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We analyze a new class of FCNC processes, the f → f0γ̄ decays of a fermion f into a lighter
(same-charge) fermion f0 plus a massless neutral vector boson, a dark photon γ̄. A massless dark photon
does not interact at tree level with observable fields, and the f → f0γ̄ decay presents a characteristic
signature where the final fermion f0 is balanced by a massless invisible system. Models recently proposed
to explain the exponential spread in the standard-model Yukawa couplings can indeed foresee an extra
unbroken dark Uð1Þ gauge group, and the possibility to couple on-shell dark photons to standard-model
fermions via one-loop magnetic-dipole kind of FCNC interactions. The latter are suppressed by the
characteristic scale related to the mass of heavy messengers, connecting the standard model particles to the
dark sector. We compute the corresponding decay rates for the top, bottom, and charm decays (t → cγ̄, uγ̄,
b → sγ̄, dγ̄, and c → uγ̄), and for the charged-lepton decays (τ → μγ̄, eγ̄, and μ → eγ̄) in terms of model
parameters. We find that large branching ratios for both quark and lepton decays are allowed in case the
messenger masses are in the discovery range of the LHC. Implications of these new decay channels at
present and future collider experiments are briefly discussed.
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I. INTRODUCTION

One of the most intriguing aspects of the standard model
(SM) is the nontrivial structure of the flavor sector, which is
encoded in the corresponding structure of the Higgs-boson
Yukawa couplings. The latter seem not to be originating
from any global or gauge symmetry, and resemble effective
couplings rather than fundamental ones, their eigenvalues
spanning over almost 6 orders of magnitude for charged
fermions, and much more in case neutrinos are Dirac
particles. The Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrix in the quark sector of weak charged currents
(and the analogous one in the leptonic sector) adds further
mystery to the origin and structure of flavor.
The recent discovery of the Higgs boson [1] has

strengthened our confidence in the Higgs mechanism
[2], and in the existence of its Yukawa couplings to
fermions, necessary for the fermion mass generation
mechanism in the SM framework. All the observed
Higgs properties seem to be in good agreement with the
SM predictions [3], although there is still large room for
potential new physics (NP) contributions. In this respect,
the present experimental situation does not help, yet, to
clarify whether the Yukawa couplings are fundamental or
low-energy effective couplings, leaving space for new
conjectures about the true origin of flavor.
In case the Yukawa couplings are not fundamental, an

interesting possibility is to conjecture that the chiral

symmetry breaking (ChSB) and flavor structure originate
from a dark sector and is communicated to the SM by some
kind of messenger fields [4,5]. The latter are by definition
fields that couple both to the SM and dark-sector fields at
tree level. Then, due to the messenger interactions, the
Yukawa couplings can be generated at one loop as effective
low-energy couplings.
In this paper, we focus on the recent proposal in [4],

aiming at solving the flavor hierarchy problem by explain-
ing the exponential spread in the Yukawa couplings at low
energy. For each SM fermion, this model predicts the
existence of a massive fermion partner in the dark sector,
singlet under the SM gauge group (dubbed dark fermion in
the following), and a set of scalar messenger fields carrying
the same SM quantum numbers of squarks and slepton in
supersymmetric models. The Yukawa couplings Yf (where
f is a flavor index) are required to be vanishing at tree level
by imposing a discrete Higgs (H) parity, H → −H. Then,
via the spontaneous breaking of this symmetry, Yukawa
couplings can be generated at one loop. In particular, they
can be induced by universal trilinear interactions that mix
SM fields, dark fermions and messenger fields. Due to
chirality, the resulting Yukawa couplings turn out to be
proportional to dark fermion masses MFf

,

Yf ∼
MFf

Λeff
; ð1Þ
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whereΛeff is an (almost) flavor-universal effective scale. As
a consequence, the observed SM Yukawa hierarchy just
reflects the structure of the dark fermion spectrum.1

However, this conjecture alone is not sufficient to
naturally solve the SM flavor hierarchy problem. A new
dynamical mechanism is needed to explain the required
pattern of dark-fermion masses. In [4], a nonperturbative
mechanism has been proposed to generate exponentially
spread dark-fermion masses. It requires the existence of an
exact Uð1ÞF gauge symmetry in the dark sector, and dark
fermions Ff charged underUð1ÞF with ēf quantum charges
[in units of the fundamental Uð1ÞF charge ē]. In particular,
this mechanism, based on a Nambu-Jona-Lasinio approach
[6], predicts exponentially spread masses MFf

for dark
fermions according to the law [4]

MFf
¼ Λ exp

�
−

γ

ᾱē2f

�
; ð2Þ

where ᾱ ¼ ē2=ð4πÞ is the Uð1ÞF fine structure constant,
and γ is connected to an anomalous dimension. The Λ scale
is associated to the Lee-Wick term for the Uð1ÞF gauge
sector [7,8], which is responsible for triggering sponta-
neous ChSB and generating Dirac fermion masses [4].
The nonperturbative origin of the spectrum in Eq. (2) as a

function of ᾱ, is shown by the 1=ᾱ dependence in the
exponent. Then, by assuming order-Oð1Þ nonuniversality
among the Uð1ÞF dark-fermion charges ēf, a wide expo-
nential spread among fermion masses can be easily
generated. Then Eq. (2), along with Eq. (1), can provide
the theoretical basis for a natural solution to the SM flavor
hierarchy problem.
A peculiar aspect of this model is the existence of a

dark photon associated to the unbroken Uð1ÞF gauge field,
which, being massless, does not couple at tree level to
SM fields [9]. Dark-photon couplings to the SM fields
can instead arise at one loop by means of higher-order
operators, which are suppressed by the characteristic
messenger mass scale.
In this framework, a new interesting phenomenology is

expected that can be testable at the LHC [10,11] and at
future colliders [12]. For instance, Higgs effective cou-
plings to photon (γ) and dark photon (γ̄), or to two dark
photons, can arise at one loop due to the exchange of
messenger and dark-fermion fields in [10]. These effective
couplings can lead to exotic signatures, such as the one
associated to the H → γγ̄ decay, where the dark photon is
observed in a detector as a massless invisible system. The
LHC has an excellent potential to observe such decay for

realistic branching ratios (BR’s), in particular in the run 2
[10,11]. Implications of theHiggs effective couplings to dark
photons have also been analyzed in eþe− collisions [12].
In this paper we will focus on the dark-sector flavor

structure needed to generate the CKM matrix in a theo-
retical framework based on the model in [4]. We will show
that the required structure can potentially induce new exotic
flavor-changing-neutral-current (FCNC) processes in the
quark and lepton sectors. In particular, one foresees a new
class of FCNC decay channels, namely the fermion decays
to a lighter fermion of the same electric charge accom-
panied by a massless (invisible) dark photon,

f → f0γ̄: ð3Þ

We will first analyze the phenomenological implications
of such FCNC decays in the top-quark, bottom-quark, and
charm-quark sectors, by studying the t → cγ̄, uγ̄, b → sγ̄,
dγ̄, and c → uγ̄ decay channels, respectively. We will then
extend the analysis to the leptonic sector, including the tau
and muon decays τ → μγ̄, eγ̄, and μ → eγ̄. In particular, we
will compute different BR’s and discuss their correspond-
ing upper bounds coming from present phenomenological
and theoretical constraints.
As mentioned above, massless dark photons are

decoupled at tree level from SM fields, and their production
at colliders manifests as missing energy E and momentum
p in the detector, satisfying the kinematical neutrinolike
constrain E2 − p2 ¼ 0. As a consequence, the FCNC f →
f0γ̄ decay is characterized by an exotic experimental
signature, where the final same-charge fermion f0 is bal-
anced in a detector by an invisible system with vanishing
invariant mass. In the f rest frame, neglecting radiative
effects, f0 is monochromatic with energy Ef0 ≃mf=2,
which is a very distinctive feature that would crucially
discriminate f → f0γ̄ backgrounds, where the missing
momentum is associated either to the mismeasurement
of hadronic objects or to the presence of nonmonochro-
matic neutrinos in the final states (as occurs in the μ or τ
decays). Altogether a f → f0γ̄ decay would show up
experimentally by an excellent characterization.
The plan of the paper is the following. In Sec. II, we

present the theoretical framework, and provide the relevant
Feynman rules for the computation of the FCNC f → f0γ̄
decay amplitudes. In Sec. III, we give the analytic expres-
sions for the amplitude of a generic f → f0γ̄ decay, and
corresponding BR. In Secs. IV–VIII, we will analyze the
phenomenological implications for the FCNC decays in the
top-quark, bottom-quark, charm-quark, τ and μ sectors,
respectively. Our conclusions will be given in Sec. IX.

II. THEORETICAL FRAMEWORK

In this section we summarize the main aspects of the
flavor model in [4], providing the relevant interaction terms
for the FCNC f → f0γ̄ decays in the Lagrangian, and

1A similar scenario with radiatively generated Yukawa cou-
plings and a Yf pattern as in Eq. (1) has been proposed in [5],
although the latter does not include a discussion of the dynamics
responsible for the dark-fermion mass spectrum needed to give
rise to the SM Yukawa hierarchy.
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corresponding notation. More details on the model can be
found in [4,12].
As mentioned, the model extends the SM theory in order

to generate radiatively Yukawa couplings at one loop,
assuming vanishing tree-level Yukawa couplings. The
corresponding total Lagrangian is made up of three sectors

L ¼ LY¼0
SM þ LDS þ LMS; ð4Þ

where LY¼0
SM is the SM Lagrangian for vanishing tree-level

Yukawa couplings,LDS is the dark-sector (DS) Lagrangian,
containing the dark-fermion interactions with the Uð1ÞF
dark-photon gauge field, and LMS describes the messenger
sector with its couplings to both SM and dark fields. The
LMS interactions also communicate the ChSB and flavor
structure of the dark sector to the observable SM sector,
through the generation of Yukawa couplings at one loop.

A. The dark-quark sector

We start by recalling the LDS Lagrangian related to the
dark fermions associated to quarks (which we call dark
quarks) and their interactions with the Uð1ÞF gauge sector,
including the mechanism to generate exponentially spread
fermion masses. Its generalization to the leptonic sector
will then be straightforward.
For each SM quark qUi;Di (with i a family index), a quark

replicaQUi;Di is assumed in the dark sector, which is singlet
under SM gauge interactions, and charged under an exact
Uð1ÞF gauge symmetry. The corresponding Lagrangian is
given by

LDS ¼ i
X
i

ðQ̄UiDμγ
μQUi þ Q̄DiDμγ

μQDiÞ

−
1

4
FμνFμν þ 1

2Λ2
∂μFμα∂νFνα; ð5Þ

where Dμ ¼ ∂μ þ igQ̂Aμ is the usual covariant derivative
associated to theUð1ÞF dark-photon Aμ gauge field, with Q̂
the corresponding charge operator acting on the QUi and
QDi quark fields, and Fμα the Uð1ÞF field-strength tensor.
The higher-derivative last term in Eq. (5) is the so-called
Lee-Wick term, where Λ is the associated energy scale.
As shown in [13], because of the Lee-Wick term, which

implies a massive spin-1 ghost particle in the spectrum,
chiral symmetry turns out to be spontaneously broken, and
dark fermions acquire mass nonperturbatively. In particular,
by following the Nambu-Jona-Lasinio approach, one can
show that a Dirac quark mass MQf

, solution of the fermion
mass-gap equation corresponding to the true vacuum of the
theory, exists in the weakly coupled regime in the form [13]

MQf
¼ Λ exp

�
−

2π

3ᾱðΛÞē2f
þ 1

4

�
; ð6Þ

where ēf stands for the Uð1ÞF charge eigenvalue of a
generic dark quark of flavor f, Qf, in unit of the
fundamental charge ē, and ᾱðΛÞ is the effective fine
structure constant (associated to ē) evaluated at the scale
Λ. As already stressed, this solution is truly nonperturbative
(as shown by the ᾱ dependence in the exponent) and is
associated to the true (nonperturbative) vacuum of the
theory. For NF dark quarks with ēf charges (f ¼ 1;…NF),
an exponentially spreadMQf

spectrum can be generated by
Eq. (6), just by requiring nonuniversality among the
corresponding ēf charges. Indeed, since the MQf

hierarchy
in Eq. (6) will reflect into the actual SM fermion Yukawa
hierarchy (as discussed in the following), it turns out that,
for an integer sequence of ēf charges (and extending the
present analysis to include the leptonic sector), one can
easily fit most of the SM fermion mass spectrum [4].

