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We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions,
which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of
neutron-antineutron oscillation in a Bardeen–Cooper–Schrieffer type of effective theory with ΔB ¼ 2

baryon number-violating terms. The CP violation in the present effective theory causes no direct
CP-violating effects in the oscillation itself, which is demonstrated by the exact solution, although it
influences the neutron electric dipole moment in the leading order of small ΔB ¼ 2 parameters. An analog
of Bogoliubov transformation, which preserves P and CP, is crucial in the analysis.
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I. INTRODUCTION

The Majorana fermions have received much attention
recently not only in particle physics [1] but also in
condensed matter physics [2]. The Majorana fermions
are defined by the condition ψðxÞ ¼ CψTðxÞ ¼ ψcðxÞ,
where C ¼ iγ2γ0 stands for the charge conjugation
matrix [3].
We start with a neutral Dirac fermion nðxÞ and define the

combinations ψ�ðxÞ ¼ 1ffiffi
2

p ½nðxÞ � ncðxÞ�, which satisfy

ψc
�ðxÞ ¼ �ψ�ðxÞ, showing that ψþðxÞ and ψ−ðxÞ are

Majorana fields. We treat the fermion with ψc
−ðxÞ ¼

−ψ−ðxÞ also as a Majorana fermion. It is well known
[3,4] that, in theories in which the fermion number is
conserved, the discrete symmetry such as parity can
generally be defined with an arbitrary phase freedom δ,
nðxÞ → eiδγ0nðt;−~xÞ. However, if fermion number is not
conserved, the equivalence of parity operators under a
phase transformation fails. As working definitions of C, P,
and T even in a theory with fermion number violation, we
use the conventional definitions given in Ref. [3]. One can
then confirm that the parity operation with vanishing phase
δ ¼ 0, which is the most common definition [3,4] and
called “γ0 parity” in the following when we specify it more
precisely, namely,

nðxÞ → γ0nðt;−~xÞ; ncðxÞ → −γ0ncðt;−~xÞ; ð1Þ

which satisfy P2 ¼ 1, leads to a doublet representation
fψþðxÞ;ψ−ðxÞg,

ψ�ðxÞ → γ0ψ∓ðt;−~xÞ: ð2Þ

Only when the two fermions ψ�ðxÞ are degenerate is this
doublet representation consistent with dynamics [4]. The
mass splitting in ψ�ðxÞ inevitably breaks the γ0 parity as a
symmetry of the Lagrangian.

On the other hand, one confirms that parity for an
isolated single Majorana fermion is consistently defined
only by “iγ0 parity” with δ ¼ π=2,

nðxÞ → iγ0nðt;−~xÞ; ncðxÞ → iγ0ncðt;−~xÞ; ð3Þ

namely, by (see Ref. [4]),

ψ�ðxÞ → iγ0ψ�ðt;−~xÞ; ð4Þ

which is consistent with the reality of ψ�ðxÞ in the
Majorana representation in which γ0 is Hermitian but
purely imaginary. The phase freedom δ is thus fixed by
the Majorana condition and P2 ¼ −1. This transformation
rule (4) by itself does not tell the presence or absence of the
mass splitting of ψ�ðxÞ.
The intrinsic parity of Majorana fermions, in particular,

the parity-doublet theorem stated below, are shown to play
main roles in the discussion of neutron-antineutron oscil-
lation [5,6], which has received attention recently [7–10].

II. EFFECTIVE ΔB= 2 LAGRANGIAN
FOR THE NEUTRON

In the analysis of possible baryon-number violation and
neutron oscillation, one can study essential aspects by
analyzing the quadratic effective Hermitian Lagrangian
with general ΔB ¼ 2 terms added,

