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Different models based on the extended SUð3ÞC × SUð3ÞL ×Uð1ÞX (331) gauge group have been
proposed over the past four decades. Yet, despite being an active research topic, the status of lepton number
in 331 models has not been fully addressed in the literature, and furthermore many of the original proposals
can not explain the observed neutrino masses. In this paper we review the basic features of various 331
models, focusing on potential sources of lepton number violation. We then describe different modifications
which can be made to the original models in order to accommodate neutrino (and charged lepton) masses.
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I. INTRODUCTION

It is conceivable that the Standard Model gauge sym-
metry SUð3ÞC × SUð2ÞL ×Uð1ÞY (321) is just a remnant
of a larger one. Indeed, such scenarios are attractive as they
are able to unify the three gauge couplings, provided that
the extended gauge group is simple [1–4]. However, one
should not exclude the possibility that the enlarged group is
a product of simple factors. This could happen as an
intermediate step towards a grand unified group. A famous
example is the left-right symmetric group SUð3ÞC ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [5–7], which fits neatly into
SOð10Þ. Another possibility is SUð3ÞC × SUð3ÞL, yet with
such models one cannot get the correct fermion masses [8].
On the other hand, it was realized long ago [9–11] that with
an extra Uð1ÞX it is possible to construct viable models.
These SUð3ÞC × SUð3ÞL × Uð1ÞX (331) models have

received considerable attention in connection with various
topics: neutrino mass generation [12–31], flavor sym-
metries [32–43], quark flavor observables [44–51] or the
recent LHC diphoton excess [52–57], among others.
Underpinning this interest is the fact that the 331 to 321
symmetry breaking energy scale can be of the TeV order;
hence, it could possibly be explored at the LHC; see for
example [58–65].
However, despite the large list of papers on 331 models,

the issue of lepton number violation (LNV) has not been
fully addressed in the literature and, in fact, many mis-
leading statements on the subject can be found in papers on
331 models. It turns out that models based on this extended
symmetry can be quite different from one another since the
way the 321 group is embedded in the 331 group is not
unique. In particular (a) the existence of neutrino masses,
(b) the nature of neutrinos and (c) the status of lepton
number varies markedly among 331 models. As such, with
this work we intend to collect and summarize the relevant

information concerning lepton number and neutrino mass
generation in this class of models.
We have found that several of the originally proposed 331

models can not explain correctly the observed neutrino
masses (nor charged lepton masses, in one case). Thus, it
is necessary to extend these models, and we present several
possible modifications that can bring these models in agree-
ment with experimental data, some of which have already
been considered before [14,66–70]. We focus here (mostly)
on neutrino masses and mixings and leave aside other LNV
processes, whichwemention only brieflywhen it is relevant.
The rest of this paper is organized as follows. Section II

describes the basic features of six different 331 models.
Four of these fall into a particular subclass since they have a
common structure (they all follow what we call the SVS
framework, after its prototype model [9]). To cover the full
variety of 331 models, we then discuss two more models,
which do not follow the SVS scheme, and clarify LNV
related issues in them as well. None of the basic models in
the SVS class generates lepton masses and mixings in a
fully satisfactory way, hence modifications are required. A
list of simple improvements is discussed in Sec. III. For
each of the possibilities in our list we give a brief
description on how the modified versions of the original
models can be brought into agreement with experimental
neutrino (and charged lepton) data. Finally, in Sec. IV we
summarize the most important points in this manuscript.
An appendix at the end of the text provides supplementary
information.

II. THE SUð3ÞL × Uð1ÞX GROUP
AND BASIC 331 MODELS

One can build different 331 models, not just by changing
the field content, but also by varying the way in which
the SM electroweak gauge group is embedded in
SUð3ÞL ×Uð1ÞX. This can be encoded in a continuous
parameter β which controls the relation between the
hypercharge Y, X, and the T8 generator of SUð3ÞL
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Y ¼ βT8 þ X: ð1Þ

From here one can derive that SUð3ÞL ×Uð1ÞX represen-
tations break as follows into SUð2ÞL ×Uð1ÞY representa-
tions (more details can be found in the Appendix)1:
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Together with the requirement jβj < tan−1 θW ≈ 1.8
[obtainable from equation (A11) and the fact that g2X must
be positive], these equations show that there are only four
values of β for which it is possible to avoid colorless,
fractionally charged fermions. Bearing this constraint in
mind, we can then describe six different 331 models

(i) In the first fourmodels, the three lepton families are in
equal representations, but the quarks are not. The
structure of these models is similar, with the main
difference between thembeing the value of β:−1=

ffiffiffi
3

p
in the Singer-Valle-Schechter (SVS) model [9], −

ffiffiffi
3

p
in the Pisano-Pleitez-Frampton (PPF) model [10,11],
1=

ffiffiffi
3

p
in the Pleitez-Özer model [71,72], and

ffiffiffi
3

p
in

what we call the model X. They all share a common
structure, which we call the SVS framework below.

(ii) The flipped model [73], where quark families are all
in the same representations, but leptons are not.

(iii) The E6 model [74], where complete family repli-
cation is true for both the lepton and quark sectors.

A. The Singer-Valle-Schechter (SVS) model

The first 331 model with three generations of quarks and
leptons was proposed in [9], using β ¼ −1=

ffiffiffi
3

p
. As stated

previously, thismodel can be considered the prototypemodel
forwhatmight be called theSVS framework.All fourmodels
in this class have in common the following features:

(i) The SM lepton doublets are placed in three triplets
of SUð3ÞL.2

(ii) Two families of left-handed quarks are placed inside
antitriplets of SUð3ÞL while the third one is placed in
a triplet.

(iii) Extra SUð3ÞL fermion singlets are necessary in order
to include some of the SM SUð2ÞL singlets, and also
to provide the necessary vector partners to some
extra fermions contained in the triplets of SUð3ÞL.

(iv) Three scalar triplets of SUð3ÞL are used to generate
the necessary Yukawa interactions with fermions.

These conditions guarantee that models in this class recover
correctly the SM fermion content in the limit where 331 is
first broken to 321, and they also have a sufficiently large
scalar sector to achieve both 331 symmetry breaking and a
realistic quark spectrum.
In the specific case of the SVS model where β¼−1=

ffiffiffi
3

p
,

right-handed neutrinos, here denoted Nc, are included in
the same extended gauge multiplet ψl as the SM left-
handed leptons. The full field content of the original SVS
model is shown in Table I. In addition to the SM fermions,
extra vectorlike quarks appear, which are a common feature
of all 331 models.
To determine whether or not there is lepton number

conservation in a given model, one can simply attempt to
build diagrams describing processes where the number of
leptons changes. Finding one such diagram would prove
conclusively that there is LNV. On the other hand, if one is
able to show that no such diagram exists, then lepton
number is preserved (perturbatively at least). The latter,
however, can be quite cumbersome, when worked out with
the language of Feynman diagrams.
In practice, thus, it is better to replace this pragmatic

approach by the following simpler one: show whether or
not the total Lagrangian of the model has a global Uð1ÞL
symmetry under which the SM (anti)leptons have þ1ð−1Þ
charge, and (anti)quarks as well as the SM gauge bosons
have no charge.3 Lepton number is violated if and only if no
such symmetry exists.
If there is LNV, then usually there is no single coupling

which is responsible for it—rather, it is the existence of
several interactions which gives rise to the phenomenon.
Nevertheless, in practice only a few of the couplings in a
given model are relevant for LNVand in their absence, the
Lagrangian gains a Uð1ÞL symmetry with the character-
istics previously described. However, this means that one
can have situations where the removal of either of two sets
of interactions—fIig, fI0ig—both lead to a lepton number
conserving scenario, hence the procedure of labeling LNV
interactions is not unique, see below.
Finally, one has to bear in mind that, even if the

Lagrangian is Uð1ÞL preserving, it is still possible for
lepton number to be broken spontaneously by the vacuum
expectation value (VEV) of scalars which carry a nonzero
Uð1ÞL charge.

