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We derive corrections to atomic energy levels from disformal couplings in Galileon theories. Through
Bayesian inference, we constrain the cutoff radii and Galileon scale via these corrections. To connect
different atomic systems, we assume the various cutoff radii related by a one-parameter family of solutions.
This introduces a new parameter α which is also constrained. In this model, we predict shifts to muonic
helium of δEHe3 ¼ 1.97þ9.28

−1.87 meV and δEHe4 ¼ 1.69þ9.25
−1.61 meV as well as for true muonium, δETM ¼

0.06þ0.46
−0.05 meV.
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I. INTRODUCTION

Measurements in muon physics [1–4] have shown
discrepancies with theoretical calculations. This “muon
problem” could signal lepton universality violation from
beyond standard model physics. A stronger muon coupling
to new physics is sensible from effective field theory (EFT).
Suppose the EFT has a cutoff scale Λ. Then, observables
should scale as powers of ml=Λ. This is analogous to the
enhancement of weak interactions in muonic systems [5].
Disformal scalar couplings can arise in Galileon theories

currently being investigated in modified gravity scenarios
[6,7]. The disformal coupling to matter allows for quantum
loop corrections to atomic energy levels. This opens up the
tantalizing possibility that gravitational effects resolve the
radii discrepancies [2,4]. It is necessary to include chame-
leon interactions to avoid constraints from astrophysics and
colliders [8]. These interactions, as will be discussed below,
introduce a mechanism for regularizing the divergence and
explaining the origin of the Galileon radius.
Due to the highly singular nature of the disformal scalar

interaction, a particle-dependent cutoff radius ri for the
Galileon interaction had to be introduced to render the 2s −
2p Lamb shift finite. Brax and Burrage assumed ri was

equal to the particle charge radius
ffiffiffiffiffiffiffiffiffiffiffi
hr2chii

q
[8], but only

considered bound states with nuclei. In [9], this assumption
was applied to purely leptonic bound states (e.g. eþe−,
e−μþ). The leptonic ri consistent with the muonic hydro-
gen discrepancy was found to be experimentally ruled out.

Therefore ri ¼
ffiffiffiffiffiffiffiffiffiffiffi
hr2chii

q
is inconsistent with the data.

Removing this constraint, the relation between ri of
different particles must be specified some other way. The
nonperturbative nature of the Galileon field makes comput-
ing ri from first principles difficult. In this work, we instead
introduce a phenomenological one-parameter relationship
between ri of different particles. In [9], it was seen that

using the Lamb shift of multiple atoms is unable to break
the degeneracy between ri and M in parameter space. To
resolve this issue we compute the Galileon correction to the
1s Lamb shift, 1s − 2s interval, and the circular transitions
between states n ≤ 5. These new constraints are found to
partially break the degeneracy in regions of parameter
space where sufficiently strong experimental bounds exist.
We begin in Sec. II with a short review of how disformal

couplings arise and where the leading-order corrections to
the transitions are found. Section III is devoted to intro-
ducing and motivating the model for ri used in this paper.
Following this is a short discussion of the transitions used
in our study in Sec. IV. In Sec. Vare found the results from
considering all the experimental values in a Bayesian
analysis. Using the results, Sec. VI presents a prediction
for the Galileon correction to muonic helium. We conclude
in Sec. VII with a short discussion of future work.

II. CORRECTIONS FROM GALILEONS

Bekenstein has shown that the most general metric
formed from only gμν and a scalar field ϕ respecting
causality and weak equivalence is [10]

~gμν ¼ Aðϕ; XÞgμν þ Bðϕ; XÞ∂μϕ∂νϕ; ð1Þ
where X ¼ 1

2
gμν∂μϕ∂νϕ. The first term leads to conformal

scalars, whose couplings to matter are heavily constrained
by various fifth-force experiments. For us, only the second
term, which yields the disformal coupling, matters. This
Lagrangian interaction is

