchy (as discussed in the following), it turns out that,
for an integer sequence of e, charges (and extending the
present analysis to include the leptonic sector), one can
easily fit most of the SM fermion mass spectrum [4].

B. The messenger sector and the generation
of Yukawa couplings

The Ly Lagrangian in Eq. (4) contains messenger
scalar fields and can be split in two terms

Lys = [:(13/15 + [:{v[s- (7)

L5 includes the kinetic term for the messenger fields
interacting with the SM gauge fields, while £}, provides
the messenger interactions with the SM fermions, the dark
fermions, and the Higgs boson, which are responsible for
generating Yukawa couplings radiatively.

The SM quark gauge quantum numbers fix the minimal
matter content needed for the colored messenger scalar
sector, which is given by

(i) 2N complex scalar SU(2), doublets: $77 and 87",

(ii) 2N complex scalar SU(2), singlets: S5 and Sk',
(iii) one real SU(2), x U(1), singlet: S,

. SU D;

where SUP: (SU p,)»and i =1,...,N (N = 3) stands
L2

for a family index. The S Sg"’D" scalar fields have the

SM quark quantum numbers where the L, R labels identify
the messengers coupled to the L, R chirality components of
the associated SM quarks (just as occurs in the case of
squark fields in supersymmetric theories). They have
minimal gauge-invariant couplings to electroweak (EW)
gauge bosons and gluons. A minimal flavor violation
hypothesis would require the Lagrangian in Eq. (7) to
be invariant under SU(Ny), where Ny is the number of
flavors. More generally, for any family index i, we can
reduce the messenger mass sector to four different universal
mass terms corresponding to the up/down and L/R

AU AD: . ..
components of the S;'; and §;'; sectors, as in minimal
supersymmetric models. Notice that a more minimal
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TABLE I. Spin and gauge quantum numbers for the strongly
interacting messenger fields and corresponding dark quarks.
U(1)p is the dark-photon gauge symmetry in the dark sector.

Fields  Spin  SU(2), U(l), SUB). UQ),
5P 0 1/2 1/3 3 —ep,
50 0 1/2 1/3 3 —ey,
sb 0 0 -2/3 3 —ep,
sU 0 0 4/3 3 —ey,
oP: 1/2 0 0 0 ep,
QUi 1/2 0 0 0 éy,
So 0 0 0 0 0

hypothesis of a common scalar mass for the L and R scalar
sectors is also phenomenologically acceptable.

We do not report here the expression for the interaction
Lagrangian of the messenger fields with the SM gauge
bosons, which follows from the universal properties of
gauge interactions. Notice that each messenger field is also
charged under U(1) and carries the same U(1) charge of
the associated dark fermion. In other words, U(1), charges
identify the flavor state. A summary of relevant quantum
numbers for all new fermion and scalar fields in the quark
sector can be found in Table I.

The L}, Lagrangian, which describes the messenger
interactions with quarks and SM Higgs boson, is particu-
larly relevant for the SM flavor structure. The minimal
content of the universal interactions needed to generate
radiative (diagonal) Yukawa couplings is

N N
tho = {on (i ob 87 + Y aioR1s)
i=1

i=1

N N
. gR( 00V + [D;;Q?}s?)

i=1 i=1

N
+ 258y > (H'S]'Sp" + HIS['Sg) + H.c.}
i=1

+ V(So), (8)

where contractions with color indices are understood. The
S field is a real singlet scalar, and its potential V(S,) is
invariant under the S, — —S parity symmetry. The g; and
gr constants are flavor-universal free parameters, whose
values can be in the perturbative regime g; x < 1. We will
assume in general g; # gg, although one could impose a
higher degree of universality by assuming g; = gg, with no
loss of generality in the prediction of Yukawa couplings. In
Eq. (8), ¢}, Uk, and Dk stand for SM quark fields, and H is
the SM Higgs doublet, with H = ioy,H*. One can then
prevent Yukawa couplings at tree level by imposing a
combined parity symmetry under H — —H and Sy — —§,.

On the other hand, as shown in [4], after spontaneous
symmetry breaking (SSB) of the H - —H and S, — —S
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parity symmetry by a nonvanishing vacuum expectation
value (VEV) (Sy) = us/As, the Yukawa couplings can be
radiatively generated at one loop via virtual exchange of
messengers and dark fermions. As a result, the effective
Yukawa coupling associated to the quark of flavor f turns
out to be proportional to the corresponding dark-quark
mass M, x In particular, one obtains [4]

Yy =Yo(xs)exp <_35¢(2Tﬂ)é})’ )

where the dark-quark mass My, has been replaced by
Eq. (6), the one-loop Y, (x,) function is given by

i) = (28) (%ot 10

m? is the mean square mass of the messengers running in
M2 /2
the loop, x; = MQ//m , and

Cole) = LN 08 ) fl( 1_;;3‘% 2

Equation (10) is obtained in the approximation of degen-
erate messenger masses for generic SU(2), doublet S; and
singlet S fields, and in the limit of small mixing parameter
&= A/m?, with A = ugv, and v the Higgs VEV.

As from Eqgs. (9) and (10), the top-quark Yukawa coupling
can be large and O(1), keeping at the same time the
dimensionless couplings g;, gr small and within the per-
turbative regime. Indeed the Yukawa coupling turns out to be
proportional to the singlet-field (S) VEV (ug/Ag) and is
generated only after the spontaneous breaking of the Z,
symmetry. This is a general property, which is independent
from the particular symmetry forbidding Yukawa couplings
at the tree level. Then, a O(1) Yukawa coupling can be
achieved by choosing the pg scale larger than the character-
istic /m-mass scale running in the loop, while keeping all other
dimensionless couplings small and in the perturbative range.

In order to extend the above results to larger £ mixing
values, one can use the mass-eigenstate basis for messen-
gers. Notice that, after the EW symmetry breaking, terms in
the third row of the Lagrangian in Eq. (8) generate a mixing
term A between the SU(2), messenger doublet S; , and the
corresponding singlet Sp. The corresponding Lagrangian
for generic S; p fields is

(11)

£y =0,80"§ - §M3S, (12)

where S = (S, Sg), and the mass term involves the mass

matrix
N m2 A
=" %), (13)
A m}

with A = ugv parametrizing the left-right (LR) scalar
mixing. The M% matrix in Eq. (13) can be diagonalized
by the unitary matrix
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FIG. 1.
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e v

Qt(k) _ i
— > = k*in

Si(k) _ )
ST T g

Feynman rules for interaction vertices and propagators entering the computation of the one-loop ¢ — ¢'7 decay amplitude.

The symbols g} /g and Qg}’RD’ stand for the quark and dark-quark fields, respectively, with L/R denoting the left-/right-handed chirality

. U; D, . . . o
projections. S,’ and S, stand for the mass eigenstates (n = 1, 2) in the up and down messenger sectors, respectively, while 7 is the

dark-photon field.

cosf sinf
—sind cosd

. Then, the eigenvalues of the diagonal

with tan 20 = —
2diag

R

matrix Mg UM2 U" are given by

e = 5 = [} = )2 4 407)12).(15)

N =

where, for degenerate LR scenarios (namely for
m? = m% = m?), the U matrix elements simplify to
U(i,i) = 1/v/2,U(1,2) = =U(2,1) = 1/+/2, with square
mass eigenvalues

m% = m*(1 £ &), E= A/ (16)
Note that, in order to prevent tachyonic solutions, one
should impose £ < 1 with A > 0. Then, we computed the
generalization of the Yy expression in Eq. (10) as a function
of &, in the degenerate LR scenario, which turns out to be

ot d) = (22) ()0 09

where

1 X 1 X 1
fl(”)_i[ (1—:)1—5+C°(1+¢>1+5}’

(18)

and Cy(x) is defined by Eq. (11). Notice that Cy(1) = 1/2,
and, for small x < 1, Cy(x) = 1 + O(x). Indeed, at fixed
values of m and A, all Yukawa couplings must vanish for
vanishing mixing £ — 0, since they are proportional to the
VEV of the singlet field S, ug [¢f: Eq. (10)].

C. The flavor structure and the CKM matrix

Although predicting exponentially spread Yukawa cou-
plings and providing a natural solution to the flavor
hierarchy problem, the minimal interaction Lagrangian
L, in Eq. (8) does not account for the observed CKM
mixing matrix of weak interactions. Indeed, the radiatively
generated Yukawa couplings turn out to be diagonal in the
weak-current interaction basis for the quark fields. Yukawa
off diagonal terms are needed to generate the CKM, and, in
order to preserve the U(1) gauge invariance, the universal
flavor structure of the messenger interaction in Eq. (8)
should be generalized as follows:

N
~ . U aU
Lys = {QL (Z[qll,(xg>ijQRj]SLj
ij=1
N

Y (gL (D), 02 D)

ij=1

N
+gR<Z UR XU thL ]

N
YDy (X'L))i,,-fo]sﬁf)

ij=1

N
+ 258y > (H'S]'Sg" + H'SPSR™) + H.c.}
i=1

+ V(So). (19)
where XZ’,? are generic (not necessarily unitary) matrices.
Notice that the U(1) gauge invariance and nonuniversality
of U(1)y charges require the family index labeling dark
fermions and scalar messengers to be the same. Then, in the
weak-current basis for quark fields, the Yukawa couplings
generated radiatively follow the pattern
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YU ~ (X[ U XD (20)

ij?
where the - symbol stands for a matrix product, and YV =
diag[Yf/‘D, Yg’D, Y_%/’D], with Yf/’D (i =1, 2, 3) standing for
the Yukawa couplings in Eq. (9) for the up and down
sectors. Following the usual SM approach, the Yukawa
matrix in Eq. (20) can be diagonalized by a biunitary
rotation V', namely

diag[YVP] = V2T yUL . v R, (21)

hence giving rise to the CKM matrix K = VY. VP,

The observed structure of the CKM matrix requires X}
to have off diagonal entries smaller than the diagonal ones,
with the latter almost proportional to the unity matrix 1 in
the family space. This suggests the following ansatz for the
X Z‘,? matrices:

Xig ~1+ALR. (22)

where the matrices |A]’F| <1 collect diagonal and off
diagonal terms in a less hierarchical structure.”