L ¼ nðxÞiγμ∂μnðxÞ −mnðxÞnðxÞ

−
i
2
ϵ1½eiαnTðxÞCnðxÞ − e−iαnðxÞCnTðxÞ�

−
i
2
ϵ5½nTðxÞCγ5nðxÞ þ nðxÞCγ5nTðxÞ�; ð5Þ

wherem, ϵ1, ϵ5, and α are real parameters. The most general
quadratic Hermitian Lagrangian is written in the form (5)
using the phase freedom of nðxÞ → nðxÞ ¼ eiβn0ðxÞ; under
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this change of naming the field, the physical quantities in (5)
such as mass eigenvalues are obviously invariant. But once
one defines ncðxÞ≡ CnT , we have ncðxÞ ¼ e−iβn0cðxÞ, and
thus the C and CP properties of the solutions of the
Lagrangian (5) are changed. The first ΔB ¼ 2 term with
real ϵ1 breaks the γ0 parity, while the second ΔB ¼ 2 term
with real ϵ5 preserves the γ0 parity. The term with ϵ5 written
in the variables in (5) preserves C and CP. (In contrast, the
first ΔB ¼ 2 term preserves iγ0 parity, while the second
ΔB ¼ 2 term breaks iγ0 parity.) An analogy of neutron
oscillation in (5) to Bardeen–Cooper–Schrieffer (BCS)
theory was emphasized at the early stage of the study of
neutron oscillation [11].
We assume that the baryon number of the neutron in our

effective theory is fixed by strong interactions, and thus a
parity-violating ΔB ¼ 0 mass term −δm0niγ5n induced by
the QCD θ-vacuum, for example, should be added to a
possible parity-violating mass term induced by ΔB ¼ 2
interactions discussed later.
The model (5) with α ¼ 0, which preserves CP, is

related to the single-flavor neutrino model in Ref. [1] if
one replaces nðxÞ by νðxÞ and suitably adjusts the phase of
the neutrino in the latter model. The mass eigenvalues are
given by

M� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
� ϵ1: ð6Þ

For the purpose of the analysis of CP violation later, the
Hermitian Lagrangian (5) with α ¼ −π=2 is interesting. For
this choice, the second term with ϵ1 breaks γ0 parity and
CP, although C is a good symmetry of the total Lagrangian.
The Lagrangian with α ¼ −π=2 is exactly solved in terms
of the solutions of

ði∂ −M�Þψ�ðxÞ ¼ 0; ð7Þ

with mass eigenvalues

M� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� ϵ1Þ2 þ ϵ25

q
: ð8Þ

The neutron fields are then given by

1ffiffiffi
2

p
�
nðxÞ þ ncðxÞ
nðxÞ − ncðxÞ

�
¼ e−iΘγ5e−iτ3γ5Θ

�
ψþðxÞ
ψ−ðxÞ

�
; ð9Þ

where the chiral phase factors are defined by

M�e2i
~θ�γ5 ¼ m� ϵ1 � iϵ5γ5; ð10Þ

and Θ≡ 1
2
ð~θþ þ ~θ−Þ and Θ≡ 1

2
ð~θþ − ~θ−Þ. The charge

conjugation properties of ψ� are [12]

ψcþðxÞ ¼ ψþðxÞ; ψc
−ðxÞ ¼ −ψ−ðxÞ ð11Þ

and are thus Majorana fermions, which are consistent with
the C transformation of n and nc in (9) and also consistent
with the C invariance of (5) (with α ¼ −π=2). One can
confirm that the doublet representation of parity

ψ�ðxÞ → γ0ψ∓ðt;−~xÞ ð12Þ

does not induce the γ0-parity transformation of n and nc for
Θ ≠ 0 in (9), reflecting the P (and thus CP) violation for
ϵ1ϵ5 ≠ 0 (for ϵ1ϵ5 ¼ 0, Θ ¼ 0) in addition to the dynamical
P breaking Mþ ≠ M− for ϵ1 ≠ 0 in (5).
It is confirmed that the CP violation in the Lagrangian

(5) (with α ≠ 0) is not eliminated by any phase choice of
the neutron field nðxÞ → eiβnðxÞ for real ϵ1 ≠ 0 and ϵ5 ≠ 0,
and in this sense, it is intrinsic; ϵ1ϵ5 ≠ 0 is a necessary
condition of CP violation, and parity is inevitably broken.

III. PARITY-DOUBLET THEOREM

The presence of the neutron oscillation with the
probability Pðn → nÞ ∝ sin2ððΔM=2ÞtÞ implies the
mass splitting of auxiliary Majorana-type fermions
as in (6) and (8). Phenomenologically, one thus
observes that the γ0-parity violation by ϵ1 ≠ 0 in
(5), which gives rise to Mþ ≠ M−, is the necessary
condition of neutron oscillation. The observation of the
neutron oscillation thus implies the dynamical incon-
sistency of the doublet representation of γ0 parity. In
contrast, the failure (or success) of iγ0 parity does not
tell the presence or absence of neutron oscillation.
In the following, we shall make more precise the role of