Ldis ¼
Bðϕ; XÞ

2
∂μϕ∂νϕT

μν
J ; ð2Þ

where Tμν
J is the energy-momentum tensor of matter given

in the Jordan frame.
The leading disformal coupling in nonrelativistic sys-

tems is a one-loop quantum effect that results in a
correction to the energy level of an atomic system given
by [7,11,12]*hlammiv@asu.edu
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δE ¼ −
3mimj

32π3M8
hEj 1

r7
jEi; ð3Þ

where mi ≥ mj are the masses of the constituent particles
and M is the Galileon coupling scale.
From this we can derive the correction to each energy

level. For the n ¼ 1, 2 states, the correction diverges like
1=r4 and therefore must be cut off at some radius for each
mass mi, ri. For the n ¼ 3, the correction has a milder
singularity of logðrÞ. For states n ≥ 4, the correction is
finite in the limit of r → 0, and therefore these higher
transitions can give limits on M that are less dependent
on ri.
Our results for the corrections to the transition energies

are listed in Table I. We note that these are the exact
relations obtained from using the full hydrogenic wave
functions, in contrast to previous works [7–9]. Using the
full wave functions was found to be necessary when
rederiving the 2s − 2p Lamb shift correction. There, the
next-to-leading-order term in the 2s state is larger than the
leading-order 2p term, and therefore the energy correction
used in [7–9] is inconsistent. Due to the small size of these
corrections in comparison to the leading-order 2s term,
previous results are unaffected except for very large ri.

III. PARAMETRIZING WITH rG

As seen in [9], the combination of multiple bound states
can restrict the ðri;MÞ parameter space if the relationship
between the Galileon radii is known. The nonperturbative
nature of the Galileon field with chameleon traits makes
computing ri from first principles at least as difficult as
computing the charge radii [13,14], and requires choosing a
particular chameleon field interaction which introduces
model dependence. For this work, we instead develop a
phenomenological relationship between ri of different
particles motivated by general features of chameleon
models and field distributions.
Following [9], we take the view that the Galileon radii

should be interpreted as other radii, as an expectation value
of an underlying distribution. Formally the charge (where
we mean charge in the general sense, e.g. electric charge,

weak interaction, matter density) radius of a particle is
defined via the associated form factor,

Giðq2Þ ¼
Z

d3xeiq·xρðxÞ

¼
Z

d3x

�
1þ iq · xþ ðq · xÞ2

2
þ � � �

�
ρðxÞ

¼ Qi;tot −
1

6
jqj2hr2i þ � � � ; ð4Þ

where Gi is the form factor, ρðxÞ is the charge density, and
Qtot is the total charge of the particle. The standard
definition of hr2i is then

hr2i i≡ r2i ¼ −6
dGi

dq2

����
q2¼0

: ð5Þ

By this definition, we see that ri is related to a Galileon
density ρGðxÞ which measures the spatial distribution of
matter coupling to the Galileons,

r2i ¼
Z

drdθdϕ sinðθÞr4ρGðrÞ: ð6Þ

In order to produce a viable phenomenological model of
r2i , we therefore need an approximation for ρGðrÞ. To do
this, we first digress to discuss chameleon models.
Chameleon fields are scalar fields with density-dependent
masses. In cosmology and astrophysics, this feature is used
avoid constraints on their production in the early Universe
and star, while allowing them to be a dark energy candidate.
These fields are fully characterized by their mass and
coupling constants. One example of chameleons is the large
curvature fðRÞ model [15,16], which has a known function
mχðρmÞ ¼ mχ;0ðρm=ρ0Þðnþ2Þ=2 where mχ is the Galileon
mass, ρ0 is the matter density of the Universe today, and n is
a model-dependent positive index.
From this example, it is obvious to understand why

stellar constraints can be avoided. In vacuum, mχ is nearly
massless (present constraints are ≈10−30 eV). In the
interior of a star, the matter density ρm ≈ 1040ρ0, implying

TABLE I. δEn ¼ κnðxÞFnðxÞ, η ¼ mimj

π3M8a7
, x ¼ ri=a, where a ¼ ðZαmrÞ−1 is the Bohr radius of the system, mr is the reduced mass,

and we have defined a function where EiðxÞ is the exponential integral function.