1Hats are added to SUð2ÞL representations to avoid confusion
between 331 and 321 representations.

2The original model in [9] also contained right-handed neu-
trinos in SUð3ÞL singlets, which were latter removed [75]. Here,
we call this variation of the original proposal “the SVS model”.

3We stress here that this Uð1ÞL does not need to commute with
the remaining symmetries of the model [in particular, the
SUð3ÞL × Uð1ÞX gauge symmetry in 331 models].
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We now exemplify once the application of these well-
known (but often neglected) comments, and derive the
Uð1ÞL charges in the last column of Table I, which
correspond to the SVS model. For reasons which will
become obvious later, we first put the coefficient of the
termϕ1ϕ2ϕ3 to zero. Using the field notation in that table,we
then may start from the lepton Yukawa interactions ψlψlϕ1

and ψllcϕ�
1: from the first one it follows that Lðϕþ

1 Þ ¼
Lðϕ0

1Þ ¼ −1 − LðNc
αÞ and Lð ~ϕþ

1 Þ ¼ −2, while from the
second interaction we conclude that Lðϕþ

1 Þ ¼ Lðϕ0
1Þ ¼ 0

and Lð ~ϕþ
1 Þ ¼ −1 − LðNc

αÞ. Hence LðNc
αÞ ¼ −1 and there-

fore Lðψl;αÞ ¼ ð1; 1;−1ÞT and Lðϕ1Þ ¼ ð0; 0;−2ÞT .
Moving along to the quark sector, we do not know the

lepton number of the third component of the multipletsQ1;2

andQ3 (whichwe callD1;2 andU respectively), but these can
be inferred from the interactions Q1;2ucϕ1 and Q3dcϕ�

1.
Indeed, from the first interaction it follows thatLðD1;2Þ ¼ 2,
while the second one yields LðUÞ ¼ −2. At this point, the
only Uð1ÞL fermion/scalar charges yet to be found are
those of the components of the scalar triplets ϕ2;3. But from
the interactions Q1;2dcϕ2;3 one readily obtains that
Lðϕ2;3Þ ¼ ð0; 0;−2ÞT . Note that the extra Yukawa coupling
Q3ucϕ�

2;3 does preserve this lepton number assignment.
It is clear that the constrains on the Uð1ÞL charges

discussed above form a linear system of equations, which
can be solved at once
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8<
:
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TABLE I. Field content of the Singer-Valle-Schechter (SVS) model [9]. The indices α and i denote different flavors.

Field 331 Representation GSM decomposition # Flavors Components Lepton number

ψl;α ð1; 3;− 1
3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂; 0Þ 3 ððνα;lαÞ; Nc

αÞT ð1; 1;−1ÞT
lc
α ð1; 1; 1Þ ð1; 1̂; 1Þ 3 lc

α −1

Qα¼1;2 ð3; 3̄; 0Þ ð3; 2̂; 1
6
Þ þ ð3; 1̂;− 1

3
Þ 2 ððdα;−uαÞ; DαÞT ð0; 0; 2ÞT

Q3 ð3; 3; 1
3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂; 2

3
Þ 1 ððt; bÞ; UÞT ð0; 0;−2ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 4 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 5 dcα 0

ϕ1 ð1; 3; 2
3
Þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 1Þ 1 ððϕþ

1 ;ϕ
0
1Þ; ~ϕþ

1 ÞT ð0; 0;−2ÞT
ϕi¼2;3 ð1; 3;− 1

3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂; 0Þ 2 ððϕ0

i ;ϕ
−
i Þ; ~ϕ0

i ÞT ð0; 0;−2ÞT
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We now turn to gauge bosons. The SUð3ÞL gauge
interactions for triplets T ¼ ðT1; T2; T3ÞT and antitriplets
A ¼ ðA1; A2; A3ÞT are of the forms −igLT̄γμMμT and
igLĀγμMT

μA with

Mμ ¼
1

2

0
BBB@

W3
L;μ þ

W8
L;μffiffi
3

p W1
L;μ − iW2

L;μ W4
L;μ − iW5

L;μ

W1
L;μ þ iW2

L;μ
W8

L;μffiffi
3

p −W3
L;μ W6

L;μ − iW7
L;μ

W4
L;μ þ iW5

L;μ W6
L;μ þ iW7

L;μ −
2W8

L;μffiffi
3

p

1
CCCA:

ð6Þ

So, given that the lepton number of the components of
triplets and antitriplets are always of the form of either
ðx; x; x − 2Þ or ðy; y; yþ 2Þ for some arbitrary values of x
and y, it is clear that gauge interactions preserve the Uð1ÞL
we have been discussing, with LðW1;2;3;8

L;μ Þ ¼ 0 while
1ffiffi
2

p ðW4
L;μ � iW5

L;μÞ and 1ffiffi
2

p ðW6
L;μ � iW7

L;μÞ carry ∓ 2 units

of lepton number.
One can easily check that with these assignments all

terms in the scalar potential—except one—conserve the
Uð1ÞL. This particular term is identified as ϕ1ϕ2ϕ3 and
with the assignments given in Table I it violates Uð1ÞL by
two units. If we had switched off the interactions ψlψlϕ1

or ψllcϕ�
1 instead of following the procedure above,

different Uð1ÞL symmetries could be defined. Thus, as
discussed previously, it is the simultaneous presence of
various couplings which violates explicitly lepton number.
We remind, however, that even in the absence of the
trilinear term ϕ1ϕ2ϕ3 the SVS model does break Uð1ÞL
spontaneously through nonzero VEVs in the third compo-
nent of the scalars ϕ2;3. In the form just presented, the SVS
model is not viable as it cannot accommodate the known
neutrino oscillation data. This can be understood as
follows. The ψlψlϕ1 interaction is completely antisym-
metric in the flavor indices. This leads to the tree-level
prediction of a degenerate light neutrino mass spectrum
with eigenvalues ð0; m;mÞ. Since lepton number is violated
in the SVS model, one expects that radiative corrections to
this tree-level result will generate Majorana neutrino
masses and lead to a nonzero splitting of the degenerate
states. Figure 1 shows an example. However, in the original
SVS model all loop corrections to neutrino masses are
necessarily themselves proportional to the ψlψlϕ1 inter-
action, which is the coupling responsible for the generation
of neutrino masses at tree level. (Indeed, any loop con-
tributing to neutrino masses must have an odd number
of ψlψlϕ1 interactions.) The 1-loop corrections are
then related to the tree-level mass and the relative size
of δm1−loop

ν =mtree
ν can be estimated to be at most

∼ 1
16π2

h2τ × � � � < 10−6, where hτ is the tau Yukawa cou-
pling and the dots stand for other factors which are at most
one. We will return to a more explicit calculation of this

loop in the next section. For now it suffices to say that
neutrino oscillation data requires that the smaller mass
splitting in the neutrino sector relative to the larger one
must be larger than very roughly 1=6, in gross contradiction
to the above estimate for the original SVS model.
Just for completeness, note that in the diagram of Fig. 1

the LNV interaction ϕ1ϕ2ϕ3 and its conjugate are present;
hence, the real source of LNV in this case are the ~ϕ0

2 and ~ϕ0
3

VEVs. This does not, however, mean that the LNV in the
trilinear interaction is irrelevant in general. In fact, it is easy
to built up diagrams containing ψlψlϕ1, the SM charged
current and this trilinear interaction to generate processes
such as e−e− → 4j (or 6j) at loop-level (tree-level).