B. The messenger sector and the generation
of Yukawa couplings

The LMS Lagrangian in Eq. (4) contains messenger
scalar fields and can be split in two terms

LMS ¼ L0
MS þ LI

MS: ð7Þ

L0
MS includes the kinetic term for the messenger fields

interacting with the SM gauge fields, while LI
MS provides

the messenger interactions with the SM fermions, the dark
fermions, and the Higgs boson, which are responsible for
generating Yukawa couplings radiatively.
The SM quark gauge quantum numbers fix the minimal

matter content needed for the colored messenger scalar
sector, which is given by

(i) 2N complex scalar SUð2ÞL doublets: ŜUi
L and ŜDi

L ,

(ii) 2N complex scalar SUð2ÞL singlets: SUi
R and SDi

R ,

(iii) one real SUð2ÞL ×Uð1ÞY singlet: S0,

where ŜUi;Di
L ¼ ð S

Ui;Di
L;1

SUi;Di
L;2

Þ, and i ¼ 1;…; N (N ¼ 3) stands

for a family index. The ŜUi;Di
L , SUi;Di

R scalar fields have the
SM quark quantum numbers, where the L, R labels identify
the messengers coupled to the L, R chirality components of
the associated SM quarks (just as occurs in the case of
squark fields in supersymmetric theories). They have
minimal gauge-invariant couplings to electroweak (EW)
gauge bosons and gluons. A minimal flavor violation
hypothesis would require the Lagrangian in Eq. (7) to
be invariant under SUðNFÞ, where NF is the number of
flavors. More generally, for any family index i, we can
reduce the messenger mass sector to four different universal
mass terms corresponding to the up/down and L=R
components of the ŜUi

L;R and ŜDi
L;R sectors, as in minimal

supersymmetric models. Notice that a more minimal
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hypothesis of a common scalar mass for the L and R scalar
sectors is also phenomenologically acceptable.
We do not report here the expression for the interaction

Lagrangian of the messenger fields with the SM gauge
bosons, which follows from the universal properties of
gauge interactions. Notice that each messenger field is also
charged under Uð1ÞF and carries the same Uð1ÞF charge of
the associated dark fermion. In other words, Uð1ÞF charges
identify the flavor state. A summary of relevant quantum
numbers for all new fermion and scalar fields in the quark
sector can be found in Table I.
The LI

MS Lagrangian, which describes the messenger
interactions with quarks and SM Higgs boson, is particu-
larly relevant for the SM flavor structure. The minimal
content of the universal interactions needed to generate
radiative (diagonal) Yukawa couplings is

LI
MS ¼

�
gL

�XN
i¼1

½q̄iLQUi
R �ŜUi

L þ
XN
i¼1

½q̄iLQDi
R �ŜDi

L

�

þ gR

�XN
i¼1

½Ūi
RQ

Ui
L �SUi

R þ
XN
i¼1

½D̄i
RQ

Di
L �SDi

R

�

þ λSS0
XN
i¼1

ð ~H†SUi
L SUi†

R þH†SDi
L SDi†

R Þ þ H:c:

�

þ VðS0Þ; ð8Þ
where contractions with color indices are understood. The
S0 field is a real singlet scalar, and its potential VðS0Þ is
invariant under the S0 → −S0 parity symmetry. The gL and
gR constants are flavor-universal free parameters, whose
values can be in the perturbative regime gL;R ≲ 1. We will
assume in general gL ≠ gR, although one could impose a
higher degree of universality by assuming gL ¼ gR, with no
loss of generality in the prediction of Yukawa couplings. In
Eq. (8), qiL,U

i
R, andD

i
R stand for SM quark fields, andH is

the SM Higgs doublet, with ~H ¼ iσ2H⋆. One can then
prevent Yukawa couplings at tree level by imposing a
combined parity symmetry under H → −H and S0 → −S0.
On the other hand, as shown in [4], after spontaneous

symmetry breaking (SSB) of the H → −H and S0 → −S0

parity symmetry by a nonvanishing vacuum expectation
value (VEV) hS0i≡ μS=λS, the Yukawa couplings can be
radiatively generated at one loop via virtual exchange of
messengers and dark fermions. As a result, the effective
Yukawa coupling associated to the quark of flavor f turns
out to be proportional to the corresponding dark-quark
mass MQf

. In particular, one obtains [4]

Yf ¼ Y0ðxfÞ exp
�
−

2π

3ᾱðΛÞē2f

�
; ð9Þ

where the dark-quark mass MQf
has been replaced by

Eq. (6), the one-loop Y0ðxfÞ function is given by

Y0ðxfÞ ¼
�
gLgR
16π2

��
μSΛ
m̄2

�
C0ðxfÞ; ð10Þ

m̄2 is the mean square mass of the messengers running in
the loop, xf ¼ M2

Qf
=m̄2, and

C0ðxÞ ¼
1 − xð1 − log xÞ

ð1 − xÞ2 : ð11Þ

Equation (10) is obtained in the approximation of degen-
erate messenger masses for generic SUð2ÞL doublet SL and
singlet SR fields, and in the limit of small mixing parameter
ξ ¼ Δ=m̄2, with Δ ¼ μSv, and v the Higgs VEV.
As fromEqs. (9) and (10), the top-quarkYukawa coupling

can be large and Oð1Þ, keeping at the same time the
dimensionless couplings gL, gR small and within the per-
turbative regime. Indeed theYukawa coupling turns out to be
proportional to the singlet-field (S) VEV (μS=λS) and is
generated only after the spontaneous breaking of the Z2

symmetry. This is a general property, which is independent
from the particular symmetry forbidding Yukawa couplings
at the tree level. Then, a Oð1Þ Yukawa coupling can be
achieved by choosing the μS scale larger than the character-
istic m̄-mass scale running in the loop,while keepingall other
dimensionless couplings small and in the perturbative range.
In order to extend the above results to larger ξ mixing

values, one can use the mass-eigenstate basis for messen-
gers. Notice that, after the EW symmetry breaking, terms in
the third row of the Lagrangian in Eq. (8) generate a mixing
term Δ between the SUð2ÞL messenger doublet SL, and the
corresponding singlet SR. The corresponding Lagrangian
for generic SL;R fields is

L0
S ¼ ∂μŜ

†∂μŜ − Ŝ†M̂2
SŜ; ð12Þ

where Ŝ ¼ ðSL; SRÞ, and the mass term involves the mass
matrix

M̂2
S ¼

�
m2

L Δ
Δ m2

R

�
; ð13Þ

with Δ ¼ μSv parametrizing the left-right (LR) scalar
mixing. The M̂2

S matrix in Eq. (13) can be diagonalized
by the unitary matrix

TABLE I. Spin and gauge quantum numbers for the strongly
interacting messenger fields and corresponding dark quarks.
Uð1ÞF is the dark-photon gauge symmetry in the dark sector.

Fields Spin SUð2ÞL Uð1ÞY SUð3Þc Uð1ÞF
ŜDi
L

0 1=2 1=3 3 −ēDi

ŜUi
L

0 1=2 1=3 3 −ēUi

SDi
R

0 0 −2=3 3 −ēDi

SUi
R

0 0 4=3 3 −ēUi

QDi 1=2 0 0 0 ēDi

QUi 1=2 0 0 0 ēUi

S0 0 0 0 0 0
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U ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð14Þ

with tan 2θ ¼ 2Δ
m2

L−m
2
R
. Then, the eigenvalues of the diagonal

matrix M̂2diag
S ¼ UM̂2

SU
† are given by

m2
� ¼ 1

2
ðm2

L þm2
R � ½ðm2

L −m2
RÞ2 þ 4Δ2�1=2Þ; ð15Þ

where, for degenerate LR scenarios (namely for
m2

L ¼ m2
R ¼ m̄2), the U matrix elements simplify to

Uði; iÞ ¼ 1=
ffiffiffi
2

p
,Uð1; 2Þ ¼ −Uð2; 1Þ ¼ 1=

ffiffiffi
2

p
, with square

mass eigenvalues

m2
� ¼ m̄2ð1� ξÞ; ξ ¼ Δ=m̄2: ð16Þ

Note that, in order to prevent tachyonic solutions, one
should impose ξ ≤ 1 with Δ > 0. Then, we computed the
generalization of the Y0 expression in Eq. (10) as a function
of ξ, in the degenerate LR scenario, which turns out to be

Y0ðxf; ξÞ ¼
�
gLgR
16π2

��
ξΛ
v

�
f1ðxf; ξÞ; ð17Þ

where

f1ðx; ξÞ ¼
1

2

�
C0

�
x

1 − ξ

�
1

1 − ξ
þ C0

�
x

1þ ξ

�
1

1þ ξ

�
;

ð18Þ

and C0ðxÞ is defined by Eq. (11). Notice that C0ð1Þ ¼ 1=2,
and, for small x ≪ 1, C0ðxÞ≃ 1þOðxÞ. Indeed, at fixed
values of m̄ and Λ, all Yukawa couplings must vanish for
vanishing mixing ξ → 0, since they are proportional to the
VEV of the singlet field S, μS [cf. Eq. (10)].

C. The flavor structure and the CKM matrix

Although predicting exponentially spread Yukawa cou-
plings and providing a natural solution to the flavor
hierarchy problem, the minimal interaction Lagrangian
LI
MS in Eq. (8) does not account for the observed CKM

mixing matrix of weak interactions. Indeed, the radiatively
generated Yukawa couplings turn out to be diagonal in the
weak-current interaction basis for the quark fields. Yukawa
off diagonal terms are needed to generate the CKM, and, in
order to preserve the Uð1ÞF gauge invariance, the universal
flavor structure of the messenger interaction in Eq. (8)
should be generalized as follows:

~LI
MS ¼

�
gL

�XN
i;j¼1

½q̄iLðXU
L ÞijQUj

R �ŜUj

L

þ
XN
i;j¼1

½q̄iLðXD
L ÞijQDj

R �ŜDj

L

�

þ gR

�XN
i;j¼1

½Ūi
RðXU

R ÞijQUj

L �SUj

R

þ
XN
i;j¼1

½D̄i
RðXD

L ÞijQDj

L �SDj

R

�

þ λSS0
XN
i¼1

ð ~H†SUi
L SUi†

R þH†SDi
L SDi†

R Þ þ H:c:

�

þ VðS0Þ; ð19Þ

where XU;D
L;R are generic (not necessarily unitary) matrices.

Notice that theUð1ÞF gauge invariance and nonuniversality
of Uð1ÞF charges require the family index labeling dark
fermions and scalar messengers to be the same. Then, in the
weak-current basis for quark fields, the Yukawa couplings
generated radiatively follow the pattern

FIG. 1. Feynman rules for interaction vertices and propagators entering the computation of the one-loop q → q0γ̄ decay amplitude.
The symbols qiL=R and QUi;Di

L=R stand for the quark and dark-quark fields, respectively, with L=R denoting the left-/right-handed chirality

projections. S
Uj
n and S

Dj
n stand for the mass eigenstates (n ¼ 1, 2) in the up and down messenger sectors, respectively, while γ̄ is the

dark-photon field.
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YU;D
ij ∼ ðXU;D†

L · ŶU;D · XU;D
R Þij; ð20Þ

where the · symbol stands for a matrix product, and ŶU;D ¼
diag½YU;D

1 ; YU;D
2 ; YU;D

3 �, with YU;D
i (i ¼ 1, 2, 3) standing for

the Yukawa couplings in Eq. (9) for the up and down
sectors. Following the usual SM approach, the Yukawa
matrix in Eq. (20) can be diagonalized by a biunitary
rotation VU;D

L;R , namely

diag½YU;D� ¼ VU;D†
L;R · YU;D · VU;D

L;R ; ð21Þ

hence giving rise to the CKM matrix K ¼ VU†
L · VD

L .
The observed structure of the CKMmatrix requires XU;D

L;R
to have off diagonal entries smaller than the diagonal ones,
with the latter almost proportional to the unity matrix 1 in
the family space. This suggests the following ansatz for the
XU;D
L;R matrices:

XU;D
L;R ∼ 1þ ΔU;D

L;R ; ð22Þ

where the matrices jΔU;D
L;R j ≪ 1 collect diagonal and off

diagonal terms in a less hierarchical structure.2

After rotating the quark fields to the basis of mass
eigenstates (entailing diagonal Yukawa couplings), the
interaction terms in Eq. (19) can be transformed by
replacing the XU;D

L;R matrices according to

XU
L;R → ρL;R; XD

L;R → ηL;R; ð23Þ

where

ρL;R ≡ VU†
L;R · XU

L;R; ð24Þ

ηL;R ≡ VD†
L;R · XD

L;R: ð25Þ

If XU;D
L are unitary matrices, then VU;D

L;R ¼ ðXU;D
L Þ−1, the

ρL;R, ηL;R matrices will just be equal to 1, and the CKM
matrix will be K ¼ XU

L · XD†
L . However, XU;D

L matrices do
not need to be unitary (or proportional to a unitary matrix),

since they do not arise from unitary transformations (like,
e.g., in the CKM-matrix case). In general, ρL;R and ηL;R will
then have nonvanishing off diagonal entries. This has
nontrivial consequences, since off diagonal terms in the
ρL;R and ηL;R matrices can induce FCNC interactions at one
loop in the observable quark and lepton sectors.
Among the FCNC processes induced by these new

interactions, there is a new class of FCNC one-loop decays,
that is SM-fermion decays into a massless dark photon, via
the channels q → q0γ̄ (l → l0γ̄), where q0 (l0) is a lighter
quark (lepton) with same charge as q (l).
In the next section, we will compute the relevant

amplitudes and corresponding decay widths for this new
class of processes, as well as the NP contribution to the
q → q0γ and l → l0γ decays into a SM photon. The
Feynman rules relevant for the computation of the q →
q0γ̄ decay amplitude (with straightforward extension to the
leptonic sector) can be found in Fig. 1.

III. THE q → q0γ̄ AMPLITUDE AND DECAY
WIDTH

For a generic quark qi, with q ¼ U, D, we consider the
FCNC decay process

qiðpÞ → qjðp0Þγ̄ðkÞ; ð26Þ

where the indices i, j run over quark families with i > j,
and p, p0, and k indicate the particle four-momenta. A
generalization to the leptonic sector is straightforward. This
process is induced at one loop by the Lagrangian in Eq. (19)
for quarks (and by its leptonic generalization for lepton
decays).
The Feynman diagrams contributing to the qi → qjγ̄

process are given in Fig. 2. There are no self-energy
contributions to the qi → qjγ̄ process, since the dark
photon does not couple to SM fermions at tree level.
The messengers running in the loop are much heavier than
the external fermion states (also in case of the top-quark
decay), and we can safely neglect terms of order
Oðm2

qi=m̄
2Þ, where mqi are the external-quark masses.

