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Inflation occurring at energy densities less than ð1014 GeVÞ4 produces tensor perturbations too small to
be measured by cosmological surveys. However, we show that it is possible to probe low scale inflation by
measuring the mass of the inflaton in low energy experiments. Detection prospects and cosmological
constraints are determined for low scale quartic hilltop models of inflation paired with a curvaton field,
which imprints the spectrum of scalar perturbations observed in large scale structure and on the cosmic
microwave background. With cosmological constraints applied, low scale quartic inflation at energies
GeV–PeV can be mapped to a MeV–TeV mass inflaton resonance, discoverable through a Higgs portal
coupling at upcoming collider and meson decay experiments. It is demonstrated that low scale inflatons can
have detectably large couplings to Standard Model particles through a Higgs portal, permitting prompt
reheating after inflation, without spoiling, through radiative corrections to the inflaton’s self-coupling, the
necessary flatness of a low scale inflationary potential. A characteristic particle spectrum for a quartic
inflaton-curvaton pair is identified: to within an order of magnitude, the mass of the curvaton can be
predicted from the mass of the inflaton, and vice versa. Low scale inflation Higgs portal sensitivity targets
are found for experiments like the LHC, SHiP, BEPC, and KEKB.
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I. INTRODUCTION

Cosmic inflation describes the initialization of our
observable Universe with remarkably simple elements
[1–5]. A scalar inflaton field rolling down its potential is
stalled by Hubble friction, so that a ubiquitous negative
pressure drives a rapid e20–e60 (20–60 e-fold) increase in
the physical distance between spatial points in the
Universe. While it rolls down its potential, quantum
fluctuations of the inflaton source primordial perturbations,
whose amplitude is determined by how dense the energy is
during inflation and how fast the inflaton rolls.
Inflationary scalar and tensor perturbations give rise to

correlated variations in the primordial plasma of our
expanding Universe, which eventually manifest as large
scale inhomogeneities. The amplitudes of the scalar and
tensor power spectrum of these inhomogeneities are given
by the dimensionless quantities As and At respectively [6].
Over the preceding decades, measurements of the cosmic
microwave background (CMB) and large scale structure
have revealed a scalar power spectrum of amplitude
A�
s ¼ ð2.206� 0.076Þ × 10−9, with perturbations slightly

diminishing over smaller distances, n�s ¼ 0.968� 0.006,
where n�s − 1≡ d logA�

s=d log k [6,7]. (Quantities with “�”
attached are evaluated at an experimentally determined
pivot scale. In this paper the Planck Collaboration’s pivot
scale is used, k� ¼ 0.05

Mpc.)
On the other hand, the size of primordial tensor pertur-

bations has only been bounded from above, and as this
bound tightens, so does the bound on the maximum

energy scale at which inflation occurred. This is because
the energy scale of slow-roll inflation can be directly
inferred from the size of the tensor power spectrum,
A�
t ≃ 2V�=3π2M4

p, where V� is the energy density during

inflation and Mp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
is the reduced Planck mass.

The energy scale during slow-roll inflation is often
expressed as a combination of the scalar and tensor power
spectra (r≡ At=As),

V1=4
� ¼

�
3π2M4

pA�
sr�

2

�
1=4

≃ 1.70 × 1016 GeV

�
r�
0.07

�
1=4

;

ð1Þ

where this expression has been normalized to the 95% con-
fidence bound on r� reported in [8].
Remarkably, the observation of primordial tensor per-

turbations could provide some guidance for theories of
quantum gravity. A relation known as the Lyth bound
indicates that for r� ≳ 10−1, the inflaton traversed a field
range greater than Mp [9–14]. A super-Planckian inflaton
field range (a.k.a. large field inflation) indicates that the
underlying theory of inflation must, with some symmetry
or fixing of parameters, suppress nonrenormalizable oper-
ators like “ϕ6=Λ2,” that otherwise render the theory non-
perturbative for all Λ < Mp. On the other hand, models of
inflation with a sub-Planckian inflaton field range (small
field inflation) have the advantage of being describable
with a low energy effective field theory. Another reasonable
objection to large field inflation is that many theories
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predict axions, either as a solution to the strong CP
problem [15] or as a facet of extra dimensions [16].
Large field inflation often leads to an overabundance of
axion dark matter and observationally excluded axion
isocurvature fluctuations [17–19].
Setting aside theoretical considerations, the bound on

tensor perturbations given in Eq. (1) has already substan-
tially limited viable models of large field inflation. For
example, the simple large field potential, VðϕÞ ¼ m2ϕ2,
already lies well outside the 2σ bound set by BICEP and
Keck [8]. However some well-known large field models
with nonstandard gravitational couplings, most notably
Starobinsky and nonminimally coupled Higgs inflation
[2,20], could still be found by future astrophysical searches
for tensor perturbations.
But a future measurement of tensor perturbations

is not guaranteed. The only firm constraint on the infla-
tionary energy density V� is that it must exceed the energy
density required for big bang nucleosynthesis V1=4

� ≳
10 MeV [21–23]. Thus inflation could have occurred at
energies ranging over V1=4

� ∼ 0.01–1016 GeV, correspond-
ing to r� ∼ 10−74–10−1. Planned experiments such as
PIXIE and LiteBIRD may probe down to r� ∼ 10−3, or
equivalently V1=4

� ∼ 5 × 1015 GeV [24,25]. But it will be
challenging for future cosmological experiments to probe
much below this, since the intrinsic B-mode polarization of
the CMB in our Universe has size r� ∼ 10−7, caused by
density nonlinearities present at recombination, which
provide an irreducible background [26–30].
In summary, axion cosmology and an increasingly tight

upper bound on the energy scale of inflation point towards
low scale inflation. But low scale inflation cannot be
confirmed by astrophysical searches for primordial tensor
perturbations. Therefore, it is imperative to find nonastro-
physical methods to uncover low scale inflation, including
terrestrial searches for scalar resonances.

A. Finding low scale inflation at low energy experiments

To begin unmasking the realm of low scale inflation, this
paper shows that particle colliders and meson factories are
already poised to probe inflation when V1=4

� ≪ 1015 GeV.
This study will focus on a simple case, where the inflaton’s
dynamics during inflation are determined by a single
polynomial term in the Lagrangian (“single-term domi-
nated”), and find that small field quartic hilltop inflation
arising from a Z2-symmetric scalar potential can be
discovered through a Higgs portal coupling at upcoming
experiments like SuperKEKB, SHiP, and the LHC.
Specifically, the following single-term-dominated hilltop
potential is considered,

V ¼ V0 −
λϕ
4
ϕ4 þ ϕ6

Λ2
þ VðσÞ; ð2Þ

where ϕ is the inflaton field; V0 is a constant energy density;
and VðσÞ is the potential of any other scalar fields, sub-
dominant during inflation, that we address shortly. Hilltop
inflation begins with ϕ having a small field value ϕ�, then
rolling to its minimum at a larger field value, ϕmin, thereby
diminishing the vacuum energy of the Universe, i.e. cancel-
ing V0. For the hilltop potential in Eq. (2), a small, negative
quartic self-coupling results in a very flat potential around

ϕ ∼ 0, permitting slow-roll inflation. The ϕ6

Λ2 term is a
nonrenormalizable effective operator, which stabilizes the
potential at its minimum, so that VðϕminÞ≃ 0. Broadly
speaking, hilltop inflation captures the dynamics of many
models, in which the inflaton rolls to a large field value [10].
While a small initial field value (ϕ�) and a small self-

coupling (λϕ ∼ 10−13) permit slow-roll inflation, making
either ϕ� or λϕ too small can result in inflaton perturbations
that are too large. On the other hand, making ϕ� or λϕ too
large results in too short an epoch of inflation. These
competing considerations, along with methodical compu-
tations of the power spectrum, reveal that single-term-
dominated small field hilltop potentials cannot both inflate
the Universe and produce the perturbations observed in the
CMB. Therefore, for single-term hilltop inflation, a second
“curvaton” field with potential VðσÞ can produce the
observed CMB perturbations [31–34].
A curvaton is a second scalar field displaced from the

minimum of its potential during inflation, which rolls to its
minimum and decays after the inflaton. Perturbations to the
curvaton’s field value during ϕ-driven inflation become the
predominant primordial perturbations in the Universe, so
long as the curvaton’s energy density is the predominant
energy density in the Universe when it decays. One simple
possibility explored in this study is that the curvaton has a
quartic hilltop potential with the same form as the inflaton,
but with a smaller quartic self-coupling. A schematic
diagram of quartic hilltop inflation with a quartic hilltop
curvaton is given in Fig. 1.
Some of this study’s findings can be summarized:
(i) For the inflaton potential in Eq. (2), simply mandat-

ing ∼20–40 e-folds of inflation, sufficiently small
scalar primordial perturbations (Pζϕ ≲ 2.2 × 10−9),1

and a sub-Planckian cutoff Λ < Mp creates a pre-
dictive map between the energy scale of inflation
and the mass of the inflaton at its minimum. For
example, V1=4

� ∼ TeV scale inflation corresponds to
an inflaton scalar resonance mϕ ∼ 30 MeV–1 GeV.

(ii) Low scale inflation can be detectably coupled to
Standard Model particles through a Higgs portal
operator (λϕhϕ2jΦj2), without upsetting the flatness
of the inflaton’s potential. A low scale inflaton’s
self-couplings must be tiny to provide a potential flat

1For a curvaton cosmology, the inflaton must produce pri-
mordial perturbations smaller than those observed [35,36].
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enough for inflation, λϕ ≲ 10−13, which means that
any Higgs portal coupling must be small,
λϕh ≲ 10−6, or else spoil the inflaton’s self-coupling
through radiative corrections. However, because the
vacuum expectation value (VEV) of a quartic hilltop
inflaton at its minimum is 103–109 GeV, and Higgs-
inflaton mixing scales with the inflaton VEV,
sin θϕ ∝ λϕhvϕ, this permits sin θϕ ∼ 0.1.

(iii) Using a quartic curvaton potential and requiring
that the curvaton generate the observed scalar
perturbation spectrum fixes the curvaton quartic self-
coupling to 1.9 × 10−14 ≤ λσ ≤ 6.9 × 10−14 (for the
1σ measured values of n�s and A�

s in [6]). Using this,
and with the inflaton mass specified, the lighter
curvaton mass can be predicted (and vice versa).
Similarly, the decay width of the inflaton sets an
upper bound on the decay width of the curvaton, and
the curvaton decay width sets a lower bound on the
inflaton decay width. Therefore, searches for scalars
across a range of masses at experiments like the
LHC, SHiP, SuperKEKB, BEPC II, and BABAR
could identify an inflaton-curvaton pair.

Note that it has been appreciated in many contexts that
small field inflation requires an extremely flat potential, and
as a consequence is naively fine-tuned (e.g. Refs. [37–41]).
For Eq. (2), this manifests as the requirement that the
inflaton’s quadratic term is negligible during inflation. This

study does not seek amelioration of small field fine-tuning,
with additional symmetries or a UV theory. However, note
that the requirement m2ϕ2� ≪ V� in small field inflation
might be compared to the requirement ϕ6�=Λ2 ≪ V� in
models of large field inflation, for which ϕ� ≳Mp.
Altogether, this paper demonstrates that low scale inflation

can beprobedby lowenergy experiments. Someprior studies
have developed similar links between high scale inflation and
low energy experiments, in the context of either the Higgs
boson or another scalar nonminimally coupled to gravity
[42,43], as well as Ref. [44], determining LHC bounds on
supersymmetric low scale inflation.
The remainder of this paper proceeds as follows. In

Sec. II a simplified low scale quartic model of inflation is
introduced, and it is shown that once cosmological con-
straints are applied, there exists a map between the scale of
inflation and the inflaton’s mass at its minimum. Section III
further constrains the inflaton potential, such that the
cosmological epochs of inflation, reheating, radiation,
and matter-dominated expansion match observations.
(Results in Secs. II–III apply with or without a curvaton
model.) Section IV studies a quartic curvaton that produces
the observed primordial perturbations and identifies viable
reheating epochs for a low scale quartic inflaton-curvaton
pair, in terms of the average equation of state during
reheating (wre) and temperature at the end of reheating
(Tre). Section V demonstrates how prior sections can be
used to determine an inflaton-curvaton particle spectrum.
General prospects for finding low scale inflation through a
Higgs portal at colliders and meson factories, and in
particular signatures of an inflaton-curvaton spectrum,
are explored in Sec. VI. In Sec. VII, conclusions are
presented. Appendix A discusses the fundamentals, fea-
sibility, and fine-tuning of a variety of small field models,
especially small field quartic inflation. Appendix B details
the Higgs portal parametrization used in this paper.