B. The Pisano-Pleitez-Frampton (PPF) model

Following the generic framework of the SVS model, in
1992 a different 331 model was presented [10,11]. This
model chooses β ¼ −

ffiffiffi
3

p
, and thus the third component of

the lepton triplet field ψl has charge þ1; hence, it is
identifiable as a right-handed charged lepton—see Table II.
A central assertion in [10] is that lepton number is

violated by charged scalars and gauge bosons. However,
we want to stress here that this is not the case. Using the
procedure outlined above for the SVS model, the PPF
model with the interactions described in [10] preserves the
Uð1ÞL symmetry under which the various fields have the
charges indicated in Table II, so there is no explicit lepton
number violation in the model as written down in [10].
Moreover, unlike the SVS model, here all neutral scalar
components have L ¼ 0; hence, there cannot be sponta-
neous lepton number violation either. Thus the original
model of [10] is lepton number conserving. It is important
to note, however, that PPF neglected some quartic scalar
interactions which are allowed by the gauge symmetry.
Most notably it can be shown that the coupling ϕ1ϕ2ϕ

�
3ϕ

�
3,

missing in the original paper, violates lepton number by
two units.
From now on, we will call the version of this model with

the most general gauge invariant Lagrangian the Pisano-
Pleitez-Frampton model. This PPF model is indeed lepton

FIG. 1. One loop contribution to neutrino masses in the original
SVS model. There are in total four diagrams, since (on top of
exchanging the internal ψL and lc) one can exchange everywhere
ϕ2 with ϕ3.
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number violating. Thus, LNV processes such as neutrino-
less double beta decay, will occur. Interestingly, the PPF
model, however, does not generate a nonzero neutrino
mass.4 This can be understood by following the possible
interactions of the ψl triplet, which contains the SM
leptons. Apart from gauge interactions, there is only the
ylψlψlϕ3 Yukawa interaction where gauge indices are
contracted antisymmetrically. Hence yl must be an anti-
symmetric matrix (in flavor space). Yet, one must have an
odd number of yl matrices along the ψl fermion line in any
diagram contributing to a neutrino mass matrix (see Fig. 2).
Hence the flavor matrix O associated to the effective
operator Oαβψl;αψl;β × ðscalarsÞ will always be antisym-
metric (note that the gauge interactions do not change
flavor). Thus, no νν term will be generated at any order of a
perturbative expansion.
That a LNV model can have zero Majorana neutrino

masses but a finite half-life for neutrinoless double beta
decay, seems to be a contradiction of the well-known
“black-box” theorem [76]. However, this apparent contra-
diction can be traced to another flaw of the PPF model. In
it, the ψlψlϕ3 interaction is the only source of charged
lepton masses. Its antisymmetry implies that the tree-level
charged lepton masses are ð0; m;mÞ. (This prediction is
analogous to the one for neutrino masses in the SVS model
discussed previously.) This is in clear disagreement with
the experimentally observed charged lepton masses and
thus requires a modification of the PPF model.5 Moreover,
this prediction for the charged lepton spectrum violates the
(implicit) assumption in the formulation of the black box
theorem [76,77] that the electron has a nonzero mass. If one
follows the procedure given in the original papers on the

black box theorem of completing the 0νββ decay diagram
with charged current interactions, in order to form a
Majorana neutrino mass term, one finds that mass inser-
tions are necessary to convert right-handed electrons into
left-handed ones. For the PPF model all contributions to
0νββ decay produce final states with eLeR. The particular
prediction for the charged lepton spectrum in this model
then leads to an exact zero of the eR → eL insertions,
independent of the flavor compositions of the three mass
eigenstates. This is most easily seen for the case where the
only nonzero entry in yl is yμτl . In this case, the massless
state is the electron, and it is obvious that eR → eL
conversion is impossible. For other cases, the two con-
tributions from the degenerate leptons cancel each other
exactly. However, one expects that once that the PPF model
has been modified to correct for the unrealistic charged
lepton spectrum, nonzero Majorana masses will also
automatically appear and the standard form of the black-
box theorem is recovered. A discussion of modified PPF
models is given below in Sec. III.

C. The Pleitez-Özer (PÖ) model

The generic SVS framework with β ¼ 1=
ffiffiffi
3

p
gives rise to

the Pleitez-Özer model [71,72].6 In it, the third component
of ψl has charge −1, so it can be interpreted as the vector
partner of the SM right-handed charged leptons lc. Since
there are three flavors of ψl, six copies of lc are then
necessary to account for the SM right-handed charged
leptons as well as three extra vector fermion pairs ðlc; EÞ.
There are no right-handed neutrinos and it can be checked
that there is an unbroken global Uð1ÞL (see Table III).
Furthermore, none of the neutral scalars carries lepton
number, thus there is also no spontaneous violation of
lepton number. Neutrinos are therefore massless and the
model is not satisfactory from this point of view.

TABLE II. Field content of the Pisano-Pleitez-Frampton (PPF) model [10,11].

Field 331 Representation GSM decomposition # Flavors Components Lepton number

ψl;α ð1; 3; 0Þ ð1; 2̂;− 1
2
Þ þ ð1; 1̂; 1Þ 3 ððνα;lαÞ;lc

αÞT ð1; 1;−1ÞT
Qα¼1;2 ð3; 3̄;− 1

3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂;− 4

3
Þ 2 ððdα;−uαÞ; JcαÞT ð0; 0; 2ÞT

Q3 ð3; 3; 2
3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂; 5

3
Þ 1 ððt; bÞ; Jc3ÞT ð0; 0;−2ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 3 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 3 dcα 0

Jα¼1;2 ð3̄; 1; 4
3
Þ ð3̄; 1̂; 4

3
Þ 2 Jα −2

J3 ð3̄; 1;− 5
3
Þ ð3̄; 1̂;− 5

3
Þ 1 J3 2

ϕ1 ð1; 3; 1Þ ð1; 2̂; 1
2
Þ þ ð1; 1̂; 2Þ 1 ððϕþ

1 ;ϕ
0
1Þ; ~ϕþþ

1 ÞT ð0; 0;−2ÞT
ϕ2 ð1; 3;−1Þ ð1; 2̂;− 3

2
Þ þ ð1; 1̂; 0Þ 1 ððϕ−

2 ;ϕ
−−
2 Þ; ~ϕ0

2ÞT ð2; 2; 0ÞT
ϕ3 ð1; 3; 0Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂; 1Þ 1 ððϕ0

3;ϕ
−
3 Þ; ~ϕþ

3 ÞT ð0; 0;−2ÞT

4In the absence of right-handed neutrinos, it would necessarily
be Majorana-like.

5A modified version of the PPF model, which can accom-
modate a realistic charged lepton spectrum, was presented shortly
after the original one [66]. We will come back to this in the next
section. 6A basic sketch of this model also appears in [78].
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D. Model X

Finally, in the generic SVS framework it is also possible
to have β ¼ ffiffiffi

3
p

—we call this the model X. For this value
of β, the third component of ψl has charge −2. Hence we
need the lX representation (charge þ2) shown in Table IV
to form a massive, vector fermion pair with this state once
the 331 symmetry is broken. The SM right-handed charged

leptons are then in a separate representation lc. It is
straightforward to check that this model preserves lepton
number, just like the Pleitez-Özer model. So, in the absence
of right-handed neutrinos, it predicts massless neutrinos.