After rotating the quark fields to the basis of mass
eigenstates (entailing diagonal Yukawa couplings), the
interaction terms in Eq. (19) can be transformed by
replacing the Xijfe) matrices according to

Xg,R — PL.R> X?.R — 1L.R> (23)
where
=yUi . xV 24
PL.R LR LR ( )
nr=Vik: X2g. (25)

If X7*? are unitary matrices, then Vi § = (X;°)7!, the
PL.r» NL.g Matrices will just be equal to 1, and the CKM

matrix will be K = XV - XP*. However, XY"” matrices do
not need to be unitary (or proportional to a unitary matrix),

“We suggest a possible renormalization mechanism for gen-
erating a flavor structure of the XZ‘}? matrices as required by
Eq. (22), assuming universal tree-level couplings like in Eq. (8).
This requires new heavy (either scalar or vector) fields in the dark
sector, which are SM gauge singlets, and are charged under
U(l)p with charges Q;;=¢;—¢; (i, j=1, 2, 3). Gauge
invariant couplings of these new fields to both dark fermions
and messenger scalars can be formed. One-loop corrections to the
vertices of the universal interactions in Eq. (8), induced by these
new interactions in the dark sector, can then generate the desired
off diagonal transitions that can be reabsorbed in the matrix
elements A;;. Being A;; generated at higher orders in perturbation
theory, the hierarchy shown in Eq. (22) is automatically satisfied.
We will not consider this possibility here and will assume the
most general structure for the X matrices, no matter what
mechanism has generated them.
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since they do not arise from unitary transformations (like,
e.g., in the CKM-matrix case). In general, p; x and 57, g will
then have nonvanishing off diagonal entries. This has
nontrivial consequences, since off diagonal terms in the
pr g and i g matrices can induce FCNC interactions at one
loop in the observable quark and lepton sectors.

Among the FCNC processes induced by these new
interactions, there is a new class of FCNC one-loop decays,
that is SM-fermion decays into a massless dark photon, via
the channels ¢ — ¢’y (¢ — ¢'y), where ¢’ (¢') is a lighter
quark (lepton) with same charge as ¢ (¢).

In the next section, we will compute the relevant
amplitudes and corresponding decay widths for this new
class of processes, as well as the NP contribution to the
g — ¢y and ¢ — ¢’y decays into a SM photon. The
Feynman rules relevant for the computation of the ¢ —
q'y decay amplitude (with straightforward extension to the
leptonic sector) can be found in Fig. 1.

III. THE ¢ — ¢'7 AMPLITUDE AND DECAY
WIDTH

For a generic quark ¢', with ¢ = U, D, we consider the
FCNC decay process

q'(p) = ¢’ (p)i(k), (26)

where the indices i, j run over quark families with i > j,
and p, p/, and k indicate the particle four-momenta. A
generalization to the leptonic sector is straightforward. This
process is induced at one loop by the Lagrangian in Eq. (19)
for quarks (and by its leptonic generalization for lepton
decays).

The Feynman diagrams contributing to the ¢’ — ¢’y
process are given in Fig. 2. There are no self-energy
contributions to the ¢’ — ¢/ process, since the dark
photon does not couple to SM fermions at tree level.
The messengers running in the loop are much heavier than
the external fermion states (also in case of the top-quark
decay), and we can safely neglect terms of order
O(m} /im*), where m, are the external-quark masses.
However, we will retain the leading contributions induced
by the initial SM fermion mass, or, equivalently, by its
associated Yukawa coupling, and neglect the contributions
of the final quark mass.

The total amplitude in momentum space receives two
independent gauge-invariant contributions

M(q' — ¢'7) = M(q}, — qky) + M(q — 4)7).  (27)

where ¢ /g are chirality eigenstates in the g = U, D
sectors. The two contributions can be parametrized as
follows:
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7
Tk qj, § ah
I?l

(©) (@

FIG. 2. Feynman diagrams (a)—(d) contributing to the FCNC
decay g’ — ¢’y with ¢ = U, D and i > j, where ¢}y are the
initial (i), final (j) quarks, with L/R indicating the left/right
chirality projections, Q9 and S} the corresponding dark quarks
and messenger fields, respectively, with the latter in the basis of
mass eigenstates (n = 1, 2), while 7 stands for the dark-photon
line.

[ i = 1 i —-a
M(ql — qk7) = o (i1 ' JKVET,
L/ij
[ i = 1 =4j i1 L4 =0
M4k = a17) = (5o (17 oauulkie,  (28)
i

where 6, = 1 [y,.7,] ([a, b] standing for the a and b matrix
commutator), uy g E%(l F ys5)u, and u% and u? corre-
spond respectively to the ¢ and ¢/ on shell bispinors in
momentum space, €* being the dark-photon polarization
vector. Gauge invariance requires k,e” = 0 for on shell
dark photons, which makes the contribution proportional to
the y} p matrices vanish for on shell massless (i.e., for
k*> = 0) dark photons. As a consistency check, we have
controlled that this condition is satisfied at one loop.

Then, the effective scales associated to the matrix
elements (Af p);; can be derived by matching Eq. (28)
with the computation of the transition amplitude, based on
the Feynman diagrams in Fig. 2. We assume massless final
fermions, which will be a proper approximation for the
processes considered in the following.

The contribution to the magnetic-dipole type of operator
[u,q{aaﬂuL] [which is finite and U(1), gauge invariant]
involves different chiralities in the external u? and #%
states. There are two different sources for the chirality flip.
One corresponds to the mass insertion of a virtual dark
quark through its propagator, and the second arises from the
external quark masses, after the on shell conditions on u4i
or u% are applied. Since we are assuming massless final
fermions, only initial fermions contribute to the latter.
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Finally, after some algebraic manipulations, the AZ R
scales relative to a generic FCNC transition ¢' — ¢/, with ¢
in the up fermion sector, and i, j (i > j) running over three
fermion generations, become

1 émUi _ p]l
(AD). =7 [ezup_gFLR(szv§U>
L/ij U R
B
_161:1 Z EPRPIXFRR(ngfU)
=1
1 EmUi _ pjl
(AU> = 1’7’12 |:etUp_f"[FRL(sz’£U)
R)ij U L

g
1672

3
— ik ki
Z(ellcjij /’]Z FLL(";?, $v)
k=1

2
+ < U) ey o Fro(x )| (29)
T

being e the charge unit for dark-photon interactions, &}
their eigenvalues, my, p, the initial-quark masses, M ,v.o the

corresponding dark-quark masses, x7” = M? ovo /¥ b,

and my p, £y p, respectively, the common average mass
and mixing parameter in the up, down messenger sectors.
For AP in the down quark sector, we obtain instead

1 emp, ,
=D |:éprl_R

(AD)y — mp

i
i i FLR(xlegD)
ij n

R
2

3
R ik
- 5 E ’7R’7RFRR<xk ép)
167 —

1 emp {_D ;1’2
= — - ei TF x, ,5
(All?))ij sz n Rl )
g% 3
- R
1622 - (ek ’7L ’IL LL(xk 51))
’h%) SU ik ki U
=+ 2 epLPr Fro(xy.éu))l. (30)
U

The first terms in the right-hand side of Egs. (29)—(30) for
the effective Af_’g scales are independent from the g; g
couplings, since this dependence has been reabsorbed in
the corresponding SM Yukawa couplings, by using
Eq. (17).

Furthermore, the loop functions appearing in Eqgs. (29)—
(30) satisfy the conditions Fgg(x,&) = Fyp(x,&), and

Frr(x,&) = Frg(x, &), where
1% = (&= 1) +2x(& — 1) log(%5)
FLL(xvé)_g[ (x_1+€)3 1-¢

+{§—>—§}} (31)

115013-7



GABRIELLI, MELE, RAIDAL, and VENTURINI

7f2(X,é’)
Frr(x, &) = i) (32)
defining
1 [1=x+¢+ (148 log(i)
fard) =g | (o €= -8,
(33)

and for f(x, &) given by Eq. (18).

Some comments on Egs. (29)—(30) are in order. Terms
proportional to F;r and Fp; arise from the chirality flip
induced by the virtual-dark-fermion mass insertion. Terms
proportional to F;; and Fgr come instead from the
chirality flip induced by the initial-quark mass my p.,
after applying on shell relations on external momenta
pu’z’R(p) = mfujl;L(p), for a generic fermion f of mass
my. In the present model, all contributions turn out to be
proportional to the initial quark mass. This is because the
dark-quark mass insertion has been reabsorbed in the
|

x(2+1n4) -4 -2xInx
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corresponding quark mass, by using the model prediction
for the one-loop effective Yukawa coupling in Eq. (10).
However, for m; and mp of the same order, terms
proportional to Fy; rg are subleading with respect to
the ones proportional to Fj g gz, due to the suppression
of the loop factors (g7 /167%) in Eqgs. (29)—(30).
Finally, we report some useful analytical expressions for
Fri(x,&) and Fpg(x,€) in the limit of small and large
values of the mixing parameter . For £ <« 1 one gets

2(1=x)+ (1 4+x)Inx

(x—1)(1=-x+Inx) ’
x> —1-2xIlnx
4x-1) °

?_{%FLR(x? f) =

?_I}SFLL(X» &) = (34)

}grllg%FLR(x, §=-1/3  limlimF;, (x.¢) =1/12.
(35)

while, for large mixing &~ 1, we get3

Frr(x,§) =

4(x—1) =3x +x* —2x*In}
4(x=2)%x

limFy, (x,£) = (37)

Since messenger masses are expected to be quite
heavy [4], the ¢' — ¢’y decay process can actually be
described by an effective Lagrangian approach. The rel-
evant effective density Lagrangian L.y contains two lead-
ing gauge-invariant operators of dimension 5, that is the
FC magnetic-dipole operators given by

3 1 , i} ‘
Lo = ——ax ()0, F*" (x)q} (x
; ZZ(Z( gy (0P ()10

sy T WP (2] ). 39

*In order to avoid stable messenger particles in the spectrum,
for a generic quark sector ¢, the corresponding mixing parameter
& should be bounded by 0 < & < 1 — x, where x = sz/ﬁzz, and
m is the associated dark-fermion mass (see next section). Then,
the logarithmic term In (1 — &), appearing in the F'; » denominator
in the large £ — 1 expansion [see Eq. (36)] will be bounded by
In (1 —=¢) < Inx. Since x is nonvanishing (being dark fermions
heavier than the corresponding SM fermions), F;p(x,&) and
Fy 1 (x, &) will not develop any singularity in the allowed x and &
ranges.

4—6x+x*(2+1In2) + (x=2)2In(1-¢) —2(2—-2x +x?)Inx

+0O(1-¢), (36)

|
where i > j, F*(x) is the dark-photon U(1) - field-strength
tensor, g'(x) and ¢/(x) are the initial and final quark fields,
and A{, and AP, are given in Egs. (29) and (30),
respectively.