However, we will retain the leading contributions induced
by the initial SM fermion mass, or, equivalently, by its
associated Yukawa coupling, and neglect the contributions
of the final quark mass.
The total amplitude in momentum space receives two

independent gauge-invariant contributions

Mðqi → qjγ̄Þ ¼ MðqiL → qjRγ̄Þ þMðqiR → qjLγ̄Þ; ð27Þ

where qiL=R are chirality eigenstates in the q ¼ U, D
sectors. The two contributions can be parametrized as
follows:

2We suggest a possible renormalization mechanism for gen-
erating a flavor structure of the XU;D

L;R matrices as required by
Eq. (22), assuming universal tree-level couplings like in Eq. (8).
This requires new heavy (either scalar or vector) fields in the dark
sector, which are SM gauge singlets, and are charged under
Uð1ÞF with charges Qij ¼ ēi − ēj (i, j ¼ 1, 2, 3). Gauge
invariant couplings of these new fields to both dark fermions
and messenger scalars can be formed. One-loop corrections to the
vertices of the universal interactions in Eq. (8), induced by these
new interactions in the dark sector, can then generate the desired
off diagonal transitions that can be reabsorbed in the matrix
elements Δij. Being Δij generated at higher orders in perturbation
theory, the hierarchy shown in Eq. (22) is automatically satisfied.
We will not consider this possibility here and will assume the
most general structure for the X matrices, no matter what
mechanism has generated them.
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MðqiL → qjRγ̄Þ ¼
1

ðΛq
LÞij

½ūqjR σαμuqiL �kμϵ̄α;

MðqiR → qjLγ̄Þ ¼
1

ðΛq
RÞij

½ūqjL σαμuqiR �kμϵ̄α; ð28Þ

where σμν ≡ 1
2
½γμ; γν� (½a; b� standing for the a and bmatrix

commutator), uL=R ≡ 1
2
ð1 ∓ γ5Þu, and uqi and uqj corre-

spond respectively to the qi and qj on shell bispinors in
momentum space, ϵ̄α being the dark-photon polarization
vector. Gauge invariance requires kμϵ̄μ ¼ 0 for on shell
dark photons, which makes the contribution proportional to
the γμL;R matrices vanish for on shell massless (i.e., for
k2 ¼ 0) dark photons. As a consistency check, we have
controlled that this condition is satisfied at one loop.
Then, the effective scales associated to the matrix

elements ðΛq
L;RÞij can be derived by matching Eq. (28)

with the computation of the transition amplitude, based on
the Feynman diagrams in Fig. 2. We assume massless final
fermions, which will be a proper approximation for the
processes considered in the following.
The contribution to the magnetic-dipole type of operator

½ūqjR σαμuqiL � [which is finite and Uð1ÞF gauge invariant]
involves different chiralities in the external uqi and ūqj
states. There are two different sources for the chirality flip.
One corresponds to the mass insertion of a virtual dark
quark through its propagator, and the second arises from the
external quark masses, after the on shell conditions on uqi
or ūqj are applied. Since we are assuming massless final
fermions, only initial fermions contribute to the latter.

Finally, after some algebraic manipulations, the ΛU
L;R

scales relative to a generic FCNC transition qi → qj, with q
in the up fermion sector, and i, j (i > j) running over three
fermion generations, become

1

ðΛU
L Þij

¼ ēmUi

m̄2
U

�
ēUi

ρjiR
ρiiR

FLRðxUi ; ξUÞ

−
g2R
16π2

X3
k¼1

ēUk ρ
jk
R ρ

ki
R FRRðxUk ; ξUÞ

�

1

ðΛU
R Þij

¼ ēmUi

m̄2
U

�
ēUi

ρjiL
ρiiL

FRLðxUi ; ξUÞ

−
g2L
16π2

X3
k¼1

ðēUk ρjkL ρkiL FLLðxUk ; ξUÞ

þ
�
m̄2

U

m̄2
D

�
ēDk η

jk
L η

ki
L FLLðxDk ; ξDÞÞ

�
; ð29Þ

being ē the charge unit for dark-photon interactions, ēqk
their eigenvalues,mUi;Di

the initial-quark masses,MQU;D
i

the

corresponding dark-quark masses, xU;D
i ≡M2

QU;D
i
=m̄2

U;D,

and m̄U;D, ξU;D, respectively, the common average mass
and mixing parameter in the up, down messenger sectors.
For ΛD

L;R in the down quark sector, we obtain instead

1

ðΛD
L Þij

¼ ēmDi

m̄2
D

�
ēDi

ηjiR
ηiiR

FLRðxDi ; ξDÞ

−
g2R
16π2

X3
k¼1

ēDk η
jk
R η

ki
R FRRðxDk ; ξDÞ

�

1

ðΛD
R Þij

¼ ēmDi

m̄2
D

�
ēDi

ηjiL
ηiiL

FRLðxDi ; ξDÞ

−
g2L
16π2

X3
k¼1

ðēDk ηjkL ηkiL FLLðxDk ; ξDÞ

þ
�
m̄2

D

m̄2
U

�
ēUk ρ

jk
L ρ

ki
L FLLðxUk ; ξUÞÞ

�
: ð30Þ

The first terms in the right-hand side of Eqs. (29)–(30) for
the effective ΛD;U

L;R scales are independent from the gL;R
couplings, since this dependence has been reabsorbed in
the corresponding SM Yukawa couplings, by using
Eq. (17).
Furthermore, the loop functions appearing in Eqs. (29)–

(30) satisfy the conditions FRRðx; ξÞ ¼ FLLðx; ξÞ, and
FRLðx; ξÞ ¼ FLRðx; ξÞ, where

FLLðx; ξÞ ¼
1

8

�x2 − ðξ − 1Þ2 þ 2xðξ − 1Þ logð x
1−ξÞ

ðx − 1þ ξÞ3

þ fξ → −ξg
�
; ð31Þ

(a) (b)

(c) (d)

FIG. 2. Feynman diagrams (a)–(d) contributing to the FCNC
decay qi → qjγ̄ with q ¼ U, D and i > j, where qi;jL;R are the
initial (i), final (j) quarks, with L=R indicating the left/right
chirality projections, Qqi and Sqin the corresponding dark quarks
and messenger fields, respectively, with the latter in the basis of
mass eigenstates (n ¼ 1, 2), while γ̄ stands for the dark-photon
line.
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FLRðx; ξÞ ¼
f2ðx; ξÞ
f1ðx; ξÞ

; ð32Þ

defining

f2ðx; ξÞ ¼
1

2ξ

�
1 − xþ ξþ ð1þ ξÞ logð x

1þξÞ
ð1 − xþ ξÞ2 − fξ → −ξg

�
;

ð33Þ

and for f1ðx; ξÞ given by Eq. (18).
Some comments on Eqs. (29)–(30) are in order. Terms

proportional to FLR and FRL arise from the chirality flip
induced by the virtual-dark-fermion mass insertion. Terms
proportional to FLL and FRR come instead from the
chirality flip induced by the initial-quark mass mUi;Di

,
after applying on shell relations on external momenta
pufL;RðpÞ ¼ mfu

f
R;LðpÞ, for a generic fermion f of mass

mf. In the present model, all contributions turn out to be
proportional to the initial quark mass. This is because the
dark-quark mass insertion has been reabsorbed in the

corresponding quark mass, by using the model prediction
for the one-loop effective Yukawa coupling in Eq. (10).
However, for m̄U and m̄D of the same order, terms
proportional to FLL=RR are subleading with respect to
the ones proportional to FLR=RL, due to the suppression
of the loop factors ðg2L;R=16π2Þ in Eqs. (29)–(30).
Finally, we report some useful analytical expressions for

FLLðx; ξÞ and FLRðx; ξÞ in the limit of small and large
values of the mixing parameter ξ. For ξ ≪ 1 one gets

lim
ξ→0

FLRðx; ξÞ ¼
2ð1 − xÞ þ ð1þ xÞ ln x
ðx − 1Þð1 − xþ ln xÞ ;

lim
ξ→0

FLLðx; ξÞ ¼
x2 − 1 − 2x ln x

4ðx − 1Þ3 ; ð34Þ

lim
x→1

lim
ξ→0

FLRðx; ξÞ ¼ −1=3 lim
x→1

lim
ξ→0

FLLðx; ξÞ ¼ 1=12;

ð35Þ

while, for large mixing ξ ∼ 1, we get3

FLRðx; ξÞ≃ xð2þ ln 4Þ − 4 − 2x ln x
4 − 6xþ x2ð2þ ln 2Þ þ ðx − 2Þ2 ln ð1 − ξÞ − 2ð2 − 2xþ x2Þ ln xþOð1 − ξÞ; ð36Þ

lim
ξ→1

FLLðx; ξÞ ¼
4ðx − 1Þ − 3x2 þ x3 − 2x2 ln x

2

4ðx − 2Þ3x : ð37Þ

Since messenger masses are expected to be quite
heavy [4], the qi → qjγ̄ decay process can actually be
described by an effective Lagrangian approach. The rel-
evant effective density Lagrangian Leff contains two lead-
ing gauge-invariant operators of dimension 5, that is the
FC magnetic-dipole operators given by

Leff ¼
X

q¼U;D

X3
i;j¼1

�
1

2ðΛq
LÞij

½q̄jRðxÞσμνF̄μνðxÞqiLðxÞ�

þ 1

2ðΛq
RÞij

½q̄jLðxÞσμνF̄μνðxÞqiRðxÞ�
�
; ð38Þ

where i > j, F̄μνðxÞ is the dark-photonUð1ÞF field-strength
tensor, qiðxÞ and qjðxÞ are the initial and final quark fields,
and ΛU

L;R and ΛD
L;R are given in Eqs. (29) and (30),

respectively.
Using the effective Lagrangian in Eq. (38), the total

width for qi → qjγ̄ is (neglecting the final quark mass)

Γðqi → qjγ̄Þ ¼ m3
qi

16π3

�
1

ðΛq
LÞ2ij

þ 1

ðΛq
RÞ2ij

�
: ð39Þ

Notice that, due to the chiral suppression of the initial quark
massesmqi entering in the Λ

q
L;R scales [see Eqs. (29)–(30)],

the width turns out to be proportional to the fifth power of
the decaying quark mass mqi , suppressed by the fourth
power of the corresponding average messenger mass m̄q,
according to the expression

Γðqi → qjγ̄Þ ∼ m5
qi

16π3m̄4
q
× ðloop functionsÞ: ð40Þ

In the following discussion, the relevant independent
parameters will be m̄q (which controls the order of
magnitude of the decay width), the mixing parameter ξq,
(which, at large values ∼1, pushes the smallest m̄q

eigenvalues of the messengers running in the loop toward
the lowest values [cf. Eq. (16)], hence enhancing the decay

3In order to avoid stable messenger particles in the spectrum,
for a generic quark sector q, the corresponding mixing parameter
ξ should be bounded by 0 < ξ < 1 − x, where x ¼ m2

Q=m̄
2, and

mQ is the associated dark-fermion mass (see next section). Then,
the logarithmic term ln ð1 − ξÞ, appearing in the FLR denominator
in the large ξ → 1 expansion [see Eq. (36)] will be bounded by
ln ð1 − ξÞ < ln x. Since x is nonvanishing (being dark fermions
heavier than the corresponding SM fermions), FLRðx; ξÞ and
FLLðx; ξÞ will not develop any singularity in the allowed x and ξ
ranges.
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amplitudes), and xU;D
i (which sets the dark-fermion mass

scale with respect to the messenger one).
Furthermore, it will be convenient to define a universal-

flavor (UF) scenario, where one has up-down flavor
universality in the mass sector of the colored messenger
fields (i.e., m̄2

U ¼ m̄2
D ≡ m̄2). The latter is the most sym-

metric and predictive framework that one can envisage in
the present model. We also define a nonuniversal flavor
(NUF) scenario, where one relaxes the up and down flavor
universality in the messenger sector, and assumes a
universal m̄2

D mass in the down sector which is independent
from the universal m̄2

U mass in the up sector.

IV. THE t → ðc;uÞγ̄ DECAYS

In this section we analyze the FCNC decay of the top
quark

t → qγ̄; ð41Þ
where in the final state there can be either a c or a u quark.
Using Eq. (40), the corresponding BR, in the massless
final-quark limit, can be parametrized in terms of the tree-
level BRðt → WbÞ, as follows:

BRðt → qγ̄Þ ¼ BRðt → WbÞffiffiffi
2

p
GFjVtbj2ρðxWÞ

�
1

ðΛtq
L Þ2

þ 1

ðΛtq
R Þ2

�
;

ð42Þ

where ρðxÞ ¼ ð1 − xÞ2ð1þ 2xÞ, Λtu
L;R ≡ ðΛU

L;RÞ31, Λtc
L;R≡

ðΛU
L;RÞ32, xW ¼ M2

W
m2

t
, being MW and mt the W� and top-

quark mass, respectively. The relevant Λtu
L;R and Λtc

L;R

expressions are in Eq. (29).
Assuming a universal average messenger mass

m̄U ¼ m̄D ¼ m̄, the mass-scale dependence of BRðt →
qγ̄Þ turns out to be

BRðt → qγ̄Þ ∝ m2
t

m̄4GF
: ð43Þ

The lower allowed value of the average messenger mass m̄
is constrained by dark-matter (DM) and vacuum-stability
bounds, and, as a consequence, the 1=m̄4 term in Eq. (43)
strongly suppresses the t → qγ̄ decay. In particular, we will
prevent stable colored and EW messenger particles in the
spectrum, which would conflict with DM constraints,
hence allowing messenger decays into dark fermions
according to the interaction Lagrangian in Eq. (19). In
the following, by DM constraints we indicate the require-
ments that the mass spectrum is such that all the messenger
decays are kinematically allowed.