E. The flipped model

All previous four models follow the SVS framework of
placing SM lepton doublets in triplets of SUð3ÞL, while
quark doublets are spread over one triplet and two anti-
triplets. In other words, the extended gauge symmetry
discriminates quark families, but not lepton families.
Recently [73] we proposed a new model which reverts
this scheme: all three quark families are in equal repre-
sentations, while lepton families are not. To achieve gauge
anomaly cancellation and acceptable fermion masses, one
of the SM lepton doublets is placed in a sextet of SUð3ÞL,
while the rest of the fermions are in singlets, triplets and
antitriplets. As for the scalars, on top of three triplets ϕ1;2;3,
we have introduced a sextet Swhich plays an important role
in the generation of lepton masses, through both tree and
loop diagrams. The full field content of the model is

TABLE III. Field content of the Pleitez-Özer model [71,72], which conserves lepton number.

Field 331 Representation GSM decomposition # Flavors Components Lepton number

ψl;α ð1; 3;− 2
3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−1Þ 3 ððνα;lαÞ; EαÞT ð1; 1; 1ÞT

lc
α ð1; 1; 1Þ ð1; 1̂; 1Þ 6 lc

α −1
Qα¼1;2 ð3; 3̄; 1

3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂; 2

3
Þ 2 ððdα;−uαÞ; UαÞT ð0; 0; 0ÞT

Q3 ð3; 3; 0Þ ð3; 2̂; 1
6
Þ þ ð3; 1̂;− 1

3
Þ 1 ððt; bÞ; DÞT ð0; 0; 0ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 5 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 4 dcα 0

ϕi¼1;2 ð1; 3; 1
3
Þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 0Þ 2 ððϕþ

i ;ϕ
0
i Þ; ~ϕ0

i ÞT ð0; 0; 0ÞT
ϕ3 ð1; 3;− 2

3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−1Þ 1 ððϕ0

3;ϕ
−
3 Þ; ~ϕ−

3 ÞT ð0; 0; 0ÞT

TABLE IV. Field content of the model X, which conserves lepton number.

Field 331 Representation GSM decomposition # Flavors Components Lepton number

ψl;α ð1; 3;−1Þ ð1; 2̂;− 1
2
Þ þ ð1; 1̂;−2Þ 3 ððνα;lαÞ;lc

X;αÞT ð1; 1; 1ÞT
lc
α ð1; 1; 1Þ ð1; 1̂; 1Þ 3 lc

α −1
lX;α ð1; 1; 2Þ ð1; 1̂; 2Þ 3 lX;α −1
Qα¼1;2 ð3; 3̄; 2

3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂; 5

3
Þ 2 ððdα;−uαÞ; JcαÞT ð0; 0; 0ÞT

Q3 ð3; 3;− 1
3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂;− 4

3
Þ 1 ððt; bÞ; Jc3ÞT ð0; 0; 0ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 3 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 3 dcα 0

Jα¼1;2 ð3̄; 1;− 5
3
Þ ð3̄; 1̂;− 5

3
Þ 2 Jα 0

J3 ð3̄; 1; 4
3
Þ ð3̄; 1̂; 4

3
Þ 1 J3 0

ϕ1 ð1; 3; 0Þ ð1; 2̂; 1
2
Þ þ ð1; 1̂;−1Þ 1 ððϕþ

1 ;ϕ
0
1Þ; ~ϕ−

1 ÞT ð0; 0; 0ÞT
ϕ2 ð1; 3; 1Þ ð1; 2̂; 3

2
Þ þ ð1; 1̂; 0Þ 1 ððϕþþ

2 ;ϕþ
2 Þ; ~ϕ0

2ÞT ð0; 0; 0ÞT
ϕ3 ð1; 3;−1Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−2Þ 1 ððϕ0

3;ϕ
−
3 Þ; ~ϕ−−

3 ÞT ð0; 0; 0ÞT

FIG. 2. The only interactions of the ψl multiplet in the PPF
model are the ones with the gauge bosons (which do not change
flavor) and those of the form ψlψlϕ3, which are antisymmetric in
flavor space. Since an odd number of these latter interactions are
needed to build a mass diagram for ψl, such a mass must
necessarily be flavor antisymmetric, and hence it cannot generate
(Majorana) neutrino masses.
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reproduced in Table V. Note that this construction
requires β ¼ 1=

ffiffiffi
3

p
.

Without making a rigorous fit, we showed in [73] that the
model is able to reproduce the observed fermion masses
and mixing angles, hence modifications of the model are
not mandatory. Here, neutrinos are Majorana particles, and
therefore lepton number is obviously not conserved by the
full Lagrangian. However, if one were to keep only the
gauge interactions as well as all the Yukawa interactions
allowed by the gauge symmetry, one finds a preserved
Uð1ÞL lepton number symmetry, with the associated
charges shown in the last column of Table V. As for scalar
couplings, most of them also preserve thisUð1ÞL, including
ϕ�
iϕjϕ3S and ϕ3ϕ3SS which are not self-conjugate. There

are only two interactions allowed by the gauge symmetry
which break lepton number (by two units): ϕ1ϕ2ϕ3 and
ϕiϕjS� (i, j ¼ 1, 2). In fact, this last one was mentioned in
[73] as being important to achieve a realistic neutrino mass
matrix. Apart from these two sources of LNV, one also has
to consider the VEVs hσ0i i, hΔ0�i and hσ0Si which all break
Uð1ÞL by two units.

F. The E6 inspired model

The SUð3Þ × SUð3Þ ×Uð1Þ is contained in SUð3Þ3
which in turn is a subgroup of the exceptional E6 group.
This group has been used in grand unified model building
[79]. In these models, fermions are in three copies of the
fundamental representation 27; hence, upon breaking the
group down to the SUð3Þ × SUð3Þ ×Uð1Þ subgroup, one
ought to obtain a 331 model with family replication in both
the lepton and quark sectors. Apart from a possible flip
between the SUð3Þ’s representations with their anti-
representations, the E6 fundamental representation
branches as follows:

27→

0
B@1;3;

2
64

2a

−aþ b

−a− b

3
75
1
CAþ

0
B@3̄;1;

2
64

−2a
a− b

aþ b

3
75
1
CAþ ð3; 3̄;0Þ;

ð7Þ

where the square brackets indicate in an economical way
different states with different Uð1ÞX charges, while a and b
are parameters describing the linear combination of two
Uð1Þ’s which form Uð1ÞX. So, in order to place the
left-handed quarks in ð3; 3̄; 0Þ, this branching rule implies
that one must have β ¼ −1=

ffiffiffi
3

p
. In this case, ð3; 3̄; 0Þ will

also contain the ð3; 1̂;− 1
3
Þ SM representation. Hence,

from the second term in (7) one must get two dc-like
states, ð3̄; 1̂; 1

3
Þ, and one uc like state, ð3̄; 1̂;− 2

3
Þ. Since the

leptons [first term in (7)] have the opposite X charges to
these colored states, we shall have two ð1; 3;− 1

3
Þ repre-

sentations plus one ð1; 3; 2
3
Þ. Note that any E6 model is

anomaly free, hence this list of 331 fields is so too. Table VI
contains the overall picture. This model cleary dispels
the claim that 331 models predict that the number of
generations has to be necessarily equal to the number of
colors.
This 331 model was first studied by Sánchez, Ponce and

Martinéz in [74]. They considered a scalar sector with three
triplet fields with the same quantum numbers as the scalars
in the SVS model. With this field content, there are no
sources of explicit lepton number violation, but the
electroweak singlet components ~ϕ0

2;3 inside the two ϕ2;3
triplets do lead to spontaneous LNV (see Table VI).
While we will not do a complete flavor fit of this model

to all experimental data, we shall briefly describe how it is
possible to obtain realistic lepton masses. To start, consider
the notation hϕ1i ¼ ð0; k1; 0ÞT , hϕ2;3i ¼ ðk2;3; 0; n2;3ÞT and

TABLE V. Field content of the flipped 331 model [73].