n κnðxÞ FnðxÞ
1s Lamb − η

25x4 e−2xð3 − 2xþ 2x2 − 4x3Þ − 8x4Eið−2xÞ
1s-2s η

28x4 8e−2xð3 − 2xþ 2x2 − 4x3Þ − e−xð3 − 5xþ 4x2 − 4x3Þ − 4x4½16Eið−2xÞ þ Eið−xÞ�
2s-2p Lamb η

29x4 e−2xð6 − 10xþ 7x2 − 7x3Þ − 7x4Eið−xÞ
2p-1s η

29x4 24e−2xð3 − 2xþ 2x2 − 4x3Þ − x2e−xð1 − xÞ − x4½27Eið−2xÞ − Eið−xÞ�
3d-2p − η

28x4 e−xð−3þ 5x − 4x2 þ 4x3Þ þ 4x4½Eið−xÞ − 24

385
Eið− 2

3
xÞ�

4f-3d − η
220315171 e−

x
2ð2þ xÞ þ 2187

37
Eið− 2

3
xÞ

5g-4f η
220315171 e−

x
2ð2þ xÞ − 215

32511
e−

2x
5 ð3153 þ 150xþ 30x2 þ 4x3Þ

HENRY LAMM PHYSICAL REVIEW D 94, 115007 (2016)

115007-2



that mχ becomes large and suppresses the interaction. The
chameleon screening will have a more pronounced effect in
leptons and nuclei where the density is even higher. This
should regularize the divergence in energy levels, rendering
them finite, and justify the physical nature of r2i .
With these properties in mind, we can propose a gross

model for the Galileon radii. Empirically, the density of
nuclei A > 20 is found to saturate at ρm;N ≈ 100 MeV=fm3.
Neglecting shell effects, the matter radii can be related in
the liquid-drop model by [17]

ρm;N ¼ mA
4
3
πr3A

ð7Þ

implying rA ∝ A
1
3. For A < 20, the density is not saturated.

We can estimate the density of the proton using its charge
radius to be ρm;p ≈ 300 MeV=fm3. Conversely, if we
estimate the proton radius from the saturation density,
we obtain r0 ¼ 1.2 fm which is off by a factor of 1.4.
If we can apply the liquid-drop model to the Galileon

distribution, the chameleon screening effects should be the
same and model independent for all particles and we would
obtain

ρGðrÞ ¼
CGρm;N

4π
× θðrA − rÞ ð8Þ

where rA ¼ A
1
3r0, and CG is the correction factor from the

chameleon interaction. If we modify the standard definition
of A to be A ¼ mA=mp, we can extend this definition to
leptons as well. With this, we can analytically evaluate

Eq. (11) to obtain ri ¼ A
1
3rG where rG ¼

ffiffi
3
5

q
CGr0. A more

general model, which can be considered a perturbation
from the uniform density model, is where the density now
depends on radius

ρGðrÞ ¼
ρ

4π

�
1þ

�
r
r0A

�
n
�
× θðrA − rÞ: ð9Þ

The power n in this model is determined by three things:
the scaling of ρm for a particle from the standard model
interactions, A to account for differences in particles, and
the decoupling due to the model-dependent mχðρmÞ. On
general grounds, the competition between the first two
mechanisms and the last will drive jnj to smaller values and
therefore a more uniform Galileon charge distribution.
Since mχ becomes very large, this decoupling should not
effect the matter distribution in the particle, similar to how
the weak interaction has a negligible effect on nuclear
structure. In this model, the parameters rA ¼ fðAÞr0, r0A ¼
gðAÞr0 are two, as-yet undefined functions affected only by
particle species. Integrating, we find in this model that