A. DM and vacuum stability constraints for t → qγ̄

We now discuss the relevant theoretical bounds in the
scalar messenger sector, and, in the following subsection,

the corresponding upper bounds on BRðt → qγ̄Þ. We will
assume, for the moment, up-down flavor universality (i.e.,
the UF scenario defined above). By using Eqs. (9) and (17)
for the radiatively generated Yukawa couplings, we obtain
the following prediction for the generic mass MQi

of the
dark fermion associated to the SM quark qi, as a function of
the quark mass mi,

MQi
¼ mi

�
16π2

gLgR

�
1

ξf1ðxi; ξÞ
; ð44Þ

where xi ¼ M2
Qi
=m̄2 and ξ is the universal mixing param-

eter in the colored messenger sector. Note that, the quark
massesmi as well as the running coupling constants gL, gR,
appearing in Eqs. (44), (47), (49), and (50), are evaluated at
the messenger mass scale μ ∼ m̄.
Being m2

� ¼ m̄2ð1� ξÞ the eigenvalues of the up-down
degenerate messenger mass spectrum, in order to avoid
stablemessengers, the lightest messenger massm− must be
larger than the mass of the heaviest dark fermion, that is
MQt

, associated to the top-quark [4],

m− ≥ MQt
: ð45Þ

On the other hand, the vacuum stability condition requires
ξ ≤ 1, in order to avoid either tachyons in the spectrum or
color/charge–breaking minima through the generation of
nonvanishing VEV in the messenger scalar sector [4].
Because of the Uð1ÞF gauge invariance in the dark sector,
Eq. (45) is sufficient to avoid stability for all messenger
fields, and to guarantee that all dark fermions are stable
particles. By using Eqs. (16) and (44), Eq. (45) can be
rephrased into the following lower bound on the average
messenger mass in the colored messenger sector

m̄2 ≥
�
16π2

gLgR

�
2 m2

t

ξ2f21ðxt; ξÞð1 − ξÞ ; ð46Þ

where mt is the top-quark mass. Notice that also the rhs of
Eq. (46) depends on m̄ through the ratio xt ¼ M2

Qt
=m̄2

entering the loop function f1ðx; ξÞ defined in Eq. (18). At
fixed ξ, the lowest m̄ bound corresponds to equality in
Eq. (45) and can be obtained by replacing xt → 1 − ξ inside
f1ðxt; ξÞ in Eq. (46). The lowest m̄ minimum in Eq. (46) is
then a pure function of ξ, namely

m̄ ≥ mt

�
16π2

gLgR

�
FðξÞ; ð47Þ

where FðxÞ is given by

FðxÞ ¼ 8x
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

2xþ ð1 − xÞ2 logð1−x
1þxÞ

: ð48Þ
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For x ≪ 1, the formula above simplifies to FðxÞ≃
2=xþ 1=3þOðxÞ, while, for x≃ 1, one obtains FðxÞ≃
4

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p þOðð1 − xÞ3=2Þ.
By relaxing the full flavor universality in the messenger

sector, and restricting mass degeneracy to the up and down
messenger sectors separately, the above bounds in Eq. (47)
can be generalized as follows:

m̄U ≥ mt

�
16π2

gLgR

�
FðξUÞ; ð49Þ

m̄D ≥ mb

�
16π2

gLgR

�
FðξDÞ; ð50Þ

where m̄UðDÞ and ξUðDÞ refer to the up (down) sector. Notice
that in the rhs of Eq. (50) the bottom-quark mass mb
replaces mt, since we are now assuming different average
messenger masses (i.e., m̄2

U ≠ m̄2
D) for the up and down

sectors. A generalization of the above bounds to the
leptonic sector is straightforward.
Accordingly, for mt ¼ 173.2 GeV and a bottom-quark

pole mass mb ¼ 4.78 GeV [14], we find in the large ξU;D

regime

m̄U ≥
ð110 TeVÞKtðm̄Þ

gLgR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξU

p
; ð51Þ

m̄D ≥
ð3 TeVÞKbðm̄Þ

gLgR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξD

p
; ð52Þ

where the factors Kt;bðm̄Þ < 1, defined by mt;bðm̄Þ ¼
Kt;bðm̄Þmt;b, contain the renormalization effects connecting
the top and bottom running masses mt;bðm̄Þ at the scale m̄
with their pole masses mt;b.
On the other hand, for ξ ≪ 1 the lower bounds on m̄U;D

in Eqs. (49) and (50) are stronger, due to the enhancement
factor FðξÞ ∼ 1=ξ at small ξ. The singular behavior for ξ ≪
1 is a consequence of the vanishing of Yukawa couplings
for ξ → 0 at fixed dark fermion masses MQi

[cf. Eq. (17)].
Hence, large MQi

values are needed to compensate the
latter suppression in Eq. (17), and even larger m̄ values due
to the DM constraints in Eq. (45). Note that, if we assume
flavor universality in the up and down sector for messenger
fields, then the strongest bound on m̄ in Eq. (49) applies. In
the UF scenario, since the t → qγ̄ width scales as 1=m̄4

[cf. Eq. (43)], the corresponding BRðt → qγ̄Þ will be
severely constrained, especially for small ξ mixing.
Since, for sufficiently large mixing, the limits in

Eqs. (51)–(52) might go below the messenger mass bounds
arising from their nonobservation in direct pair production
at the LHC, we will distinguish in our study the ξ ranges
that correspond to lower mass limits that could be in
conflict with the LHC results. Actually, although the
present model shows features that are similar to the

SUSY phenomenology, the actual LHC mass bounds
depend nontrivially on the model parameters. Dedicated
LHC analyzes will be needed in order to set robust bounds
on the corresponding particle and parameter spectra. Then,
in our analysis we will just assume a few tentative mass
bounds the could be derived for messenger searches at the
LHC and set the corresponding maximal ξmixing value not
to overcome these tentative bounds. In particular, in the
following we will assume that the LHC presently excludes
pair production of colored messengers lighter than 1 TeV
and of colorless (EW) messengers lighter than 300 GeV.
In the numerical analysis of the following sections, since

we aim at a simplified LO analysis, we will not include the
QCD running of relevant couplings and masses. Hence, the
numerical behavior reported in all tables and figures will
correspond to setting all quark masses to their pole mass
values.

B. Upper bounds on BRðt → qγ̄Þ
A rough estimate of the upper bounds on BRðt → qγ̄Þ,

versus the relevant free parameters of the model, needs a
few working assumptions. In the UF scenario (that is for
m̄2

U ¼ m̄2
D ≡ m̄2 and ξU ¼ ξD ≡ ξ), we can see that in the

rhs of the two equations entering Eq. (29) for ΛU
L;R [or

equivalently in Eq. (30) for ΛD
L;R] the first terms in

parenthesis are dominant over the second ones, being
the latter suppressed by the loop factor g2R=L=16π

2. Since
FLR=RL and FLL=RR are almost of the same order, we can
safely neglect the contribution of the second terms in
Eq. (29). In order to further simplify the analysis, one can
also assume universality between the L=R quark couplings
to dark fermions (i.e., gL ¼ gR), and the ρL;R matrix
elements (i.e., ðρLÞji ¼ ðρRÞji).
Under the UF assumption and neglecting g2R=L=16π

2

terms, disregarding overall factors from couplings, the
generic q → q0γ̄ width depends on three fundamental
parameters, i.e., the average messenger mass m̄, the mixing
parameters ξU, and xU3 , satisfying the conditions in
Eqs. (47). Then, since BRðt → qγ̄Þ ∼ 1=m̄4, the largest
allowed BR upper bound corresponds to the equality
condition in Eq. (51). Analogous conclusions hold for
the FCNC decay in dark photon in the down-quark sector.
In Table II, we report the results for the maximum

allowed BRðt → qγ̄Þ, satisfying the vacuum stability
bounds and DM constraints versus the mixing parameter
ξ ¼ ξU. The results assume Uð1ÞF charges and other
multiplicative couplings normalized to 1. In particular, in
Table II, we set gL;R ¼ 1, and ēēU3 ¼ ρ33;13;23L;R ¼ 1, with all
other elements of flavor matrices set to zero. In the last two
columns we report m̄min, the minimum m̄ allowed by DM
constraints, and the minimum mmin

− of the corresponding
lowest messenger mass eigenvalue, as defined in Eq. (16).
The resulting allowed BRðt → qγ̄Þ values get tiny for

small mixing ξU, but might approach detectability at future
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colliders in case one assumes a quite large mixing (which is
typical of natural theories [11]). Indeed, for ξU ¼ 0.95 one
can achieve a BR, in unit of couplings, of the order of 10−8,
which can go up to values ∼10−7 for ξU ¼ 0.99. These
bounds are effective for couplings of the orderOð1Þ, and in
the more realistic case of perturbative smaller couplings
they could be even more severe. On the other hand, there
are theoretical arguments suggesting the values
ᾱ ∼ ð0.05–0.2Þ, while large ξ mixings and gL;R ∼Oð1Þ
are favored in order to avoid large corrections to the Higgs-
boson mass [4,12]. Therefore, the effect of a more realistic
coupling-constant normalization in the present scenario can
induce a suppression of order (10−1–10−2) on the BR upper
bounds in Table II, modulo possible small values of ρ13;23L;R .
We now relax the up and down flavor universality in the

messenger sector and assume a universal m̄2
D mass in

the down sector independent from the universal m̄2
U mass in

the up sector (the NUF scenario defined above). Then, the
DM constraints on m̄D are less severe according to Eq. (50)
and allow lighter messenger masses in the down sector,
which would in turn permit a larger BRðt → qγ̄Þ. Indeed,
m̄D enters the ΛR scale in Eq. (29) which receives
contributions from both the down and up messenger
sectors.
In Table III we show the maximum BRðt → qγ̄Þ allowed

in the NUF scenario versus ξD, computed using m̄D
given by the equality in Eq. (50). We have neglected the
contributions induced by the 1=Λtq

L scale (which are sup-
pressed by terms ∼1=m̄2

U) and retained only the FLL con-
tribution in 1=Λtq

R . We remind that theFLL term comes from
the chirality flip contribution to the FC magnetic-dipole
operator inducedby the external states and thus is suppressed
with respect to other contributions by a loop factor
∼g2L=ð16π2Þ. Despite the suppression factor 1=ð16π2Þ, the
upper bounds on the BRðt → qγ̄Þ in Table III are more

relaxed than theUF-scenarioones inTable II, since m̄D canbe
much lower than m̄U in the NUF scenario. Values ξD > 0.7
(shown in parenthesis in Table III) might be excluded by
direct searches of colored scalar particles at the LHC, since
they correspond to lightmessengermasses in thedown sector
below1TeV.Anyway, a dedicated search able to substantiate
the latter statement (which depends on model-dependent
features) has not yet been performed at the LHC.
We summarize the above results in Fig. 3, where we

show the regions of BRðt → qγ̄Þ and relevant average
messenger mass (m̄ and m̄D for the UF and NUF scenarios
respectively) allowed by the DM and vacuum stability
constraints versus the mixing parameters ξ and ξD, in the
UF and NUF scenarios, respectively. Notice that, at fixed
mixing, the black bold upper line in the blue region gives,
on the left vertical axis, the upper bound on BRðt → qγ̄Þ,
and, on the right vertical axis, the corresponding lower m̄D
value. The upper bound for ξD > 0.7 in the left plot is ruled
by direct searches of colored scalar particles at the LHC,
since it corresponds to light messenger masses in the down
sector of 1 TeV.
We now discuss the constraints coming from possible

dark-fermion and messenger contributions to the FCNC
decays t → qγ, where the dark photon is replaced by a SM
photon in the final state. In the SM this channel receives the
main contribution from W and b-quark loops, whose
amplitude, due to the Glashow-Iliopoulos-Maiani (GIM)
mechanism [15], is suppressed by terms ∼Vtsm2

b=M
2
W

(where Vts is the CKM matrix element), which makes
the corresponding decay rate quite small.
The SM values of BRðt → cγÞ and BRðt → uγÞ are a few

10−14 and a few 10−16, respectively [16]. However, in the
present framework, t → qγ would receive extra contribu-
tions from loops of messengers and dark fermions,

TABLE II. Maximum values of BRðt → qγ̄Þ in the UF scenario
allowed by vacuum stability and DM constraints, corresponding
to the minimum allowed average messenger mass m̄min, and to the
lightest up-down universal messenger mass eigenvalue mmin

− ¼
m̄min

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
versus the mixing parameter ξ. Results are in unit of

couplings, that is they assume ēēU3 ¼ gL;R ¼ ρ33;13;23L;R ¼ 1, with
all other elements of flavor matrices set to zero.

ξ BRmaxðt → qγ̄Þ m̄min [TeV] mmin
− [TeV]

0.1 5.6 × 10−15 554 526
0.2 1.0 × 10−13 279 249
0.3 6.0 × 10−13 185 155
0.5 7.5 × 10−12 107 75
0.7 7.0 × 10−11 67 37
0.8 2.5 × 10−10 52 23
0.9 1.6 × 10−9 35 11
0.95 8.3 × 10−9 25 5.5
0.99 2.6 × 10−7 11 1.1

TABLE III. Maximum values of BRðt → qγ̄Þ in the NUF
scenario allowed by vacuum stability and DM constraints,
corresponding to the minimum allowed average messenger mass
m̄min

D , and to the lightest down messenger mass eigenvalue
mmin

D−
¼ m̄min

D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξD

p
versus the mixing parameter ξD. Results

are in unit of couplings, that is they assume ēēD3 ¼
gL;R ¼ η33;13;23L;R ¼ 1, with all other elements of flavor matrices
set to zero. Values of ξD in parenthesis might be excluded by
direct searches of colored scalar particles.