γ0 parity and show that the main features of the solutions of
the Lagrangian (5) can be obtained from general symmetry
considerations. We first write the action corresponding to
the Lagrangian (5) in the notation of nðxÞ and ncðxÞ as

Sðn; nc; ϵ1Þ ¼
Z

d4x

�
1

2
nðxÞ½iγμ∂μ −m�nðxÞ

þ 1

2
ncðxÞ½iγμ∂μ −m�ncðxÞ

−
i
2
ϵ1½eiαncðxÞnðxÞ − e−iαnðxÞncðxÞ�

−
i
2
ϵ5½ncðxÞγ5nðxÞ þ nðxÞγ5ncðxÞ�

�
: ð13Þ

The CP (or T) symmetry of the effective Lagrangian is
fixed by the choice of α in (13), and therefore we start with
an arbitrary α. The quadratic Lagrangian can be diagon-
alized, and the general solution corresponding to the
eigenvalue Mðϵ1Þ,

½iγμ∂μ −Mðϵ1Þ�ψþðx; ϵ1Þ ¼ 0; ð14Þ

is written as
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ψþðx; ϵ1Þ≡ c1nðxÞ þ c2γ5nðxÞ þ c3ncðxÞ þ c4γ5ncðxÞ;
ð15Þ

with suitable complex constants fcjðϵ1Þg that generally
depend on ϵ1 (as well as on m, ϵ5, and α, but these
parameters do not influence the transformation property
under the γ0 parity). One can easily ascertain that the action
(13) is invariant under the γ0-parity transformation of nðxÞ
and ncðxÞ combined with the inversion ϵ1 → −ϵ1, namely,

Sðn; nc; ϵ1Þ ¼ Sðnp; ðncÞp;−ϵ1Þ: ð16Þ

Consequently, if one performs a γ0-parity transformation
and the inversion ϵ1 → −ϵ1 on the solution (14), one finds a
solution of Sðnp; ðncÞp;−ϵ1Þ,

ψp
þðx;−ϵ1Þ ¼ ½c1ð−ϵ1ÞnpðxÞ þ c2ð−ϵ1Þγ5npðxÞ

þ c3ð−ϵ1ÞðncðxÞÞp þ c4ð−ϵ1Þγ5ðncðxÞÞp�
¼ γ0½c1ð−ϵ1Þnðt;−~xÞ − c2ð−ϵ1Þγ5nðt;−~xÞ
− c3ð−ϵ1Þncðt;−~xÞ þ c4ð−ϵ1Þγ5ncðt;−~xÞ�

≡ γ0ψ−ðt;−~x;−ϵ1Þ; ð17Þ

which satisfies (as it will be justified below using the Ward-
Takahashi identity)

½iγμ∂μ −Mð−ϵ1Þ�ψp
þðx;−ϵ1Þ ¼ 0: ð18Þ

This relation implies

γ0½iγμ∂μ −Mð−ϵ1Þ�ψp
þðx;−ϵ1Þ

¼ γ0½iγμ∂μ −Mð−ϵ1Þ�γ0ψ−ðt;−~x;−ϵ1Þ ¼ 0: ð19Þ

Thus, we have found a solution of Sðnp; ðncÞp;−ϵ1Þ ¼
Sðn; nc; ϵ1Þ, corresponding to the eigenvalue Mð−ϵ1Þ:

½iγμ∂μ −Mð−ϵ1Þ�ψ−ðx;−ϵ1Þ ¼ 0: ð20Þ

The γ0-parity transformation maps a solution ψþðx; ϵ1Þ
with mass Mðϵ1Þ in (14) to another solution ψ−ðx;−ϵ1Þ
with mass Mð−ϵ1Þ in (20) as is suggested by the broken
parity symmetry relation in (16).
We return now to the justification of the mass eigenvalue