Field 331 Representation GSM decomposition # Flavor Components Lepton number

Le ð1; 6;− 1
3
Þ ð1; 3̂; 0Þ þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−1Þ 1

0
B@

Σþ 1ffiffi
2

p Σ0 1ffiffi
2

p νe
1ffiffi
2

p Σ0 Σ− 1ffiffi
2

p le
1ffiffi
2

p νe
1ffiffi
2

p le Ee

1
CA

 −1 −1 1

−1 −1 1

1 1 3

!

Lα¼μ;τ ð1; 3;− 2
3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−1Þ 2 ðνα;lα; EαÞT ð1; 1; 3ÞT

lc
α ð1; 1; 1Þ ð1; 1̂; 1Þ 6 lc

α −1
Qα ð3; 3̄; 1

3
Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂; 2

3
Þ 3 ðdα;−uα; UαÞT ð0; 0;−2ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 6 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 3 dcα 0

ϕi¼1;2 ð1; 3; 1
3
Þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 0Þ 2 ðHþ

i ; H
0
i ; σ

0
i ÞT ð0; 0; 2ÞT

ϕ3 ð1; 3;− 2
3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂;−1Þ 1 ðH0

3; H
−
3 ; σ

−
3 ÞT ð0; 0; 2ÞT

S ð1; 6; 2
3
Þ ð1; 3̂; 1Þ þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 0Þ 1

0
B@

Δþþ 1ffiffi
2

p Δþ 1ffiffi
2

p Hþ
S

1ffiffi
2

p Δþ Δ0 1ffiffi
2

p H0
S

1ffiffi
2

p Hþ
S

1ffiffi
2

p H0
S σ0S

1
CA

 −2 −2 0

−2 −2 0

0 0 2

!
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note that the only allowed interactions between ψl, ψX and
the scalars are

L ¼ � � � þ yllψlψlϕ1 þ yð2ÞlXψlψXϕ2

þ yð3ÞlXψlψXϕ3 þ H:c:þ…: ð8Þ

Here, yll stands for a square 6 × 6 matrix, while yðiÞlX are
two rectangular 6 × 3 matrices. Hence, considering only
the colorless leptons,

hLilepton mass ¼ ml;αβΨl
αΨlc

β þmν;αβΨν
αΨν

β

with

Mν ¼ 2

0
B@

0 k1yll −n2y
ð2Þ
lX − n3y

ð3Þ
lX

· 0 k2y
ð2Þ
lX þ k3y

ð3Þ
lX

· · 0

1
CA; ð9Þ

Ml ¼ ð n2yð2ÞlX þ n3y
ð3Þ
lX ;−k2y

ð2Þ
lX − k3y

ð3Þ
lX

Þ; ð10Þ

in the basis Ψν ¼ ðνα; Nc
α; νX;βÞT , Ψl ¼ ðlαÞ and Ψlc ¼

ðEX;β;lc
βÞT (α ¼ 1;…; 6; β ¼ 1;…; 3).

A careful analysis of the neutrino mass matrix reveals
that, baring the existence of special alignments and/or
cancellations, one expects the following mass eigenstates:

(i) Three light Majorana neutrino states νM with seesaw
masses Oðyllk1ki=niÞ, i ¼ 2, 3, and composed
almost entirely of Nc states;

(ii) Three quasi-Dirac neutrino pairs νlQD with masses
Oðyllk1Þ composed of a ∼50%=50% admixture of
Nc and ν states;

(iii) Three quasi-Dirac heavy neutrino pairs νhQD with

masses OðyðiÞlXniÞ composed of a ∼50%=50%
admixture of ν and νX states.

This rough estimation holds true only if there is a clear
hierarchy between these sets of neutrino masses: yðiÞlXni ≫
yllk1 ≫ yllk1ki=ni (i ¼ 2, 3). However, in this limit the
three seesawed neutrinos are mostly singlets under the SM
gauge group; hence, they cannot play the role of the

observed active neutrinos. That role must then be played
by the three quasi-Dirac neutrino pairs νlQD with masses
proportional to the value of the coupling matrix yll and the
VEV k1. Even though we will not write down the precise
expressions for the neutrino masses and lepton mixing
angles, it is possible to have sub-eVactive neutrinos νlQD, at
the price of choosing small Oð10−12Þ entries in the matrix
yll. This choice does not affect the mass of the remaining
active neutrinos νhQD, which must have masses above the
SM Z0 mass, in order not to be in conflict with the
measured invisible width of the Z0 boson. One must then
additionally ensure that the light Majorana neutrino states
νM do not mix significantly with the νlQD states.
As for charged leptons, theMl matrix will have rank 3 if

the matrix n2y
ð2Þ
lX þ n3y

ð3Þ
lX is proportional to k2y

ð2Þ
lX þ k3y

ð3Þ
lX ,

and this is an interesting limit as it would imply that 3 of the
charged leptons are massless (e, μ, τ), so a small departure
from this scenario can actually be used to explain the ratio
mτ=mW;Z. Finally, since the quark Yukawa coupling matri-
ces are free parameters, the quark masses and mixing
parameters can easily be fitted in this model. Since the E6-
inspired model can, in principle, explain the observed
fermion masses, we will not discuss extended versions
of this 331 model.

III. SIMPLE EXTENSIONS OF THE
SVS, PPF, PÖ AND X MODELS

Four of the basic 331 models discussed above fail to
produce a viable neutrino mass spectrum. These four follow
the basic framework of the SVS model, and we called them
SVS, PPF, PÖ and X in the previous section. The PPF
model moreover predicts a charged lepton spectrum in
disagreement with experimental data, see Table VII for a
summary. The table also recalls, as discussed above, that
lepton number is actually conserved in models PÖ and X.
To fix these problems, in the following we consider four

simple extensions of the field content for these basic
models:

(i) Add a fermionic particle, N0c, singlet under the 331
symmetry group.

TABLE VI. Field content of the E6 inspired 331 model [74].

Field 331 Representation GSM decomposition # Flavors Components Lepton number

ψl;α ð1; 3;− 1
3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂; 0Þ 6 ððνα;lαÞ; Nc

αÞT ð1; 1;−1ÞT
ψX;α ð1; 3; 2

3
Þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 1Þ 3 ððEX;α; νX;αÞ;lc

αÞT ð1; 1;−1ÞT
Qα ð3; 3̄; 0Þ ð3; 2̂; 1

6
Þ þ ð3; 1̂;− 1

3
Þ 3 ððdα;−uαÞ; DαÞT ð0; 0; 2ÞT

ucα ð3̄; 1;− 2
3
Þ ð3̄; 1̂;− 2

3
Þ 3 ucα 0

dcα ð3̄; 1; 1
3
Þ ð3̄; 1̂; 1

3
Þ 6 dcα 0

ϕ1 ð1; 3; 2
3
Þ ð1; 2̂; 1

2
Þ þ ð1; 1̂; 1Þ 1 ððϕþ

1 ;ϕ
0
1Þ; ~ϕþ

1 ÞT ð0; 0;−2ÞT
ϕi¼2;3 ð1; 3;− 1

3
Þ ð1; 2̂;− 1

2
Þ þ ð1; 1̂; 0Þ 2 ððϕ0

i ;ϕ
−
i Þ; ~ϕ0

i ÞT ð0; 0;−2ÞT
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(ii) Add a scalar sextet S such that ψlψlS provides a
symmetric contribution to the neutrino and charged
leptons mass matrix.