ξD BRmaxðt → qγ̄Þ m̄min
D [TeV] mmin

D−
[TeV]

0.1 1.2 × 10−14 15 14
0.2 2.1 × 10−13 7.7 6.9
0.3 1.3 × 10−12 5.1 4.3
0.5 1.8 × 10−11 2.9 2.1
0.7 2.4 × 10−10 1.9 1.0
(0.8) 1.3 × 10−9 1.4 0.64
(0.9) 2.0 × 10−8 0.97 0.31
(0.95) 3.1 × 10−7 0.68 0.15
(0.99) 1.8 × 10−4 0.30 0.03
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involving the same flavor structures entering the t → qγ̄
amplitude (see Appendix for details). We will then assume
that these further contributions to the t → qγ amplitude are
dominant with respect to the SM one and apply the present
experimental constraints on BRðt → qγÞ to indirectly con-
strain the t → qγ̄ decay rate.
Analytical results for the extra t → qγ amplitude are

reported in the Appendix, by retaining only the dominant
contributions proportional to the dark-fermion masses. By
applying the same approximation to the t → qγ̄ amplitude,
we get a simplified relation that connects the two BR’s by
the following expression:

BRðt → qγ̄Þ ¼ ᾱ

α

�
ēU3 f2ðxU3 ; ξUÞ
eUf̄2ðxU3 ; ξUÞ

�
2

BRðt → qγÞ; ð53Þ

where α ¼ 1=137 is the electromagnetic (EM) fine struc-
ture constant, eU ¼ 2=3 is the top-quark EM charge,
f2ðx; yÞ is given in Eq. (33), and f̄2ðx; yÞ is derived in
the Appendix. Notice that, in Eq. (53), the factor connect-
ing the two BR’s does not depend on the flavor matrices,
since the latter are the same for the dominant contributions
to the two processes and approximately cancel out in the
BR ratio. Then, neglecting the SM contributions, theoreti-
cal BRðt → qγÞ upper bounds versus the relevant model
parameters can be obtained fromTables II and III, bymeans
of Eq. (53).
Conversely, the LHC present constraints on BRðt → qγÞ

can set indirect experimental upper bounds on BRðt → qγ̄Þ
versus xU3 and ξU, by means of Eq. (53). The present
BRðt → qγÞ upper limits at 95% C.L., reported by the CMS
collaboration, are [17]

BRexpðt → uγÞ < 1.3 × 10−4 ð54Þ

BRexpðt → cγÞ < 1.7 × 10−3: ð55Þ
Actually, the stringent DM constraints in Eqs. (49)–(50)
set quite strong upper limits on BRðt → qγ̄Þ and push a
possible NP contribution to t → qγ in this scenario well
below the present experimental sensitivity to this channel.
On the contrary, if we relax DM constraints and assume
that NP contributions completely saturate the BRexpðt →
qγÞ experimental limits in Eq. (55), we can derive indirect
experimental BRðt → qγ̄Þ upper bounds versus ᾱ, ξU, and
xU3 . For instance, in the UF scenario, assuming ðēU3 Þ2ᾱ ∼
0.1 as a reference value for the relevant combination of
Uð1ÞF couplings, as indicated by naturalness arguments
(see Appendix in [12]), we get the following upper
bounds on BRðt → qγ̄Þ, for representative ξU and xU3
values:

(i) for ξU ¼ 0.1, and xU3 ¼ 0.8 (small-mixing regime)

BRðt→uγÞðt → uγ̄Þ < 1.8 × 10−2
�

ᾱ

0.1

�
ð56Þ

BRðt→cγÞðt → cγ̄Þ < 2.3 × 10−1
�

ᾱ

0.1

�
ð57Þ

(ii) for ξU ¼ 0.8, and xU3 ¼ 0.1 (large-mixing regime)

BRðt→uγÞðt → uγ̄Þ < 3.4 × 10−2
�

ᾱ

0.1

�
ð58Þ

BRðt→cγÞðt → cγ̄Þ < 4.4 × 10−1
�

ᾱ

0.1

�
: ð59Þ

The resulting upper bounds are much weaker
than the ones in Tables II and III set by DM

FIG. 3. Allowed regions (colored areas) by DM and vacuum stability (VS) constraints for BRðt → qγ̄Þ and for the average
messenger mass scales m̄ and m̄D versus the corresponding mixing ξ and ξD, in the UF (left) and NUF (right) scenarios,
respectively.
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constraints.4 Note that such large values of the upper
bounds overwhelm the possibility of having extra top
decay channels allowed by the present measurement of
BRðt → WbÞ [14].
In conclusion, by imposing vacuum stability and DM

constraints, we expect that allowed BRðt → qγ̄Þ values do
not exceed ∼ð10−8–10−7Þ, which are barely close to the
HL-LHC maximum experimental sensitivity on rare top-
quark processes, but might be well inside the exploration
domain of a future hadron collider at 100 TeV [18].
However, larger BRðt → qγ̄Þ values, up to (10−5–10−4),
could in principle be achieved, provided the LHC con-
straints on colored scalar particle production can be
avoided in case of messengers that are lighter than
1 TeV (cf. Table III). On the other hand, in case one can
evade both DM constraints and LHC direct bounds on
colored scalar production, the expected BRðt → qγ̄Þ range
is essentially just limited by the present accuracy on the
measurement of BRðt → WbÞ.

V. THE b → ðs;dÞγ̄ DECAYS

Here we analyze the FCNC decay b → qγ̄, with q ¼ s, d.
Its total width is given by Eq. (39), with i ¼ 3 and j ¼ 2, 1
for the q ¼ s, d transitions, respectively. The corresponding
BR can conventionally be expressed in terms of
BRexpðB → Xcν̄eÞ ¼ 10.65%� 0.16%, the world-average
measurement of the B-meson semileptonic BR [14,19]. To
this aim, the tree-level semileptonic b → ceν̄ decay width,
Γb
0, can be expressed through

Γb
0 ¼

G2
Fm

5
bjVcbj2

192π3
f1ðzcbÞ; ð60Þ

where f1ðxÞ ¼ 1 − 8xþ 8x3 − x4 − 12x2 log x, with
zcb ¼ m2

c=m2
b, and Vcb is the relevant CKMmatrix element.

Then, one has

BRðb → qγ̄Þ ¼ 12BRexpðB → Xcν̄eÞ
G2

FjVcbj2m2
bf1ðzcbÞ

�
1

ðΛbq
L Þ2 þ

1

ðΛbq
R Þ2

�
;

ð61Þ
with q ¼ s, d. The expressions needed for Λbs

L;R ≡ ðΛD
L;RÞ32,

and Λbd
L;R ≡ ðΛD

L;RÞ31 can be found in Eq. (30). Note that
the BRðb → qγ̄Þ dominant mb dependence cancels out

in 1=ðΛbq
L;RÞ2, since the Yukawa couplings are generated

radiatively. For our numerical analysis, we use the central
values of the c-quark and b-quark pole masses, mc ¼
1.67 GeV and mb ¼ 4.78 GeV, respectively, and the Vcb

central value Vcb ¼ ð42.46� 0.88Þ × 10−3, extracted from
the B semileptonic BR reported above [14,19].

A. DM and vacuum stability constraints for b → qγ̄

Following the same approach adopted for the top-quark
decays described in the previous section, we now present the
theoretical BRðb → qγ̄Þ upper bounds. We neglect the
second term in the square brackets in Eq. (30), which is
of order ∼g2L;R=ð16π2Þ. Contrary to the top-quark case, we
can neglect the latter term in the NUF scenario as well, since
no enhancement is expected in the corresponding contribu-
tions in the b-quark case, not even in the one proportional to
the ρL matrix elements in Eq. (30) (the latter being sup-
pressed by 1=m̄2

U, which is typically smaller than 1=m̄2
D).

In order to simplify the analysis, we set all couplings
(including the flavor matrix elements ρL;R) to 1 and
consider only the dependence on the average messenger
mass and corresponding mixing parameter in the down
messenger sector. We consider first the UF scenario in
which m̄2

D ¼ m̄2
U, and ξD ¼ ξU. We also assume symmetric

left-right couplings, gL ¼ gR, and left-right flavor matrices,
ρL ¼ ρR. Then, BRðb → qγ̄Þ gets its maximum for the
minimum allowed m̄D. According to Eq. (51), for large ξU,
this corresponds to m̄min

D ¼ 110 TeV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξD

p
for gL;R ¼ 1,

and Kbðm̄Þ ¼ 1.
Notice that the relevant dark-fermion mass entering the

FCNC b decays is the heaviest dark fermion associated to
the down sector, which appears through the xD3 dependence
of the loop functions. In the UF hypothesis, we can relate
the xU3 and xD3 variables by assuming that the dark fermion
masses are approximately a rescaled version of the SM

TABLE IV. Maximum allowed BRðb → qγ̄Þ after applying
vacuum stability and DM constraints, corresponding to the
minimum allowed average mass m̄min, and to the lightest
universal messenger mass eigenvalue mmin

− ¼ m̄min
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
versus

the mixing parameter ξ, in the UF scenario. Results are in unit of
couplings, that is they assume ēēU3 ¼ gL;R ¼ η33;13;23L;R ¼ 1, with
all other flavor matrix elements set to zero.

ξ BRmaxðb → qγ̄Þ m̄min [TeV] mmin
− [TeV]

0.1 7.5 × 10−9 554 526
0.2 1.2 × 10−7 279 249
0.3 6.5 × 10−7 185 155
0.5 6.2 × 10−6 107 75
0.8 1.2 × 10−4 52 23
0.9 6.0 × 10−4 35 11
0.95 2.6 × 10−3 25 5.5
0.99 6.7 × 10−2 11 1.1

4Notice that the BRðt→qγÞðt → qγ̄Þ upper bounds derived from
the present experimental BRðt → qγÞ constraints increases by
decreasing the xU3 , thanks to the log xU3 enhancement of BRðt →
qγ̄Þ with respect to BRðt → qγÞ. In the t → qγ̄ amplitude, the
log xU3 term in the loop function f2ðxU3 ; ξUÞ defined in Eq. (33) is
due to an infrared effect in the diagrams where a dark photon
is radiated from internal dark-fermion lines. Indeed, at small x,
the f2ðx; ξÞ function behaves as f2ðx; ξÞ≃ 2ξ

1−ξ ð1þ log x−
logð1 − ξÞÞ þOðxÞ. The log x term is absent in the corresponding
t → qγ loop function f̄2ðx; ξÞ Eq. (A8), since dark fermions are not
charged under EM interactions.
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fermion masses. This is a realistic approximation since the
C0ðxÞ loop function in Eq. (11) has a weak x dependence in
the range 0 < x < 1. Then, for assessing BRðb → qγ̄Þ
upper bounds in the UF scenario, we will assume the
following approximated relation:

xD3 ≃ xU3
m2

b

m2
t
: ð62Þ

In Table IV, the BRðb → qγ̄Þ upper bounds induced by
vacuum stability and DM constraints in the UF scenario
are presented, as a function of the mixing parameter ξD.
These results hold for unit couplings. For arbitrary cou-
plings, the results in Table IV must be multiplied by the
product ðēēD3 ηj3L =η33L Þ2, or analogously ðēēD3 ηj3R =η33R Þ2, with
j ¼ 1, 2.
On the other hand, in the NUF scenario, lower m̄D values

are allowed by vacuum stability and DM constraints, and
quite larger BRðb → qγ̄Þ values can be reached. The NUF
scenario results versus ξD are presented in Table V. One can
see that particularly large BRðb → qγ̄Þ values are allowed
in case of large ξD mixing, that are possibly well inside the
discovery range of future B factories and FCC-ee. On the
other hand, an experimental bound BRðb → sXinvÞ <
Oð10%Þ [20] (where Xinv stands for the inclusive invisible
channel5) might exclude the range ξD ≳ 0.6, when all
relevant couplings are set to 1.

B. BRðb → sγ̄Þ upper bounds from the BRðb → sγÞ
measurement

We now consider the experimental constraints coming
from the measurement of the b → sγ decay rate into a
photon, and in particular the bounds on NP contributions to
BRðb → sγÞ. The b → sγ process is known with high
precision in the SM, with a next-to-next-to-leading-order
(NNLO) accuracy in QCD (see e.g. [22] for a complete

review on the subject). The most updated SM theoretical
prediction provides the value [23]

BRðB → XSγÞ ¼ ð3.36� 0.23Þ × 10−4: ð63Þ

The effective low-energy Hamiltonian for the ΔB ¼ 1
transitions, describing the b → sγ decay, is given by

HΔB¼1
eff ¼ −

4GFffiffiffi
2

p V⋆
32V

⋆
33

X8
i¼1

CiðμbÞQiðμbÞ; ð64Þ

where the complete basis of operators Qi in the SM can be
found e.g. in [24]. The Wilson coefficients CiðμbÞ are
evaluated at the low-energy scale μb ∼OðmbÞ and have
been computed at the NNLO in QCD [22]. The Q7 and Q8

operators (conventionally, the magnetic-dipole and chro-
magnetic-dipole operators, respectively) are the main
operators receiving contributions from NP, as occurs in
our scenario, and are defined as

Q7 ¼
e

16π2
mbðs̄LσμνbRÞFμν

Q8 ¼
gS

16π2
mbðs̄LσμνTabRÞGa

μν; ð65Þ

where Fμν, Ga
μν are the EM and QCD field strengths,

respectively, with a ¼ 1;…; 8 running on the adjoint
representation of the QCD SUð3Þc group.
The present NP scenario will give a contribution at one

loop to the Wilson coefficients of the Q7 and Q8 operators
at the MW scale, namely to C7ðMWÞ and C8ðMWÞ,
respectively. The corresponding b → sγ and b → sg decay
amplitudes induced by these operators (with g standing for
a gluon) can be found in the Appendix. However, the
present model induces also contributions to two new local
operators ~Q7 and ~Q8, which are defined by assuming an
opposite chirality structure in Eq. (65) [25]. We will refer to
~C7ðMWÞ and ~C8ðMWÞ as the Wilson coefficients corre-
sponding to ~Q7 and ~Q8 at the MW scale.
NP effects in b → sγ can be parametrized in a model-

independent way by introducing the R7;8 and ~R7;8 param-
eters defined at the EW scale as

R7;8 ≡ CNP
7;8ðMWÞ

CSM
7;8 ðMWÞ

; ~R7;8 ≡
~CNP
7;8ðMWÞ

CSM
7;8 ðMWÞ

; ð66Þ

where CNP
7;8 include the pure NP contribution. The Wilson

coefficients above are meant to be evaluated at the leading
order (LO). We are now considering their effect on
BRðB → XsγÞ evaluated at the next-to-leading order
(NLO) [26], where nonperturbative 1=mb [27] and 1=mc
[28] corrections have been included. Although the b → sγ
rate is known at the NNLO [23], the LO accuracy for NP
effects is sufficient for the purposes of the present analysis.

TABLE V. Results as in Table IV but for the NUF scenario,
where we assume ēēD3 ¼ gL;R ¼ η33;13;23L;R ¼ 1, with all other
flavor matrix elements set to zero. The range ξD ≥ 0.6 might
be excluded by the condition BRðb → sXinvÞ < Oð10%Þ, where
Xinv stands for inclusive invisible particles (see text).