II. LOW SCALE QUARTIC HILLTOP INFLATION

Inflation occurs when in some region of spacetime,
ä > 0, where a is the scale factor of the universe2 and
· ≡ d=dt. “Slow-roll” inflation occurs when, uniformly
within a Hubble horizon, defined as H ≡ _a=a, a scalar
field is slowly rolling down its potential VðϕÞ, such that
the slow-roll parameters ϵ and η each are much less than

unity, that is ϵ≡ − _H
H2 ≃ M2

p

2
ðVϕ

V Þ2 ≪ 1, jηj≡M2
pj Vϕϕ

V j ≤ 1,

Vϕ ¼ dV
dϕ, and Vϕϕ ¼ d2V

dϕ2. For an introduction to inflation,

see e.g. [45,46].
This study considers the small field quartic hilltop

potential,

minimum, decays

*

*

III. Curvaton rolls to 
minimum, oscillates, 

decays

slowly until 

V

,

V0

V0

Ib. Curvaton 

FIG. 1. Schematic showing inflation driven by a hilltop
inflaton, with primordial perturbations provided by a hilltop
curvaton. (Ia and Ib): While the inflaton field ϕ slowly rolls to its
minimum, the curvaton field is perturbed by de Sitter vacuum
fluctuations δσ ∼H=2π, where H is the Hubble constant during
inflation. (II): The inflaton field rolls to its minimum and decays.
(III): Sometime later, when the curvaton energy density is the
predominant energy density in the Universe, the curvaton decays.
V0 and V0σ are the change in potential energy of the inflaton and
curvaton, respectively. In viable parameter space studied here,
V0σ ≪ V0.

2Formally, a is the relative scale of spacelike hypersurfaces,
cf. the Friedmann–Lemaître–Robertson–Walker metric, ds2 ¼
dt2 − a2ðtÞdx2.
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V ¼ V0 −
λϕ
4
ϕ4 þ ϕ6

Λ2
þ VðσÞ; ð3Þ

where the effective operator ϕ
6

Λ2 in this potential is negligible
during inflation, but is responsible for stabilizing the
potential at large field values. The enforcement of the
requirement that vacuum energy shut off at the minimum of
the potential, for an effective operator with a sub-Planckian
cutoff Λ < 1019 GeV, will provide an important constraint
on the inflationary parameter space. From the standpoint of

effective field theory, a term like ϕ6

Λ2 is expected if ϕ couples
to new states with masses ∼Λ. For the sake of brevity, this
study focuses on potentials without ϕ3 and ϕ5 terms, which
are forbidden if the inflaton potential respects a Z2

symmetry. (Appendix A addresses such models.)
Throughout, this paper assumes canonical kinetic terms
for all fields.
For hilltop potentials like Eq. (3), inflation begins when

within a Hubble size patch (of radius ∼1=H), ϕ uniformly
has a small field value, that is close to zero. This is a
circumstance which might occur subsequent to a phase
transition.3 With a uniform field value set, the inflaton
slowly rolls down its potential until ϵ ∼ 1, at which point
inflation ends. See Fig. 1 for a schematic illustration.
As discussed in the Introduction, there are simultaneous

requirements that the inflaton’s potential be flat enough for
inflation, but not so flat that it overproduce primordial
perturbations. A quantification of these requirements fol-
lows in this section. (Appendix A provides further dis-
cussion.) Using these quantifications, it can be shown with
a numerical survey of polynomial hilltop models that
single-term-dominated small field hilltop inflation cannot
both produce the observed spectrum of scalar primordial
perturbations and enough inflation. Therefore, Sec. IV
details how a curvaton field, with potential VðσÞ, would
produce the observed perturbations.
There is some fine-tuning associated with the small field

ϕ4 hilltop inflation potential given in Eq. (3). (Fine-tuning
is apparently generic for small field models of inflation
[38–41].) In the small field quartic hilltop model, tuning
arises because at the outset of inflation, when ϕ is close to
zero, ϕ’s mass term must be small enough not to upset the
flatness of the inflationary potential (m2

ϕ;� ≪ λϕϕ
2�).

4 In the

absence of some symmetry that forbids the mass term while
allowing the quartic, this implies a tuning dependent on the
cutoff of the theory, since the quartic term is expected to
generate a mass term at one-loop order. One might suppose
that an alternative hilltop inflation model which uses a
quadratic term, −m2ϕ2�, as the dominant term during
inflation could be constructed to be technically natural.
Appendix A surveys hilltop models and shows that terms
higher order in ϕ, necessary to stabilize such a quadratic
potential, reintroduce comparable fine-tuning, assuming an
effective field theory with a sub-Planckian cutoff.
For the inflaton potential specified in Eq. (3), constraints

from cosmology shape the allowed parameter space.
Hereafter, the requirements that inflation last for N� ∼
20–50 e-folds, that vacuum energy vanish at the minimum
of the potential Vðϕmin ∼ 0Þ, and that the inflaton not
produce perturbations larger than those in the CMB will be
used to pinpoint the mass and vacuum expectation value of
the inflaton at its minimum, for a given set of V0 and Λ.
In the slow-roll limit, for a given V0, Λ, and initial

inflaton field value ϕ�, the number of e-folds generated by
the quartic hilltop potential, when ϕ rolls from ϕ� to the end
of slow-roll inflation (ϵ ∼ 1) at ϕend, is given by

N� ≡M−2
p

Z
ϕ�

ϕend

V
Vϕ

dϕ≃ V0

2M2
pλϕ

2�
; ð4Þ

where ϕend ≫ ϕ�.
In order that VðϕÞ do not contribute to the cosmological

constant or create anti–de Sitter collapse after ϕ rolls to
its minimum, it is required of Eq. (3) that VðϕminÞ ¼ 0,
where ϕmin is the value of ϕ at the minimum of the
potential. [Given the vacuum energy observed in our
Universe, technically this requirement could be relaxed
to VðϕminÞ≲meV4, but this would not change the infla-
ton’s couplings enough to alter results.] This fixes λϕ in
terms of V0 and Λ. Specifically, VðϕminÞ ¼ 0 implies

λϕ ¼ 6

�
2V0

Λ4

�1
3

: ð5Þ

With this expression for λϕ, the number of e-folds can be
expressed in terms of V0 and Λ,

N� ≃ V
2
3

0Λ
4
3

12 · 2
1
3M2

pϕ
2�
: ð6Þ

Similarly, using Eqs. (4) and (5), the vacuum expectation
value of the inflaton at its minimum,

vϕ ¼ ð2V0Λ2Þ1=6 ≃ 5 PeV

�
V0

ðTeVÞ4
�

1=6
�

Λ
1014 GeV

�
1=3

;

ð7Þ

3Note that, in the case of a thermal phase transition, large
thermal fluctuations in ϕ might prevent ϕ from being confined to
ϕ ∼ 0. These fluctuations could be avoided by assuming another
field coupled to ϕ, tunnels to a new vacuum, thereby initiating the
phase transition. Such a phase transition would then deform the
inflaton potential from, for example, a quadratic potential to a
double-well potential.

4In this paper, mϕ denotes the mass of the inflaton at its
minimum, as determined by its quartic term and vacuum expect-
ation value. The inflaton’s quadratic term at ϕ ¼ ϕ� ∼ 0, as
determined by bare and loop contributions to its mass, is denoted
as mϕ;�.
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along with the mass of the inflaton at its minimum,

mϕ¼
ffiffiffiffiffi
12

p �
2
V0

Λ

�
1=3

≃2GeV

�
V0

ðTeVÞ4
�

1=3
�
1014GeV

Λ

�
1=3

; ð8Þ

can also be determined as a function of Λ and V0.
It should be required that the spectrum of scalar

perturbations produced by the inflaton in Eq. (3) not be
larger than that observed in the CMB (Pζϕ ≲ 2.2 × 10−9).
As detailed in Sec. IV, a curvaton is assumed to produce
the perturbations observed in the CMB. However, if
the inflaton perturbations are too large, these can be
transferred via gravitational coupling, increasing the cur-
vaton’s perturbations [35,36]. Using slow-roll formulas
for scalar primordial perturbations, ϕ’s perturbations should
be subdominant,

Pζϕ ≃ V
24π2M4

pϵ
¼ V3

0

12π2M6
pλ

2
ϕϕ

6�
≤ As: ð9Þ

In the limiting case of a Planck-scale cutoff Λ ¼
1.2 × 1019 GeV, scalar primordial perturbations are small
enough to accommodate observation so long as λϕ ≲ 10−13

and V0 ≲ 109 GeV. This is the maximum energy scale for
small field quadratic hilltop inflation, given the observed
primordial power spectrum, A�

s ≃ 2.2 × 10−9. To show this,
first, ϕ� is fixed by Eq. (6) and the requirement that
inflation last for ∼40 e-folds. Then ϕ� is substituted into
Eq. (9), and the relation of Eq. (5) is incorporated.
Altogether, the requirements of sufficient e-folds, a small
enough primordial power spectrum, and vanishing of the
inflaton’s potential energy at its minimum imply

λϕ ≤ 5.1 × 10−13
�

Pζϕ

2.2 × 10−9

��
40

N�

�
3

; ð10Þ

which can be recast as a bound on Λ and V0 with Eq. (5),

V1=4
0 ≤ 1.3 × 10−10Λ

�
Pζϕ

2.2 × 10−9

�
3=4
�
40

N�

�
9=4

: ð11Þ

In Fig. 2, parameter space is shown in terms of V0 and Λ,
consistent with ∼40 e-folds of inflation and sufficiently
small inflaton perturbations, Pζϕ ≲ 2.2 × 10−9. This plot
additionally demonstrates that, assuming the minimal Z2

symmetric hilltop potential of Eq. (3), the mass of the
inflaton at its minimum predicts the scale of inflation to
within an order of magnitude. For example, a GeV mass
inflaton implies V1=4

0 ∼ 0.3–10 TeV. This raises the pos-
sibility of inferring the scale of low energy inflation by
measuring the mass of the inflaton at a low energy
experiment, as detailed hereafter.

Note that so far, no assumptions about the curvaton
sector have been made, and so the preceding relationship
between the sub-Planckian effective operators stabilizing
an inflaton, and its mass and vacuum expectation value at
its minimum, could be applied to any hilltop inflaton, with
a weak enough self-coupling to generate enough e-folds of
inflation, but not so weak as to overproduce primordial
perturbations.

III. COSMOLOGICAL CONSISTENCY AND LOW
SCALE QUARTIC HILLTOP INFLATION

This section shows that requiring the shrinkage of
the comoving horizon during inflation to match its sub-
sequent expansion during reheating, radiation-dominated,
and matter-dominated expansion (e.g. [47–49]) provides
another constraint on plausible combinations of V0, N�,
and Λ. The relevant formalism is derived and extended to
accommodate a curvaton, then applied to low scale quartic
hilltop inflation. The key point is that after restricting
the equation of state and temperature of reheating to
plausible values (wre ∼ 0 − 1

3
and Tre ∼ 4.7 MeV − V1=4

0

respectively), inflation has both a minimum and maximum
corresponding duration. These considerations restrict the
number of e-folds of inflation (N�) to a narrow window of
possible values, for a given set of ðV0;ΛÞ. One use of this
narrowed range of plausible e-fold values is to help
tighten maps between inflaton and curvaton parameters
in Secs. V and VI.

109 1011 1013 1015 1017 1019
0.01

1

100

104
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1010
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v
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01/

4    
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v
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v
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FIG. 2. Parameter space for the simplified quartic hilltop model
given in Eq. (3). The requirement that the Universe inflate by 40
e-folds and not produce scalar primordial perturbations larger
than those observed in the CMB (Pζϕ ≲ 2.2 × 10−9) excludes the
region shaded red. The inflaton’s quartic self-coupling (λϕ) is
fixed in terms of Λ and V0 by requiring that the inflaton’s
potential, Eq. (3), be zero at its minimum, yielding the relation
given in Eq. (5). The inflaton’s mass (mϕ) and vacuum expect-
ation value (vϕ) at its minimum are indicated by dotted and
dotted-dashed lines.
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A. Cosmological consistency for low
scale inflaton-curvaton models

One advantage of inflationary cosmology is that it
explains the uniformity of the observable Universe:
during an epoch of inflation, the comoving horizon
[≡ðaHÞ−1] of the Universe shrinks. As a result, an
observer sees a smaller casually connected volume in
the future, in contrast to an observer watching a Universe
dominated by matter or radiation, which grows to a larger
causally connected volume in the future. It is well
established that our Universe underwent a period of
radiation- and matter-dominated expansion, implying that
the most distant regions presently observed were once far
outside of causal contact. Inflation serves to drive pieces
of the present causally connected Universe out of causal
contact, before radiation- and matter-dominated expan-
sion, thereby allowing for a present-day homogeneous
Universe.
This also means a consistent inflationary cosmology

requires that the shrinkage of the comoving horizon during
inflation be equal to the growth of the comoving horizon
after inflation. The amount the comoving horizon grows
after inflation will depend upon the equation of state of the
expanding Universe—though eventually the Universe must
become radiation dominated to accommodate big bang
nucleosynthesis, after which the growth of the comoving
horizon can be determined from observation. Bounds on
inflaton models from a consistent cosmology have been
explored in [47–51]. See Fig. 1 of Ref. [47] for an
illustrative schematic.
To bound inflation using a consistent cosmology, we

begin by considering modes relevant to observations of the
CMB. During inflation, when the comoving horizon
(1=aH) shrinks to a size smaller than 1=k, modes of size
k depart the comoving horizon. The mode corresponding to
the CMB pivot scale has already been defined as k�, and the
Planck Collaboration uses k� ¼ 0.05 1

Mpc in their analyses.