r2i ¼
3ðnþ 3Þðnþ 5½ðfðAÞgðAÞÞn þ 1�Þ
5ðnþ 5Þðnþ 3½ðfðAÞgðAÞÞn þ 1�Þ

fðAÞ2r20: ð10Þ

Assuming that n is small and that fðAÞ, gðAÞ are slowly
varying functions of A, the A dependence of the numerator
and denominator will be weak and tend to cancel. Then, we
can absorb the numerical factors and r0 into rG and obtain
ri ≈ fðAÞrG. In this example, we see that essentially any
function fðAÞ can be specified for the relationship between
radii and mass.
Motivated by these toy models, we propose a phenom-

enological one-parameter family of relations between the
Galileon radii

ri ¼
�
mi

mp

�
α

rG; ð11Þ

wheremp is the proton mass, rG ¼ rp is the Galileon radius
for the proton (which is unrelated to the charge radius, and
to be determined), and α is a free parameter that will be fit
by the data that relates different radii. With Eq. (11),
corrections to transition energies from any bound state are
determined by ðrG;M; αÞ.
This choice of parametrization can be further motivated

by comparison to the charge radii. In addition to the liquid-
drop model discussed above, power-law relations like
Eq. (11) have found wide application. Empirically fitting
the rA for large elements, the relation rA ¼ A0.294ð1Þre is
found to better account for the data [18]. In relating isotopic
chains, RA ¼ ðA=A0Þ1=5R0 has been found to work well
[19,20]. Accounting for the finite surface thickness of
nuclei, the charge radii have been estimated using [21]

R0 ¼
�
r0 þ

r1
A2=3 þ

r2
A4=3

�
A1=3; ð12Þ

where a strong anticorrelation between r1 and r2 decreases
the violation of the leading-order scaling with A. With only

FIG. 1. Selected limits for M as a function of rG with α ¼ 0.
The solid lines correspond to 1σ lower bounds, while the dashed
lines are the mean values of the discrepancies in muonic hydro-
gen and muonic deuterium.
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the μ−p and μ−D results showing discrepancies, we believe
that the model of Eq. (11) balances well the model
dependence of using a more complex relation (with more
free parameters) with the limited number of data points
showing discrepancies.
While α ¼ 1=3, 1=5, and 0.294(1) are all limiting cases

of our model, there is a final case worth considering, that of
α ¼ 0. This corresponds to the limit where all particles
have the same rG. For this simplest case, we plot an
example set of constraints in Fig. 1.

IV. TRANSITIONS

Previous work on disformal scalars has focused almost
exclusively on the discrepancies found in the 2s − 2p
Lamb shifts in muonic hydrogen and muonic deuterium.
In order to break the degeneracy between rG and M, it is
useful to study the corrections to other atomic transitions
where there is not an existing discrepancy. We discuss the
various experimental values that are used in our analysis in
this section. Throughout this work, we consider the energy
difference ΔEexp-theor which is the difference between the
experimental and theoretical values.
The muonic hydrogen and muonic deuterium discrep-

ancies [2,4] we use are discrepancies between experimental
values and theoretical calculations using the CODATA
values of the charge radii [22] and are found in Table II.
Along with these, we use the analogous constraints for
muonium ðe−μþÞ and positronium ðe−eþÞ [23–28]. Since
the Galileon correction is proportional to the mass of the
two particles in the atom, leptonic system bounds are much
weaker for α ¼ 0 sinceme,mμ ≪ mp,mD. For α < 1, these
limits move upward and become more constraining.
Leptonic systems then rule out small or negative α for
all values of rG, andM. The muonium Lamb shift was only
measured to 0.5% in 1990, and a renewed experimental
effort reducing this to match the 0.02% theoretical uncer-
tainty could significantly improve limits on new physics.
For positronium, the Lamb shift is also limited by exper-
imental precision that is 2 orders of magnitude larger than
the theoretical values.
For muonium and positronium, it is also possible to use

the 1s − 2s interval to constrain the Galileon corrections.
The values adopted in this work are found in Table III.
While the 1s − 2s intervals are also measured in hydrogen
and deuterium, we neglect them due to their use in deriving