Using the effective Lagrangian in Eq. (38), the total
width for ¢’ — ¢’ is (neglecting the final quark mass)

g = o) = s (o + o) (39
9 =~ qv)= .
167" \(AD)Z T (AR}

Notice that, due to the chiral suppression of the initial quark
masses m,, entering in the AZ, r scales [see Egs. (29)—-(30)],
the width turns out to be proportional to the fifth power of
the decaying quark mass m, , suppressed by the fourth
power of the corresponding average messenger mass 7,
according to the expression

5
ml]i

16723 mg

(g = ¢'7) ~ x (loop functions).  (40)

In the following discussion, the relevant independent
parameters will be m, (which controls the order of
magnitude of the decay width), the mixing parameter &,
(which, at large values ~1, pushes the smallest m,
eigenvalues of the messengers running in the loop toward
the lowest values [cf. Eq. (16)], hence enhancing the decay
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amplitudes), and x,V’D (which sets the dark-fermion mass
scale with respect to the messenger one).

Furthermore, it will be convenient to define a universal-
flavor (UF) scenario, where one has up-down flavor
universality in the mass sector of the colored messenger
fields (i.e., m?, = m3, = in*). The latter is the most sym-
metric and predictive framework that one can envisage in
the present model. We also define a nonuniversal flavor
(NUF) scenario, where one relaxes the up and down flavor
universality in the messenger sector, and assumes a
universal 7727, mass in the down sector which is independent

from the universal % mass in the up sector.

IV. THE ¢ — (c.u)7 DECAYS

In this section we analyze the FCNC decay of the top
quark

t = q7. (41)

where in the final state there can be either a ¢ or a u quark.
Using Eq. (40), the corresponding BR, in the massless
final-quark limit, can be parametrized in terms of the tree-
level BR(# = Wb), as follows:

. __BR(r—Wb) ! !
BR(I 6]}’) \/§GF|Vzb|2p(xW) <(AZ])2 * (AIR?)2> ’
(42)

where p(x) = (1 —x)*(1+2x), Afp = (AE,R)31’ Afp=
(AY R)a0s xw = ﬁ—?, being My, and m, the W* and top-
quark mass, respectively. The relevant A}, and Af,
expressions are in Eq. (29).

Assuming a universal average messenger mass

imy = imp = m, the mass-scale dependence of BR(r —
q7) turns out to be

m2

= !

BR(r — g7) « G, (43)
The lower allowed value of the average messenger mass
is constrained by dark-matter (DM) and vacuum-stability
bounds, and, as a consequence, the 1/ m* term in Eq. (43)
strongly suppresses the t — gy decay. In particular, we will
prevent stable colored and EW messenger particles in the
spectrum, which would conflict with DM constraints,
hence allowing messenger decays into dark fermions
according to the interaction Lagrangian in Eq. (19). In
the following, by DM constraints we indicate the require-
ments that the mass spectrum is such that all the messenger
decays are kinematically allowed.

A. DM and vacuum stability constraints for 1 — gy

We now discuss the relevant theoretical bounds in the
scalar messenger sector, and, in the following subsection,
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the corresponding upper bounds on BR(# — g7). We will
assume, for the moment, up-down flavor universality (i.e.,
the UF scenario defined above). By using Egs. (9) and (17)
for the radiatively generated Yukawa couplings, we obtain
the following prediction for the generic mass M. of the
dark fermion associated to the SM quark ¢;, as a function of
the quark mass m;,

1672 1
Mo, =m; (M) Find) (44)

where x; = M{, /im* and ¢ is the universal mixing param-
eter in the colored messenger sector. Note that, the quark
masses m; as well as the running coupling constants g; , gr,
appearing in Egs. (44), (47), (49), and (50), are evaluated at
the messenger mass scale y ~ m.

Being m3. = m?(1 £ &) the eigenvalues of the up-down
degenerate messenger mass spectrum, in order to avoid
stable messengers, the lightest messenger mass m_ must be
larger than the mass of the heaviest dark fermion, that is
M,,, associated to the top-quark [4],

On the other hand, the vacuum stability condition requires
£ <1, in order to avoid either tachyons in the spectrum or
color/charge—breaking minima through the generation of
nonvanishing VEV in the messenger scalar sector [4].
Because of the U(1), gauge invariance in the dark sector,
Eq. (45) is sufficient to avoid stability for all messenger
fields, and to guarantee that all dark fermions are stable
particles. By using Egs. (16) and (44), Eq. (45) can be
rephrased into the following lower bound on the average
messenger mass in the colored messenger sector

_, 1671'2)2 m? 16
” Z(ngR 2rmean-g 9

where m, is the top-quark mass. Notice that also the rhs of
Eq. (46) depends on i through the ratio x, = Mg, /m*
entering the loop function f(x, ¢) defined in Eq. (18). At
fixed &, the lowest /m bound corresponds to equality in
Eq. (45) and can be obtained by replacing x, — 1 — £ inside
f1(x;, &) in Eq. (46). The lowest /n minimum in Eq. (46) is
then a pure function of £, namely

167?
7> m, F(&), 47
where F(x) is given by
B 8xv1—x
F& = i—r log(1=2)” (48)
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For x <1, the formula above simplifies to F(x)=
2/x +1/3 + O(x), while, for x = 1, one obtains F(x)=
4/1T=x+O((1 = x)3/?).

By relaxing the full flavor universality in the messenger
sector, and restricting mass degeneracy to the up and down
messenger sectors separately, the above bounds in Eq. (47)
can be generalized as follows:

_ 1672

my 2 m; (ngR> F(&y), (49)
1672

iy > my, <gLZR> F(&p), (50)

where mmy(py and £y (p) refer to the up (down) sector. Notice
that in the rhs of Eq. (50) the bottom-quark mass m,,
replaces m;, since we are now assuming different average
messenger masses (i.e., m3, # in3) for the up and down
sectors. A generalization of the above bounds to the
leptonic sector is straightforward.

Accordingly, for m;, = 173.2 GeV and a bottom-quark
pole mass m;, = 4.78 GeV [14], we find in the large &y p
regime

,> (110 TeV)K,(m) e (51)

m
9L9r
3 TeV)K,(m
mp Z%\/ 1=¢p, (52)

where the factors K, ,(/m) < 1, defined by m,,(/m) =
K, ,(/m)m, ,, contain the renormalization effects connecting
the top and bottom running masses m, (/) at the scale m
with their pole masses m, .

On the other hand, for £ < 1 the lower bounds on 1,
in Egs. (49) and (50) are stronger, due to the enhancement
factor F(&) ~ 1/& at small £. The singular behavior for & <«
1 is a consequence of the vanishing of Yukawa couplings
for £ — 0 at fixed dark fermion masses M. [cf. Eq. (17)].
Hence, large M, values are needed to compensate the
latter suppression in Eq. (17), and even larger /m values due
to the DM constraints in Eq. (45). Note that, if we assume
flavor universality in the up and down sector for messenger
fields, then the strongest bound on 77 in Eq. (49) applies. In
the UF scenario, since the ¢ — g7 width scales as 1/m*
[¢f. Eq. (43)], the corresponding BR(# — g7) will be
severely constrained, especially for small £ mixing.

Since, for sufficiently large mixing, the limits in
Egs. (51)—(52) might go below the messenger mass bounds
arising from their nonobservation in direct pair production
at the LHC, we will distinguish in our study the £ ranges
that correspond to lower mass limits that could be in
conflict with the LHC results. Actually, although the
present model shows features that are similar to the
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SUSY phenomenology, the actual LHC mass bounds
depend nontrivially on the model parameters. Dedicated
LHC analyzes will be needed in order to set robust bounds
on the corresponding particle and parameter spectra. Then,
in our analysis we will just assume a few tentative mass
bounds the could be derived for messenger searches at the
LHC and set the corresponding maximal £ mixing value not
to overcome these tentative bounds. In particular, in the
following we will assume that the LHC presently excludes
pair production of colored messengers lighter than 1 TeV
and of colorless (EW) messengers lighter than 300 GeV.

In the numerical analysis of the following sections, since
we aim at a simplified LO analysis, we will not include the
QCD running of relevant couplings and masses. Hence, the
numerical behavior reported in all tables and figures will
correspond to setting all quark masses to their pole mass
values.

B. Upper bounds on BR(¢ — g7)

A rough estimate of the upper bounds on BR(¢ — ¢7),
versus the relevant free parameters of the model, needs a
few working assumptions. In the UF scenario (that is for
i}, = in3 = m?* and &y = & = £), we can see that in the
rhs of the two equations entering Eq. (29) for AZR [or
equivalently in Eq. (30) for A?’ z] the first terms in
parenthesis are dominant over the second ones, being
the latter suppressed by the loop factor g, /167> Since
Frgr/re and Fpp pg are almost of the same order, we can
safely neglect the contribution of the second terms in
Eq. (29). In order to further simplify the analysis, one can
also assume universality between the L/R quark couplings
to dark fermions (i.e., g, = gr), and the p; p matrix
elements (i.e., (p.);; = (Pr);j)-

Under the UF assumption and neglecting gz, /162
terms, disregarding overall factors from couplings, the
generic g — ¢’y width depends on three fundamental
parameters, i.e., the average messenger mass /7, the mixing
parameters &y, and xY, satisfying the conditions in
Egs. (47). Then, since BR(t — g7) ~ 1/in*, the largest
allowed BR upper bound corresponds to the equality
condition in Eq. (51). Analogous conclusions hold for
the FCNC decay in dark photon in the down-quark sector.

In Table II, we report the results for the maximum
allowed BR(r — g¢7), satisfying the vacuum stability
bounds and DM constraints versus the mixing parameter
&= ¢y, The results assume U(1), charges and other
multiplicative couplings normalized to 1. In particular, in
Table II, we set g, = 1, and 22y = p; x>> = 1, with all
other elements of flavor matrices set to zero. In the last two
columns we report MM the minimum m allowed by DM
constraints, and the minimum m™" of the corresponding
lowest messenger mass eigenvalue, as defined in Eq. (16).

The resulting allowed BR(z — ¢7) values get tiny for
small mixing &;;, but might approach detectability at future
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TABLEII. Maximum values of BR(# — g7) in the UF scenario
allowed by vacuum stability and DM constraints, corresponding
to the minimum allowed average messenger mass m™", and to the
lightest up-down universal messenger mass eigenvalue m™" =

m™in /T — € versus the mixing parameter & Results are in unit of

couplings, that is they assume EE_%/ =gLRr = pf,‘ew’n =1, with

all other elements of flavor matrices set to zero.