Mð−ϵ1Þ in Eq. (18). We note that the solution ½iγμ∂μ −
Mð−ϵ1Þ�ψp

þðx;−ϵ1Þ ¼ 0 of the action Sðnp; ðncÞp;−ϵ1Þ in
(18) and the solution ½iγμ∂μ −Mð−ϵ1Þ�ψþðx;−ϵ1Þ ¼ 0 of
the action Sðn; nc;−ϵ1Þ share the same mass eigenvalue
since one can regard n → np and nc → ðncÞp as a formal
renaming of field variables. Remark, however, that
Sðn; nc;−ϵ1Þ ≠ Sðn; nc; ϵ1Þ, while Sðnp; ðncÞp;−ϵ1Þ ¼
Sðn; nc; ϵ1Þ. A justification of (18) is given by a Ward-
Takahashi identity for broken parity symmetry in the path
integral by starting with

hT⋆npðxÞðncÞpðyÞijðε1Þ¼
Z

DnDncnpðxÞðncÞpðyÞeiSðn;nc;ϵ1Þ

¼
Z

DnpDðncÞpnpðxÞðncÞpðyÞeiSðnp;ðncÞp;−ϵ1Þ; ð21Þ

where T⋆ stands for time ordering and we used the parity
invariance of the path integral measure DnpDðncÞp ¼
DnDnc and the broken parity relation (16), Sðnp;
ðncÞp;−ϵ1Þ ¼ Sðn; nc; ϵ1Þ. The last path integral in (21)
is identical to the path integral in

hT⋆nðxÞncðyÞijð−ϵ1Þ ¼
Z

DnDncnðxÞncðyÞeiSðn;nc;−ϵ1Þ;

ð22Þ
using the renaming of path integral variables. We thus
conclude that hT⋆npðxÞðncÞpðyÞijðϵ1Þ defined by Sðn;nc;ϵ1Þ
agrees with hT⋆nðxÞncðyÞijð−ϵ1Þ defined by Sðn; nc;−ϵ1Þ.
This relation holds for other combinations of fields such as

hT⋆npðxÞnpðyÞi also, and thus we conclude that

hT⋆ψp
þðx;−ϵ1Þψp

þðy;−ϵ1Þi ð23Þ

for the action Sðn; nc; ϵ1Þ ¼ Sðnp; ðncÞp;−ϵ1Þ agrees with

hT⋆ψþðx;−ϵ1Þψþðy;−ϵ1Þi ð24Þ

for the action Sðn; nc;−ϵ1Þ; i.e., they have the same pole
mass, Mð−ϵ1Þ. This provides a justification of the mass
eigenvalue in (18).
A similar analysis in the inverse direction starting

with the solution ψ−ðx;−ϵ1Þ in (20) of Sðnp; ðncÞp;−ϵ1Þ
leads to a solution ψþðt;−~x; ϵ1Þ of Sðn; ðncÞ; ϵ1Þ with mass
Mðϵ1Þ. We have thus established the γ0-parity doublet
representation fψþðx; ϵ1Þ;ψ−ðx;−ϵ1Þg of the solutions of
Sðn; nc; ϵ1Þ,

ψþðx; ϵ1Þ!P γ0ψ−ðt;−~x;−ϵ1Þ;
ψ−ðx;−ϵ1Þ!P γ0ψþðt;−~x; ϵ1Þ; ð25Þ

which satisfy P2 ¼ 1 (parity-doublet theorem). This
representation is valid irrespective of whether the γ0

parity is conserved or not. The γ0-parity violation by
ϵ1 ≠ 0 in (13) is a necessary condition of neutron
oscillation, which requires Mþ¼Mðϵ1Þ≠Mð−ϵ1Þ¼M−,
in which case the doublet representation is dynamically
inconsistent.
A more detailed specification of the solutions is

possible if one assumes some symmetry of the
Lagrangian. For example, good C in (5) and (13) with
α ¼ −π=2 implies the relation ψcþ ¼ CψþT , where the
left-hand side ψcþ is evaluated in terms of n and nc by a
unitary C transformation,
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ψcþðx; ϵ1Þ ¼ c1ncðxÞ þ c2γ5ncðxÞ þ c3nðxÞ þ c4γ5nðxÞ;
ð26Þ

while the right-hand side is evaluated directly from ψþ,

CψþT ¼ iγ2½c1nðxÞ þ c2γ5nðxÞ þ c3ncðxÞ þ c4γ5ncðxÞ��;
ð27Þ

and one obtains

ψþðxÞ ¼ c1nþ ic2γ5nþ c3nc þ ic4γ5nc ð28Þ

as a general expansion analogous to (15) where all the
coefficients are now real. The condition ψcþ ¼ ψþ and
the parity doublet condition ψþ → γ0ψ− in (25) then fix the
general forms