Therefore, with a pivot scale of k�, Planck’s measurements
of n�s and A�

s are determined by inflationary dynamics
occurring when the comoving scale was of size∼1=k�, or in
other words k� ¼ a�H�.
Using the relation k� ¼ a�H�, multiplied by the present-

day comoving scale,

k�
a0H0

¼ a�
aend

aend
are

are
aeq

aeqH�
a0H0

; ð12Þ

where each a is the physical scale of the Universe at the
transition between cosmological epochs. aend is the size
of the Universe when inflation ends (ϵ ≥ 1). In a number
of studies, namely Refs. [47,48,51], are was defined as
the scale of the Universe after the inflaton has finished
decaying, also called the end of reheating. However, our
model utilizes a curvaton field, which will decay into

radiation sometime after the inflaton decays. In this
case, the epoch of reheating lasts until the curvaton
decays, and so we define are as the physical scale of the
Universe after the curvaton has finished decaying, at
which time the Universe begins radiation-dominated
expansion. As the Universe cools, matter and radiation
will come to equally populate the energy of the
Universe when the physical scale is of size aeq.
Following standard conventions, a0 denotes the
present-day scale of the Universe.
Equation (12) can be rewritten using the identity

af
ai
¼ eΔN ,

k�
a0H0

¼ e−N�e−Nree−NRD
aeqH�
a0H0

; ð13Þ

where eNre ≡ aend
are

is the number of e-folds between the end
of inflation and when the curvaton finishes decaying, and
eNRD ≡ are

aeq
is the number of e-folds between the time of

curvaton decay and matter-radiation equality.
Note that in the preceding, the equation of state of the

Universe wre has not been specified for the period when
aend grows to size are. The equation of state during that
era of expansion will depend on the decay rate and energy
density of both the inflaton and curvaton. More precisely,
in a straightforward curvaton cosmology, the inflaton
decays more rapidly than the curvaton after inflation, so
that while inflaton-sourced radiation energy density
dilutes like a−4 as the Universe expands, the undecayed
curvaton field behaves more nearly like matter, w ∼ 0, so
that its energy density dilutes like ∼a−3. Then as the
Universe expands and a increases, the curvaton’s energy
density grows to exceed the inflaton’s energy density.
Sometime after it comes to dominate the energy density
of the Universe, the curvaton decays. This process results
in a Universe with primordial perturbations that depend
(almost) solely on the curvaton’s field perturbations
during inflation [31]. Hereafter we refer to this entire
epoch (aend → are) as the era of reheating. As we will see,
Eq. (13) can be used to relate the parameters of inflation
to those of reheating.
First, the Friedmann equations can be combined to yield

an expression relating the initial and final energy densities
of an expanding, isotropic Universe, ρre ¼ ρende−3Nreð1þwreÞ.
For the case we are interested in, here ρre is the total energy
density at the end of reheating, ρend is the total energy
density at the end of inflation, and wre is the average
equation of state during reheating, during which time the
energy density of the Universe flips from being inflaton
dominated to curvaton dominated. As already mentioned,
to avoid largely excluded isocurvature perturbations, the
energy density at the end of reheating, ρre, must be
predominantly energy density sourced by the decayed
curvaton.
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Next we reexpress the energy density at the end of
reheating as a temperature, using the number of relativistic
degrees of freedom, ρre ∼ π2

30
greT4

re; see e.g. [52]. Assuming
conservation of entropy after reheating and using the fact
that the relativistic species of the present-day Universe are
photons and neutrinos,

a3regreT3
re ¼ a30

�
2T3

0 þ 6 ·
7

8
T3
ν0

�
ð14Þ

where T0 ≃ 2.725 K and Tν0 ¼ ð 4
11
Þ1=3T0. Putting

Eqs. (13) and (14) together, we find that so long as
wre ≠ 1

3
,5 the amount the comoving horizon grows (in

e-folds) and the temperature at which the universe reheats
are given by

Nre ¼
4

ð1 − 3wreÞ
�
−
1

4
log

�
90

2π2gre

�
−
1

3
log

�
11gre
43

�

− log

�
k�

a0T0

�
− log

�
V

1
4

end

H�

�
− N�

�
ð16Þ

and

Tre ¼
�

43

11gre

�1
3 a0T0

k�
H�e−N�e−Nre : ð17Þ

In the preceding expressions, the substitution ρend ¼
Vend ≃ V0 can be made, because the inflaton’s energy
density will be the predominant energy density in the
Universe at the end of inflation. In the computations
that follow, H� is similarly determined by the inflaton’s
energy density during inflation, i.e. 3H2� ≃ V0=M2

p, and the
number of relativistic degrees of freedom in the Standard
Model is taken to be gre ∼ 100. Using the Planck defined
pivot scale, and the standard normalization for a0, in
Eq. (17) k�=a0 → 0.05ðMpcÞ−1.

B. Results for small field quartic hilltop inflation

In Figs. 3–5, we plot the implied final reheating temper-
ature Tre for indicated values ofN�, by substituting Eq. (16)

FIG. 3. Constraints for inflationary energy density (V0) and initial reheating temperature (Tre) for a cutoff Λ ¼ 1019 GeV, assuming
quartic hilltop inflation, defined in Eq. (3). The solid pink, dashed green, dotted blue, and dotted-dashed black lines indicate a
postinflation average equation of state of wre ¼ 1, 1

3
, 0, − 1

3
, respectively, as described in the text. As in Fig. 2, the region shaded red is

excluded because the inflaton produces primordial perturbations that are too large. The bottom horizontal line marks a big bang
nucleosynthesis (BBN) reheat temperature; space below this line is excluded. The upper horizontal marks the approximate electroweak
symmetry breaking temperature (100 GeV). As N� decreases in each panel, so does the maximum allowed reheating temperature and
V1=4
0 values, contained within a wedge of sensible equation of state values, wre ¼ ½0; 1

3
�. Note that this leads to substantially different

y-axis (Tre) and x-axis (V1=4
0 ) ranges, as N� is varied.

5If wre ¼ 1
3
instead of Eq. (16),

−
1

4
log

�
90

2π2gre

�
−
1

3
log

�
11gre
43

�
−log

�
k�

a0T0

�
¼ log

�
V

1
4

end

H�

�
þN�:

ð15Þ

However in a straightforward curvaton cosmology, wre < 1
3

during reheating, so that the curvaton’s energy density grows
to exceed the inflaton’s energy density.
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into Eq. (17). Parameter space lying between the solid red
and dotted-dashed black lines, where these correspond to
an average equation of state between − 1

3
and 1, is

technically permitted, but more realistically one should
only consider parameter space lying between the dotted
blue and dashed green lines, which correspond to a
matterlike or radiationlike equation of state during reheat-
ing. The bottom horizontal line marks the temperature at

big bang nucleosynthesis, TBBN ≥ 4.7 MeV—any realistic
cosmology must reheat at a higher temperature [21]. The
upper horizontal line marks an estimate for the temperature
of electroweak symmetry breaking ∼100 GeV. A cosmol-
ogy which assumes electroweak baryogenesis would need
to occupy parameter space above this line.
The red shaded regions are excluded by requiring that

inflaton perturbations not be too large, as discussed around

FIG. 5. The same as in Fig. 3 but for Λ ¼ 1012 GeV.

FIG. 4. The same as in Fig. 3 but for Λ ¼ 1015 GeV.
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Eq. (11); the same bound is indicated with red shading in
Fig. 2. Altogether, Figures 3–5 indicate a number of
constraints on viable quartic hilltop parameter space. For
Λ ¼ 1019, 1015, 1012 GeV, no consistent cosmology can be
constructed when N� > 40, 31, 25 e-folds, respectively.
More generally, as the cutoff is lowered from ∼1019 GeV to
1012 GeV, the number of e-folds consistent with a given
inflationary energy density V0 also shrinks; this can also be
seen directly from Eq. (4). Further inspecting Λ ¼
1015 GeV parameter space, we find that requiring a reheat
temperature above the scale of electroweak symmetry
breaking restricts the number of e-folds to N� ¼ 24 − 31.

IV. QUARTIC HILLTOP CURVATON
PERTURBATIONS AND COSMOLOGY

Small field quartic hilltop inflation would not generate
the observed spectrum of primordial perturbations
observed in our Universe (see Sec. II and Appendix A).
Therefore, a low scale quartic hilltop inflaton requires
an additional curvaton field (σ) to produce the observed
spectrum of perturbations. In a curvaton cosmology, the
inflaton and its decay products dominate the Universe’s
energy density after inflation, but eventually, the curva-
ton’s energy density grows to exceed the inflaton’s
energy density in the expanding Universe. At this time,
the curvaton decays, and the perturbations of the
curvaton field become the predominant primordial per-
turbations observed in the Universe. In the case of high
scale inflation, a simple curvaton potential like VðσÞ ¼
m2σ2 can be employed, but such curvaton potentials
cannot produce the observed primordial perturbations in
the case of low scale inflation. The hilltop curvaton is
arguably the simplest practicable curvaton for low scale
inflation [53], and so a quartic hilltop inflaton is
employed here.
In the remainder of this section, perturbations from a

quartic hilltop curvaton are detailed, along with the
application of a consistent history for low scale curvaton
cosmology. Once all cosmological constraints are applied,
a limited range of reheating e-folds (Nre), equations of
state (wre), and inflationary energy densities (V0) are
permitted for a given cutoff (Λ); this relationship is
surveyed in Fig. 8.
We begin with a curvaton potential that is identical to the

quartic hilltop inflaton potential:

VðσÞ ¼ V0σ −
λσ
4
σ4 þ σ6

Λ2
; ð18Þ

where for simplicity we assume the cutoff for the curvaton
effective operator (Λ) is the same as that of the inflaton.
Also for the sake of simplicity, we assume that ϕ and σ only
couple substantially through gravity. As will be shown in
this section, requiring the curvaton to produce the observed

spectrum of scalar perturbations, i.e. n�s ∼ 0.97 and
A�
s ∼ 2.2 × 10−9, will be enough to uniquely determine

λσ and the curvaton’s initial field value, σ�. As for the
inflaton, V0σ is determined by the curvaton field’s self-
couplings, and equivalently its field value at its minimum

σmin ¼
ffiffiffiffi
λσ
6

q
Λ, such that VðσminÞ ¼ 0. As illustrated in

Fig. 1, this section will show that in viable curvaton
parameter space, the curvaton will cancel a much smaller
portion of vacuum energy as it rolls to its minimum,
V0σ ≡ λ3σΛ4=432 ≪ V0. Hence to good approximation
one is justified in neglecting the curvaton’s contribution
to vacuum energy during inflation.
Hereafter we provide a self-contained derivation of the

quartic hilltop curvaton’s perturbation spectrum. In the
standard curvaton scenario [31,34], at the onset of inflation,
the curvaton is fixed to some field value σ� such that it is
slowly rolling, jVσσj ≪ H, and so the equation of motion
for the curvaton perturbations is given by

δσ̈ þ 3Hδ _σ þ k2

a2
δσ ¼ 0; ð19Þ

which in turn implies that for modes which have
exited the comoving horizon (i.e. in the limit k ≪ aH
[46]), hδσ2i ¼ H2

2k3.
We calculate the curvaton power spectrum using

ζ ¼ −H δρ
_ρ , where ζ parametrizes the scalar perturbations

of a scalar field in de Sitter space, and ρ is the energy
density of said field. One can define separate ζi’s for each
scalar field i present during inflation. Each ζi will be
separately conserved outside the horizon, provided that the
fields only interact gravitationally with each other and have
canonical kinetic terms. A violation of either of these
conditions would result in a time evolution of ζi on
superhorizon scales [54]. Note that the conservation of
each scalar field’s perturbations can be applied to other
multifield inflationary scenarios. The main difference in the
case of a curvaton field is that the curvaton is not
determining how quickly inflation is ending, which alters
the spectrum of perturbations it induces in the CMB
(relative to an “inflating” field).
With these provisos, ζσ ¼ −H δρσ