ξD BRmaxðb → qγ̄Þ m̄min
D [TeV] mmin

D−
[TeV]

0.1 5.8 × 10−5 15 14
0.2 1.1 × 10−3 7.7 6.9
0.3 6.3 × 10−3 5.1 4.3
0.5 7.9 × 10−2 2.9 2.1
(0.6) 2.4 × 10−1 2.3 1.5

5In present experimental analysis, kinematical distributions
are according to SM, where Xinv is given by νν̄ pairs. For the
possibility to constrain nonstandard final states with Xinv,
see [21].
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Indeed, we restricted to a 1-loop matching, while a true
NLO accuracy in the NP effects would require a (nontrivial
to perform) 2-loop matching.
By inserting the R7;8 and ~R7;8 definition in the final

BRðB → XsγÞ expression, as in [26], one obtains [25]

BRðB → XSγÞ ¼ ð3.36� 0.26Þ × 10−4

× ð1þ 0.622R7 þ 0.090ðR2
7 þ ~R2

7Þ
þ 0.066R8 þ 0.019ðR7R8 þ ~R7

~R8Þ
þ 0.002ðR2

8 þ ~R2
8ÞÞ; ð67Þ

where, with respect to [25], we rescaled the SM central
value by the most updated result at the NNLO accuracy
[23], and kept the (1-σ) SM uncertainty.
The experimental measurements of the CP- and isospin-

averaged BRðB → XsγÞ by CLEO [29], Belle [30], and
BABAR [31] lead to the combined value [32]

BRexpðB → XSγÞ ¼ ð3.43� 0.21� 0.07Þ × 10−4 ð68Þ

In order to constrain the contributions induced by the
present NP scenario, we will make a few simplifying
assumptions. As can be seen from the coefficients multi-
plying the Ri and RiRj terms in the right-hand side of
Eq. (67), the linear term in R7 has the dominant weight.
Since in the present scenario R7;8 and ~R7;8 are expected to
be all of the same order, to simplify the analysis we neglect
all the Ri terms but the linear term in R7 in the rhs of
Eq. (67), which will be a fair approximation for the
purposes of the present analysis. Then, by requiring that
the theoretical central value lies inside the experimental 2-σ
band of Eq. (68) (with a standard deviation σ ¼ 0.22 ×
10−4 obtained by summing in quadrature the statistical and
systematic errors), one obtains the following upper bounds:

jR7j≲ 0.139 for signðR7Þ ¼ þ1

jR7j≲ 0.071 for signðR7Þ ¼ −1: ð69Þ

Since the R7 sign is not predicted in the present framework,
we will impose the most conservative upper bounds on
jR7j < 0.139, corresponding to the positive R7 sign.
According to the results given in the Appendix, the R7

absolute value is given by

jR7j ¼
2π2

ffiffiffi
2

p

3GFV⋆
32V33m̄2

DjCSM
7 ðMWÞj

				 η23Lη33L
				F̄LRðxD3 ; ξDÞ; ð70Þ

where the expression for the function F̄LRðx; ξÞ can be
found in Eq. (A7) in the Appendix, and CSM

7 ðMWÞ ¼
−0.193 for mt ¼ 170 GeV [24]. Then, the constraint
jR7j < 0.139 sets a lower bound on the effective messenger
mass scale m̄32

D , defined as

m̄32
D ≡ m̄D

ffiffiffiffiffiffiffiffiffiffi				 η33Lη23L
				

s
; ð71Þ

versus xD3 and ξD. In Fig. 4, we plot the m̄32
D regions

excluded at 95% C.L. by b → sγ data, as a function of xD3 ,
and for several values of the ξD mixing.
If we now combine the DM constraints on m̄D ¼ m̄U in

Eq. (47), with the ones from b → sγ in Fig. 4, we can see
that the latter do not allow to set any stringent upper limit
on the flavor matrix elements η23L , η33L , since in this case m̄U

would be always inside the allowed regions of m̄32
D in

Fig. 4 [see Eq. (47)].
On the contrary, in the NUF scenario, lower messenger

masses are allowed [cf. Eq. (52)], and strong upper bounds

on the combination jη23L j
jη33L j arise from the b → sγ constraints.

For example, combining DM and b → sγ constraints we
get, for ξD ¼ 0.5,				 η23Lη33L

				 < 7 × 10−2
�

m̄D

3 TeV

�
2

; if m̄D ≥ 3 TeV: ð72Þ

We now analyze the BRðb → sγ̄Þ upper bounds given by
the b → sγ data in Fig. 4. For simplicity, we will assume a
left-right symmetry, namely Λbs

L ¼ Λbs
R . Then, the 1=ðm̄32

D Þ2
scale, defined by Eq. (71), factorizes in both the b → sγ and
b → sγ̄ amplitudes. For the NP contribution saturating the
R7 < Rmax

7 ¼ 0.139 bound arising from the b → sγ meas-
urement, we get then

1

Λbs
L

<

�
3mbēēD3 GFV⋆

32V33

2π2
ffiffiffi
2

p
�
F̄LRðxD3 ; ξDÞRmax

7 jCSM
7 ðMWÞj;

ð73Þ

FIG. 4. Regions allowed by b → sγ data at 95% C.L. (repre-
sented by superimposed colored areas), for the effective mes-
senger mass scale m̄32

D defined in Eq. (71), as a function of xD3 and
for different values of the mixing parameter ξD. Regions xD3 >
1 − ξD are excluded by DM constraints.
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which can be translated into an upper bound on
BRðb → sγ̄Þ. In particular, we obtain, for representative
ξD and xD3 values6

(i) for ξD ¼ 0.1 and xU3 ¼ 0.8 (small-mixing regime)

BRðb→sγÞðb → sγ̄Þ < 6.9 × 10−3
�

ᾱ

0.1

�
; ð74Þ

(ii) for ξD ¼ 0.8 and xU3 ¼ 0.1 (large-mixing regime)

BRðb→sγÞðb → sγ̄Þ < 1.0 × 10−2
�

ᾱ

0.1

�
; ð75Þ

where we have set ēD3 ¼ 1, and used the approximated
relation for xD3 in Eq. (62). Typical values ᾱ≃ 0.1 are
natural in the present framework [12]. In the NUF scenario,
where xU3 and xD3 are independent variables, we get

(i) for ξD ¼ 0.1 and xD3 ¼ 0.8 (small-mixing regime)

BRðb→sγÞðb → sγ̄Þ < 2.5 × 10−4
�

ᾱ

0.1

�
; ð76Þ

(ii) for ξD ¼ 0.8 and xD3 ¼ 0.1 (large-mixing regime)

BRðb→sγÞðb → sγ̄Þ < 4.8 × 10−4
�

ᾱ

0.1

�
: ð77Þ

Notice that these upper bounds are independent from the
effective messenger scale m̄32

D , since the latter has been
set to saturate the upper bound on R7 coming from the
b → sγ data. In Fig. 5, we show the resulting BRðb →
qγ̄Þ expectations versus mixing. The blue area corre-
sponds to the allowed ranges, while the red area select
the regions excluded by the BRðb → qγÞ bounds. One
can see that large values for BRðb → qγ̄Þ are presently
allowed, both in the UF (left plot) and NUF (right plot).
In particular, for unit couplings, the UF scenario allows
BRðb → qγ̄Þ’s up to (10−8–10−3), depending on the
mixing value, while the NUF scenario allows up to
(10−6–10−4).

C. BRðb → qγ̄Þ upper bounds from Bq-B̄q mixing
measurements

In this section we estimate the largest effect
induced by the NP contribution to the effective
Hamiltonian for the ΔB ¼ 2 transitions. Then we will
analyze its impact on the Bd-B̄d and Bs-B̄s mixing
measurements.
The effective Hamiltonian for the jΔBsj ¼ 2 transitions,

induced by the Lagrangian in Eq. (19), is given by

HjΔBsj¼2
eff ¼ 1

64π2m̄2ð1 − ξÞ

×

�X5
i¼1

CiQi þ
X3
i¼1

~Ci
~Qi

�
þ H:c: ð78Þ

where the operators Q1−5 are defined as

FIG. 5. Allowed regions (dark blue colored areas) by DM and vacuum stability (VS) constraints for BRðb → qγ̄Þ and for the average
messenger mass scales m̄ and m̄D versus the corresponding mixing ξ and ξD, in the UF (left) and NUF (right) scenarios, respectively.
In the UF (NUF) scenario, we assume ēēD3 ¼ 1, ηj3L =η

33
L ¼ 1ð0.1Þ, with j ¼ 1, 2. Red regions are excluded by the b → sγ constraints,

and light-blue regions are excluded by both b → sγ and BdB̄d mixing constraints.

6Actually, these bounds are independent from the matrix
elements η23L;R and η33L;R only if we require the left-right univer-
sality assumption ηjiL ¼ ηjiR or by considering the contribution of
each of them at a time, since these can factorize in both b → sγ
and b → sγ̄ amplitudes.
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Q1 ¼ ðb̄αLγμsαLÞðb̄βLγμsβLÞ
Q2 ¼ ðb̄αRsαLÞðb̄βRsβLÞ
Q3 ¼ ðb̄αRsβLÞðb̄βRsαLÞ
Q4 ¼ ðb̄αRsαLÞðb̄βLsβRÞ
Q5 ¼ ðb̄αRsβLÞðb̄βLsαRÞ ð79Þ

with ~Qi ¼ QiðL ↔ RÞ and qL;R ≡ 1
2
ð1 ∓ γ5Þq. Also,

q ¼ b, s stand for the b-quark and s-quarks fields,
respectively, and α, β are color indices (sum over color
indices is understood). The operator basis corresponding to
the effective Hamiltonian for jΔBdj ¼ 2 is simply obtained
by replacing s with d quark fields in Qi and ~Qi operators
in Eq. (79).
In order to obtain the Wilson coefficients Ci and ~Ci, we

compute the contributions at one loop to the box diagrams
for the process b̄s → bs̄, by neglecting quark masses and
external momenta. Since we are interested to their dom-
inant effect, we will work in the approximation of large
mixing ξ, which allows us to restrict to the contribution of
the Feynman diagrams in which only the two lightest
scalars circulate in the loop. In the left-right symmetric
scenario considered here, this corresponds to consider in
the box diagram only the propagation of two degenerate
messengers with mass square m2

− ¼ m̄2ð1 − ξÞ. Since we
are interested in constraining only the combination of flavor
matrix elements η32 and η31 (which enter the b → sγ̄ and
b → dγ̄ processes, respectively), in order to simplify the
analysis, we will consider only the contribution to the
Bq-B̄q mixing induced by the dark-fermion associated to
the b-quark, namelyQD3

, while we assume for the diagonal
entries, η33 ¼ 1 and ηii ¼ 0 for i ¼ 1, 2.
By using the above approximations and performing the

matching between the amplitude of b̄s → bs̄ computed
from the full theory and the one obtained by the effective
Hamiltonian in Eq. (78), we obtain the following results for
the Wilson coefficients evaluated at the messenger mass
scale m̄−:

C1 ¼
1

2
C2
LLΔ1; ~C1 ¼

1

2
C2
RRΔ1;

C2 ¼ ~C2 ¼ 0;

C3 ¼
1

2
C2
RLΔ2; ~C3 ¼

1

2
C2
LRΔ2;

C4 ¼ −2CLRCRLΔ1; C5 ¼ CLRCRLΔ2; ð80Þ
where the coefficients CL;R are defined as

CLL ¼ g2Lη
3j
L ðηj2L Þ⋆; CRR ¼ g2Rη

3j
R ðηj2R Þ⋆;

CLR ¼ gLgRη
3j
L ðηj2R Þ⋆; CRL ¼ gLgRη

3j
R ðηj2L Þ⋆ ð81Þ

and j ¼ 3 in case one considers only the exchange of the
QD3

dark-fermion. As for the quantities Δ1;2, which

parametrize the loop integrals, we get the following results
for the UF and NUF scenarios

ΔUF
1 ¼ −

1

4
; ΔUF

2 ¼ 0;

ΔNUF
1 ¼ −

1

12
; ΔNUF

2 ¼ 1

6
: ð82Þ

In the UF scenario, the loop integrals in Eq. (82) have
been obtained by setting to zero the dark-fermion mass,
which is well justified since in this case the average
messenger mass is much larger than MQD3

. On the other

hand, in the NUF scenario, we have retained the con-
tribution of the dark-fermion mass of third generation
MQD3

and set it equal to the lightest messenger mass

M2
QD3

≃ m̄2ð1 − ξÞ, as assumed in the NUF scenario

contribution to BRðb → qγ̄Þ in order to pinpoint the
largest effect. Regarding the effective Hamiltonian for
the jΔBdj ¼ 2 transitions, the corresponding Wilson
coefficients can be obtained by the Ci and ~Ci expressions
above, by replacing in Eq. (81) the ηj2L;R matrix elements

by ηj1L;R, with j ¼ 3.
The contribution to the Bq-B̄q mixing amplitude Mq

12

is given by

Mq
12 ¼

hBqjHjΔBqj¼2

eff jB̄qi
2MBq

; ð83Þ

where MBq
is the neutral B-meson mass, with q ¼ d, s.

Combining the SM with the NP contributions, one obtains
for the difference of the neutral B meson mass eigenstates
system ΔMq ¼ Mq

H −Mq
L ¼ 2jMq

12j, where Mq
H and Mq

L

are the corresponding heavy and light mass eigenstates of
the neutral Bq-B̄q system respectively, [33]

ΔMd ¼ 0.502 ps−1jΔdj;
ΔMs ¼ 17.24 ps−1jΔsj; ð84Þ

where zt ¼ m̄2
t

M2
W
, and the Δq quantities are defined as

Δq ≡ 1þ MNP;q
12

MSM;q
12

: ð85Þ

Above, MNP;q
12 (MSM;q

12 ) stands for the NP (SM)
corresponding contribution. In the above Eq. (84), we
assume the central values reported in [33], in
particular jVtbV⋆

tdj ¼ 0.0086, jVtbV⋆
tsj ¼ 0.04, f2Bd

BBd
¼

ð0.17 GeVÞ2, f2Bs
BBs

¼ ð0.21 GeVÞ2, and Sð m̄2
t

M2
W
Þ ¼ 2.35,

where SðxÞ is the Inami-Lim function for the top-quark
contribution from the box diagram, m̄t the top-quark mass
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in M̄S scheme evaluated at m̄t scale [m̄tðm̄tÞ ¼ 0.957mt],
fBq

the Bq decay constants, and BBq
the bag factors related

to the matrix element of the corresponding ΔB ¼ 2 SM
operators.
We then computed the Wilson coefficients at the low

energy scale of orderOðmbÞ and the matrix elements of the
operators appearing in Eq. (79) at the NLO and evaluated at
the same scale, by using the results of [34], where the same
structure for the effective Hamiltonian was considered.
Following the results of [35], the present Bq-B̄q mixing
measurements imply

ReðΔdÞ ¼ 0.823þ0.143
−0.095 ; ReðΔsÞ ¼ 0.965þ0.133

−0.078 ; ð86Þ

where corresponding errors are at 1-σ level. Assuming a
constructive NP contribution to the SM result (and real η
matrices), where the NP contribution to (jReðΔdÞj − 1) is
more constrained, we require (jReðΔqÞj − 1) to lie at the
2-σ level in the following ranges:

0 ≤ jReðΔdÞj − 1 < 0.109; 0 ≤ jReðΔsÞj − 1 < 0.231:

ð87Þ

In Fig. 5, we show the effect of the Bq-B̄q mixing
constraints on BRðb → qγ̄Þ versus ξ, for the UF (left
plot) and NUF (right plot) scenarios. The light-blue areas
are the excluded ones. We focus on the Bd-B̄d mixing
constraints [which hold for the BRðb → dγ̄Þ case], since
the regions excluded by the Bs-B̄s mixing are always
outside the area allowed by DM and b → sγ constraints.
One can see that the Bd-B̄d mixing is quite effective,
disfavoring BRðb → dγ̄Þ values above 5 × 10−5 and
8 × 10−4 for the UF and NUF scenarios, respectively.