the Rydberg constant and their theoretical uncertainty
associated with QCD. Compared to the 2s − 2p Lamb
shifts, the 1s − 2s interval’s experimental errors are only 1
order of magnitude larger than theory, so smaller gains are
possible without theory improvements.
We also apply constraints from heavy hydrogenlike ions

to restrict α > 1 since any limit in these systems becomes
even more restrictive. In the ions we investigated, the 1s
Lamb shift has been measured to the 1% level or less. The
results we utilize are found in Table IV. The error in these
results is dominated by experimental error, which is 2
orders of magnitude larger than the theoretical values,
although ongoing work may improve these soon.
Higher Z muonic atoms have been studied extensively,

and their transitions can also be leveraged to constrain rG
andM. We note that the potential of Eq. (3) is not sensitive
to spin, so the fine structure of the x-ray transitions are not
effected. It would be interesting to compute Galileon
corrections from the annihilation channel. This would open
up both the fine structure and precision hyperfine splitting
measurements to study.
The most precisely measured transitions occur in 24

12Mg
and 28

14Si, and these results have a large influence on the
viable parameter space. In the limit of α → 0, they rule out
Galileon corrections to muonic hydrogen and deuterium at
a level far below those observed for rG < 5 × 10−13 m for
most ðrG;MÞ and therefore drive α to positive values and
rG to larger values (with the associated M being driven
lower). The large set of muonic transitions used in this
study are found in Table V.
For most of the muonic transitions, the error from

experiment and theory is roughly equal, and therefore
reducing either could greatly improve these limits. These
experiments were all done during the 1970s and 1980s;
therefore dramatic improvement in their measurement is
possible. On the theory side, 66% of the error is from only

TABLE II. Difference between experiment and theory for
2s − 2p Lamb shift in bound systems considered in this work.

Atom ΔEexp-theor (meV) Ref.

μ−D 0.438(59) [4]
μ−p 0.329(47) [2]
e−μþ −2.3ð9.6Þ × 10−5 [23–26]
e−eþ 4ð695Þ × 10−8 [27,28]

TABLE III. Difference between experiment and theory for the
1s − 2s interval in leptonic systems considered in this work.

Atom ΔEexp-theor (meV) Ref.

e−μþ 2.3ð4.1Þ × 10−5 [29–32]
e−eþ 2.4ð3.5Þ × 10−5 [28,33]

TABLE IV. Difference between experiment and theory for the
1s Lamb shift in heavy hydrogenlike ions considered in this
work.

Atom ΔEexp-theor (eV) Ref.

e−Pbþ 15.4(22.0) [34]
e−Auþ 2.8(13.0) [34]
e−Auþ −3.2ð8.0Þ [35]
e−Uþ −3.4ð4.7Þ [36,37]
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two sources: electron screening and nuclear polarization
[51] which can also potentially be reduced.
To get a sense for the functional dependence of each

transition on rG, and M, in Fig. 1 we have plotted a few
example limits for the case α ¼ 0. The kinks appearing in
the limits can be traced to the fact that the corrections in
Table I are positive semidefinite and negative semidefinite

in different regions of ðrG;MÞ space. When 0 < α < 1,
atoms withmi < mp see their limits move higher, while for
mi > mp limits are weakened. In this situation for example,
the parameter space from μMg is reduced while the
positronium Ps starts ruling out more space. The tension
between limits like this are responsible for a good deal of
parameter space being unacceptable. As will be seen,
insisting that the μ−p and μ−D Lamb shifts are consistent
place. strong bounds on α.