_ρσ
. To unpack this

expression, we first expand the curvaton potential using
σ ¼ σ0 þ δσ,

VðσÞ ¼ V0σ −
λσ
4
σ4 þ 1

Λ2
σ6

¼ V0σ −
λσ
4
ðσ40 þ 4σ30δσ þ � � �Þ þ � � � ; ð20Þ

whereas with the inflaton, the inflationary field values of σ
are small enough that the ϕ6=Λ2 term can be dropped so
that δρσ ¼ −λσσ30δσ. With δρσ specified, we can calculate
the curvaton’s power spectrum,
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Pζσ ≡ k3

2π2
hζ2σi: ð21Þ

Inserting ζσ ¼ −H δρσ
_ρσ
, hδσ2i ¼ H2

2k3, and δρσ ¼ −λσσ3δσ
into this expression yields

Pζϕ ¼ H4λ2σσ
6

4π2 _ρ2σ
: ð22Þ

The change in time of curvaton energy density, _ρσ, can be
calculated using the slow-roll formula: 3H _σ ¼ −Vσ implies

_ρσ ≈ − λ2σσ
6

3H . Inserting this into Eq. (22) leads to

Pζϕ ¼ 9H6

4π2λ2σσ
6
: ð23Þ

Surveys of the CMB completed by the WMAP and
Planck satellites require that Pζϕ ≃ 2.2 × 10−9. These
experiments have also measured the scale dependence
of primordial scalar perturbations, defined here as

ns − 1 ¼ d logPζ

d log k . Writing ns as a derivative of the power
spectrum with respect to time, again using the relation that
a comoving momentum k will exit the horizon when
k ¼ aðtÞHðtÞ,

ns − 1 ¼ d logPζ

d log k
¼ 1

HPζ

�
d
dt

Pζ

�
¼ −6ϵ −

2λσσ
2

H2
;

ð24Þ

using Eq. (23), the definition ϵ ¼ − _H
H2, and the slow-roll

equation 3H _σ ¼ −Vσ. These expressions for the power
spectrum and spectral index constrain the curvaton’s
quartic self-coupling λσ and initial field value, σ�, in terms
of n�s , A�

s , and ϵ. We find

σ� ¼
3H�
π
ffiffiffiffiffi
A�
s

p 1

ð1 − n�s − 2ϵÞ ð25Þ

and

λσ ¼
π2A�

s

18
ð1 − n�s − 2ϵÞ3: ð26Þ

To good approximation, especially in the case of small
field inflation, ϵ ∼ 0. As a result, we can express λσ as a
function of only A�

s and n�s . Inserting the Planck
Collaboration’s 1σ preferred values for A�

s and n�s ,

1.9 × 10−14 ≤ λσ ≤ 6.9 × 10−14: ð27Þ
Note that this prediction for λσ is independent of Λ, N�, and
the inflaton’s potential.
Turning to Eq. (25), and inserting the relation H2� ¼ V0

3M2
p
,

one finds that σ� depends only on V1=4
0 and is independent

ofN� or Λ. Using this, in Fig. 6 σ� is plotted as a function of

V1=4
0 with a blue line. Note that setting the thickness of the

blue line to coincide with Planck’s 1σ constraints on ns and
As would generate a line too thin to be seen, so we plot this
line with a machine thickness. Figure 6 also shows an
orange line, which is the minimum σ� such that σ will be
slowly rolling during inflation, rather than in a regime
dominated by quantum fluctuations. The blue line corre-
sponding to σ� is always above the orange line, and so the
curvaton will be slowly rolling in parameter space matching
primordial perturbations observed in the CMB. This
demonstrates that it was appropriate to use the slow-roll
approximation in our treatment of the curvaton. To plot the
orange line, we have used the curvaton’s equation of
motion, along with the standard requirement that the
field distance the curvaton rolls in one Hubble time
(Δσ� ≈

∂σV
3H2�

) be larger than its quantum fluctuations in de

Sitter space (δσ ∼ H�
2π),

σ3� ≥
3H3�
2πλσ

: ð28Þ

Next, to validate our use of a perturbative expansion in
computing curvaton primordial perturbations, we must
ensure that the initial field value σ� be greater than de
Sitter–induced variations to the curvaton’s field value (δσ)
during inflation. In other words, the fluctuations of the
curvaton during inflation should be small compared to the
initial field value of the curvaton, δσ ≪ σ�. So long as this
is satisfied, the perturbative formulas used to calculate

0.1 100 105 108 1011
10 15

10 10

10 5

1

105

1010

V0
1 4 GeV

G
eV

FIG. 6. The initial curvaton field value is plotted against the
energy density during inflation, V1=4

0 . The upper blue line shows
what values of the initial curvaton field value (σ�) are consistent
with Planck observations of n�s and A�

s , for the quartic hilltop
curvaton potential, Eq. (18). As explained in the text, the required
value of σ� is independent of Λ and N�. Allowing variations
corresponding to Planck’s 1σ bounds on n�s and A�

s has little effect
in this plot, generating a thickness less than that of the blue line.
The orange line is a lower bound for σ�, such that σ is slowly
rolling during inflation rather than dominated by quantum
fluctuations—the quartic curvaton satisfies this requirement.
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curvaton primordial perturbations will be valid. σ� was
calculated above so that it would produce the observed As
and ns,

σ� ¼
3H�

π
ffiffiffiffiffi
As

p ð1 − nsÞ
ð29Þ

which implies

σ�
H�

¼ 6.408 × 105: ð30Þ

Thus, for the curvaton under consideration, the perturbative
regime holds.
Some comments are in order about non-Gaussian per-

turbations from the hilltop curvaton studied here. The non-
Gaussian perturbations produced by a hilltop curvaton are
characteristically small enough to lie within Planck’s 1σ
bound on the lowest-order non-Gaussian parameter, fNL ¼
2.7� 5.4 [55], but exact conclusions depend upon the
curvaton’s evolution after inflation, prior to its decay
[56,57]. It would be interesting to further analyze the
non-Gaussian curvaton signatures produced by various
reheating scenarios and relate them to findings in this
study, for the quartic hilltop curvaton and other low scale
models. This would allow for verification of a putative
inflaton-curvaton pair found at a collider, with a future
measurement of non-Gaussianity, assuming a vigorous
21-cm cosmological program that permits the detection
of such small non-Gaussianities [58–60].
So far, the self-coupling (λσ) and initial field value (σ�)

have been determined, for a curvaton with a quartic hilltop
potential, to reproduce the primordial perturbations
observed in the CMB. There are some additional stipula-
tions on curvaton parameter space. Section IVA addresses
the requirement that the curvaton not produce a substantial
second wave of inflation. Section IV B discusses the
curvaton energy density, which must become the predomi-
nant energy density of the Universe sometime after the
inflaton decays. This places a bound on the duration and
average equation of state during reheating.

A. Limiting curvaton-induced inflation

One constraint on curvaton parameter space arises from
the assumption that the curvaton does not generate a second
period of inflation after the end of ϕ-driven inflation. At the
end of inflation, by construction the inflaton dominates the
energy density of the Universe. Then in a curvaton
cosmology, the inflaton decays into lighter fields more
rapidly than the curvaton. After the inflaton has decayed,
the curvaton energy density VðσendÞ will at first remain
nearly constant, as the curvaton is slowly rolling down its
potential during radiation-dominated expansion. More
precisely, it can be verified using the slow-roll equations
that the requisite flatness of the quartic curvaton potential

used in this study results in the curvaton slowly rolling at
least until the energy density of the Universe dilutes to
∼V0σ. Once the energy density of the Universe dilutes to
∼V0σ, the curvaton begins oscillating in its potential.
However, if at this time the curvaton is still slowly rolling,
a short period of curvaton-driven inflation can occur.
To rule out a substantial period of curvaton-driven

inflation, it is sufficient to estimate the amount of
curvaton-driven inflation that would result if the curvaton’s
energy density became predominant immediately at the end
of ϕ-driven inflation. The energy density in the curvaton
field at the end of inflation is ∼V0σ ≃ λ3σΛ4=432. Here, V0σ

has been calculated by using the quartic curvaton potential
given above. In other words, we wish to check whether the
subdominant portion of the total vacuum energy, V0σ , will
be a substantial source of inflation as σ rolls to its
minimum. This will depend on how slowly σ rolls to its
minimum.
First, it is necessary to calculate the field value of the

curvaton at the end of inflation, σend. We employ the slow-
roll formula to find how far the curvaton rolls during
inflation, 3H _σ ≈ −∂σV, which integrates to

σend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2λσ
3H ðt� − tendÞ þ 1

σ2�

s
: ð31Þ

This field value can be rewritten in terms of N� using that
N ¼ R Hdt, i.e. ΔN ≈HΔt:

σend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

− 2λσN�
3H2 þ 1

σ2�

s
: ð32Þ

The curvaton potential matches that of the inflaton, so the
same formula, Eq. (6), gives the number of e-folds for
curvaton-driven inflation. Requiring that curvaton-driven
inflation last less than one e-fold,

π6A3
sð1 − nsÞ8Λ4

2738V0

�
1 −

N�ð1 − nsÞ
3

�
≤ 1: ð33Þ

Using Planck’s central values for ns and As, this in turn
yields

V
1
4

0 ≥ 5.97 × 10−11Λð1 − 0.01N�Þ14; ð34Þ

which is plotted in Fig. 9. While it might be possible to
consider curvaton inflation that lasts for up to ∼15 e-folds
before the “curvaton” would be an inflaton producing
(disallowed) perturbations on CMB scales, the cosmologi-
cal consistency conditions in Sec. III, which are accurate to
within about an e-fold, would have to be recalculated for
each point in this parameter space. This would greatly
complicate the treatment of curvaton and inflaton parameter
space presented hereafter, without qualitatively changing
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results, because the bound of Eq. (34) would change by less
than a factor of 2.

B. Curvaton during reheating

For a curvaton cosmology, the period of reheating lasts
until the curvaton decays. At the time of curvaton decay, the
curvaton’s energy density must have grown substantially
larger than that of the inflaton (more precisely, the
inflaton’s decay products), so that isocurvature perturba-
tions are minimized, in accord with Planck’s 2015 bound
on isocurvature modes [6]. Planck’s bound on the leftover
inflaton energy density is βiso ≤ 0.0013 (using data from
TT, TE, EEþ lowP), which is equivalent to requiring that
the curvaton comprise 99.1% of the total energy density of
the Universe before the end of reheating,

ρϕ
ρtot

����
re
≤ 0.0089; ð35Þ

where ρtot ≡ ρσ þ ρϕ, and here jre indicates the end of
reheating. Of course, each of ρϕ, ρσ indicates the summed
energy density of ϕ, σ, and their respective decay products.
Assuming the inflaton ϕ decays promptly after inflation
into radiation, the energy density of ϕ in the Universe at the
end of reheating will be

ρϕ;re ¼ ρϕ;eie−4Nre ; ð36Þ

where jei indicates the end of inflation, and Nre is the
number of e-folds during reheating, as in Sec. III. The total
energy density on the other hand is given by

ρtot;re ¼ ρtot;eie−3Nreð1þwreÞ; ð37Þ

where again wre is defined as the average equation of state
during reheating. The total energy density at the end of
inflation is approximately the inflaton’s energy density.
Thus, combining Eqs. (35)–(37) sets a requirement on the
number of e-folds during reheating,

Nre ≥
4.72

1 − 3wre
; ð38Þ

where here the numerator is simply the natural logarithm
of Eq. (35).
Figure 7 plots this lower bound on Nre as a function of

wre. The closer wre is to a radiationlike equation of state
(wre ∼ 1

3
), the longer reheating must last so that the curvaton

grows to dominate the Universe’s energy density.
Next we constrain wre in terms of Λ and V0. Note that

since wre is the average equation of state during reheating,

wre ¼
1

Nre

Z
wðNÞdN ð39Þ

where

w≡ ptot

ρtot
¼ wϕρϕ þ wσρσ

ρϕ þ ρσ
: ð40Þ

If we now assume that wσ ≈ 0, in other words that the
curvaton behaves like matter during reheating, then
wσρσ≃0. By assumption, we know that ρϕ;ei≃V0. The
energy density of the curvaton after inflation is ρσ;ei ≃
V0σ ¼ λ3σΛ4=432, where the final equality follows from the
form of the curvaton potential, explained around Eq. (18).
Substituting these into Eq. (40) and integrating gives

λ3σΛ4

2433V0

¼ 1 − eNreð3wre−1Þ

e3Nrewre − 1
: ð41Þ

Combining Eqs. (38) and (41) yields the left-side bound
on parameter space shown in Fig. 8. Note as wre →

1
3
the

constraint becomes stronger. As in Fig. 7, this is expected,
since if wre ¼ 1

3
, then the equation of state of the curvaton

would also be wσ ¼ 1
3
, and the curvaton energy density

would not grow larger than the inflaton’s energy density.