¢ BR™(t — g7) mmin [TeV] m™n [TeV]
0.1 5.6 x 10715 554 526

0.2 1.0 x 1013 279 249

0.3 6.0 x 10713 185 155

0.5 7.5 x 10712 107 75

0.7 7.0 x 10711 67 37

0.8 2.5x 10710 52 23

0.9 1.6 x 107° 35 11
0.95 83 x 107° 25 5.5
0.99 2.6x 1077 11 1.1

colliders in case one assumes a quite large mixing (which is
typical of natural theories [11]). Indeed, for £; = 0.95 one
can achieve a BR, in unit of couplings, of the order of 1078,
which can go up to values ~1077 for &, = 0.99. These
bounds are effective for couplings of the order O(1), and in
the more realistic case of perturbative smaller couplings
they could be even more severe. On the other hand, there
are theoretical arguments suggesting the values
a~ (0.05-0.2), while large ¢ mixings and g; z ~ O(1)
are favored in order to avoid large corrections to the Higgs-
boson mass [4,12]. Therefore, the effect of a more realistic
coupling-constant normalization in the present scenario can
induce a suppression of order (10~'~1072) on the BR upper
bounds in Table II, modulo possible small values of p,ljﬁ.

We now relax the up and down flavor universality in the
messenger sector and assume a universal /7, mass in
the down sector independent from the universal /7, mass in
the up sector (the NUF scenario defined above). Then, the
DM constraints on 71 are less severe according to Eq. (50)
and allow lighter messenger masses in the down sector,
which would in turn permit a larger BR(# — g7). Indeed,
mp enters the Ap scale in Eq. (29) which receives
contributions from both the down and up messenger
sectors.

In Table III we show the maximum BR(7 — g7) allowed
in the NUF scenario versus &p, computed using mp
given by the equality in Eq. (50). We have neglected the
contributions induced by the 1/A}’ scale (which are sup-
pressed by terms ~1/7m?)) and retained only the F;; con-
tribution in 1/A%. We remind that the F;; term comes from
the chirality flip contribution to the FC magnetic-dipole
operator induced by the external states and thus is suppressed
with respect to other contributions by a loop factor
~g? /(167*). Despite the suppression factor 1/(16z2), the
upper bounds on the BR(7 — ¢¥) in Table III are more

PHYSICAL REVIEW D 94, 115013 (2016)

TABLE III. Maximum values of BR(¢z — ¢7) in the NUF
scenario allowed by vacuum stability and DM constraints,
corresponding to the minimum allowed average messenger mass
mBn, and to the lightest down messenger mass eigenvalue

mpin = fpoin, /T =&, versus the mixing parameter &p. Results
are in unit of couplings, that is they assume eel =
JLR = ;72?};3 23 — 1, with all other elements of flavor matrices

set to zero. Values of &, in parenthesis might be excluded by
direct searches of colored scalar particles.

& BR™™ (¢ — g7) mpn [TeV] mpin [TeV]
0.1 1.2x 10714 15 14

0.2 2.1x 10713 7.7 6.9

0.3 1.3 x 10712 5.1 43

0.5 1.8 x 1071 2.9 2.1

0.7 2.4 % 10710 1.9 1.0
(0.8) 1.3x107° 14 0.64
0.9) 2.0x 1078 0.97 0.31
(0.95) 3.1 x 1077 0.68 0.15
(0.99) 1.8 x 107 0.30 0.03

relaxed than the UF-scenario onesin Table II, since /71, can be
much lower than /71, in the NUF scenario. Values &, > 0.7
(shown in parenthesis in Table III) might be excluded by
direct searches of colored scalar particles at the LHC, since
they correspond to light messenger masses in the down sector
below 1 TeV. Anyway, adedicated search able to substantiate
the latter statement (which depends on model-dependent
features) has not yet been performed at the LHC.

We summarize the above results in Fig. 3, where we
show the regions of BR(¢# — ¢7) and relevant average
messenger mass (/m and /m, for the UF and NUF scenarios
respectively) allowed by the DM and vacuum stability
constraints versus the mixing parameters & and &p, in the
UF and NUF scenarios, respectively. Notice that, at fixed
mixing, the black bold upper line in the blue region gives,
on the left vertical axis, the upper bound on BR(z — ¢7),
and, on the right vertical axis, the corresponding lower 7,
value. The upper bound for &p > 0.7 in the left plot is ruled
by direct searches of colored scalar particles at the LHC,
since it corresponds to light messenger masses in the down
sector of 1 TeV.

We now discuss the constraints coming from possible
dark-fermion and messenger contributions to the FCNC
decays t — gy, where the dark photon is replaced by a SM
photon in the final state. In the SM this channel receives the
main contribution from W and b-quark loops, whose
amplitude, due to the Glashow-Iliopoulos-Maiani (GIM)
mechanism [15], is suppressed by terms ~V, m3/M3,
(where V,; is the CKM matrix element), which makes
the corresponding decay rate quite small.

The SM values of BR(# — ¢y) and BR(# — uy) are a few
10~'* and a few 10719, respectively [16]. However, in the
present framework, ¢ — gy would receive extra contribu-
tions from loops of messengers and dark fermions,
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involving the same flavor structures entering the ¢t — gy
amplitude (see Appendix for details). We will then assume
that these further contributions to the + — gy amplitude are
dominant with respect to the SM one and apply the present
experimental constraints on BR(# — ¢y) to indirectly con-
strain the ¢ — gy decay rate.

Analytical results for the extra t — gy amplitude are
reported in the Appendix, by retaining only the dominant
contributions proportional to the dark-fermion masses. By
applying the same approximation to the ¢t — gy amplitude,
we get a simplified relation that connects the two BR’s by
the following expression:

a2 e fo(x§. &v)
BR( ~ q7) = <3UJ_02(X§/’§U)

a
where @ = 1/137 is the electromagnetic (EM) fine struc-
ture constant, e;; =2/3 is the top-quark EM charge,
fa(x,y) is given in Eq. (33), and f,(x,y) is derived in
the Appendix. Notice that, in Eq. (53), the factor connect-
ing the two BR’s does not depend on the flavor matrices,
since the latter are the same for the dominant contributions
to the two processes and approximately cancel out in the
BR ratio. Then, neglecting the SM contributions, theoreti-
cal BR(¢# — gy) upper bounds versus the relevant model
parameters can be obtained from Tables Il and III, by means
of Eq. (53).

Conversely, the LHC present constraints on BR(7 — gy)
can set indirect experimental upper bounds on BR(7 — g7)
versus x§ and &y, by means of Eq. (53). The present
BR(7 — gy) upper limits at 95% C.L., reported by the CMS
collaboration, are [17]

>2BR(Z - qy), (53)

BREP( — uy) < 1.3 x 107 (54)

BR™ (¢ — cy) < 1.7 x 1073. (55)

Actually, the stringent DM constraints in Egs. (49)—(50)
set quite strong upper limits on BR(# — ¢7) and push a
possible NP contribution to t — gy in this scenario well
below the present experimental sensitivity to this channel.
On the contrary, if we relax DM constraints and assume
that NP contributions completely saturate the BR®*?(¢ —
qy) experimental limits in Eq. (55), we can derive indirect
experimental BR(7 — g7) upper bounds versus @, £, and
x¥. For instance, in the UF scenario, assuming (&{)?a ~
0.1 as a reference value for the relevant combination of
U(1) couplings, as indicated by naturalness arguments
(see Appendix in [12]), we get the following upper
bounds on BR(7 — g7), for representative &y and x¥
values:

(i) for &y = 0.1, and xgj = 0.8 (small-mixing regime)

a

BR=")(t - up) < 1.8 x 1072 (o 1) (56)

BRI~ (1 = ¢7) <23 x 107! <()al> (57)
(i) for &y = 0.8, and x¥ = 0.1 (large-mixing regime)

BR(=)(t - uy) < 3.4 x 1072 ((%) (58)

BRU=)(t = ¢7) < 4.4 x 107! <%> (59)

The resulting upper bounds are much weaker
than the ones in Tables II and III set by DM
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constraints.* Note that such large values of the upper
bounds overwhelm the possibility of having extra top
decay channels allowed by the present measurement of
BR(t - Wb) [14].

In conclusion, by imposing vacuum stability and DM
constraints, we expect that allowed BR(z — ¢7) values do
not exceed ~(1078-1077), which are barely close to the
HL-LHC maximum experimental sensitivity on rare top-
quark processes, but might be well inside the exploration
domain of a future hadron collider at 100 TeV [18].
However, larger BR(t — g7) values, up to (107°-107%),
could in principle be achieved, provided the LHC con-
straints on colored scalar particle production can be
avoided in case of messengers that are lighter than
1 TeV (cf. Table III). On the other hand, in case one can
evade both DM constraints and LHC direct bounds on
colored scalar production, the expected BR(z — g7) range
is essentially just limited by the present accuracy on the
measurement of BR(r - Wb).

V. THE b — (s.d)7 DECAYS

Here we analyze the FCNC decay b — gy, with g = s, d.
Its total width is given by Eq. (39), withi =3 and j = 2, 1
for the ¢ = s, d transitions, respectively. The corresponding
BR can conventionally be expressed in terms of
BR**P(B — X .pe) = 10.65% + 0.16%, the world-average
measurement of the B-meson semileptonic BR [14,19]. To
this aim, the tree-level semileptonic b — cev decay width,
', can be expressed through

G2 mS |Vc |2
#Jcl (2eb)s (60)

where  fi(x) =1 —8x+8x> —x* —12x%logx,  with
Zep = m?/m3, and V , is the relevant CKM matrix element.
Then, one has
12BR**?(B — X, v 1 1
BR(b — g7) = bR (B = c”e)< LI L 2>,
GElVeol'mifi(ze) \(A)? (A7)
(61)

=

with ¢ = s, d. The expressions needed for A}y = (AP ;)3
and AJ% = (AP )3, can be found in Eq. (30). Note that
the BR(b — gy) dominant m, dependence cancels out

“Notice that the BR(~4) (1 — g7) upper bounds derived from
the present experimental BR(# — gy) constraints increases by
decreasing the x¥, thanks to the log x{ enhancement of BR(7 —
q7) with respect to BR(7 = gy). In the ¢+ — gy amplitude, the
log x¥ term in the loop function f5(x¥, &) defined in Eq. (33) is
due to an infrared effect in the diagrams where a dark photon
is radiated from internal dark-fermion lines. Indeed, at small x,
the f,(x,&) function behaves as f5(x,&) = 12_2 (I +logx—
log(1 —&)) + O(x). The log x term is absent in the corresponding
t — qy loop function f, (x, £) Eq. (A8), since dark fermions are not
charged under EM interactions.
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TABLE 1V. Maximum allowed BR(b — ¢7) after applying
vacuum stability and DM constraints, corresponding to the
minimum allowed average mass m™", and to the lightest

universal messenger mass eigenvalue m™" = ™" /T — & versus
the mixing parameter &, in the UF scenario. Results are in unit of
couplings, that is they assume éé3U =gLRr = 1713_,‘313’23 =1, with
all other flavor matrix elements set to zero. '

¢ BR™*(h — g7) mmn [TeV] m2" [TeV]
0.1 7.5 x 1070 554 526

0.2 1.2x 1077 279 249

0.3 6.5 x 1077 185 155

0.5 6.2 x 1076 107 75

0.8 1.2x 107 52 23

0.9 6.0 x 1074 35 11

0.95 2.6 x 1073 25 5.5
0.99 6.7 x 1072 11 1.1

in 1/ (A,’i’fR)z, since the Yukawa couplings are generated
radiatively. For our numerical analysis, we use the central
values of the c-quark and b-quark pole masses, m, =
1.67 GeV and m;, = 4.78 GeV, respectively, and the V,
central value V, = (42.46 4 0.88) x 1073, extracted from
the B semileptonic BR reported above [14,19].