V. ANALYSIS

We use the Bayesian inference tool MultiNest which
calculates the evidence and explores parameter spaces with
complex posteriors and pronounced degeneracies in high
dimensions [52–54]. In addition to computing the evidence
from the data,MultiNest derives the posterior probability
distribution functions (PDFs) through application of
Bayes’s theorem. As constraints, we take all the results
in Tables II–V. We assume that the prior probability
distribution function of each observable is given by a
Gaussian with its standard deviation given by the uncer-
tainty. We have taken uniform logarithmic priors in M ¼
½10−5; 105� MeV and rG ¼ ½10−18; 10−10� m and a uniform
prior in α ¼ ½−3; 3�.
While the full results of our calculation are found in

Fig. 2, the mean values and 1σ credible intervals are rG ¼
3.7þ9.8

−3.0 × 10−13 m, M ¼ 13þ18
−6 MeV, and α ¼ 0.21þ0.21

−0.12 .
The mean value of rG found corresponds to a radius
≈425 times larger than rp ¼ 0.8758ð77Þ × 10−15 m. This
large value of rG is the same order of magnitude as the
muonic hydrogen Bohr radius, implying that the orbitals
themselves may be strongly modified. The mean value of
M is excluded by LHC and astrophysical constraints, but
these can be avoided by introducing chameleon interactions
as stated above. Our result for M represents a limit, albeit
model dependent, of M > 7 MeV at the 1σ level.
From the marginal PDFs, we see that a degeneracy exists

between rG and M. In contrast to [9] though the 2σ
confidence region is finite and bounded. In contrast, the
value of α is restricted to a small range α ≈ ½0; 0.6� because
of heavy ions and leptonic systems. The peak in α can be
understood by considering the ratio of the energy correction
to the n ≤ 3 transitions in two muonic atoms. The ratio
between two muonic systems mi > mj is

δEi

δEj
≈
�
mi

mj

�
1−4α

�
Zi

Zj

�
3

: ð13Þ

Since increasing charge is related to increasing mass, the
smallness of α prevents the mass-dependent term from
dominating over the charge term except for very neutron-
rich atoms, generically implying massive atoms have larger
corrections. In contrast, in the case of two isotopes, the
charge term cancels. The ratio is then

TABLE V. Difference between experiment and theory for
muonic x-ray transitions considered in this work.

Element Transition ΔEexp-theor (eV) Ref.

12
6 C 2p3=2 − 1s1=2 −3.8ð1.6Þ [38]
13
6 C 2p3=2 − 1s1=2 −1.8ð7.2Þ [39]
nat
7 N 2p − 1sa −2ð11Þ [40,41]
nat
8 O 2p − 1sa 1(22) [40]
24
12Mg 3d3=2 − 2p1=2 0.7(1.1) [42,43]

3d5=2 − 2p3=2 0.08(0.23) [44]
−0.2ð0.8Þ [42,43]

28
14Si 3d3=2 − 2p1=2 0.6(2.0) [42,43]

3d5=2 − 2p3=2 −0.18ð0.33Þ [44]
−0.4ð1.2Þ [42,43]

4f5=2 − 3d3=2 0.10(82) [45]
4f7=2 − 3d5=2 0.12(23) [45]

31
15P 3d3=2 − 2p1=2 −17.7ð7.6Þ [42,43]

3d5=2 − 2p3=2 0.4(2.6) [42,43]
40
20Ca 3d3=2 − 2p1=2 −10ð8Þ [46,47]

3d5=2 − 2p3=2 −3ð6Þ [46,47]
103
45 Rh 4f5=2 − 3d3=2 −3ð28Þ [47,48]

4f7=2 − 3d5=2 18(27) [47,48]
nat
50 Sn 4f5=2 − 3d3=2 −6ð7Þ [46,47]

4f7=2 − 3d5=2 −3ð9Þ [46,47]
nat
56 Ba 4f5=2 − 3d3=2 0(7) [46]

12(10) [49]
−4ð9Þ [50]

4f7=2 − 3d5=2 −4ð11Þ [46]
17(9) [49]
−12ð9Þ [50]

5g7=2 − 4f5=2 1(8) [46]
5g9=2 − 4f7=2 10(6) [46]

nat
58 Ce 4f5=2 − 3d3=2 1(10) [50]

4f7=2 − 3d5=2 6(10) [50]
nat
80Hg 5g7=2 − 4f5=2 −32ð29Þ [48]

5g9=2 − 4f7=2 −39ð29Þ [48]
203
81 Tl 5g7=2 − 4f5=2 −17ð30Þ [48]