C. Counting e-folds for a quartic
inflaton-curvaton pair

The constraints given by Eqs. (11) and (34), along with a
line demarcating where the height of the inflaton potential
exceeds the curvaton potential, V0 ¼ 10V0σ , are displayed
in Fig. 9. In this plot, the upper and lower bounds on the
energy density during inflation (V0) given in Eqs. (11)
and (34) have been sharpened by using the cosmological
consistency equations, (16) and (17). The line demarcating
V0 ¼ 10V0σ demonstrates that the inflaton energy density

FIG. 7. The minimum number of e-folds during reheating, Nre,
as a function of wre, the average equation of state during
reheating, using Planck’s constraint on isocurvature perturbations
[6], βiso ≤ 0.0013. The region below the curve is excluded. A
stiffer equation of state during reheating (wre ≫ 0) implies that
the period of reheating must last longer, because it will take the
curvaton energy density longer to become the predominant
energy density in the Universe.
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exceeds the curvaton energy density in all unexcluded
parameter space. Therefore it is correct to assume that
V0 ≫ V0σ after inflation. This will be important for relating
curvaton and inflaton decay widths in Sec. V.

Precisely, for fixed Λ, test values of N� can be
specified, and a maximum and minimum N� value can
be converged upon by requiring a solution to Eqs. (16)
and (17), for a reasonable equation of state during
reheating, wre ¼ ½0; 1

3
�. These minimum and maximum

N� values can be used in Eqs. (11) and (34). To illustrate
the iterative procedure for computing N�;max, N�;min,
note that in Fig. 3, where the cutoff Λ ¼ 1019 GeV
has been specified, the maximum number of e-folds
allowed by both the inflaton perturbation bound,
Eq. (11), and the requirement wre¼½0;1

3
� is N�;max≲41.

By the same reasoning, for Λ ¼ 1019 GeV, the bound on
curvaton-driven inflation, Eq. (34), implies a minimum
number of e-folds, N�;min ≳ 32. To see the provenance of

this lower bound, note that V1=4
0 ≳ 1010 GeV is required

by Eq. (34) for Λ ¼ 1019 GeV, and compare the allowed

V1=4
0 values in the wre ¼ ½0; 1

3
� region, of the top right

and lower left panels of Fig. 3. Given that there is a
minimum reheating temperature Tre > 4.7 MeV, there is
evidently a lower bound on e-folds, N�;min ∼ 30–35,
if wre ¼ ½0; 1

3
�.

Put another way, visual inspection of Eqs. (11) and (34)
reveals that they have a weak dependence on N�, for the
overall allowed range N� ≃ 20–40. For a given value of Λ
or V0, one can iteratively specify test N� values and use
Eqs. (16) and (17) to converge upon N�;max; N�;min.
Performing this iterative computation on a representative
sample of Λ values, the following relations can be derived
with a numerical fit,
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FIG. 9. Similar to Fig. 2, but with the addition of constraints
from requiring a consistent curvaton cosmology. The top red line
is again an upper bound, from requiring that the inflaton not
overproduce perturbations, Eq. (11). For this bound, the number
of e-folds has been set with Eq. (42), which was derived using
results in Sec. III. As in Fig. 2, the dotted black lines show the
implied mass of the inflaton. All the other lines are lower bounds
on viable parameter space. The blue dashed line marks the
constraint that σ not generate a second wave of inflation which
lasts longer than an e-fold, Eq. (34), using Eq. (43) to set the
maximum number of e-folds. The region above the pink dotted-
dashed line indicates parameter space where V0 > 10V0σ .
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FIG. 8. The relationship among the energy density during inflation (V0), the average equation of state during reheating (wre), and the
number of e-folds during reheating (Nre), for a low scale quartic inflaton paired with a quartic curvaton and a given value of the cutoff Λ,
as detailed in this section. The cosmological consistency conditions outlined in Sec. III uniquely determine the number of e-folds (N�)
for each point in parameter space. The parameter space is bounded at each edge by various factors. Top (Pζϕ < 10−9): The inflaton must
not overproduce perturbations, Eq. (11). Bottom (No curvaton inflation bound): The curvaton field must not produce more than an e-fold
of inflation, Eq. (34). Left (Isocurvature bound): Reheating must last long enough that the curvaton comes to dominate (constitute
≥ 99.1%) of the energy density of the Universe, Eqs. (38) and (41). Note that the bound in the “left” bound assumes that the curvaton
equation of state after inflation is immediately matterlike, i.e. wσ;ei ≃ 0; relaxing this assumption would allow for a broader range of
parameters. The viable parameter space is shown for cutoffs Λ ¼ 1019 and 1015 GeV, as indicated.
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N�;max ≃ 21.5þ 0.023

�
log

�
V1=4
0

GeV

��2

ð42Þ

and

N�;min ≃ 19.0þ 0.986 log

�
V1=4
0

GeV

�
: ð43Þ

Both the maximum and minimum number of e-folds
increase with V0, because a higher energy density at the end
of inflation implies a lengthier expansion of the comoving
horizon during reheating and the radiation-dominated
epoch. In Fig. 9, these expressions for the minimum and
maximum number of e-folds have been used to produce
more precise bounds on V0 as a function of Λ, specifically
the bound on the inflaton overproducing perturbations,
Eq. (11), and the bound on the curvaton producing a second
epoch of inflation, Eq. (34).

V. PREDICTING THE CURVATON FROM THE
INFLATON AND VICE VERSA

This section shows how results in Secs. II–IV can be
used to predict the mass of the inflaton from the mass of the
curvaton, and vice versa, to within about an order of
magnitude. Also, it will be demonstrated that the inflaton
decay width sets an upper bound on the decay width of the
curvaton, and the curvaton’s decay width sets a lower
bound on that of the inflaton. In Sec. VI, these relations will
be used to relate low scale inflaton-curvaton pairs, coupled
to the Standard Model through a Higgs portal.
In Sec. IV, the average equation of state (wre) and number

of e-folds (Nre) during reheating were employed to para-
metrize the collective cosmological behavior of the inflaton
and curvaton. This provided a set of viable cosmological
histories, assuming the inflaton decayed instantaneously at
the end of inflation, as illustrated in Figs. 8 and 9.
Importantly, this analysis also bounded the number of
e-folds of inflation for reasonable reheating scenarios,
Eqs. (42) and (43). In this section, these results will allow
us to directly address the decay widths of the inflaton and
curvaton, Γϕ and Γσ, without having to precisely specify
wre or Nre.
Before exploring parametric maps between inflaton and

curvaton parameter space, we can first calculate a general
upper bound on the decay width of the curvaton (Γσ) to
StandardModel particles. After inflation, the curvaton must
not decay for a long enough time period that it comes to
dominate the energy density of the Universe. An upper
bound on the curvaton decay width can be derived by
noting that to good approximation, while it is oscillating in
its potential, the curvaton field dilutes like matter in an
expanding Universe.
As explored in Sec. IV, the curvaton will slowly roll, and

its energy density V0σ will remain approximately constant,

until the inflaton’s energy density (initially ∼V0) has
diluted enough that ρϕ ∼ V0σ . At this time, the curvaton
begins oscillating in its potential and diluting like matter
(∝ a−3), while the inflaton’s radiationlike energy density
dilutes as a−4. Thereafter, once the Universe has expanded
further by a factor of Δa ≳ 100, the curvaton energy
density will exceed the inflaton’s energy density by a
factor of ≳100; as required by the Planck bound on
isocurvature fluctuations (ρϕρtot < 0.0089) given in Sec. IV.
Using the instantaneous decay approximation, the total
decay width of the curvaton will be approximately equal to
the Hubble constant when the curvaton decays, Γσ ∼Hσ .
Thus, using the relation 3H2 ¼ ρ=M2

p, and the assumptions
that the energy density of the Universe when the curvaton
begins oscillating (ρϕ ∼ V0σ) will dilute as a−3 and that
Δa≳ 100, the maximum conceivable curvaton decay width
consistent with a quartic hilltop inflaton cosmology is

Γσ ≤
ffiffiffiffiffiffiffiffi
V0σ

p

103
ffiffiffi
3

p
Mp

≃ 10−8
�

mϕ

GeV

�
2

GeV: ð44Þ

This expression was rephrased in terms of the inflaton mass
by incorporating Eqs. (8), (27), (34); V0σ ¼ λ3σΛ4=432; the
limiting case of N� ¼ 40 and λσ ¼ 6.9 × 10−14; and the

assumption that the Hubble constant H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0σ=3M2

p

q
scales with a−3=2 during matter-dominated expansion.
An upper bound on the curvaton decay width is given

above; a trivial lower bound on the curvaton decay width
arises from requiring that the curvaton decay before the onset
of BBN, Γσ ≳ 10−23 GeV (Tre > 4.7 MeV). Note that these
bounds on the curvaton decay width hold, irrespective of the
curvaton model assumed. Therefore, any terrestrial experi-
ment sensitive to new scalar states with decaywidths ranging
from 10−2 − 10−23 GeV are potentially sensitive to a low
scale curvaton. In more detail, Sec. VI will show that
upcoming searches of Higgs portal parameter space probe
the desired range of decay widths, and importantly within a
parameter space that does not spoil the flatness of the hilltop
inflaton and curvaton potentials.

A. Mapping a quartic inflaton to a quartic curvaton

Because the inflaton and curvaton have potentials of the
same form, the formula for the mass of the curvaton at its
minimum matches that of the inflaton, Eq. (8), with the
replacement V0 → V0σ . As explained in the preceding
section, the height of the curvaton potential is given by
V0σ ¼ λ3σΛ4=432, so altogether,

mσ ¼
λσΛffiffiffi
3

p : ð45Þ

With Λ specified, the curvaton mass at its minimum can be
determined within observational bounds, since Planck’s 1σ
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bound on ns and As restrict the curvaton quartic coupling,
1.9×10−14 ≤ λσ ≤ 6.9×10−14 (see Sec. IV). Furthermore,
inspecting Fig. 9, it is clear that if an inflaton of mass mϕ is
discovered, Λ and as a consequencemσ will be restricted to
within about an order of magnitude. Combining Eqs. (8),
(11), and (45), we find that requiring the inflaton not to
overproduce perturbations during inflation results in

mσ ≳ 0.051mϕ

�
N�
25

�
3
�
4 × 10−10

Pζϕ

�
; ð46Þ

where here we take the lower Planck 1σ preferred value
λσ ¼ 1.9 × 10−14, and normalize so that the inflaton per-
turbations are one-fifth as large as those observed, to avoid
substantially altering curvaton perturbations [35,36].
Similarly, combining Eqs. (8), (45), and (34), which
requires that the curvaton not overinflate the Universe,
gives

mσ ≲ 0.39mϕð1–0.01N�Þ−1=3: ð47Þ

This expression takes the limiting case of λσ ¼ 6.9 × 10−14.
An upper bound on the curvaton decay width can be set

directly using the inflaton’s decay width, by noting (as
derived at the outset of this section) that the Hubble
constant of the Universe must dilute by ∼100−3=2 before
curvaton decay,

Γσ ≤
Γϕ

103
: ð48Þ

For the inflaton and curvaton Higgs portal parameter space
considered in the next section, this bound on the curvaton
decay width is stronger than that of Eq. (44). Some example
inflaton masses and decay widths are listed in Table I, along
with a predicted range of values for corresponding curvaton
masses and decay widths. In this Table, Eqs. (43) and (42)

are employed to determine the number of e-folds in
Eqs. (46) and (47).

B. Mapping a quartic curvaton to a quartic inflaton

With a similar procedure, we can find upper and lower
bounds on a small field quartic inflaton from measurements
of a small field quartic curvaton. Using the Planck
Collaboration bound on λσ , Eq. (27), along with Eqs. (8),
(11), and (45), gives

mϕ ≲ 20mσ

�
25

N�

�
3
�

Pζϕ

4 × 10−10

�
; ð49Þ

where again we use that in the limiting case,
λσ ¼ 1.9 × 10−14, (27). Next we again combine Eqs. (8),
(45), and (34) to find a lower bound on the inflaton mass,

mϕ ≳ 2.6mσð1 − 0.01N�Þ1=3; ð50Þ

where we have used the limiting value λσ ¼ 6.9 × 10−14.
Finally, a lower bound on Γϕ arises directly from

Eq. (48),

Γϕ ≥ 103Γσ: ð51Þ

Some inflaton mass and decay width predicted from
curvaton masses and decay widths are shown in Table I,
again using Eqs. (42) and (43) to iteratively determine N�.
Table I also gives a range of Λ, V1=4

0 and N� values
predicted by the quartic inflaton-curvaton model for a given
value of mϕ or mσ. These ranges are visually apparent in
Fig. 9, where a quartic inflaton with fixedmϕ is confined to

a range of permitted Λ and V1=4
0 values. For a givenmϕ, the

lower bound on V1=4
0 (upper bound on Λ) follows directly

from Eqs. (8) and (11). The upper bound on V1=4
0 (lower

bound on Λ) follows directly from Eqs. (8) and (34).