A. DM and vacuum stability constraints for b — gy

Following the same approach adopted for the top-quark
decays described in the previous section, we now present the
theoretical BR(b — ¢7) upper bounds. We neglect the
second term in the square brackets in Eq. (30), which is
of order ~g7 p/(16x%). Contrary to the top-quark case, we
can neglect the latter term in the NUF scenario as well, since
no enhancement is expected in the corresponding contribu-
tions in the b-quark case, not even in the one proportional to
the p; matrix elements in Eq. (30) (the latter being sup-
pressed by 1/m?, which is typically smaller than 1/7m32).

In order to simplify the analysis, we set all couplings
(including the flavor matrix elements p; z) to 1 and
consider only the dependence on the average messenger
mass and corresponding mixing parameter in the down
messenger sector. We consider first the UF scenario in
which m?%, = in?, and &, = &;. We also assume symmetric
left-right couplings, g; = g, and left-right flavor matrices,
pr = pr- Then, BR(b — g7) gets its maximum for the
minimum allowed /. According to Eq. (51), for large &,
this corresponds to mH" = 110 TeVy/T =&, for g, z = 1,
and K, (m) = 1.

Notice that the relevant dark-fermion mass entering the
FCNC b decays is the heaviest dark fermion associated to
the down sector, which appears through the x? dependence
of the loop functions. In the UF hypothesis, we can relate
the x{ and x¥ variables by assuming that the dark fermion
masses are approximately a rescaled version of the SM
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TABLE V. Results as in Table IV but for the NUF scenario,
where we assume eel = g; p = n?RRB =1, with all other
flavor matrix elements set to zero. The range &p > 0.6 might
be excluded by the condition BR(b — sXj,,) < O(10%), where

Xy stands for inclusive invisible particles (see text).

&p BR™* (b — g7) mpin [TeV] mipin [TeV]
0.1 5.8 x 107> 15 14
0.2 1.1 x 1073 7.7 6.9
0.3 6.3 x 1073 5.1 43
0.5 7.9 x 1072 2.9 2.1
(0.6) 2.4 x 107! 2.3 1.5

fermion masses. This is a realistic approximation since the
Co(x) loop function in Eq. (11) has a weak x dependence in
the range 0 < x < 1. Then, for assessing BR(b — g7)
upper bounds in the UF scenario, we will assume the
following approximated relation:

D m,z)
Xy =xy m (62)

In Table IV, the BR(b — g7) upper bounds induced by
vacuum stability and DM constraints in the UF scenario
are presented, as a function of the mixing parameter &p,.
These results hold for unit couplings. For arbitrary cou-
plings, the results in Table IV must be multiplied by the
product (22277 /)2, or analogously (ee2nl; /n3)?, with
j=1,2.

On the other hand, in the NUF scenario, lower /i, values
are allowed by vacuum stability and DM constraints, and
quite larger BR(b — g7) values can be reached. The NUF
scenario results versus &, are presented in Table V. One can
see that particularly large BR(b — ¢7) values are allowed
in case of large &, mixing, that are possibly well inside the
discovery range of future B factories and FCC-ee. On the
other hand, an experimental bound BR(b — sX;,,) <
0(10%) [20] (where X, stands for the inclusive invisible
channel’) might exclude the range &, 2 0.6, when all
relevant couplings are set to 1.

B. BR(b — s7) upper bounds from the BR(b — s7)
measurement

We now consider the experimental constraints coming
from the measurement of the b — sy decay rate into a
photon, and in particular the bounds on NP contributions to
BR(b — sy). The b — sy process is known with high
precision in the SM, with a next-to-next-to-leading-order
(NNLO) accuracy in QCD (see e.g. [22] for a complete

°In present experimental analysis, kinematical distributions
are according to SM, where Xj,, is given by vv pairs. For the
possibility to constrain nonstandard final states with X,
see [21].
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review on the subject). The most updated SM theoretical
prediction provides the value [23]
BR(B — X5y) = (3.36 £0.23) x 107*.  (63)

The effective low-energy Hamiltonian for the AB =1
transitions, describing the b — sy decay, is given by

4Gy
V2

where the complete basis of operators Q; in the SM can be
found e.g. in [24]. The Wilson coefficients C;(u,) are
evaluated at the low-energy scale u;, ~ O(m;) and have
been computed at the NNLO in QCD [22]. The Q7 and Qg
operators (conventionally, the magnetic-dipole and chro-
magnetic-dipole operators, respectively) are the main
operators receiving contributions from NP, as occurs in
our scenario, and are defined as

H3~' = ViVi ZC Hy)Qiluy),  (64)

Q7= 6n zmb(SLa “bg)F,
g ° va a
Os = sz_zmb(sﬂ’” T bR)G,m (65)
where F,,, Gj, are the EM and QCD field strengths,

respectively, w1th a=1,...,8 running on the adjoint
representation of the QCD SU(3), group.

The present NP scenario will give a contribution at one
loop to the Wilson coefficients of the O, and Qg operators
at the My scale, namely to C;(My) and Cg(My),
respectively. The corresponding b — sy and b — sg decay
amplitudes induced by these operators (with g standing for
a gluon) can be found in the Appendix. However, the
present model induces also contributions to two new local
operators QO and Qg, which are defined by assuming an
opposite chirality structure in Eq. (65) [25]. We will refer to
C;(My) and Cg(My,) as the Wilson coefficients corre-
sponding to Q7 and Qg at the My scale.

NP effects in b — sy can be parametrized in a model-
independent way by introducing the R;g and I~€7,8 param-
eters defined at the EW scale as

where C}§ include the pure NP contribution. The Wilson
coefficients above are meant to be evaluated at the leading
order (LO). We are now considering their effect on
BR(B — X,y) evaluated at the next-to-leading order
(NLO) [26], where nonperturbative 1/m; [27] and 1/m,
[28] corrections have been included. Although the b — sy
rate is known at the NNLO [23], the LO accuracy for NP
effects is sufficient for the purposes of the present analysis.
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Indeed, we restricted to a 1-loop matching, while a true
NLO accuracy in the NP effects would require a (nontrivial
to perform) 2-loop matching.

By inserting the R;g and I~€7_8 definition in the final
BR(B — X,y) expression, as in [26], one obtains [25]

BR(B — Xgy) = (3.36 £ 0.26) x 107*
x (1 +0.622R; + 0.090(R3 + R3)
+ 0.066Rg + 0.019(R;Rg + R;Ry)
+0.002(R} + R3)), (67)

where, with respect to [25], we rescaled the SM central
value by the most updated result at the NNLO accuracy
[23], and kept the (1-6) SM uncertainty.

The experimental measurements of the CP- and isospin-
averaged BR(B — X,y) by CLEO [29], Belle [30], and
BABAR [31] lead to the combined value [32]

BR™P(B — Xgy) = (343 +£0.21 £0.07) x 1074 (68)

In order to constrain the contributions induced by the
present NP scenario, we will make a few simplifying
assumptions. As can be seen from the coefficients multi-
plying the R; and R;R; terms in the right-hand side of
Eq. (67), the linear term in R; has the dominant weight.
Since in the present scenario R;g and I~€7’8 are expected to
be all of the same order, to simplify the analysis we neglect
all the R; terms but the linear term in R, in the rhs of
Eq. (67), which will be a fair approximation for the
purposes of the present analysis. Then, by requiring that
the theoretical central value lies inside the experimental 2-¢
band of Eq. (68) (with a standard deviation ¢ = 0.22 x
10~* obtained by summing in quadrature the statistical and
systematic errors), one obtains the following upper bounds:

|R;| £0.139 for sign(R;) = +1
|R;| £0.071 for sign(R;) = —1. (69)

Since the R sign is not predicted in the present framework,
we will impose the most conservative upper bounds on
|R;| < 0.139, corresponding to the positive R, sign.
According to the results given in the Appendix, the R;
absolute value is given by

n

R =22
T 3G RV, Vg | CSM(My)||

FLR(x3Dv§D)v (70)

where the expression for the function Fz(x,&) can be
found in Eq. (A7) in the Appendix, and CSM(My) =
—0.193 for m, =170 GeV [24]. Then, the constraint
|R;| < 0.139 sets a lower bound on the effective messenger
mass scale ﬁﬁ)z, defined as
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FIG. 4. Regions allowed by b — sy data at 95% C.L. (repre-
sented by superimposed colored areas), for the effective mes-
senger mass scale 7137 defined in Eq. (71), as a function of x§ and
for different values of the mixing parameter &5, Regions x% >

1 —¢p are excluded by DM constraints.

nm
ﬁ’l%z = ﬁ’lD 3" (71)
ne

versus x% and &,. In Fig. 4, we plot the 3} regions

excluded at 95% C.L. by b — sy data, as a function of x? ,
and for several values of the &, mixing.

If we now combine the DM constraints on /i, = iy in
Eq. (47), with the ones from b — sy in Fig. 4, we can see
that the latter do not allow to set any stringent upper limit
on the flavor matrix elements #2°, 173>, since in this case
would be always inside the allowed regions of 37 in
Fig. 4 [see Eq. (47)].

On the contrary, in the NUF scenario, lower messenger
masses are allowed [cf. Eq. (52)], and strong upper bounds
|
For example, combining DM and b — sy constraints we
get, for &p = 0.5,

on the combination arise from the b — sy constraints.