ψþ ¼ ðc1ðϵ1Þ þ ic2ðϵ1Þγ5Þðnþ ncÞ;
ψ− ¼ ðc1ð−ϵ1Þ − ic2ð−ϵ1Þγ5Þðn − ncÞ; ð29Þ

and the last expression ψ− also satisfies the condition
ψc
− ¼ −ψ−. This is precisely the structure obtained earlier

by direct calculations in Eq. (9). Thus, we can derive the
general features of the exact solution in (9) without solving
explicitly the equations of motion but just by using the γ0

parity.
The absence of the γ0 parity-violating ϵ1 term implies the

absence of the conventional neutron oscillation because of
the mass degeneracy of the two solutions in (25), despite
the presence of the ϵ5 term with ΔB ¼ 2, which breaks
generally defined parity in (13). We discuss what happens
in this case by setting ϵ1 ¼ 0 in (13) which preserves C and
P. The solution of this Lagrangian with ϵ1 ¼ 0 is given
by (9),

�
nðxÞ
ncðxÞ

�
¼

�
cosϕNþðxÞ − iγ5 sinϕN−ðxÞ
cosϕN−ðxÞ − iγ5 sinϕNþðxÞ

�
; ð30Þ

but now with

N�ðxÞ ¼ ½ψþðxÞ � ψ−ðxÞ�=
ffiffiffi
2

p
ð31Þ

and

sin 2ϕ≡ ϵ5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
; ð32Þ

which satisfy Nc
�ðxÞ¼N∓ðxÞ and Np

�ðxÞ ¼ �γ0N�ðt;−~xÞ
using (11) and (12). The fields N�ðxÞ have the degenerate
mass

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
: ð33Þ

In the notation of (15) and (25), the solution with good γ0

parity gives a degenerate pair of Majorana fermions or
equivalently a Dirac fermion NþðxÞ, and good C implies
the doublet representation fNþðxÞ; NcþðxÞg.
When one generates the neutron, one obtains

nðxÞ ¼ cosϕNþðxÞ − iγ5 sinϕNcþðxÞ ð34Þ

in (30) but no oscillation in the conventional sense due to
the mass degeneracy, and thus it may appear that there are
no physical effects. But nðxÞ and ncðxÞ are not orthogonal
in the sense

hT⋆ncðxÞnðyÞi ¼
Z

d4p
ð2πÞ4

γ5M sin 2ϕ
p2 −M2 þ iϵ

e−ipðx−yÞ; ð35Þ

which shows that nðxÞ decays through n → pþ eþ νe or
nc → pþ eþ þ νe, and nðxÞ annihilates when it collides
with ordinary matter containing the neutron. The implica-
tion of the absence of oscillation (with ΔB ¼ 2 terms
present) is the absence of the “bunching effect” in the sense
that one would observe predominantly ncðxÞ starting with
nðxÞ when observed at a proper moment in the presence of
oscillation.
In analogy of the neutron oscillation to BCS theory [11],

we note that the relation (30) is precisely a Lorentz-
invariant version of the Bogoliubov transformation [13]
which diagonalizes the Lagrangian (with ϵ1 ¼ 0) by
preserving the anticommutation relations

fnðt; ~xÞ; ncðt; ~yÞg ¼ fNþðt; ~xÞ; Ncþðt; ~yÞg ð36Þ

and γ0 parity. An interesting aspect of the relativistic
Bogoliubov transformation is that (35) implies

f _ncðt; ~xÞ; nðt; ~yÞg ≠ 0; ð37Þ

if one applies the Bjorken–Johnson–Low (BJL) prescrip-
tion, and thus ncðxÞ is dynamically correlated with nðxÞ
although fncðt; ~xÞ; nðt; ~yÞg ¼ 0. More interestingly, our
parity-doublet theorem implies that the mass splitting of
Majorana-type quasifermions may appear also in con-
densed matter physics, if parity (γ0 parity) is violated,
although our analysis is strictly valid for the quadratic
(mean field) approximation.