TABLE I. The implied quartic curvaton mass and decay width,mσ and Γσ , for given quartic inflaton mass and decay width,mϕ and Γϕ

(top table), and vice versa (bottom table), using cosmological constraints detailed around Eqs. (46)–(51). The main factors setting the
range of predicted values are the requirements that the inflaton produce small perturbations, Pζϕ < 4 × 10−10; that curvaton-induced
inflation last for less than an e-folding; that isocurvature perturbations be small; and that the curvaton produce the perturbations
observed in the CMB (to within 1σ of Planck’s reported values for the power spectrum and spectral index).

mϕ (GeV) Γϕ (GeV) Λ (GeV) V1=4
0 (GeV) N� mσ (GeV) Γσ (GeV)

0.3 10−20 ð0.9–3Þ × 1012 130–180 22–26 0.01–0.13 ≤10−23
4 10−18 ð1–4Þ × 1013 1700–2400 23–28 0.18–1.7 ≤10−21
100 10−5 ð0.4–1Þ × 1015 ð4.6–6.1Þ × 104 24–31 4.5–44 ≤10−8

mσ (GeV) Γσ (GeV) Λ (GeV) V1=4
0 (GeV) N� mϕ (GeV) Γϕ (GeV)

0.3 10−20 ð0.8–3Þ × 1013 410–3300 22–27 0.7–8.2 ≥10−17
4 10−18 ð1–3.6Þ × 1014 ð0.5–4.5Þ × 104 23–29 9.3–103 ≥10−15
100 10−5 ð2.5–9Þ × 1014 ð1–9Þ × 105 25–32 230–2000 ≥10−2
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The same relationships hold for mσ, except using Eq. (45)
instead of Eq. (8). With a range of permitted V1=4

0 values, a
range of N� values can be obtained immediately from
Eqs. (42) and (43).

VI. HIGGS PORTALS TOLOWSCALE INFLATION

A simple way for the inflaton and curvaton to couple to
Standard Model particles in a renormalizable fashion (in
this case allowing the inflaton or curvaton to dump its
energy into a bath of Standard Model particles after
the end of inflation) is through a Higgs portal operator
[61–63]. A scalar field coupled to the Higgs in this manner
can be probed at the LHC [64–69] and other low energy
experiments, Refs. [70–77]. In the case of low scale
inflation, this section demonstrates that the inflaton-
Higgs and curvaton-Higgs couplings can be small enough
not to spoil the flatness of the inflaton or curvaton
potentials through radiative corrections, while allowing
for enough inflaton-Higgs and curvaton-Higgs mixing to
efficiently reheat the Universe after inflation, all within
the parameter space accessible at upcoming low energy
experiments.
A Higgs portal inflaton appearing at meson factories has

been studied previously in the context of large field
inflation, specifically for a scalar inflaton field nonmini-
mally coupled to gravity [42,43]. Nonminimally coupled
inflation models rely on the inflaton potential becoming flat
at large field values, as determined by the ultraviolet
running of the inflaton’s coupling to gravity. In the non-
minimally coupled scenario of Refs. [42,43], the observed
spectrum of primordial perturbations restricts the inflaton
mass to mφ ∼ 0.27–1.8 GeV. However, it is important to
note that predictions in nonminimally coupled models
of inflation, which by necessity have couplings that
change substantially as they are renormalization-group
evolved to large field values, are sensitive to corrections
from nonrenormalizable operators—and equivalently the
unknown ultraviolet dynamics of the theory [78].
On the other hand, the low scale inflaton and curvaton

sectors we consider here are very weakly coupled, both to
themselves and to the Higgs boson. In spite of a minuscule
coupling to the Higgs boson, the remainder of this section
shows that the quartic hilltop inflaton (and its lighter
curvaton partner) detailed in Secs. II–V can be found
through a Higgs portal at the LHC and other low
energy experiments, over a broad mass range, mϕ,
mσ ¼ MeV–TeV. The key point will be that the large
VEV predicted for the inflaton and curvaton at their minima
allows for sizable mixing with the Higgs, even though the
actual Higgs portal coupling is tiny.
In the treatment that follows, we will begin referring

exclusively to the inflaton. Because the form of the quartic
inflaton and curvaton potentials are identical, an identical
treatment applies to the curvaton. For the parameter space
we are interested in, the Higgs-inflaton and Higgs-curvaton

couplings are each small enough that the computation of a
full 3 × 3 mixing matrix does not alter results.
We begin by extending the potential given in Eq. (3)

to include the Higgs sector of the Standard Model, with
the addition of a quartic inflaton-Higgs portal operator.
We start with VðΦÞ ¼ −μ2Φ†Φþ λhðΦ†ΦÞ2, where Φ
is the SM Higgs doublet. Prior to electroweak symmetry
breaking, the potential is given by

Vϕh ¼ V0 −
λϕ
4
ϕ4 þ ϕ6

Λ2
þ λϕhjΦj2ϕ2 þ λhjΦj4 − μ2jΦj2;

ð52Þ

where λϕh is the portal coupling and Φ is the Standard
Model Higgs, which after electroweak symmetry breaking
can be replaced with Φ → ðvh þ hÞ= ffiffiffi

2
p

, where h is the
neutral component of the SM Higgs doublet and
vh ≃ 246 GeV.
In Appendix B we give a complete treatment of Higgs-

inflaton mixing, and point out that the Higgs-inflaton portal
term does not introduce a substantial tree-level inflaton
mass term in the parameter space under consideration. The
Higgs boson’s observed branching fractions already indi-
cate with 2σ certainty that it decays at least four-fifths of the
time like a Standard Model Higgs boson. Thus it is
appropriate to refer to a mostly Higgs-like and a mostly
inflatonlike mass eigenstate, since the mixing between the
two must be small to fit observations. Consistent with
Sec. II, we designate the mass eigenstate which is mostly
inflatonlike as “mϕ” and the mass eigenstate which is
mostly Higgs-like as “mh.”
For states which are mostly Higgs and mostly inflaton,

the mixing angle between the Higgs and inflaton gauge
eigenstates is defined as

tanð2θϕÞ≡ 2λϕhvhvϕ
jm2

h −m2
ϕj
; ð53Þ

where we set mh ≃ 125.7 GeV in calculations.6

Contributions to mϕ and vϕ from the Higgs portal inter-
action are negligible (see Appendix B), and so the mass and
vacuum expectation value of the mostly inflaton state, vϕ
and mϕ, are given by Eqs. (7) and (8). The preceding
definition of θϕ has been chosen, so that in the limit of
small θϕ, the mostly inflaton state mixes less with the Higgs
boson, whether mϕ > mh or mϕ < mh. In other words, as
θϕ → 0, the inflaton’s decay width to Standard Model
particles vanishes, regardless of whether the inflatonlike
state is heavier or lighter than the Higgs-like state.

6The Higgs-curvaton mixing angle (θσ) is identically defined,
with the replacement ϕ → σ, i.e. vϕ → vσ , mϕ → mσ , and
λϕh → λσh.
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Examining the relative sizes of vh,mh,mϕ and vϕ, for the
parameter space shown in Fig. 2, it is clear from Eq. (53)
that because vϕ ∼ 103–109 GeV, it is possible for θϕ to be
sizable even if λϕh is small enough that it does not
substantially correct the inflaton’s quartic self-coupling
(λϕ). The correction to λϕ from the inflaton’s portal
coupling to the Higgs is

δλϕ ∼
λ2ϕh
16π2

; ð54Þ

up to Oð10Þ logarithmic corrections. Therefore, to prevent
the Higgs portal coupling from upsetting the flatness of the
inflaton’s potential, we can require λϕh < 4π

ffiffiffiffiffi
λϕ

p
. In

Fig. 10, the resulting constraint on the size of the Higgs-
inflaton mixing angle θϕ is shown in terms of mϕ, with a
long-dashed blue line. It is interesting that, plotted in the
(sin θϕ, mϕ) plane, the line λϕh ¼ 4π

ffiffiffiffiffi
λϕ

p
is independent of

the size of the quartic self-coupling, λϕ. This is because
making the replacement λϕh → 4π

ffiffiffiffiffi
λϕ

p
in the Higgs portal

mixing angle results in a mixing angle proportional to
mϕ, tanð2θϕÞ ∝

ffiffiffiffiffi
λϕ

p
vϕ ∼mϕ.

A. Portal decay widths

Assuming that the inflaton’s only nongravitational cou-
pling to other particles is through its Higgs portal inter-
action, the decay widths of the mostly Higgs and mostly
inflaton states are given by

Γh ≃ Γh;SMðmhÞcos2θϕ
Γϕ ≃ Γh;SMðmϕÞsin2θϕ; ð55Þ

where Γh;SMðmÞ is the decay width for a boson of mass m,
with Yukawa and gauge couplings identical to those of the
Standard Model Higgs boson. (As in the prior subsection,
all this discussion applies equally to the Higgs portal
curvaton, with the replacement ϕ → σ in all equations.)
With this prescription, θϕ fully determines how fast the
inflaton decays after inflation, and also how diminished the
total decay width of the Higgs-like state will be, compared
to Standard Model expectations. Because we are interested
in parameter space where λϕh ≪ 10−6, ϕ → hh and
h → ϕϕ decays are neglected.
Many calculations of the partial decay widths of a

Standard Model Higgs boson have been undertaken.
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FIG. 10. Parameter space for low scale inflation, which reheats the Universe through a Higgs portal coupling. Constraints from meson
decay and collider searches are indicated with thick dashed lines. Indirect constraints from the muon’s lifetime along with W, Z-boson
masses (Δr) are indicated with a thin orange line, and the indirect constraint from the Higgs boson’s decay width measured at the LHC is
indicated with a thin gray line. The long-dashed blue line excludes parameter space where the Higgs-inflaton coupling (λϕh) spoils the
flatness of the inflaton’s potential during inflation. The dotted pink lines show parameter space where ϕ decays promptly at the end of
inflation for Λ ¼ 1019 GeV and λϕ ¼ 10−13, where ϕ decays when the energy density of the Universe is ∼ð100 GeVÞ4, and excludes
where ϕ decays after big-bang nucleosynthesis. On top of the plot, the correspondence between the energy scale during inflation and the
quartic inflaton mass is indicated. The range of inflationary energy scales is derived from relations shown in Fig. 2; these ranges hold for
a generic quartic inflaton, irrespective of the possible addition of a curvaton. With a curvaton model specified, the scale of inflation is
more tightly predicted; see Table I.
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Here we split the calculation of Γh;SMðmÞ into two pieces.
For m > 8 GeV, a scalar which couples like the Higgs
boson will decay predominantly to pairs of bottom quarks
(and top quarks for m > 350 GeV) and pairs of weak
bosons. The decay of a heavy Standard Model Higgs boson
has been calculated in a number of publications, including
QCD corrections to hadronic decays of the Higgs, e.g.
Ref. [79]. To compute Γh;SMðmÞ for m > 8 GeV, we utilize
output from HDECAY [80], based on the calculations
in [79].
For m < 8 GeV, the Higgs-like scalar can decay to

photons, leptons, and hadronic states, depending on
whether each decay is kinematically permitted. The partial
width for Higgs decay to photons is given by [81,82]

Γh→γγðmÞ ¼ α2EMm
3

256π3v2h

����Xf
NcQ2

fA1=2ðτfÞ þ A1ðτWÞ

þm2
W

m2
h

A0ðτhÞ
����2; ð56Þ

where αEM is the fine structure constant; the displayed sum
is over Standard Model fermions; Nc counts the colors of
each fermion; Qf is the electromagnetic charge of each
fermion; τi ≡m2=4m2

i where mi is the mass of particle i;
and the loop amplitude functions are

A1=2ðτÞ ¼ 2τ−2½τ þ ðτ − 1ÞfðτÞ�;
A1ðτÞ ¼ −τ−2½2τ2 þ 3τ þ ð6τ − 3ÞfðτÞ�;
A0ðτÞ ¼ −τ−2½τ − fðτÞ�; ð57Þ

with the scaling function fðτÞ given by

fðτÞ ¼
(
arcsin2ð ffiffiffi

τ
p Þ; τ ≤ 1

− 1
4

�
log
h
1þ
ffiffiffiffiffiffiffiffiffi
1−τ−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−τ−1

p
i
− iπ

	
2
; τ > 1:

ð58Þ

Following [75], in the preceding expressions we use the
pion mass and kaon mass for the up, down, and strange
quarks, i.e. τu ¼ τd ¼ m2=4m2

π , τs ¼ m2=4m2
K . This mass

choice results in decay widths that match results from chiral
perturbation theory [83,84].
The decay width to Standard Model leptons is given by

Γh→llðmÞ ¼ α2EMm
2
lm

8πv2h
βl; ð59Þ

where βi ≡ ð1 − τ−1i Þ3=2Θðm − 2miÞ, with the Heaviside
theta function accounting for decays that are kinematically
forbidden.
To compute the hadronic decays of a light Higgs-like

scalar, we follow the treatment of [71], which matches the
perturbative spectator model for Higgs decays [85], onto
chiral perturbation theory evaluated at the QCD scale. With

this prescription, the relative leptonic and hadronic decay
widths are given by

Γh→ee∶Γh→μμ∶Γh→ττ∶Γh→gg∶Γh→ππ∶Γh→KK∶Γh→ηη∶Γh→DD

¼ m2
eβe∶m2

μβμ∶m2
τβτ∶

�
αsm
3π

�
2

ð6 − 2βπ − βKÞ∶

3ðm2
u þm2

dÞβπ∶
27

13
m2

sβK∶
12

13
m2

sβη∶m2
cβD∶m2

bβB; ð60Þ

where e, μ, τ, π, K, η, D, B, g, u, d, s, c indicate the
electron, muon, tau, pi-meson, k-meson, eta-meson,
D-meson, B-meson, up-quark, down-quark, strange-quark,
and charm-quark of the Standard Model, respectively.
Matching to chiral perturbation theory at the QCD scale,
for the hadronic decay calculation we take mu ¼ md ¼
50 MeV,ms ¼ 450 MeV, αs ¼ 0.47, and the current quark
and meson masses given in [86].