(iii) Add a vectorlike pair ðEc; EÞ of charged leptons.
(iv) Add a ϕX triplet scalar field in order to generate the

interaction ψlψlϕX.
However, not all of these extensions work equally well for
all models, see Table VIII. Here, extensions which will fix
the problems with the lepton spectra for a particular model
are marked with (✓), while those that do not work are
marked with (✗). The cases which fail can be understood as
follows:

(i) Adding right-handed neutrinos to the PPF model
leads to the generation of neutrino masses, but it
does not fix the charged lepton mass problem.

(ii) Both the PPF and SVS models already contain a
ψlψlϕi interaction, so adding another ϕX scalar
does not lead to a qualitative change of these models.

(iii) Models PÖ and X already contain vectorlike leptons;
hence, adding another pair is again unhelpful.
Furthermore, adding the vector fermions ðEc; EÞ
to the SVS model is also unsatisfactory.

Having said this, we now turn to a detailed discussion of
the effects of the model extensions which do work.

A. Extended PPF models

We start our discussion with the PPF model. Adding a
fermion singlet N0c to the PPF model allows an interaction
term ψlN0cϕ�

3 (and a mass termN0cN0c). Since this addition
does not affect the charged lepton spectrum, by itself such
extension of the PPF model is insufficient, and we will thus
not discuss it here (but see below for other models).

Adding a scalar sextet, on the other hand, provides a
valid fix for the PPF model. Consider S ¼ ð1; 6; 0Þ

S ¼

0
BB@

Δ0 1ffiffi
2

p Δ− 1ffiffi
2

p Hþ

1ffiffi
2

p Δ− Δ−− 1ffiffi
2

p H0

1ffiffi
2

p Hþ 1ffiffi
2

p H0 σþþ

1
CCA: ð11Þ

The components denoted as Δ, H, and σ form a triplet, a
doublet, and a singlet respectively under the SUð2ÞL group.
The interaction of the lepton triplet with this sextet contains
the terms

ySψl;αS�ψl;β

¼ yS½νανβΔ0� þ 1ffiffiffi
2

p ðlαlc
β þ lc

αlβÞH0� þ…�: ð12Þ

The term proportional to Δ0� will give a type-II seesaw
contribution to the neutrino masses, once Δ0 acquires a
VEV, proportional to mν

αβ ¼ ðySÞαβhΔ0i, while the charged
lepton mass matrix is now the sum of two terms:
ml ¼ ylhϕ0

3i þ yShH0i. It is easy to see that in the absence
of yS the mass spectrum for the charged leptons has the
eigenvalues (0, m, m). Thus, in order to achieve the correct
hierarchies for e, μ and τ, the second term in ml must
dominate. This puts a lower limit on the largest entries in
yShH0i of the order of the τ mass.
Since the same yS appears in neutrino masses, one must

have hΔ0i=hH0i≲ 10−10 for a correct explanation of
neutrino data. Adding a sextet to the original PPF model
was already proposed in [66]. These authors, however,
argued that such a small ratio calls for a protecting
symmetry. The proposed symmetry eliminates all lepton
number violating scalar interactions from the model: in
addition to the original term ϕ1ϕ2ϕ

�
3ϕ

�
3, these are ϕ3ϕ3S�

and SSS. Since under this condition lepton number is
conserved, neutrinos are massless again. Thus, with the
addition of only a sextet to the original PPF model, we have
to accept the fine-tuning between the triplet and doublet
VEVs if we are to explain neutrino data. We note in passing
that such a small ratio of VEVs might be due to a small
parameter in the scalar potential, such as the coefficient
of ϕ3ϕ3S�.
We now turn to the third possibility in our list. Both

problems, neutrino and charged lepton masses, can be
cured in the PPF model by the introduction of a pair of
vectorlike charged leptons, E and Ec, in the representations
ð1; 1;∓1Þ.7 In the original PPF model, the Lagrangian
contains the interaction terms

TABLE VIII. Simple extensions of the four models (PPF, SVS,
PÖ, X) which will fix (✓) the problems with the lepton spectra
summarized in Table VII. Cases that will not work are marked
with (✗). For explanation see text.

Modification PPF SVS PÖ X

þN0c ✗ ✓ ✓ ✓

þS ✓ ✓ ✓ ✓

þEc; E ✓ ✗ ✗ ✗
þϕX ✗ ✗ ✓ ✓

TABLE VII. A summary of lepton number violation and
problems with the lepton sector in four of the basic 331 models
discussed in Sec. II.

Issue SVS PPF PÖ X

Uð1ÞL violation? ✓ ✓ ✗ ✗
ν masses? ✓ ✗ ✗ ✗
Correct ν masses? ✗ ✗ ✗ ✗
Correct l masses? ✓ ✗ ✓ ✓

7That the wrong prediction for the charged lepton spectrum in
the PPF model can be cured using vectorlike leptons was noted
already in [69,70].
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L ¼ � � � þ 1

2
yl;αβψl;αψl;βϕ3 þ λ7ϕ1ϕ2ϕ

�
3ϕ

�
3 þ H:c:; ð13Þ

and introducing the left-handed Weyl spinors E and Ec

makes it possible to write down the following also:

LEEc ¼ hEc;αψl;αEcϕ�
1 þ hE;αψl;αEϕ�

2 þmEEcEEc: ð14Þ

The charged lepton mass matrix, after symmetry breaking,
becomes

MlE ¼

0
BBB@

0 yl;eμk3 yl;eτk3 hEc;ek1
−yl;eμk3 0 yl;μτk3 hEc;μk1
−yl;eτk3 −yl;μτk3 0 hEc;τk1
hE;en2 hE;μn2 hE;τn2 mEEc

1
CCCA: ð15Þ

Here, k1, k3 and n2 are the VEVs of ϕ0
1, ϕ0

3 and ~ϕ0
2,

respectively. We now define jylj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2l;eμ þ y2l;eτ þ y2l;μτ

q
,

jhEc j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αðhEc;αÞ2
q

and jhEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αðhE;αÞ2
q

. Then, in

the limit jhEc j ¼ jhEj → 0 we obtain the original result
for the charged lepton masses, given by: m1;2;3 ¼
ð−jyljk3; 0; jyljk3Þ. Note that the massless state has the
eigenvector e2 ¼ 1

jylj ðyl;μτ; yl;eτ; 1ÞT. In other words, a

good starting point to have the electron as the lightest
state corresponds to the choice yl;eμ, yl;eτ ≪ yl;μτ. Note
that jylj → 0 is not allowed, since in this case the
matrix MlE in Eq. (15) only has two nonzero eigenvalues.
In this limit, the lighter of the two nonzero mass states is
given by m ¼ jhEjjhEc jk1n2=mEEc. For values of mEEc ¼
O ðTeVÞ and n2 ¼ O ðTeVÞ, fitting mτ then requires
jhEj × jhEc j ∼Oð10−2Þ. For nonzero values of jhEj, jhEc j
and yl the mass degeneracy is broken and a realistic
charged lepton spectrum can be easily obtained for jylj ≲
Oð10−2–10−3Þ together with jylj < jhEjjhEc j (and k1 ∼ k3).
Extending the PPF model with a vectorlike lepton does

not only solve the charged lepton mass problem, but it also
leads to the generation of 1-loop neutrino masses—see

Fig. 3.8 For these loops, in addition to the terms given in
Eq. (14), the two interactions terms in Eq. (13) are needed.
As explained in the previous section, in the minimal PPF
model lepton number violation is proportional to λ7 and,
thus, all loops that generate a Majorana neutrino mass must
contain this particular quartic vertex. Such statement is still
true once E and Ec are added to the model, hence this
important scalar interaction is present in all diagrams show
in Fig. 3.
We will give a rough estimate of the size of these loops.