23
-

33
nr

7 2
<7x1072 (%) . if /p >3 TeV. (72)

We now analyze the BR(b — s7) upper bounds given by
the b — sy data in Fig. 4. For simplicity, we will assume a
left-right symmetry, namely A% = A%S. Then, the 1/(im;7)?
scale, defined by Eq. (71), factorizes in both the » — sy and
b — sy amplitudes. For the NP contribution saturating the
R; < R7™ = 0.139 bound arising from the b — sy meas-
urement, we get then

1 3mbéé§)GFV§2V33> - D
- < F XD, Rmax CSM M ,
o< (RIS by g e o)

(73)
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Allowed regions (dark blue colored areas) by DM and vacuum stability (VS) constraints for BR(b — g7) and for the average

messenger mass scales 7 and i/ versus the corresponding mixing & and &p, in the UF (left) and NUF (right) scenarios, respectively.
In the UF (NUF) scenario, we assume ee2 = 1, 11’L3 /¥ = 1(0.1), with j = 1, 2. Red regions are excluded by the b — sy constraints,
and light-blue regions are excluded by both b — sy and B,B, mixing constraints.

which can be translated into an upper bound on
BR(b — s7). In particular, we obtain, for representative
&p and x? values®

(i) for &5 =0.1 and xgl = 0.8 (small-mixing regime)

BR(b—»sy) (b N S}_/) <69x%x1073 (%) s (74)

(i1) for &p = 0.8 and xgj = 0.1 (large-mixing regime)

BR(G=%) (b — 57) < 1.0 x 1072 ((;11) (75)

where we have set €2 =1, and used the approximated
relation for x¥ in Eq. (62). Typical values a = 0.1 are
natural in the present framework [12]. In the NUF scenario,
where x¥ and x% are independent variables, we get

(i) for &p =0.1 and x? = 0.8 (small-mixing regime)

BR(=) (b — s7) < 2.5 x 10~ <(%> (76)
(i) for &p = 0.8 and xé’ = 0.1 (large-mixing regime)
BRO=) (b — s7) < 4.8 x 1074 <(;L1) (77)

Actuall; these bounds are independent from the matrix
elements 77, and 777 only if we require the left-right univer-
sality assumptlon 17 =y or by considering the contribution of
each of them at a time, since these can factorize in both b — sy
and b — sy amplitudes.

Notice that these upper bounds are independent from the
effective messenger scale 737, since the latter has been
set to saturate the upper bound on R; coming from the
b — sy data. In Fig. 5, we show the resulting BR(b —
q7) expectations versus mixing. The blue area corre-
sponds to the allowed ranges, while the red area select
the regions excluded by the BR(b — gy) bounds. One
can see that large values for BR(b — ¢7) are presently
allowed, both in the UF (left plot) and NUF (right plot).
In particular, for unit couplings, the UF scenario allows
BR(b = g7)’s up to (1078-107%), depending on the
mixing value, while the NUF scenario allows up to
(1075=107%).

C. BR(b — ¢7) upper bounds from B,-B, mixing

measurements
In this section we estimate the largest effect
induced by the NP contribution to the effective

Hamiltonian for the AB =2 transitions. Then we will
analyze its impact on the B,-B; and B,-B, mixing
measurements.

The effective Hamiltonian for the |[AB,| = 2 transitions,
induced by the Lagrangian in Eq. (19), is given by

|AB|=2 1
H _—
eff 647t2m2(1 —-¢)

3
X [; CiQi-i-;&in} +Hc. (78)

where the operators Q;_s are defined as
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01 = (by,s8) (B y"s])
(b%SL)(bRSL>
(b%sL)(b/ljes(Z)

Q04 = (bgst) (DL sk)

Qs = (b)) (B ) (79)

with Q; = Q;(L <> R) and ¢, x=1(1 Fys5)q. Also,
q=>b, s stand for the b-quark and s-quarks fields,
respectively, and a, f are color indices (sum over color
indices is understood). The operator basis corresponding to
the effective Hamiltonian for |AB,| = 2 is simply obtained

by replacing s with d quark fields in Q; and Qi operators
in Eq. (79). ~

In order to obtain the Wilson coefficients C; and C;, we
compute the contributions at one loop to the box diagrams
for the process bs — b5, by neglecting quark masses and
external momenta. Since we are interested to their dom-
inant effect, we will work in the approximation of large
mixing &, which allows us to restrict to the contribution of
the Feynman diagrams in which only the two lightest
scalars circulate in the loop. In the left-right symmetric
scenario considered here, this corresponds to consider in
the box diagram only the propagation of two degenerate
messengers with mass square m% = m?(1 — £). Since we
are interested in constraining only the combination of flavor
matrix elements 73, and 73, (which enter the b — sy and
b — dy processes, respectively), in order to simplify the
analysis, we will consider only the contribution to the
B,-B, mixing induced by the dark-fermion associated to
the b-quark, namely Qp,,, while we assume for the diagonal
entries, 733 = 1 and 5;; =0 for i = 1, 2.

By using the above approximations and performing the
matching between the amplitude of bs — b5 computed
from the full theory and the one obtained by the effective
Hamiltonian in Eq. (78), we obtain the following results for
the Wilson coefficients evaluated at the messenger mass
scale m_:

1 2 - 1 2
C = ECLLAI’ ¢ = ECRRAI’
C,=C,=0,

~ 1
C3 == EC%LAZ’ C3 = EC%RAZ’

Cy = —2CgCr Ay, Cs = CLrCrrhs,  (80)
where the coefficients C; g are defined as

Crr = 9R’7 (’ﬂe) )
Crr = QLQR”IR (77L ) (81)

Crr = 9L’7L (’7L) )
Cir = 9L9R’1L (WR) )

and j = 3 in case one considers only the exchange of the
Qp, dark-fermion. As for the quantities A,,, which
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parametrize the loop integrals, we get the following results
for the UF and NUF scenarios

1

A}IF:—Z, ASF =0,
ANUF — _i ANUF — 1 (82)
12° 2 6

In the UF scenario, the loop integrals in Eq. (82) have
been obtained by setting to zero the dark-fermion mass,
which is well justified since in this case the average
messenger mass is much larger than My, . On the other

hand, in the NUF scenario, we have retained the con-

tribution of the dark-fermion mass of third generation

MQD3 and set it equal to the lightest messenger mass

Mg =m*(1—¢), as assumed in the NUF scenario
3

contribution to BR(b — g7) in order to pinpoint the
largest effect. Regarding the effective Hamiltonian for
the |AB,| =2 transitions, the corresponding  Wilson
coefficients can be obtained by the C; and C; expressions
above, by replacing in Eq. (81) the r]L r matrix elements
by r/L’R, with j = 3.

The contribution to the B,-B, mixing amplitude M7,
is given by

|AB,|=2 5

<Bq‘Heff ’ |Bq>

M, = ,
12 2MBq

(83)

where M B, is the neutral B-meson mass, with ¢ =d, s.
Combining the SM with the NP contributions, one obtains
for the difference of the neutral B meson mass eigenstates
system AM, = M}, — M} =2|M{, 7, and M}
are the corresponding heavy and light mass eigenstates of
the neutral Bq—Bq system respectively, [33]

AM ,; = 0.502 ps
AM, = 17.24 ps~ (84)
where z, = M2 , and the A, quantities are defined as

MNP,q
Ay =1+—2—. (85)
q SM,

M3

Above, M7 (M) stands for the NP (SM)
corresponding contribution. In the above Eq. (84), we
assume the central values reported in [33], in
particular |V, V| = 0.0086, |V,;,Vi| =0.04, f3 By, =
(0.17 GeV)?, f%ABBS = (0.21 GeV)?, and S(A';'—z) =235,

where S(x) is the Inami-Lim function for the top-quark
contribution from the box diagram, 7, the top-quark mass
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in MS scheme evaluated at in, scale [in,(/n,) = 0.957m,],
/5, the B, decay constants, and By the bag factors related
to the matrix element of the corresponding AB =2 SM
operators.

We then computed the Wilson coefficients at the low
energy scale of order O(m;,) and the matrix elements of the
operators appearing in Eq. (79) at the NLO and evaluated at
the same scale, by using the results of [34], where the same
structure for the effective Hamiltonian was considered.
Following the results of [35], the present Bq—Bq mixing
measurements imply
Re(A,) = 0.8237003 Re(A,) = 09651543, (86)
where corresponding errors are at 1-c level. Assuming a
constructive NP contribution to the SM result (and real 5
matrices), where the NP contribution to (|[Re(A;)| — 1) is
more constrained, we require (|[Re(A,)|— 1) to lie at the
2-0 level in the following ranges:

0 < |Re(A,)| = 1 < 0.109,
(87)

In Fig. 5, we show the effect of the Bq—Bq mixing
constraints on BR(b — g7) versus &, for the UF (left
plot) and NUF (right plot) scenarios. The light-blue areas
are the excluded ones. We focus on the B,-B; mixing
constraints [which hold for the BR(b — dy) case], since
the regions excluded by the B,-B, mixing are always
outside the area allowed by DM and b — sy constraints.
One can see that the B,-B, mixing is quite effective,
disfavoring BR(b — dy) values above 5x 107 and
8 x 10™* for the UF and NUF scenarios, respectively.

VI. THE ¢ — uy DECAY

Here we analyze the FCNC decay ¢ — uy, following the
same approach as used for the heavier quarks. The
corresponding total width is given by Eq. (39), where i =
2 and j =1 for the ¢ — u transition. We will express
BR(c - uy) in terms of the inclusive decay rate
BR®*P(¢ — £7X) = 0.096% + 0.004% (with X standing
for anything) [14], by approximating I'(¢c — #*X) with the
Cabibbo-allowed tree-level ¢ — setv, decay width.

Then, one has

12BR™ (¢ — £+X) ( Lo, >
G%|V0s|2m%fl (Zuc) (Aiu)z (A;?u)z ’
(88)

BR(c » uy) =

where V. is the relevant CKM matrix element,
and z,, =m2/m?, with f,(x) defined by Eq. (60).
The expressions needed for Af"; = (A7 ;),; can be found
in Eq. (29). For our numerical analysis, we use the central

0 < |Re(A,)| -1 < 0.231.
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TABLE VI. Maximum values of BR(c¢ — uy) allowed by
vacuum stability and DM constraints versus the mixing parameter
E=¢y=¢p and £=¢&p, in the UF and NUF scenarios,
respectively. Results are in unit of couplings, that is they assume
ety =grr=px° =nrx =1, with all other elements of

flavor matrices set to zero.

¢ BR{ (¢ = uy) BRY{: (¢ — uy)
0.1 1.0 x 107! 29x 10713
0.2 1.6 x 10710 4.9 x 10712
0.3 8.5x 10710 2.8 x 107!
0.5 8.1 x107° 3.8 x 10710
0.7 53x 1078 5.1 x 107
0.8 1.6 x 1077 29x 108
0.9 7.5 %1077 4.9 x 1077
0.95 3.2x 107 7.7 x 1070

value of V., = 0.986 = 0.016, extracted from the average
of the D leptonic and semileptonic decays [14].

Following the same strategy as the one described for the
top and b-quark cases, we report in Table VI the results for
the maximum allowed value of BR(c — uy), satisfying the
vacuum stability bounds and DM constraints, versus the
mixing parameter £ = &, = & (6 = &p) in the UF (NUF)
scenario. These results assume U(1), charges and other
multiplicative couplings normalized to 1. In particular, in
Table VI one has ee¥ = g, r = p;x° =0, = 1, with
all other elements of flavor matrices set to zero.