B. Finding low scale inflation through
a Higgs portal

Using Eqs. (55)–(60) to calculate the decay rate of ϕ,
cosmological limits can be placed on Higgs portal param-
eter space, for models of low scale inflation that reheat by
coupling to the Higgs boson. First, there is an absolute
lower bound on the inflaton’s (or curvaton’s) decay rate,
from the requirement that the Universe reheat before big
bang nucleosynthesis, namely that decay occurs before
TBBN ≃ 4.7 MeV, which excludes parameter space in the
lower left of Fig. 10. Similarly, one might require that the
inflaton decay before the Universe reaches a density of
ρuni ∼ ð100 GeVÞ4, which is necessary for some cosmol-
ogies that incorporate electroweak baryogenesis. Using the

relation Γϕ ∼H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρuni=3M2

p

q
, Fig. 10 shows parameter

space consistent with ϕ decay before ρuni ∼ ð100 GeVÞ4
with a pink dotted line. Next, one might require that ϕ

decay promptly at the end of inflation, i.e. Γϕ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=3M2

p

q
.

For a given value of mϕ, specifying either λϕ ∼ 10−13 or
Λ ∼ 1019 GeV uniquely determines V0, using Eqs. (5)
and (8). In Fig. 10, we show parameter space consistent
with nearly instantaneous reheating after inflation for
λϕ ∼ 10−13 and Λ ∼ 1019 GeV. Altogether, most low scale
quartic inflaton models that reheat through the Higgs portal
could be probed by more extensive Higgs measurements
and searches for low-mass scalars.
Next, relations derived in Sec. V have shown a character-

istic mass and decay width spectrum for a quartic inflaton-
curvaton pair. These inflaton-curvaton pairs could become
apparent through Higgs portal interactions. Figures 11
and 12 each indicate three points in Higgs portal parameter
space, identify them as a quartic curvaton or inflaton,
respectively, and show where a corresponding low scale
quartic inflaton or curvaton would appear. The curvaton
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and inflaton points shown in Figs. 11 and 12 match
parameters given in Table I. Here the decay width bounds
have been recast as bounds on θϕ; θσ, by using the
definition of the mixing angle and the portal decay width,
Eqs. (53) and (55), and the decay width of a Higgs-like
scalar for a given mass, detailed in VI A.
Looking at Figs. 11 and 12, it is apparent that in some

cases, an extended run of the SHiP [76] experiment would

suffice to uncover both a quartic inflaton and curvaton
field. If a scalar state is discovered at SHiP with a mass
0.3–4 GeV, then if the state is a quartic inflaton, one should
expect a quartic curvaton in the mass range 0.01–1 GeV.
On the other hand a quartic inflaton should show up in the
mass range 1–100 GeV if the discovered 0.01–1 GeV scalar
is a quartic curvaton. Furthermore, it is apparent from
Fig. 12, which plots down to very small mixing angles

LEPLEP

h > 4  
1/2

ACHCHARMACHCHARMACHCHARMACHCHARMACH
BBBBBBBBBB +X +XX
KKKKKKKKK +X+X
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FIG. 11. The bounds and prospects are the same as in Fig. 10, but here we show example quartic curvaton parameter points (Curv 1,
Curv 2, Curv 3), alongside the corresponding predicted quartic inflaton parameter space (Inf 1, Inf 2, Inf 3), where these have been found
using results in Sec. V. Note that the curvaton and inflaton parameters roughly match those shown in Table I.
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FIG. 12. The bounds and prospects are the same as in Fig. 10, but here we show example quartic inflaton parameter points (Inf 1, Inf 2,
Inf 3), alongside the corresponding predicted quartic curvaton parameter space (Curv 1, Curv 2, Curv 3), where these have been found
using results in Sec. V. Note that the inflaton and curvaton parameters roughly match those shown in Table I.
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(θϕ, θσ ∼ 10−11), that while substantially expanded meson
production would be necessary, as is planned at experi-
ments like SuperKEKB and SHiP [76,87,88], future Higgs
portal searches could conceivably be sensitive to cosmo-
logical scalars with decay widths corresponding to BBN
reheat temperatures, and thereby discover or rule out
classes of low scale inflatons and curvatons.

C. Experimental probes of MeV–TeV mass
Higgs portal scalars

Figures 10,11, and 12 display bounds on Higgs portal
parameter space from direct and indirect measurements of
the Standard Model Higgs boson along with searches for
new scalars at meson factories. This section details exper-
imental probes of Higgs portal scalars, beginning with
searches for higher mass states.
The addition of a Higgs portal singlet scalar with a large

mass can alter the relationship among the W-boson mass,
the Z-boson mass, the Fermi constant, and the decay rate of
the muon. If the Higgs portal singlet is massive enough, its
corrections to the electroweak bosons’ self-energy are too
large, given the observed lifetime of the muon, leading to a
bound sin θϕ ≲ 0.2 for mϕ ≳ 300 GeV at 95% confidence
[89]. This indirect bound is shown in Fig. 10 with a thin
orange line.
A mϕ ≳ 140 GeV Higgs portal scalar can be detected at

the LHC, largely through its decays to leptons, pp → ϕ →
ZZ → 4l and pp → ϕ → WW → lνlν [90,91]. Statistical
combinations of ATLAS and CMS results [92] yield the
tightest bound on a Higgs portal scalar in the mass range
mϕ ∼ 150–250 GeV (shown in dashed green in Fig. 10).
A portal interaction would diminish the effective width

of the Higgs boson that has been observed at the LHC.
ATLAS and CMS have placed the most restrictive lower
bound on the Higgs width using Higgs decays to leptons
and photons, ðh → ZZ → 4lÞ and ðh → γγÞ [93]. The
combined limit on the signal strength of the Higgs
(μhiggs ≡ σmeas=σSM) is μhiggs > 0.87, at 95% confidence,
which corresponds to an upper bound of sin θϕ < 0.36 at
95% confidence. This indirect bound would not be sensi-
tive to a Higgs portal scalar mass-degenerate with the
observed Higgs boson, and applies to mϕ < 120 GeV
and mϕ > 130 GeV.
A combination of searches at LEP [94] did not observe

a light Higgs-like state in (eþe− → Zh → Zbb) and
(eþe−→Zh→Zτþτ−) over a mass range ∼10–100 GeV.
Recasting the 95% confidence bound set by LEP
limits Higgs portal couplings to sin θϕ ≲ 0.2 for mϕ ∼
10–100 GeV.
Because a Higgs portal scalar couples to quarks, it

contributes to the amplitude for Standard Model meson
decay. The portal scalar considered here couples to
Standard Model fermions with the same proportions as a
Standard Model Higgs boson with massmϕ, as described in

Sec. VI A. Therefore, the Higgs portal scalar preserves
quark flavor at tree level, but can induce meson decay
processes like B → Kμþμ− at loop level, through
“penguin” diagrams containing internal W, Z boson lines.
References [71,73,75,76] have cataloged the bounds on
Higgs portal scalars from loop-induced decays of mesons
in the mass range mϕ ∼ 0.001–5 GeV, displayed in
Figs. 10–12.

VII. CONCLUSIONS

The spectrum of tensor perturbations produced by low
scale inflation models—and by extension the energy scale
of inflation—is too small to be uncovered by cosmological
surveys. However, this study has shown that low scale
inflatons which roll to large field values, and to some
approximation, the corresponding energy scale during
inflation, can be probed at colliders and meson factories.
Broadly speaking, low scale inflation deserves attention,

because recent cosmological surveys have begun ruling out
high scale models. In addition, low scale inflation may be a
necessity if our Universe contains axions. From a theo-
retical standpoint, low scale inflation can be described with
a low energy effective field theory, whereas high scale
inflation requires suppression of radiative corrections to
trans-Planckian dynamics.
The possibility of finding an inflaton at a collider may

seem exotic, partly owing to an assumption that inflatons
are too heavy for terrestrial production. In the regime of
large field inflation, this is often true (in the case of m2ϕ2

large field inflation,m ∼ 10−6 Mp). However, in the case of
low scale, small field inflation, it is natural to suppose that
the inflaton begins with a nearly null field value, sub-
sequent to a phase transition. In this “hilltop” case, the
inflaton rolls down its potential, settling at a large vacuum
expectation value. This large VEV, along with the tiny self-
couplings required of a low scale slow-roll inflaton, result
in a small inflaton mass detectable at a low energy
experiment. This study has shown that a small field quartic
hilltop potential implies an inflaton mass ranging from
MeV to PeV, corresponding to an inflationary energy scale
ranging from GeV to EeV, which can be probed at
terrestrial collider experiments through a Higgs portal
interaction.
The Higgs portal cosmology and low energy phenom-

enology developed for a simplified quartic hilltop model of
inflation could be applied to broader classes of small field
inflation that initiate with a nearly null inflaton field value,
and roll to a large vacuum expectation value. It is
particularly interesting that, owing to its large vacuum
expectation value at the end of inflation, such an inflaton
can have a tiny coupling to the SM Higgs boson
(λϕh ≪ 10−6), yet still have a sizable enough mixing to
rapidly reheat the Universe, all without spoiling the flatness
of the inflaton’s potential through radiative corrections.
This constitutes one clear mechanism for a low scale
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inflaton with an extremely flat potential to substantially
couple to the Standard Model, without fine-tuning. This
also reinforces the cosmological import of Higgs portal
scalar searches, both at high energy colliders like the LHC,
and in flavor-violating meson decays at experiments like
KEKB, BEPC, and SHiP.
Intriguingly, this study has demonstrated that once a

complete cosmology is specified, and primordial perturba-
tions accounted for, it is possible to make sensible
predictions for the relative masses and decay widths of
scalars associated with low scale inflation. The fairly
simple case of a quartic hilltop inflaton paired with a
quartic curvaton has been studied in detail, and maps
between the masses and decay widths of each have been
charted. The same methods can be used to infer the energy
density during low scale inflation. Specifically, using a
simplified quartic hilltop inflaton in Sec. II, the requirement
that the inflaton’s potential be stabilized by operators in an
effective field theory with a sub-Planckian cutoff is
sufficient to map the mass of the inflaton to the energy
scale during inflation, to within roughly an order of
magnitude. After adding a realistic curvaton cosmology,
twinned with the requirement that the average equation of
state and temperature during reheating have physically
permissible values as detailed in Secs. III and IV, this map
tightened—as shown by the restricted values for the
inflationary energy density and number of e-folds given
in Table I. While this study has focused on a low scale
quartic hilltop inflaton, the same cosmological analysis
could be applied to any low scale inflaton (or curvaton)
model, which maintains the necessary flatness of its
potential with an initially small field value and small
self-couplings. When these scalars roll to their minima
and acquire large vacuum expectation values, the same
reheating and perturbation considerations which con-
strained the mass and decay width of quartic hilltop inflaton
and curvatons apply to other low scale inflatons and
curvatons.
Particularly, it will be interesting to extend these tech-

niques to additional hilltop, pseudo-Nambu-Goldstone
boson, and inflection point models of low scale inflation,
to further determine how meson factories, high energy
colliders, and other experimental probes of scalar fields
could unmask low scale inflation.
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APPENDIX A: SMALL FIELD
HILLTOP MODELS

In this section we examine a number of small field hilltop
models, quantifying fine-tuning in quadratic, cubic and
quartic hilltop inflation. Partly, this will justify the choice of
a quartic inflaton plus quartic curvaton model, as the
simplest practicable case of small field inflation that is
driven by a single Lagrangian term.7