A complete calculation would require rotating all internal
states in the diagrams to the mass eigenstate basis and then
summing over all states. However, since (i) the mass of the
vectorlike lepton has to be much larger than the mass of the
tau, and (ii) λ7 has to be small, as shown below, we can
estimate the relative contributions of each diagram in Fig. 3
to the neutrino mass individually. Let us concentrate on
diagram (c) first. It’s contribution to the neutrino mass
matrix is estimated to be

ðmνÞαβ¼
1

16π2
sin2θSmEEcΔB0½hE;αhEc;βþðα↔βÞ�: ð16Þ

Here, θS is the angle that diagonalizes the (2,2) submatrix
of the charged scalars,

M2
ϕ1ϕ2

¼
� m2

ϕ1
λ7k23

λ7k23 m2
ϕ2

�
; ð17Þ

and is given by

sin 2θS ¼
2λ7k23

m2
1 −m2

2

; ð18Þ

FIG. 3. One-loop diagrams in the PPF model, extended with a vectorlike lepton.

8We show the loops with the internal scalars as propagating
degrees of freedom. In a full calculation one should take into
account that the same scalars are used to break the 331 symmetry,
i.e. some components of these scalars become the Goldstone
bosons and are “eaten” by the massive vectors. This will lead to
the generation of equivalent diagrams, but now with vector
bosons. We will omit this (irrelevant) complication in our
discussion here.
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with m2
1;2 being the eigenvalues of M2

ϕ1ϕ2
. In Eq. (16) ΔB0

stands for the difference between the two 1-loop B0

functions for the two scalar mass eigenstates, and it reads

ΔB0 ¼
m2

1 logðm2
1=m

2
EEcÞ

m2
1 −m2

EEc

−
m2

2 logðm2
2=m

2
EEcÞ

m2
2 −m2

EEc

: ð19Þ

Since we know experimentally that neutrino masses are
small, while the mass of the vectorlike lepton should be
larger than several 100’s of GeV, either the Yukawa
couplings or the factor sin 2θSΔB0 should be small. The
former is not an option in the present model, since only for
jhEjjhEc j ∼Oð10−2Þ a realistic charged lepton spectrum can
be obtained, as discussed above.
We define

M̄ ¼ 1

2
ðm1 þm2Þ; ð20Þ

ΔM ¼ ðm2 −m1Þ: ð21Þ

Then, in the limit of ΔM ≪ M̄ and for mEEc < M̄,
sin 2θSΔB0 becomes simply ∼ðλ7k23Þ=M̄2, so the neutrino
mass is roughly given by the expression

mν ∼
�
mEEc

TeV

��
TeV
M̄2

�
2
�

k3
100 GeV

�
2

×

�jhEc jjhĒc j
10−2

��
λ7

10−7

�
10−1 eV: ð22Þ

We now turn to a brief discussion of the relative importance
of the diagrams (a)–(c) in Fig. 3. Diagrams (a) and
(b) contain the same parameters as diagram (c) just dis-
cussed and, furthermore, they also depend on the other
doublet VEV in the model (k1) as well as the couplings
yl;αβ. Assuming that the Yukawas hE;α and hEc;β are very
roughly of the same order of magnitude numerically, the
relative importance of the three diagrams can then be
estimated to be

ðcÞ∶ðaÞ∶ðbÞ ¼ 1∶jylj
k1
k3

∶
�
jylj

k1
k3

�
2

: ð23Þ

The ratio k1
k3
is not fixed in this model; therefore, k3 can be

smaller than k1. Only the combination
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k23

p
¼ v ¼

174 GeV is fixed. However, as discussed above, the tau
mass constrains the combination jhEjjhEc jk3 to be of the
GeV order, for n2 ≃mEEc of the TeV order. For Yukawa
couplings in the perturbative regime, this means that k3 can
not be much smaller than 1 GeV. Thus, diagram (c) is
usually the dominant one, and the other diagrams can be at
most equally important, if k3 is pushed to its lower limit.

Before moving on, we recall that adding additional
triplet scalars, without adding (E, Ec), does not provide
a valid solution for the PPF model, see Table VIII.

B. Extended SVS models

For the SVS model, two of the four possibilities listed in
Table VIII will be valid solutions: (i) adding a fermion
singlet N0c and (ii) adding a scalar sextet.
Adding (three copies) of N0c, in addition to the term

ylψlψlϕ1, one can write down three new Lagrangian
terms for the (extended) SVS model

L ¼
X
j¼2;3

yðjÞN0 ψlN0cϕ�
j þ μN0cN0c: ð24Þ

In the basis (ν, Nc, N0c), the neutrino mass matrix becomes

Mν ¼

0
B@

0 mD mL

mT
D 0 MR

mT
L MT

R μ

1
CA: ð25Þ

Here, mD ¼ ylk1, mL ¼Pjy
ðjÞ
N0 kj, MR ¼Pjy

ðjÞ
N0 nj and μ

are 3 × 3matrices.9 There are two limits for μ. ForMR ≪ μ
the matrix in Eq. (25) will lead to a double seesaw, in other
words, integrating out N0c would give a Majorana mass
entry in the (2,2) position of the above matrix of the order
ofMRμ

−1MT
R. If μ ≪ MR, the matrix gives neutrinos a mass

via the inverse seesaw mechanism

mν ¼ mDðMT
RÞ−1μM−1

R mT
D: ð26Þ

The fit to neutrino masses can easily be done. This case
has been studied in [80]. Note that if μ ¼ 0 there is no linear
seesaw contribution proportional to mL. Indeed, in a model
such as this one where mL ∝ MR and mT

D ¼ −mD, one
has

mDðMT
RÞ−1mL þ ½mDðMT

RÞ−1mL�T ¼ 0: ð27Þ

Such limit μ ¼ 0 can be achieved with some additional
symmetry, as discussed in [14]. However, neutrinos will
still acquire mass at 1-loop level via, for example, the
diagram shown in Fig. 1, and also via the gauge loops
discussed in [14]. Consider first the loop shown in Fig. 1.
The loop will vanish in the limit where the coefficient ρ of
the term ϕ1ϕ2ϕ3 vanishes. The calculation is very similar to
the loop discussed for the PPF model, with some mod-
ifications: mEEc has to be replaced by the SM charged
lepton masses, and the Yukawa matrices appearing at the
vertices are yl and yllc , where the latter is the matrix
entering the charged lepton mass matrix. If ρ=M̄ is a small

9We keep following here the convention that kiðniÞ is the
SUð2ÞL doublet(singlet) VEV of the scalar triplet ϕi.
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number, where M̄ is some average mass of the scalars, we
very roughly estimate that

mν ∼
2

16π2
mτ

k
n

�
ρ

M̄

�
2
�
n
M̄

�
2

jyljjyllc j ð28Þ

∼ 0.05

�
ρ=M̄
10−2

�
2 jylj
10−2

jyllc j
10−2

eV ð29Þ

for ki ≃ k ∼ 100 GeV and ni ≃ n ∼ 1 TeV.
The gauge loops discussed in [14] are more subtle. In

the SVS model, in addition to the trilinear coupling ρ, the
VEVs n2 and n3 also violate lepton number. Thus, once the
331 symmetry is broken, there exists a mixing between
gauge bosons that leads to lepton number violating proc-
esses. In particular, one can draw the diagrams shown in
Fig. 4. Note that the VEV insertions indicated at the top of
these diagrams always are in the combination k2n2 and/or
k3n3, i.e. they correspond to a ΔðLÞ ¼ 2 effect.
The diagram on the left shows the contribution to the

neutrino mass in the basis where the internal fermions are
mass eigenstates. One can understand this propagator as an
infinite series of mass insertions, as indicated by the
diagrams to the right. The first term in this expansion is
proportional to mD, which is completely antisymmetric,
and thus does not give any contribution. However, higher
order terms will come proportional to powers of f ¼
ðmDM�

RMR −MRM
†
RmDÞ, which in general is nonzero.