Finally, in Fig. 6, we show the corresponding regions of
BR(c — ¢7) values allowed by DM and vacuum stability
constraints versus the mixing parameter. The blue area
corresponds to the allowed ranges. Experimental upper
bounds on BR(c — gy) do not further constraint the blue
regions in this case. One can see that large values for
BR(c — ¢j) are presently allowed, both in the UF (left
plot) and NUF (right plot). In particular, for unit couplings,
the UF scenario allows BR(c = g7)’s up to (107'1-107%),
depending on the mixing value, while the NUF scenario
allows up to (1073-107%).

VIL THE 7 — ()7 DECAYS

We now consider the extension of the model described in
Sec. II to the leptonic sector in order to also generate
effective lepton Yukawa couplings. Notice that we will not
include the possibility of Majorana masses neither at tree
level nor radiatively generated for the neutrino sector, and
neutrinos will be assumed to acquire only a Dirac mass
through the SM Higgs mechanism. Although one can also
radiatively generate Majorana masses in this framework,
we will not consider this possibility here.

New dark fermions will be associated to the charged
leptons and neutrinos, as occurs in the quark scenario, with a
corresponding set of color singlet messenger fields, having
the same SU(2); x U(1), quantum numbers of the ones
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FIG. 6. Allowed regions (colored areas) by DM and vacuum-stability (VS) constraints for BR(¢ — uy) and for the average messenger
mass scales m and mp versus the corresponding mixing & and ¢p, in the UF (left) and NUF (right) scenarios, respectively. In the left
(right) plots we assume ee¥ = 1, pi2/p?? =1 (ee? = 1, n}?/n?* = 1) with all other matrix elements of flavor matrices set to zero.

related to the lepton sector. Moreover, in order to generate the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [36] lepton
mixing matrix, we will generalize the mechanism described
in Sec. II 3 for the origin of the CKM matrix to the leptonic
sector. The induced PMNS matrix will be also unitary, since
we will not include any seesaw mechanism.

The generalization to the leptonic sector of the inter-
action Lagrangian in Eq. (19) is straightforward, consisting
just in the substitution of quark messenger and dark-
fermion fields by the corresponding ones in the leptonic
sector. We then just provide the notation for the new flavor
mixing matrices in the leptonic sector. In particular, after
rotating the lepton fields to the mass-eigenstate basis, new
flavor matrices p, 77 will appear in the leptonic Lagrangian
corresponding to Eq. (19), where

PLR > PLR

NML.r = ﬁL,R- (89)

In this framework, we first analyze the flavor-violating
tau lepton decays

T 0y, (90)

where £ = p, ¢’ The corresponding decay width can be
inferred by Eq. (39), withi = 3 and j = 2, 1 for the Z = p,
e transitions, respectively. The A}z and Aj; expressions
can be obtained from (AP ), and (AP )3, as defined in
Eq. (30), where the quark masses in the down sector mp,,
the dark-quark masses M, vo, and average messenger

masses 7y p are replaced by the corresponding ones in

"Flavor violating 7 decays into a massive neutral vector have
been considered in [37].

the leptonic sector, namely m Ep Mun, rhg'D , respectively.

In Eq. (30), one then makes the replacements (x, &) —
(x5, ¢L), where x§ = (M»/m7)?, and g, g = Jp..x» Where
gy g are the relevant couplings in the leptonic sector. As for
the flavor matrices, Eq. (89) applies.

We can now express BR(z — ¢£7) by normalizing it to
BRP(7 = v,0,u) = 17.41% 4 0.04% [14], assuming the
following 7 — pv,u, tree-level decay width

Gm

F6 3fl(/u')

1927 O

where the function f (x) is defined just after Eq. (60), and
2y = m;/m?2. Then, one obtains

BR(r — £7) = 12BR %y ( L 1 ) (92)
T — .
7 Gamif (2,0) \(AF)? T (AF)?

We will restrict to the UF scenario, where the average
messenger masses for the up and down SU(2), messenger
fields in the leptonic sector are assumed to be the same,
namely Y = m? = ;. Moreover, in A} 7. we will neglect
the terms proportional to g2 /(16z2) [cf. Eq. (30)].

Regarding the constraints coming from DM and vacuum
stability, in the leptonic sector the bounds in Eq. (49) reads

mp > my; (16ﬂ ) (&L)s
qL9

where &; is the universal mixing parameter for the leptonic
messenger masses. Then, at large &;, one has

(93)

L 2 1L1y/1 =&, TeV. (94)
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TABLE VII. Maximum values of BR(z — £7) allowed by
vacuum stability and DM constraints in the UF scenario for
the leptonic sector, corresponding to the minimum allowed
average mass /m", and to the lightest universal messenger mass

min 1 — &; versus the mixing parameter &; .

eigenvalue min = 7pmin
Results are in unit of couplings, that is they assume

Eéé =0rr = 7123,1’?13’23 =1, with all other elements of flavor
matrices set to zero. BR’s corresponding to values of &; = 0.2
might be excluded at 90% C.L. by direct constraints on

BR(z — ¢¥) (see text).

& BR™* (7 — £7) miin [TeV] miin[TeV]
0.05 2.3 %1077 11 11
0.1 3.8 x 1076 5.7 5.4
0.2 6.9 x 1073 2.9 2.6
0.3) 4.1x 10 1.9 1.6
0.4) 1.6 x 1073 1.4 1.1
(0.5) 52 %1073 1.1 0.8

The corresponding maximum allowed BR(z — ¢7) is
reported in Table VII, where all relevant couplings are
set to 1.

Radiative lepton-flavor violating (LFV) decays
77 — {7y, with £ = p, e, indirectly constrain 7 decays
into dark photons. The present experimental upper bounds
at 90% C.L. are [38]

BR(r™ = e7y) <33 x 1078,
BR(r~ — py) < 4.4 x 1075, (95)

The SM contribution to the LFV 7 — £y decays is
negligible, due to the GIM suppression and tiny neutrino
masses, even accounting for the PMNS matrix. However,
the NP contribution could be potentially quite large. In the
present scenario the corresponding prediction is

BR(z — ¢7) P2BR S (] 4 (96)
T = = = ,
T G () \(AY 2 (AR

where the expressions for [\;ff r can be derived from the
general formulas in the Appendix, by replacing the 7,
matrices according to Eq. (89), and the variables (x, &)
by (xé, L)

As discussed above for b decays, a characteristic
effective messenger mass scale 1/(m3%)? given by

33

_ _ n
= i || 1L, 07)
M

with j =2 and 1 for y and e final states, respectively,
factorizes in both 7 — £y and 7 — £ BR’s. Then, the
bounds in Eq. (95) can be straightforwardly converted into
lower bounds on the effective mass scale ;>

PHYSICAL REVIEW D 94, 115013 (2016)

< 967aBRS*P
=3

_ 1/4
TV DUl =
m? > ———— Frr(x%, &), (98)
: BR‘;;*G%ﬁ(zm)) He e

where BRJ™ = 4.4(3.3) x 107% for £ = p(e).

In Fig. 7 we plot the excluded regions for 73> corre-
sponding to the constraint in Eq. (98) versus x4 and for
some values of the mixing parameter &;. One can see that
the constraints depend on x4, with m3”> < (6.7-11.3) TeV
in the region x§ < 1—¢;, for & > 0.1.

Analogous results for the constraints from 7 — ey can be
simply rescaled from the ones in Fig. 7, by using the
corresponding upper bound in Eq. (95).

As we can see from the results in Fig. 7, the constraints
from 7 — uy or 7 — ey on the effective scale 73> are a
more relaxed than the corresponding ones from b — sy, for
same values of x2, &, and x4, &, (see Fig. 4 for compari-
son). The reason is that the b — sy decay gets the main
contribution from the SM, and the constraints apply mainly
on the interference between the SM and NP amplitude. On
the other hand, for the ¢ — ¢y decay, the SM contribution is
negligible, and the constraints apply directly on the new
physics contributions to the amplitude squared.

Now, we combine the constraints from 7 — £y decay
with the corresponding ones from DM and vacuum
stability. If we compare the values of " in Table VII
with the excluded regions in Fig. 7, we can see that no
significant upper limits on the mixing matrices 7j;  can be
set at small mixing, since the lower bounds from DM
constraints on the average mass /m; are always above the
regions excluded by experimental constraints on
BR(7r — £y). On the other hand, for large mixing, the
DM constraints are relaxed, and we obtain for example

12
11

10

[TeV]

m

32
L
o)

-3

excluded by 7 — pu 7y

& =0.1 mmm

6} &= 0.5 -

& =0.7 mam

5 ) ) ) ) ) &, =0.9 m—m
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9

7}
FIG. 7. Regions allowed by constraints on BR(z — uy) at
90% C.L. (represented by superimposed colored areas), for the
effective messenger mass scale 73> defined in Eq. (97), as a
function of x§ and for several values of the mixing &, parameter.
Regions x§ > 1 — & are excluded by DM constraints.
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~23

Un 2 mp 2

Tl o 13%102( L ) for g, = 0.6,

7 x (870 GeV> or ¢

n 3 my, 2

Tl 275103 (L ) fore, =09. (99
PO A (360 GeV) or ¢ (%9)

Finally, we give below the upper bounds on BR(z — £7)
which satisty the 7 — £y constraints. In particular, for small
and large mixing values we get

(i) for &; = 0.1 and xé = 0.8 (small-mixing regime)

BR(#) (7 - uy) < 2.6 x 107° ((;il> (100)

BR(~¢) (7 — e7) < 2.0 x 107° <(;il> (101)
(i) for &, = 0.8 and x§ = 0.1 (large-mixing regime)

BR(—ur) (t = puy) <5.1x107° <(;L1> . (102)

BR(=¢) (7 - ¢7) < 3.8 x 1076 <%> (103)

In Fig. 8 (left plot), we show the resulting BR(z — £7)
expectations versus mixing, in the UF scenario. The blue
area corresponds to the allowed ranges, while the red area
selects the subregions excluded by the BR(7 — uy)
bounds. One can see that, for eef =1, 71’2 /i3 = 1072
(with j =1, 2), BR(z = £7)’s up to (10710 - 107%) are
allowed, depending on mixing.