Small field inflation requires an especially flat potential
(compared to large field inflation), so that it is natural to
consider a hilltop potential, e.g. of the form VðϕÞ ¼
−λnϕn þ V0. For this potential, a very flat portion exists
at the origin of field space. Typically, the self-coupling
terms of a hilltop inflaton must be very small to permit
inflation. To understand why, it is instructive to consider a
scalar potential familiar to particle theorists, the potential of
the Higgs boson in the Standard Model, and examine why,
with its comparatively large self-coupling, the Higgs
potential does not permit hilltop inflation. (Sometimes
the Higgs boson, with an additional large coupling to
gravity, is considered as the inflaton [20]. In that non-
minimally coupled case, the Higgs begins inflation at very
large field values. Here we study the Higgs hilltop inflation
scenario, where the Higgs has no new coupling to gravity,
and has a nearly null initial field value.)
To attempt Higgs hilltop inflation, one considers a Higgs

rolling from its hilltop at a nearly null value h≳ 0 to its
electroweak minimum h ∼ 246 GeV. First we must address
how the Higgs might have a nearly null initial field value.
One might suppose that after electroweak symmetry break-
ing, the Higgs automatically starts near the top of the hill.
However, assuming a Standard-Model-like phase transi-
tion, the thermal fluctuations of the Higgs would be too
large [Oð100 GeVÞ] and inflation would not occur. For the
moment we will ignore thermal fluctuations, and assume
that the Higgs field can begin with an arbitrarily uniform
null field value; some discussion about how this can be
achieved for hilltop potentials was provided in Sec. II.
However, even setting aside thermal fluctuations, another
restriction on a nearly null initial field value comes from
fluctuations in scalar fields induced by the de Sitter
(inflationary) space they presumably occupy. In other
words, if we specify that the initial Higgs field value is
very nearly null, we may violate the intrinsic quantum
uncertainty of a scalar field in de Sitter space. A scalar field
in a de Sitter space with Hubble constant H fluctuates as
δh ∼H=2π. Wewill see that the initial field value necessary

7It will be interesting to extend results in this paper to
“inflection point” models [38,39,95], where a few Lagrangian
terms driving inflation are tuned against each other to produce the
observed spectrum of primordial perturbations.
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for 20–50 e-folds of Higgs hilltop inflation is much smaller

than this, hð60 e-foldsÞ
ini ≪ H=2π.

We begin with a toy Higgs hilltop potential,8

V ¼ V0 − μ2hh
2 þ λh4; ðA1Þ

with μh ≃ v
ffiffiffi
λ

p
where v is the Higgs VEV and V0 ¼ v4λ

4
such that when the Higgs is sitting at its electroweak
minimum, it does not overcontribute to the dark energy of
the Universe [VðhminÞ≃ 0]. We can compute how close to
h ¼ 0 the Higgs field must be in order for the Universe to
inflate by 60 e-folds. The number of e-folds is given by

N ¼ 1

M2
p

Z
h60

hend

V
Vh

dh≃ v2

4M2
p
log

hend
h60

; ðA2Þ

where we have dropped the quartic Higgs term, which will
be irrelevant at small field values, and defined the Higgs
field value at the end of inflation hend, and at the start of 60
e-folds of inflation, h60. We determine hend by solving for
the field value at which ϵ ¼ 1, and use v ¼ 246 GeV to
obtain

h60 ≃ 10−17e−10
34

GeV; ðA3Þ

which is absurdly infinitesimal compared to quantum
fluctuations in the Higgs field,

H
2π

≈
ν2

ffiffiffi
λ

p

4π
ffiffiffi
3

p
Mp

≃ 4.1 × 10−17 GeV: ðA4Þ

Therefore to inflate our Universe to the extent implied by
CMB observations, the initial Higgs field value would need
to be specified well within the de Sitter quantum uncer-
tainty limit. Conversely one might ask the maximum
number of e-folds achievable with the Higgs hilltop
potential, while staying within the de Sitter quantum
uncertainty limit. The answer is tiny; the maximum number

achievable is NðHiggs hilltopÞ
max ¼ 10−32. This means that the

Standard Model Higgs potential would not generate
enough inflation in a hilltop scenario, as a consequence
of its relatively large self-coupling.
We now discuss fine-tuning and primordial perturbations

generated by small field hilltop models of inflation, where
the involved scalar fields have tiny self-couplings.

1. ϕ2 hilltop inflation

If practicable, it would be preferable to consider a hilltop
potential where a −ϕ2 term drives inflation, e.g.

V ¼ V0 −
1

2
m2ϕ2 þ 1

Λ
ϕ6; ðA5Þ

similar to the ϕ4 case utilized in the bulk of the paper. The
advantage of such a potential is that, in the absence of
explicit quartic and cubic terms, this potential is technically
natural. However, with the additional requirement that
inflation ceases when the inflaton rolls to the minimum
of this potential, under the stipulation that Λ ≤ 1019 GeV,
m becomes too large to be compatible with inflation.
Specifically, one finds that the power spectrum resulting
from such a potential is too large, and that generating 60
e-folds of inflation typically requires ϕ� <

H�
2π , in violation

of the de Sitter space quantum uncertainty limit dis-
cussed above.
This model can be mended by suppressing the high scale

operator,

V ¼ V0 −
1

2
m2ϕ2 þ δ

Λ2
ϕ6 ðA6Þ

with δ ≪ 1. However, this implies that corrections from
trans-Planckian dynamics are somehow suppressed.
The other option is to add in a negative ϕ4 term,

V ¼ V0 −
1

2
m2ϕ2 −

1

4
λϕϕ

4 þ 1

Λ2
ϕ6: ðA7Þ

The added λϕϕ
4=4 term generates a contribution to the

mass at loop order, and because (unsurprisingly) its value is
equal to or greater than that given in (5), fine-tuning of the
model is not ameliorated (as compared to just using the
quartic term as the dominant term during inflation).

2. ϕ4 hilltop inflation

To quantify fine-tuning in the quartic case, it is required
that the mass term for the inflaton while rolling through its
pivot scale be no more than 10% of the quartic term,
m2

ϕ;� < m2
ϕ;max ≡ 0.1λϕϕ2�=4, where we remind the reader

that mϕ;� is the sum of bare and loop contributions to the
inflaton’s mass. Note that if the preceding inequality is
satisfied at the pivot scale, then it is automatically satisfied
at larger field values, during and after inflation (ϕ grows
during and after inflation). We then compare this to the
mass generated at one-loop order,

m2
ϕ;loop ∼

λϕΛ2

16π2
: ðA8Þ

Using Eqs. (5) and (6), we define the ratio of mϕ;max and
mϕ;loop as the level of fine-tuning in the theory,

mϕ;max

mϕ;loop
≃ 0.72

V
1
3

0ϕ

MpΛ
1
3

ffiffiffiffiffiffi
N�

p : ðA9Þ
8N.b., this treatment is for illustrative purposes, and is

completely independent from the Higgs portal considerations
in Sec. VI and Appendix B.
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Without specifying some theory that forbids a quadratic
term in the Lagrangian, fine-tuning considerations favor a
scale of inflation, V1=4

0ϕ , close to the cutoff scale Λ, and

favors larger scale inflation. For example, for V
1
4

0ϕ ¼ Λ ¼
1015 GeV and N� ¼ 30 (where the inflaton’s mass at its
minimum will be mϕ ∼ 100 GeV), we find mϕ;max

mϕ;loop
∼ 10−4.

3. ϕ3 hilltop

It can be shown that fine-tuning is not greatly improved
in the case of small field hilltop inflation driven by a ϕ3

term. One might expect fine-tuning decreases, because the
cubic one-loop-induced mass term depends on two factors
of the cubic coupling (instead of one in the case of the

quartic). For the potential V ¼ V0 − 1
3
gϕ3 þ ϕ5

Λ ,
9 the lead-

ing loop contribution to the mass is

m2
ϕ;cubic loop ≃ g2Λ2

9 · 24π2m2
0

; ðA10Þ

where g is the dimensionful coupling of the ϕ3 term.
Comparing this to the maximum mass as defined in the
prior section,

m2
ϕ;max cubic ≡ 1

3
g3ϕ�: ðA11Þ

Taking the ratio of mϕ;max cubic and mϕ;cubic loop, using that

for hilltop ϕ3 inflation, ϕ� ≈
V0

gM2
pN�

,

mϕ;max cubic

mϕ;cubic loop
≃ 1.59

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

gM2
pΛN�

s
: ðA12Þ

The requirement that VðϕminÞ ¼ 0 determines g in terms of
V0 and Λ, as for the quartic self-coupling in Sec. II,

g ¼
�
75

ffiffiffi
5

p

2

V0

Λ3=2

�2
5

: ðA13Þ

Inserting this into Eq. (A12),

mϕ;max cubic

mϕ;cubic loop
≃ 0.7

V3=10
0

Λ1=5Mp
ffiffiffiffiffiffi
N�

p : ðA14Þ

For fixed V0;Λ, the tuning of the cubic hilltop model does
not improve over the quartic case. For example for V1=4

0 ¼
Λ ¼ 1015 GeV and N� ¼ 30, the tuning is roughly the
same as for the quartic potential, mϕ;max cubic

mϕ;cubic loop
∼ 10−4.

APPENDIX B: HIGGS-INFLATON AND
HIGGS-CURVATON PORTAL PARTICULARS

In what follows, as in Sec. VI, we address quartic
inflaton-Higgs mixing, with the understanding that an
identical treatment applies to quartic curvaton-Higgs mix-
ing. For the potential of Eq. (52), the vacuum expectation
values of h and ϕ are

v2h ¼
μ2 þ λϕhv2ϕ

2λh
; v2ϕ ¼

Λ2λϕ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 48λϕhv2h

Λ4λ2ϕ

r �
2
ffiffiffi
3

p ;

ðB1Þ

the mass matrix for the neutral Higgs component and
inflaton is given by

M2 ¼
 

2λhv2h λϕhvhvϕ

λϕhvhvϕ 3λv2ϕ þ
30v4ϕ
Λ2 þ 2λϕhv2h

!
; ðB2Þ

for which the mass eigenstates are

M2
1;2¼

1

2

 
2λhv2hþ3λϕv2ϕþ

30v4ϕ
Λ2

þ2λϕhv2h

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λϕhvhvϕþ

�
2λhv2h−3λv2ϕ−

30v4ϕ
Λ2

−2λϕhv2h
	
2

s !
:

ðB3Þ

A common definition for the mixing angle between the
two Higgs portal mass eigenstates (S1;2) is α, such that

S1 ¼ h cos αþ ϕ sin α

S2 ¼ h sin αþ ϕ cos α; ðB4Þ

where in turn α is given as

tanð2αÞ ¼ 2λϕhvhvϕ

3λv2ϕ þ
30v4ϕ
Λ2 þ 2λϕhv2h − 2λhv2h

: ðB5Þ

In this study, it is convenient to define the mixing angle
differently, as discussed in the text surrounding Eq. (53).
Specifically, we wish to define the mixing angle so that as
the mixing angle vanishes, so too does the decay width of
the mostly inflaton state to Standard Model particles.
Because the mass of the Higgs boson has been measured,
one of the mass eigenstates M1, M2 must be ≃125 GeV.
We consistently refer to the Higgs-like mass state as mh in
this document, the inflatonlike state as mϕ, and the mixing
angle between the Higgs-like and inflatonlike states as θϕ,
where

9Here the potential is stabilized when ϕ takes positive field
values. An additional ϕ6 term might be included to stabilize the
potential for negative ϕ field values.
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tanð2θϕÞ≡ 2λϕhvhvϕ

j3λv2ϕ þ
30v4ϕ
Λ2 þ 2λϕhv2h − 2λhv2hj

≃ λϕhvhvϕ
jm2

ϕ −m2
hj
;

ðB6Þ

where we have dropped the portal mass contribution,
2λϕhv2h, in the final expression. This term will not contribute
substantially to the inflaton’s mass at its minimum for two
reasons. The first reason is that, by necessity, the inflaton’s
effective mass term at the outset of inflation must be much
smaller than its quartic term, λϕϕ2� ≫ m2

ϕ;�, as detailed in
Appendix A. One consequence is that the Higgs portal
contribution to the inflaton mass must be much smaller than
mϕ;max, which is smaller than mϕ. However, it should be
stressed that the Higgs portal mass contribution “2λϕhv2h”

will be negligible anyway in most of the parameter space
we consider, from the requirement λϕh ≲ 10−6, discussed in
Sec. VI (one might also consider whether vh ∼ 0 during
inflation). The smallness of the Higgs portal operator,
λϕh ≲ 10−6, was required so that the Higgs portal quartic
would not upset the inflaton’s self-quartic coupling through
radiative corrections. In fact, in all unexcluded mϕ ≳
0.05 GeV inflaton-curvaton parameter space in Figs. 11
and 12, the portal contribution to the inflaton mass can be
neglected without invoking “the first reason” given above.
Note again that all of the preceding (including discussion of
the smallness of the Higgs portal mass contribution) is
equally applicable to the quartic curvaton, which requires a
quartic self-coupling about an order of magnitude smaller
than the inflaton.
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