IV. CP AND RELATED ISSUES

It is well known that Majorana neutrinos modify the CP
property in electroweak interactions [14]. For example, one
can in principle have CP violation in the model with only
two generations, although such extra CP violation is not
observable in neutrino oscillation [14]. We discuss the CP
properties in the neutron oscillation using the explicit
Lagrangian (13), which is CP violating for α ≠ 0.
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To solve (13), we first use the Bogoliubov transformation
(30) as a change of variables, which preserves C and P.
Setting Nþ ¼ N, the Lagrangian (13) is then written as

L ¼ ð1=2ÞN½i∂ −M − iϵ1γ5 sin α sin 2ϕ�N
þ ð1=2ÞNc½i∂ −M − iϵ1γ5 sin α sin 2ϕ�Nc

− ði=2Þϵ1ei ~α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðsin α sin 2ϕÞ2

q
NcN þ H:c:; ð38Þ

where sin ~α ¼ sin α cos 2ϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðsin α sin 2ϕÞ2

p
. After

performing N → e−i ~α=2 ~N, CP violation appears only in
the parity-violating mass term. A further transformation

1ffiffiffi
2

p
� ~NðxÞ − i ~NcðxÞ

~NðxÞ þ i ~NcðxÞ

�
¼

�
~φþðxÞ
~φ−ðxÞ

�
ð39Þ

leads to

L ¼ ð1=2Þ ~φþ
h
i∂ −

�
M þ ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð~ϵ1=ϵ1Þ2

q �
− i~ϵ1γ5

i
~φþ

þ ð1=2Þ ~φ−

h
i∂ − ðM − ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð~ϵ1=ϵ1Þ2

q �
− i~ϵ1γ5

i
~φ−;

with ~ϵ1 ≡ ϵ1 sin α sin 2ϕ. After a suitable chiral transfor-
mation, one obtains a pair of Majorana fermions,

L ¼ ð1=2ÞφþðxÞ½i∂ −Mþ�φþðxÞ
þ ð1=2Þφ−ðxÞ½i∂ −M−�φ−ðxÞ; ð40Þ

where φ� ¼ eiθ�γ5 ~φ� with

�
M � ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð~ϵ1=ϵ1Þ2

q �
þ i~ϵ1γ5 ≡M�e2iθ�γ5 ; ð41Þ

and

M� ¼
�h

M � ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð~ϵ1=ϵ1Þ2

q i
2 þ ð~ϵ1Þ2

�1=2
: ð42Þ

This mass formula covers the special cases (6) and (8) by
choosing α ¼ 0 and α ¼ −π=2, respectively.
To analyze the possible effects of CP violation, we first

look at the parity-violating mass term for the Dirac fermion
in (38), which is written

Lmass ≃ −ðϵ1ϵ5=MÞ sin αnðxÞiγ5nðxÞ; ð43Þ

in the leading order in ϵ1 and ϵ5. This term, which is used to
evaluate the neutron electric dipole moment, should be
added to the contributions from other sources such as the
QCD θ vacuum.
To examine the more direct effects of CP violation in the

oscillation amplitude, we write the exact solution of the
neutron field using (30), (39), and (40),

nðxÞ ¼ ð1=
ffiffiffi
2

p
Þ½cosϕe−i ~α=2 þ γ5 sinϕei ~α=2�e−iθþγ5φþðxÞ

þ ð1=
ffiffiffi
2

p
Þ½cosϕe−i ~α=2 − γ5 sinϕei ~α=2�e−iθ−γ5φ−ðxÞ;

ncðxÞ ¼ ð−i=
ffiffiffi
2

p
Þ½cosϕei ~α=2 − γ5 sinϕe−i ~α=2�e−iθ−γ5φþðxÞ

þ ði=
ffiffiffi
2

p
Þ½cosϕei ~α=2 þ γ5 sinϕe−i ~α=2�e−iθþγ5φ−ðxÞ:

ð44Þ

We choose the P and C transformation laws of the mass
eigenstates (40) consistent with the doublet representation
of γ0 parity as in (25) [12],

φp
�ðxÞ ¼ γ0φ∓ðt;−~xÞ; φc

�ðxÞ ¼ �iφ∓ðxÞ; ð45Þ

which induce n → γ0n and nc → −γ0nc, and n → nc in
(44), respectively, for the vanishing CP-breaking parameter
α ¼ 0. The CP symmetry expressed by

φcp
� ðxÞ ¼ �iγ0φ�ðt;−~xÞ ð46Þ

does not induce the CP transformation of n and nc for
α ≠ 0, which shows the CP breaking in (44); to be precise,
the CP transformation of φ�ðxÞ in the expression of nðxÞ
does not lead to −γ0ncðt;−~xÞ. We regard (44) as an analog
of the “mixing matrix” between the flavor eigenstates
ðn; ncÞ and mass eigenstates ðφþ;φ−Þ, and we test the
above CP breaking in the neutron oscillation.
One can then evaluate the oscillation probability ampli-

tude A ¼ Aðnð~pÞ → ncð~pÞ; tÞ by

A ¼ hncRð~pÞ; 0jnRð~pÞ; ti þ hncLð~pÞ; 0jnLð~pÞ; ti; ð47Þ

where we used the chirally projected states to take care of
the γ5 appearing in the above solution. Thus,