UF Scenario
104

Tl
| mmm  allowed by DM + VS
. excluded by 7 — py

105
10-°

1075 }

1077 b

BR(T — £ 7)
my, [TeV]

1078 |

1079 }

1071

0.2 0.4 0.6 0.8 1

9
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VIIL THE y — e7 DECAY

Here we analyze the radiative LFV muon decay

U= e7, (104)

following the analysis done for the LFV 7 decay into a dark
photon. As for the 7 lepton, the corresponding BR can be
parametrized in terms of the tree-level BR(u — v,0,¢), as
follows:

BR( — e7) PBR Sypee (1 (105)
— ey) = s
M = Gam2 () \(M)2 T (M)

where notations are defined in the previous section, and
BR™P(u — v,0,e) = 100% [14]. As in Eq. (97), we define
an effective messenger mass 2! given by

i
ﬁ’l%l = ﬁlL 12| (106)
nr

which factorizes in the BR if we require the L —R
symmetry by assuming g; = gg. The maximum allowed
BR(u — e7) by DM and vacuum stability constraints are
reported in Fig. 8 (right plot), where we also report the
constraints due to the LFV p — ey decay. The present
experimental upper bound at 90% C.L. has been recently
obtained by the MEG experiment at the Paul Scherrer

Institute [39]
BRP(u — ey) < 4.2 x 10713, (107)

As in the z-lepton case, the SM contribution to the y — ey
decay rate is negligible, due to the GIM suppression and

UF Scenario
1076

n—rey {05
mmm  allowed by DM + VS
107 pmmmm excluded by p — e,

1078}

BR(u — e 79)
my, [TeV]

1079

10-10 }

10"

0.2 0.4 0.6 0.8 1

9

FIG. 8. Regions allowed by DM and vacuum stability (VS) constraints for BR(z — ¢7) (left) and BR(u — ej) (right), and for the
average messenger mass scale 71; versus the mixing &;, in the UF scenario (blue areas). Superimposed red areas are the subregions
excluded by direct constraints on BR(£ — ¢'y). In the left (right) plot, we assume g2k = 1, 77} /ii} = 1072 (eek = 1,712/i2 = 107%),
with j =1, 2.
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FIG. 9. Regions allowed by u — ey constraints at 90% C.L.
(represented by superimposed colored areas), for the effective
messenger mass scale 7' defined in Eq. (106), as a function of
x4 and for different values of the mixing &; . Regions x5 > 1 — &,
are excluded by DM constraints.

tiny neutrino masses. Then, the upper bound in Eq. (107)
can constrain the effective scale m?' defined above.

In particular, one has

7,21

967aBR?
> <

o\ 1/4
UV D = L
Somaxr 2 £ o N FLR(x ’§L>» (108)
BRJ): G%f1<ze,4)) ?

where BRI™ =4.2x 107", and one can assume

xh = (Z—Z)ng Results are reported in Fig. 9, where we

plotted 37! versus x%. One can see that the constraints have

a weak dependence on x4, with m2! < (308-313) TeV in

the region x} <1-¢,, for & 20.1. Indeed, since

x5 = (2)2x} < 1, the x5 dependence of BR is almost flat
) X3

in the range x4 < 1, due to the absence of log(x) infrared
singularities for x — 0 in Fyz(x, &).

By combining DM constraints on 72;, with the ones from
u — ey, considering the 7m1; lower bound from DM and
vacuum stability for a few values of &;, we get

;7112 m 2

-+ <3.4x10—4( 5 ) for &, =0.1,

i 57 TeV

~12 o 2

ne -5 mp,

Ll <12x10 . forg =05,

2| < (1.1 TeV) or <

iy’ of M \?

Ll <13x10°( —E—), forg =09, (109
72 % (360 Gev> or ¢ (109)

Finally, from the u — ey constraints, we obtain the
following upper bounds

PHYSICAL REVIEW D 94, 115013 (2016)

(i) for &, = 0.1 and x% = 0.8 (small-mixing regime)
BR#=¢") (4 — e7) < 3.9 x 10710 ((%) (110)

(i) for &, = 0.8 and x% = 0.1 (large-mixing regime)
BRU“=) (u — e7) < 6.2 x 10710 ((%) (111)

In Fig. 8 (right plot), we show the resulting BR(u — €7)
expectations versus mixing, in the UF scenario. As before,
the blue area corresponds to the allowed ranges, while
the superimposed red area selects the regions excluded
by the BR(4 — ey) bounds. One can see that, for ee} = 1,
2 /72 = 1074, BR(u — e¥)’s up to (10711 = 10719) are
allowed.

IX. CONCLUSIONS

We have studied the FCNC decays of SM fermions into a
dark photon, f — f'y, as foreseen by NP models with an
extra unbroken U(1) gauge group, acting on both a dark
sector and a messenger sector, whose dynamics could
explain the observed Yukawa coupling hierarchy. Model-
dependent predictions for the corresponding BR’s have
been worked out, based on constraints given by DM
abundance, vacuum stability, present nonobservation of
non-SM states at the LHC, and bounds on the related
radiative f — f’y decay rates.

We have found that large and possibly measurable BR’s
are allowed in most cases. In particular, for typical coupling
strengths, predicted BR(f — f'7)’s reach ~(1071-1077)
for the decays of top-quark, ~(107*~1073) for the h-quark,
~(1078-10*) for the c-quark, ~(107'1°-107%) for the 7-
lepton, and ~(10~"'=10~') for the u-lepton, depending on
the mixing parameters and on the flavor-universality
structure of the NP sector.

Most importantly, such decay channels are characterized
by new peculiar two-body signatures, where a final SM
fermion is balanced by a massless invisible (v-like) system.
The latter could be looked for at present and future colliders
through dedicated searches, with high potential for either
excluding large regions of the model parameter space or
discovering a NP signal.

For instance, large FCNC gy couplings might give rise
to new signatures associated to top-quark production in
high-energy collisions. Indeed, top-pair production at
hadron colliders could be an ideal laboratory where to
search for two-body m, resonances made up of a mono-
chromatic jet and v-like missing energy/momentum asso-
ciated to the undetected dark photon in the r — gy final
state, where Ej,, ~ Episs ~ m,/2 in the top c.m. system.

An even more striking signature would correspond to the
partonic gg — ty scattering, occurring via an s-channel
u—, c-quark exchange. In this case a single top-quark
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system with unbalanced momentum would be associated to
a massless invisible system. Such peculiar and clean
collider top-quark signatures are not present in the SM,
and possible backgrounds may arise only from particle and
jet mismeasurements. Based on the BR upper bounds
reported above, searches for FCNC top couplings to stable
dark photons might indeed be explorable at future hadron
colliders, like the FCC-hh, where a statistics of about 102
top pairs could be available [18]. Note that the (1 + E, ;)
final states are presently considered by LHC experiments in
NP searches for massive invisible systems [40,41].

As far as lighter flavors are concerned, the scenario looks
even more promising. Huge and measurable values for
BR(b — gy), where g =1, d, are presently allowed.
Experimentally, as in the top-quark case, the b — gy is
characterized by a peculiar signature, where the invisible
massless dark photon equally shares the initial b-hadron
energy and momentum with an s- or d-initiated hadronic
system. While hadron colliders are not the ideal place
where to reconstruct such features, electron-positron B
factories [42] can offer the clean collision environment
needed to control the invisible-system kinematical charac-
teristics. An even better control could be available at future
Z factories (as possibly foreseen at the ILC [43], the
FCC-ee [44], and the CEPC [45], running at the Z peak),
where the large boost of the b hadrons could help in
disentangling the invisible dark photon with high accuracy.

Similar features are shared by potentially measurable
charm, tau, and muon decay rates into a dark photon, which
can also be naturally scrutinized in et e~ collisions with large
integrated luminosities. In particular, at the FCC-ee running
on the Z peak, clean samples of O(10''-10'?) heavy-quark
and lepton pairs of each given flavor from Z — ff could be
available [46], that, in absence of major systematics, could be
sensitive to BR’s into dark photons down to O(107'7).
Dedicated studies will be needed to accurately assess the
actual sensitivity of present and future experiments to the
FCNC and LFV fermion decay channels into a stable dark
photon, naturally predicted in the theoretical NP framework
considered in the present analysis.
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APPENDIX: CONTRIBUTIONS TO THE f — f'y
AMPLITUDES

Here we present the analytical expressions for the NP
contributions to the generic FCNC radiative decay ampli-
tude corresponding to the process

PHYSICAL REVIEW D 94, 115013 (2016)
fr=fr (A1)

where y stands for a SM photon, and the indices i, j (i > j,
with i =3 for the heaviest generation) both run on the
fermion families either in the up or in the down SU(2),
sector. The Feynman diagrams contributing to this process
are given by the diagrams (b) and (d) in Fig. 2, plus the
usual flavor-changing self-energy (FCSE) contributions,
that we do not show here. The FCSE graphs are required by
gauge invariance, although not contributing to the f' — f/y
decay amplitude for an on shell photon, being the latter
proportional to a flavor-changing magnetic-dipole operator.
The fi — f/y amplitude, for different L/R chirality states,
has the same structure as Eq. (28) for the f' — fiy
amplitude, namely

(fL_’f v) =

[ukaauuL] qﬂ a
L

(fR_’f 7) = (A2)

=7 [ oo uglge”,
R

where ¢” is the photon polarization vector. In the low
energy approximation, the mass scales /_\{, r do not depend
on external momenta and can be worked out by matching
the amplitude in Eq. (A2) with the result of the full
computation in the low energy limit. We neglect terms
suppressed by loop factors and provide only the contribu-
tions proportional to the product g; gg. Then, similarly to
Egs. (29)-(30) (with a different loop function), we obtain
for the up quark sector

1 m{ < /)R )
_ =—L[eeV =2 xY, & A3
i Gl GECEER) N
g (e St a0)
- = eeV "L Fp (XY, &) (A4)
(AR)y mp \ ' pf Y
and for the down quark sector
1 mP < DnR >
— = eeP L F p(xP &) (AS)
(Allj)ij m% Mg H °
1 mP < D11L )
= = ee; F X; D ¢ A6
G e ) ) (80
where ef](m are the EM charges of SM fermions in the up

(down) sector, in unit of the EM charge e. The loop
function Fg (x, &) is given by

J_Cz(xwf)

=Pl = ey

FLR(X’ 3]

(A7)
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where f|(x, &) is defined in Eq. (18), and f,(x, &) is given by

- 1 [(148)? =" +2x(1 + £) log ()

fa(x, &) = 2_5

In particular, the limits at small and large mixing are, respectively,

?_{%FLR(X’ ) = ?_{%FRL(X’ §) =

?H}FLR(X’ &)= ?HIIFRL(X7 £ =

1 +4x —5x* +2x(2 + x) log x
4(1 = x)*(1 = x + xlog x) (A9)
(1 —x)?(4 — 8x + 3x* — 2x* log%)
4x(2 — x)*(1 — x + xlog x)
(A10)

Contrary to the dark-photon loop function Fx(x, &) in Eq. (32), the F; z(x, &) expansion at & ~ 1 in Eq. (A10) does not

present log(1 — &) singularities at the denominator.
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