VI. THE c → uγ̄ DECAY

Here we analyze the FCNC decay c → uγ̄, following the
same approach as used for the heavier quarks. The
corresponding total width is given by Eq. (39), where i ¼
2 and j ¼ 1 for the c → u transition. We will express
BRðc → uγ̄Þ in terms of the inclusive decay rate
BRexpðc → lþXÞ ¼ 0.096%� 0.004% (with X standing
for anything) [14], by approximating Γðc → lþXÞ with the
Cabibbo-allowed tree-level c → seþνe decay width.
Then, one has

BRðc → uγ̄Þ ¼ 12BRexpðc → lþXÞ
G2

FjVcsj2m2
cf1ðzucÞ

�
1

ðΛcu
L Þ2 þ

1

ðΛcu
R Þ2

�
;

ð88Þ
where Vcs is the relevant CKM matrix element,
and zuc ¼ m2

u=m2
c, with f1ðxÞ defined by Eq. (60).

The expressions needed for Λcu
L;R ≡ ðΛU

L;RÞ21 can be found
in Eq. (29). For our numerical analysis, we use the central

value of Vcs ¼ 0.986� 0.016, extracted from the average
of the D leptonic and semileptonic decays [14].
Following the same strategy as the one described for the

top and b-quark cases, we report in Table VI the results for
the maximum allowed value of BRðc → uγ̄Þ, satisfying the
vacuum stability bounds and DM constraints, versus the
mixing parameter ξ ¼ ξU ¼ ξD ðξ ¼ ξDÞ in the UF (NUF)
scenario. These results assume Uð1ÞF charges and other
multiplicative couplings normalized to 1. In particular, in
Table VI one has ēēU2 ¼ gL;R ¼ ρ12;22L;R ¼ η12;22L;R ¼ 1, with
all other elements of flavor matrices set to zero.
Finally, in Fig. 6, we show the corresponding regions of

BRðc → qγ̄Þ values allowed by DM and vacuum stability
constraints versus the mixing parameter. The blue area
corresponds to the allowed ranges. Experimental upper
bounds on BRðc → qγÞ do not further constraint the blue
regions in this case. One can see that large values for
BRðc → qγ̄Þ are presently allowed, both in the UF (left
plot) and NUF (right plot). In particular, for unit couplings,
the UF scenario allows BRðc → qγ̄Þ’s up to (10−11–10−4),
depending on the mixing value, while the NUF scenario
allows up to (10–13–10−8).

VII. THE τ → ðμ;eÞγ̄ DECAYS

We now consider the extension of the model described in
Sec. II to the leptonic sector in order to also generate
effective lepton Yukawa couplings. Notice that we will not
include the possibility of Majorana masses neither at tree
level nor radiatively generated for the neutrino sector, and
neutrinos will be assumed to acquire only a Dirac mass
through the SM Higgs mechanism. Although one can also
radiatively generate Majorana masses in this framework,
we will not consider this possibility here.
New dark fermions will be associated to the charged

leptons and neutrinos, as occurs in the quark scenario, with a
corresponding set of color singlet messenger fields, having
the same SUð2ÞL ×Uð1ÞY quantum numbers of the ones

TABLE VI. Maximum values of BRðc → uγ̄Þ allowed by
vacuum stability and DM constraints versus the mixing parameter
ξ ¼ ξU ¼ ξD and ξ ¼ ξD, in the UF and NUF scenarios,
respectively. Results are in unit of couplings, that is they assume
ēēU2 ¼ gL;R ¼ ρ12;22L;R ¼ η12;22L;R ¼ 1, with all other elements of
flavor matrices set to zero.

ξ BRmax
UF ðc → uγ̄Þ BRmax

NUFðc → uγ̄Þ
0.1 1.0 × 10−11 2.9 × 10−13

0.2 1.6 × 10−10 4.9 × 10−12

0.3 8.5 × 10−10 2.8 × 10−11

0.5 8.1 × 10−9 3.8 × 10−10

0.7 5.3 × 10−8 5.1 × 10−9

0.8 1.6 × 10−7 2.9 × 10−8

0.9 7.5 × 10−7 4.9 × 10−7

0.95 3.2 × 10−6 7.7 × 10−6
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related to the lepton sector.Moreover, in order to generate the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [36] lepton
mixing matrix, we will generalize the mechanism described
in Sec. II 3 for the origin of the CKM matrix to the leptonic
sector. The induced PMNS matrix will be also unitary, since
we will not include any seesaw mechanism.
The generalization to the leptonic sector of the inter-

action Lagrangian in Eq. (19) is straightforward, consisting
just in the substitution of quark messenger and dark-
fermion fields by the corresponding ones in the leptonic
sector. We then just provide the notation for the new flavor
mixing matrices in the leptonic sector. In particular, after
rotating the lepton fields to the mass-eigenstate basis, new
flavor matrices ~ρ; ~η will appear in the leptonic Lagrangian
corresponding to Eq. (19), where

ρL;R → ~ρL;R

ηL;R → ~ηL;R: ð89Þ

In this framework, we first analyze the flavor-violating
tau lepton decays

τ → lγ̄; ð90Þ

where l ¼ μ, e7 The corresponding decay width can be
inferred by Eq. (39), with i ¼ 3 and j ¼ 2, 1 for the l ¼ μ,
e transitions, respectively. The Λτμ

L;R and Λτe
L;R expressions

can be obtained from ðΛD
L;RÞ32 and ðΛD

L;RÞ31 as defined in
Eq. (30), where the quark masses in the down sector mDi

,
the dark-quark masses MQU;D

i
, and average messenger

masses m̄U;D are replaced by the corresponding ones in

the leptonic sector, namely mEi
, MLU;D

i
, m̄U;D

L , respectively.

In Eq. (30), one then makes the replacements ðxD3 ; ξDÞ →
ðxL3 ; ξLÞ, where xL3 ≡ ðMLD

3
=m̄D

L Þ2, and gL;R → ḡL;R, where
ḡL;R are the relevant couplings in the leptonic sector. As for
the flavor matrices, Eq. (89) applies.
We can now express BRðτ → lγ̄Þ by normalizing it to

BRexpðτ → ντν̄μμÞ ¼ 17.41%� 0.04% [14], assuming the
following τ → μντν̄μ tree-level decay width

Γτ
0 ¼

G2
Fm

5
τ

192π3
f1ðzμτÞ; ð91Þ

where the function f1ðxÞ is defined just after Eq. (60), and
zμτ ¼ m2

μ=m2
τ . Then, one obtains

BRðτ → lγ̄Þ ¼ 12BRexp
τ→ντν̄μμ

G2
Fm

2
τf1ðzμτÞ

�
1

ðΛτl
L Þ2 þ

1

ðΛτl
R Þ2

�
: ð92Þ

We will restrict to the UF scenario, where the average
messenger masses for the up and down SUð2ÞL messenger
fields in the leptonic sector are assumed to be the same,
namely m̄U

L ¼ m̄D
L ≡ m̄L. Moreover, in Λτl

L;R wewill neglect
the terms proportional to ḡ2L=ð16π2Þ [cf. Eq. (30)].
Regarding the constraints coming from DM and vacuum

stability, in the leptonic sector the bounds in Eq. (49) reads

m̄L ≥ mτ

�
16π2

ḡLḡR

�
FðξLÞ; ð93Þ

where ξL is the universal mixing parameter for the leptonic
messenger masses. Then, at large ξL, one has

m̄L ≳ 1.1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξL

p
TeV: ð94Þ

FIG. 6. Allowed regions (colored areas) by DM and vacuum-stability (VS) constraints for BRðc → uγ̄Þ and for the average messenger
mass scales m̄ and m̄D versus the corresponding mixing ξ and ξD, in the UF (left) and NUF (right) scenarios, respectively. In the left
(right) plots we assume ēēU2 ¼ 1, ρ12L =ρ22L ≃ 1 (ēēD2 ¼ 1, η12L =η22L ≃ 1) with all other matrix elements of flavor matrices set to zero.

7Flavor violating τ decays into a massive neutral vector have
been considered in [37].
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The corresponding maximum allowed BRðτ → lγ̄Þ is
reported in Table VII, where all relevant couplings are
set to 1.
Radiative lepton-flavor violating (LFV) decays

τ− → l−γ, with l ¼ μ, e, indirectly constrain τ decays
into dark photons. The present experimental upper bounds
at 90% C.L. are [38]

BRðτ− → e−γÞ < 3.3 × 10−8;

BRðτ− → μ−γÞ < 4.4 × 10−8: ð95Þ

The SM contribution to the LFV τ → lγ decays is
negligible, due to the GIM suppression and tiny neutrino
masses, even accounting for the PMNS matrix. However,
the NP contribution could be potentially quite large. In the
present scenario the corresponding prediction is

BRðτ → lγÞ ¼ 12BRexp
τ→ντν̄μμ

G2
Fm

2
τf1ðzμτÞ

�
1

ðΛ̄τl
L Þ2 þ

1

ðΛ̄τl
R Þ2

�
; ð96Þ

where the expressions for Λ̄τl
L;R can be derived from the

general formulas in the Appendix, by replacing the ηL;R
matrices according to Eq. (89), and the variables ðxD3 ; ξDÞ
by ðxL3 ; ξLÞ.
As discussed above for b decays, a characteristic

effective messenger mass scale 1=ðm̄32
L Þ2 given by

m̄32
L ≡ m̄L

ffiffiffiffiffiffiffiffiffiffi				 ~η33L
~ηj3L

				
s

; ð97Þ

with j ¼ 2 and 1 for μ and e final states, respectively,
factorizes in both τ → lγ and τ → lγ̄ BR’s. Then, the
bounds in Eq. (95) can be straightforwardly converted into
lower bounds on the effective mass scale m̄32

L

m̄32
L >

�
96παBRexp

τ→ντν̄μμ

BRmax
lγ G2

Ff1ðzμτÞ
�1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̄LRðxL3 ; ξLÞ
q

; ð98Þ

where BRmax
lγ ≡ 4.4ð3.3Þ × 10−8 for l ¼ μðeÞ.

In Fig. 7 we plot the excluded regions for m̄32
L corre-

sponding to the constraint in Eq. (98) versus xL3 and for
some values of the mixing parameter ξL. One can see that
the constraints depend on xL3 , with m̄32

L ≲ ð6.7–11.3Þ TeV
in the region xL3 < 1 − ξL, for ξL ≳ 0.1.
Analogous results for the constraints from τ → eγ can be

simply rescaled from the ones in Fig. 7, by using the
corresponding upper bound in Eq. (95).
As we can see from the results in Fig. 7, the constraints

from τ → μγ or τ → eγ on the effective scale m̄32
L are a

more relaxed than the corresponding ones from b → sγ, for
same values of xD3 ; ξD and xL3 ; ξL (see Fig. 4 for compari-
son). The reason is that the b → sγ decay gets the main
contribution from the SM, and the constraints apply mainly
on the interference between the SM and NP amplitude. On
the other hand, for the τ → lγ decay, the SM contribution is
negligible, and the constraints apply directly on the new
physics contributions to the amplitude squared.
Now, we combine the constraints from τ → lγ decay

with the corresponding ones from DM and vacuum
stability. If we compare the values of m̄min

L in Table VII
with the excluded regions in Fig. 7, we can see that no
significant upper limits on the mixing matrices ~ηL;R can be
set at small mixing, since the lower bounds from DM
constraints on the average mass m̄L are always above the
regions excluded by experimental constraints on
BRðτ → lγÞ. On the other hand, for large mixing, the
DM constraints are relaxed, and we obtain for example

TABLE VII. Maximum values of BRðτ → lγ̄Þ allowed by
vacuum stability and DM constraints in the UF scenario for
the leptonic sector, corresponding to the minimum allowed
average mass m̄min

L , and to the lightest universal messenger mass
eigenvalue mmin

L−
¼ m̄min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξL

p
versus the mixing parameter ξL.

Results are in unit of couplings, that is they assume
ēēL3 ¼ ḡL;R ¼ ~η33;13;23L;R ¼ 1, with all other elements of flavor
matrices set to zero. BR’s corresponding to values of ξL ≳ 0.2
might be excluded at 90% C.L. by direct constraints on
BRðτ → lγÞ (see text).