A ¼ i
2
½cos2ϕe−i ~α − sin2ϕei ~α�

× fe−iθ−iEþthφR;þð~p; 0ÞjφR;þð~p; 0Þi
− eiθ−iE−thφR;−ð~p; 0ÞjφR;−ð~p; 0Þi
þ eiθ−iEþthφL;þð~p; 0ÞjφL;þð~p; 0Þi
− e−iθ−iE−thφL;−ð~p; 0ÞjφL;−ð~p; 0Þig; ð48Þ

where we defined θ ¼ θþ − θ−. We now note

hφR;þð~p; 0ÞjφR;þð~p; 0Þi ¼ hφL;þð~p; 0ÞjφL;þð~p; 0Þi

¼ 1

2
hφþð~p; 0Þjφþð~p; 0Þi ð49Þ

and similarly for φ−ð~p; 0Þ using the iγ0-parity invariance of
free Majorana equations, namely, φp

R;þðxÞ ¼ iγ0φL;þðt;−~xÞ.
Using the normalization of states hφþð~p; 0Þjφþð~p; 0Þi ¼
hφ−ð~p; 0Þjφ−ð~p; 0Þi, we find the amplitude
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A ¼ ½cos2ϕe−i ~α − sin2ϕei ~α� cos θ sin
�
1

2
ΔEt

�

× e−iEthφþð~p; 0Þjφþð~p; 0Þi; ð50Þ
with ΔE ¼ Eþ − E− and E ¼ ðEþ þ E−Þ=2. Adopting
jhφþð~p; 0Þjφþð~p; 0Þij2 ¼ 1, one obtains the oscillation
probability,

Pðnð~pÞ→ncð~pÞ;tÞ¼ð1−sin22ϕcos2 ~αÞcos2θsin2
�
1

2
ΔEt

�
:

ð51Þ

By recalling the definitions of sin ~α in (38) and θ� andM� in
(41), the CP transformation, which is equivalent to α → −α,
corresponds to

~α → − ~α; θ ¼ θþ − θ− → −θ; ð52Þ
and the above oscillation probability (51) and the energy
difference ΔE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

−
p

are all invari-
ant. Although αmodifies the magnitudes ofΔE (and thus the
oscillation time) and probability P themselves, we do not
regard these modifications as a manifestation of CP viola-
tion in oscillation which is typically expressed by
Pðnð~pÞ → ncð~pÞ; tÞ ≠ Pðncð~pÞ → nð~pÞ; tÞ. We observe
no direct CP violation in the neutron oscillation in vacuum.
Note that we discussed CP by looking at only the

neutron sector assuming that the flavor degree [ðp; nÞ
multiplet structure, for example] is fixed by the baryon
number-conserving sector of the full model, unlike the
neutrino oscillation where a combination of neutrino and

charged-lepton mixing matrices is analyzed. See also
Refs. [7–9] for related analyses.
The possibleCPT violation in the hadron sector appears to

bevery small as is indicated by both experimental limit jmK −
mKj < 0.44 × 10−18 GeV [15] and a recent model study
within an extension of the StandardModel [16]. However, we
mention that the relevant mass scale of the neutron oscillation
is estimated at ϵ1 ≤ 6 × 10−24 eV and n − n mass splitting
itself is constrained to be less than 10−15 eV to observe the
oscillation [6]. These values are not much different from the
estimated mass difference ∼10−20 eV of the electron and
positron induced by the possible CPT breaking that is
required to explain the small (2σ) mass difference of the
observed Sun neutrino and reactor antineutrino as really
arising from the Lorentz-invariant CPT breaking [16]. See
also a recent paper [10].
In conclusion, we have clarified the full physical con-

tents of the model of neutron oscillation (5). It has been
shown that basic notions such as the parity doubling of
Majorana fermions and the Bogoliubov transformation play
main roles in the analysis of the model (5), which, as a
relativistic analog of BCS theory, is in turn suggestive of
new possibilities in condensed matter physics.
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