−3ð10Þ [50]
5g9=2 − 4f7=2 −27ð30Þ [48]

−4ð10Þ [50]
−10ð7Þ [46]

nat
82 Pb 5g7=2 − 4f5=2 1(15) [46,47]

0(13) [47,49]
1(10) [47,50]

5g9=2 − 4f7=2 −9ð7Þ [46,47]
23(12) [47,49]
−6ð10Þ [47,50]

aUnresolved fine structure.
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δEi

δEj
≈
�
mi

mj

�
1−4α

: ð14Þ

Using this relation, we can see that for α > 1
4
heavier

isotopes will have smaller corrections than lighter ones, and
have larger corrections for α < 1

4
. If we insert the results

from μ−D and μ−p into this relation, we see that they prefer
a value of α ¼ 0.16, which is near the peak of the 1D PDF

of α. This indicates that the muonic Lamb shifts dominate
the determination of α.

VI. PREDICTIONS FOR HELIUM
AND TRUE MUONIUM

Using the PDFs, it is possible to make predictions for the
2s − 2p Lamb shift in μ−He3 and μ−He4 that will soon be
presented by the CREMA Collaboration. In Fig. 2, we

FIG. 2. 1D and 2D marginal PDFs for logðMÞ, logðrGÞ, and α produced using the Galileon contributions from Table I to the transitions
found in Tables II–V.M is in units of MeVand rG is in units of m. Additionally plotted are the predictions for the 2s − 2p Lamb shifts in
μ−He3, μ−He4, and μ−μþ. In the 1D plots, the dashed lines correspond to the mean, 1σ credible regions. In the 2D plots, the contour
regions are the 1σ and 2σ credible regions.
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present the PDFs for these two measurements and their
relation to the model parameters. We find the shifts to be
δEHe3 ¼ 1.97þ9.28

−1.87 meV and δEHe4 ¼ 1.69þ9.25
−1.61 meV. The

mean value of these corrections is more than a factor of 4
larger than the discrepancies in muonic hydrogen and
muonic deuterium, and are 0.1% corrections to the theory
values. This would be easily measured by the CREMA
Collaboration. If a smaller value ofΔEHe is found, it has the
ability to greatly restrict ðrG;M; αÞ space.
Additionally, the as-yet undiscovered bound state of true

muonium μ−μþ offers an opportunity to constrain the
parameter space [5,55–60]. We can predict a correction
to the Lamb shift of δETM ¼ 0.06þ0.46

−0.05 meV, which corre-
sponds to a 0.1% correction. From Fig. 2, we see that the
largest energy corrections in true muonium are in a different
region of parameter space, and therefore are a strong
complement to the muonic helium measurements. Near-
future experiments to detect and measure true muonium
have been proposed [61–65].
As can be observed in Fig. 2, although the uncertainty

on both predictions is large, they are strongly correlated.
The strong correlation between each muonic helium
correction and the model parameters shows the upcoming
measurements will have a large effect on restricting
the entire ðrG;M;αÞ parameter space. From the insensi-
tivity of Eq. (14) to ðrG;MÞ, combining both muonic
helium measurements is greater than merely the sum of
their parts.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have shown that Galileon corrections
to muonic hydrogen and muonic deuterium can be con-
sistently explained by introducing a one-parameter family
of relationships between the cutoff radii of different
systems. Furthermore, predictions for the corrections to
upcoming muonic helium experiments have been made.
These corrections are can be quite large and the CREMA
Collaboration’s upcoming results will dramatically reduce
the parameter space.
In the future, other than improving the experimental and

theoretical errors of the current measurements, another
important direction to investigate would be computing the
corrections to other observables. Computing the fine and
hyperfine splittings due to the Galileon couplings would be
useful given there are no discrepancies in these measure-
ments. A very fruitful direction of study would be in the
calculation of the corrections to the anomalous magnetic
moment of leptons, (al). Combining the high precision
measurement of ae with the persisting anomaly in aμ would
be useful in restricting the parameter space of ðrG;M; αÞ.
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