ξL BRmaxðτ → lγ̄Þ m̄min
L ½TeV� mmin

L−
½TeV�

0.05 2.3 × 10−7 11 11
0.1 3.8 × 10−6 5.7 5.4
0.2 6.9 × 10−5 2.9 2.6
(0.3) 4.1 × 10−4 1.9 1.6
(0.4) 1.6 × 10−3 1.4 1.1
(0.5) 5.2 × 10−3 1.1 0.8

FIG. 7. Regions allowed by constraints on BRðτ → μγÞ at
90% C.L. (represented by superimposed colored areas), for the
effective messenger mass scale m̄32

L defined in Eq. (97), as a
function of xL3 and for several values of the mixing ξL parameter.
Regions xL3 > 1 − ξL are excluded by DM constraints.
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				 ~η23L~η33L
				 < 1.3 × 10−2

�
m̄L

870 GeV

�
2

; for ξL ¼ 0.6;

				 ~η23L~η33L
				 < 2.7 × 10−3

�
m̄L

360 GeV

�
2

; for ξL ¼ 0.9: ð99Þ

Finally, we give below the upper bounds on BRðτ → lγ̄Þ
which satisfy the τ → lγ constraints. In particular, for small
and large mixing values we get

(i) for ξL ¼ 0.1 and xL3 ¼ 0.8 (small-mixing regime)

BRðτ→μγÞðτ → μγ̄Þ < 2.6 × 10−6
�

ᾱ

0.1

�
; ð100Þ

BRðτ→eγÞðτ → eγ̄Þ < 2.0 × 10−6
�

ᾱ

0.1

�
; ð101Þ

(ii) for ξL ¼ 0.8 and xL3 ¼ 0.1 (large-mixing regime)

BRðτ→μγÞðτ → μγ̄Þ < 5.1 × 10−6
�

ᾱ

0.1

�
; ð102Þ

BRðτ→eγÞðτ → eγ̄Þ < 3.8 × 10−6
�

ᾱ

0.1

�
: ð103Þ

In Fig. 8 (left plot), we show the resulting BRðτ → lγ̄Þ
expectations versus mixing, in the UF scenario. The blue
area corresponds to the allowed ranges, while the red area
selects the subregions excluded by the BRðτ → μγÞ
bounds. One can see that, for ēēL3 ¼ 1, ~ηj3L =~η

33
L ¼ 10−2

(with j ¼ 1, 2), BRðτ → lγ̄Þ’s up to (10−10 − 10−6Þ are
allowed, depending on mixing.

VIII. THE μ → eγ̄ DECAY

Here we analyze the radiative LFV muon decay

μ → eγ̄; ð104Þ
following the analysis done for the LFV τ decay into a dark
photon. As for the τ lepton, the corresponding BR can be
parametrized in terms of the tree-level BRðμ → νμν̄eeÞ, as
follows:

BRðμ → eγ̄Þ ¼ 12BRexp
μ→νμν̄ee

G2
Fm

2
μf1ðzeμÞ

�
1

ðΛμe
L Þ2 þ

1

ðΛμe
R Þ2

�
; ð105Þ

where notations are defined in the previous section, and
BRexpðμ → νμν̄eeÞ≃ 100% [14]. As in Eq. (97), we define
an effective messenger mass m̄21

L given by

m̄21
L ≡ m̄L

ffiffiffiffiffiffiffiffiffiffi				 ~η22L~η12L
				

s
; ð106Þ

which factorizes in the BR if we require the L − R
symmetry by assuming ḡL ¼ ḡR. The maximum allowed
BRðμ → eγ̄Þ by DM and vacuum stability constraints are
reported in Fig. 8 (right plot), where we also report the
constraints due to the LFV μ → eγ decay. The present
experimental upper bound at 90% C.L. has been recently
obtained by the MEG experiment at the Paul Scherrer
Institute [39]

BRexpðμ → eγÞ < 4.2 × 10−13: ð107Þ
As in the τ-lepton case, the SM contribution to the μ → eγ
decay rate is negligible, due to the GIM suppression and

FIG. 8. Regions allowed by DM and vacuum stability (VS) constraints for BRðτ → lγ̄Þ (left) and BRðμ → eγ̄Þ (right), and for the
average messenger mass scale m̄L versus the mixing ξL, in the UF scenario (blue areas). Superimposed red areas are the subregions
excluded by direct constraints on BRðl → l0γÞ. In the left (right) plot, we assume ēēL3 ¼ 1, ~ηj3L =~η

33
L ¼ 10−2 (ēēL3 ¼ 1, ~η12L =~η22L ¼ 10−4),

with j ¼ 1, 2.
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tiny neutrino masses. Then, the upper bound in Eq. (107)
can constrain the effective scale m̄21

L defined above.
In particular, one has

m̄21
L >

�
96παBRexp

μ→νμν̄ee

BRmax
μγ G2

Ff1ðzeμÞ
�1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̄LRðxL2 ; ξLÞ
q

; ð108Þ

where BRmax
μγ ≡ 4.2 × 10−13, and one can assume

xL2 ≃ ðme
mμ
Þ2xL3 . Results are reported in Fig. 9, where we

plotted m̄21
L versus xL3 . One can see that the constraints have

a weak dependence on xL3 , with m̄21
L ≲ ð308–313Þ TeV in

the region xL3 < 1 − ξL, for ξL ≳ 0.1. Indeed, since
xL2 ≃ ðme

mμ
Þ2xL3 ≪ 1, the xL2 dependence of BR is almost flat

in the range xL2 ≪ 1, due to the absence of logðxÞ infrared
singularities for x → 0 in F̄LRðx; ξÞ.
By combining DM constraints on m̄L with the ones from

μ → eγ, considering the m̄L lower bound from DM and
vacuum stability for a few values of ξL, we get

				 ~η12L~η22L
				 < 3.4 × 10−4

�
m̄L

5.7 TeV

�
2

; for ξL ¼ 0.1;

				 ~η12L~η22L
				 < 1.2 × 10−5

�
m̄L

1.1 TeV

�
2

; for ξL ¼ 0.5;

				 ~η12L~η22L
				 < 1.3 × 10−6

�
m̄L

360 GeV

�
2

; for ξL ¼ 0.9: ð109Þ

Finally, from the μ → eγ constraints, we obtain the
following upper bounds

(i) for ξL ¼ 0.1 and xL3 ¼ 0.8 (small-mixing regime)

BRðμ→eγÞðμ → eγ̄Þ < 3.9 × 10−10
�

ᾱ

0.1

�
; ð110Þ

(ii) for ξL ¼ 0.8 and xL3 ¼ 0.1 (large-mixing regime)

BRðμ→eγÞðμ → eγ̄Þ < 6.2 × 10−10
�

ᾱ

0.1

�
: ð111Þ

In Fig. 8 (right plot), we show the resulting BRðμ → eγ̄Þ
expectations versus mixing, in the UF scenario. As before,
the blue area corresponds to the allowed ranges, while
the superimposed red area selects the regions excluded
by the BRðμ → eγÞ bounds. One can see that, for ēēL3 ¼ 1,
~η12L =~η22L ¼ 10−4, BRðμ → eγ̄Þ’s up to (10−11 − 10−10Þ are
allowed.

IX. CONCLUSIONS

We have studied the FCNC decays of SM fermions into a
dark photon, f → f0γ̄, as foreseen by NP models with an
extra unbroken Uð1Þ gauge group, acting on both a dark
sector and a messenger sector, whose dynamics could
explain the observed Yukawa coupling hierarchy. Model-
dependent predictions for the corresponding BR’s have
been worked out, based on constraints given by DM
abundance, vacuum stability, present nonobservation of
non-SM states at the LHC, and bounds on the related
radiative f → f0γ decay rates.
We have found that large and possibly measurable BR’s

are allowed in most cases. In particular, for typical coupling
strengths, predicted BRðf → f0γ̄Þ’s reach ∼ð10−10–10−7Þ
for the decays of top-quark, ∼ð10−4–10−3Þ for the b-quark,
∼ð10−8–10−4Þ for the c-quark, ∼ð10−10–10−6Þ for the τ-
lepton, and ∼ð10−11–10−10Þ for the μ-lepton, depending on
the mixing parameters and on the flavor-universality
structure of the NP sector.
Most importantly, such decay channels are characterized

by new peculiar two-body signatures, where a final SM
fermion is balanced by a massless invisible (ν-like) system.
The latter could be looked for at present and future colliders
through dedicated searches, with high potential for either
excluding large regions of the model parameter space or
discovering a NP signal.
For instance, large FCNC tqγ̄ couplings might give rise

to new signatures associated to top-quark production in
high-energy collisions. Indeed, top-pair production at
hadron colliders could be an ideal laboratory where to
search for two-body mt resonances made up of a mono-
chromatic jet and ν-like missing energy/momentum asso-
ciated to the undetected dark photon in the t → qγ̄ final
state, where Ejet ∼ Emiss ∼mt=2 in the top c.m. system.
An even more striking signature would correspond to the

partonic qg → tγ̄ scattering, occurring via an s-channel
u−; c-quark exchange. In this case a single top-quark

FIG. 9. Regions allowed by μ → eγ constraints at 90% C.L.
(represented by superimposed colored areas), for the effective
messenger mass scale m̄21

L defined in Eq. (106), as a function of
xL3 and for different values of the mixing ξL. Regions xL3 > 1 − ξL
are excluded by DM constraints.
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system with unbalanced momentum would be associated to
a massless invisible system. Such peculiar and clean
collider top-quark signatures are not present in the SM,
and possible backgrounds may arise only from particle and
jet mismeasurements. Based on the BR upper bounds
reported above, searches for FCNC top couplings to stable
dark photons might indeed be explorable at future hadron
colliders, like the FCC-hh, where a statistics of about 1012

top pairs could be available [18]. Note that the ðtþ EmissÞ
final states are presently considered by LHC experiments in
NP searches for massive invisible systems [40,41].
As far as lighter flavors are concerned, the scenario looks

even more promising. Huge and measurable values for
BRðb → qγ̄Þ, where q ¼ s, d, are presently allowed.
Experimentally, as in the top-quark case, the b → qγ̄ is
characterized by a peculiar signature, where the invisible
massless dark photon equally shares the initial b-hadron
energy and momentum with an s- or d-initiated hadronic
system. While hadron colliders are not the ideal place
where to reconstruct such features, electron-positron B
factories [42] can offer the clean collision environment
needed to control the invisible-system kinematical charac-
teristics. An even better control could be available at future
Z factories (as possibly foreseen at the ILC [43], the
FCC-ee [44], and the CEPC [45], running at the Z peak),
where the large boost of the b hadrons could help in
disentangling the invisible dark photon with high accuracy.
Similar features are shared by potentially measurable

charm, tau, and muon decay rates into a dark photon, which
can also be naturally scrutinized in eþe− collisionswith large
integrated luminosities. In particular, at the FCC-ee running
on the Z peak, clean samples ofOð1011–1012Þ heavy-quark
and lepton pairs of each given flavor from Z → ff̄ could be
available [46], that, in absence ofmajor systematics, could be
sensitive to BR’s into dark photons down to Oð10−10Þ.
Dedicated studies will be needed to accurately assess the
actual sensitivity of present and future experiments to the
FCNC and LFV fermion decay channels into a stable dark
photon, naturally predicted in the theoretical NP framework
considered in the present analysis.
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APPENDIX: CONTRIBUTIONS TO THE f → f 0γ
AMPLITUDES

Here we present the analytical expressions for the NP
contributions to the generic FCNC radiative decay ampli-
tude corresponding to the process

fi → fjγ; ðA1Þ

where γ stands for a SM photon, and the indices i, j (i > j,
with i ¼ 3 for the heaviest generation) both run on the
fermion families either in the up or in the down SUð2ÞL
sector. The Feynman diagrams contributing to this process
are given by the diagrams (b) and (d) in Fig. 2, plus the
usual flavor-changing self-energy (FCSE) contributions,
that we do not show here. The FCSE graphs are required by
gauge invariance, although not contributing to the fi → fjγ
decay amplitude for an on shell photon, being the latter
proportional to a flavor-changing magnetic-dipole operator.
The fi → fjγ amplitude, for different L=R chirality states,
has the same structure as Eq. (28) for the fi → fjγ̄
amplitude, namely

MðfiL → fjRγÞ ¼
1

Λ̄f
L

½ūjRσαμuiL�qμϵα;

MðfiR → fjLγ̄Þ ¼
1

Λ̄f
R

½ūjLσαμuiR�qμϵα; ðA2Þ

where ϵα is the photon polarization vector. In the low
energy approximation, the mass scales Λ̄f

L;R do not depend
on external momenta and can be worked out by matching
the amplitude in Eq. (A2) with the result of the full
computation in the low energy limit. We neglect terms
suppressed by loop factors and provide only the contribu-
tions proportional to the product gLgR. Then, similarly to
Eqs. (29)–(30) (with a different loop function), we obtain
for the up quark sector

1

ðΛ̄U
L Þij

¼ mU
i

m̄2
U

�
eeUi

ρjiR
ρiiR

F̄LRðxUi ; ξUÞ
�
; ðA3Þ

1

ðΛ̄U
R Þij

¼ mU
i

m̄2
U

�
eeUi

ρjiL
ρiiL

F̄RLðxUi ; ξUÞ
�
; ðA4Þ

and for the down quark sector

1

ðΛ̄D
L Þij

¼ mD
i

m̄2
D

�
eeDi

ηjiR
ηiiR

F̄LRðxDi ; ξDÞ
�
; ðA5Þ

1

ðΛ̄D
R Þij

¼ mD
i

m̄2
D

�
eeDi

ηjiL
ηiiL

F̄RLðxDi ; ξDÞ
�
; ðA6Þ

where eUðDÞ
i are the EM charges of SM fermions in the up

(down) sector, in unit of the EM charge e. The loop
function F̄RLðx; ξÞ is given by

F̄LRðx; ξÞ ¼ F̄RLðx; ξÞ ¼
f̄2ðx; ξÞ
f1ðx; ξÞ

; ðA7Þ
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where f1ðx; ξÞ is defined in Eq. (18), and f̄2ðx; ξÞ is given by

f̄2ðx; ξÞ ¼
1

2ξ

�ð1þ ξÞ2 − x2 þ 2xð1þ ξÞ logð x
1þξÞ

2ðx − 1 − ξÞ3 − fξ → −ξg
�
: ðA8Þ

In particular, the limits at small and large mixing are, respectively,

lim
ξ→0

F̄LRðx; ξÞ ¼ lim
ξ→0

F̄RLðx; ξÞ ¼
1þ 4x − 5x2 þ 2xð2þ xÞ log x

4ð1 − xÞ2ð1 − xþ x log xÞ ; ðA9Þ

lim
ξ→1

F̄LRðx; ξÞ ¼ lim
ξ→1

F̄RLðx; ξÞ ¼
ð1 − xÞ2ð4 − 8xþ 3x2 − 2x2 log x

2
Þ

4xð2 − xÞ3ð1 − xþ x log xÞ :

ðA10Þ
Contrary to the dark-photon loop function FLRðx; ξÞ in Eq. (32), the F̄LRðx; ξÞ expansion at ξ ∼ 1 in Eq. (A10) does not
present logð1 − ξÞ singularities at the denominator.
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