It is interesting to note that, for the special case where the
heavy Dirac-pairs start out degenerate (MR ∝ 1), the
commutator f vanishes and the gauge loops go to zero.
In the general case, where f is not much smaller than
MRM

†
RmD this gauge loop will dominate over the scalar

loop and put a constraint on mDM−1
R to be typically below

10−8 or so.
Adding a sextet S with the quantum numbers ð1; 6; 2=3Þ

also may solve the neutrino mass problem. The components
of such a field can be written as in Eq. (11), with the only
difference being the electric charges. The part of the
Lagrangian involving S contains the following important
terms:

L¼ � � �þ ySðΔ0ννþ
ffiffiffi
2

p
H0νNcþ σ0NcNcÞþH:c:: ð30Þ

If all the VEVs of Δ0, H0 and σ0 are nonzero, the light
neutrino masses have both seesaw type-I and type-II
contributions. One just needs to ensure that hΔ0i∼
eV ≪ hH0i ∼ 100 GeV ≪ hσ0i ∼ TeV.

C. Extending the PÖ and X models

The situation is rather simpler in models PÖ and X,
which both conserve lepton number. They also do not have
neutrino singlets, hence they predict that neutrinos are
massless. Here, we will very briefly discuss the different
extended versions of these models, commenting also on the
differences with respect to the models SVS and PPF. Since
models PÖ and X are very similar in this respect, we
discuss both at the same time.
Adding three copies of fermion singlets Nc makes it

possible to write down the terms

L ¼ yνψlNcϕ�
3 þMNNcNc: ð31Þ

Note that, since the triplet ψl does not contain a Nc in
neither model PÖ nor model X, this will give an ordinary
seesaw mechanism of type-I (to be compared with the
inverse or double seesaw in the SVS model) which is
sufficient to explain neutrino data.
Adding a sextet S, with the quantum numbers

ð1; 6;−4=3Þ in the case of model PÖ and ð1; 6; 2Þ in case
of model X, gives rise to Majorana neutrino masses once
the neutral component Δ0 of the SUð2ÞL scalar triplet
contained in S acquires a VEV. This is a pure seesaw type-II
contribution since Δ0 is the only neutral component of
these sextets.
Finally, neutrino masses can be generated at the 1-loop

level also in the models PÖ and X, by introducing an
additional triplet scalar ϕX. The required quantum numbers
are ð1; 3; 4=3Þ (model PÖ) and ð1; 3; 2Þ (model X). The
resulting Feynman diagram, in the Pleitez-Özer model, is
shown in Fig. 5. In both models the calculation of the loop
and the resulting constraints on model parameters are very
similar to the results discussed above for models PPF and
SVS, with some obvious replacements.

FIG. 4. Gauge loops in the extended SVS model. The full neutrino propagator with the mass eigenstates ΨðνÞ
n can be expanded in a

series of mass insertions. The first nonzero term involves three mass insertions (see text).
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IV. CONCLUSIONS

We have studied in a systematic way the status of lepton
number in 331 models. The fact that lepton number often
does not commute with the extended SUð3ÞC × SUð3ÞL ×
Uð1ÞX gauge group makes this an interesting topic,
leading to the existence of gauge bosons and colored
fermions with a nonzero Uð1ÞL charge and, potentially, to
lepton number violation. Note also that the 331 symmetry
may break to the Standard Model gauge group at a
relatively low energy scale (∼TeV), in which case the
LHC would be able to probe the sources of lepton number
violation.
However, as we have made clear in this work, there is a

large diversity of 331 models, and in some of them lepton
number not only commutes with the gauge group, but it is
also preserved by the full Lagrangian and VEVs of the
scalars. These are nevertheless exceptional cases; in
general it is possible to (a) write down sets of gauge
invariant interactions which do not preserve any global
Uð1ÞL and/or (b) have neutral scalar components with a
nonzero lepton number which break spontaneously this
symmetry.
Most of the models we discuss, in their original form, are

unable to explain the observed lepton masses and neutrino
oscillation data. For these models we have listed several
simple extensions which can accommodate all lepton data
(some of them had already been proposed previously by
other authors). As such, any of these extended models can
be used for further study.
We have focused mainly on the generation of accept-

able neutrino masses (and mixing angles), having men-
tioned lepton number violating processes, such as
neutrinoless double beta decay, only in passing when it
was most relevant. Elsewhere [81], we shall provide
a more detailed analysis of this process, both in 331
models as well as in other models with an extended gauge
groups.
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APPENDIX: DECOMPOSITION OF 331
REPRESENTATIONS

The decomposition of the most relevant SUð3ÞL×Uð1ÞX
representations into SUð2ÞL ×Uð1ÞY representations has
already been provided in Eq. (2)–(4). As such, in this
appendix we simply clarify how the components of these
representations are related.
A triplet 3 of SUð3ÞL breaks into a doublet 2̂ plus a

singlet 1̂ of SUð2ÞL. Noting that the electric charge of each
component depends on the Uð1ÞX charge of the triplet, as
well as the β parameter as shown in Eq. (2), we may simply
label the components of 2̂ by their isopin (1=2 and −1=2).
We can then settle with the following identification:

3 ¼

0
B@

2̂1=2

2̂−1=2

1̂

1
CA: ðA1Þ

From here we infer that an antitriplet 3̄ of SUð3ÞL, which
also decomposes into a doublet 2̂ plus a singlet 1̂ must be
written as

3̄ ¼

0
B@

2̂−1=2

−2̂1=2
1̂

1
CA: ðA2Þ

A (anti)sextuplet 6 of SUð3ÞL breaks into a triplet 3̂, a
doublet 2̂ and a singlet 1̂ of SUð2ÞL. These representations
(6 and 6̄) are often pictured as matrices instead of vectors,
since that makes their contraction with triplets more
intuitive. For example, if 6̄ij3i30j is gauge invariant, one
must have the following identification:

6 ¼

0
BBB@

3̂1 1ffiffi
2

p 3̂0 1ffiffi
2

p 2̂1=2
1ffiffi
2

p 3̂0 3̂−1 1ffiffi
2

p 2̂−1=2
1ffiffi
2

p 2̂1=2
1ffiffi
2

p 2̂−1=2 1̂

1
CCCA;

6̄ ¼

0
BBB@

3̂−1 − 1ffiffi
2

p 3̂0
1ffiffi
2

p 2̂−1=2

− 1ffiffi
2

p 3̂0 3̂1 − 1ffiffi
2

p 2̂1=2
1ffiffi
2

p 2̂−1=2 − 1ffiffi
2

p 2̂1=2 1̂

1
CCCA: ðA3Þ

FIG. 5. Scalar loop for neutrino masses in the Pleitez-Özer
model extended with a scalar triplet ϕX . In fact, two distinct
diagrams are possible, depending on which components inside
the square brackets are picked (either the ones on top, or the ones
at the bottom). Analogous loops can be made for model X with an
added ϕX scalar triplet.
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A mass terms Trð6̄0 · 6Þ then translates into TrðΔ̄0 · ΔÞ þ
2̂0−1=22̂1=2 − 2̂01=22̂−1=2 þ 1̂01̂ for two SUð2ÞL triplets
Δ and Δ̄0 which we can write in terms of isospin
components as

Δ̄0 ¼
 

3̂0−1 − 1ffiffi
2

p 3̂00

− 1ffiffi
2

p 3̂00 3̂01

!
;

Δ ¼
 

3̂1
1ffiffi
2

p 3̂0
1ffiffi
2

p 3̂0 3̂−1

!
: ðA4Þ

Note that conventions in the literature vary regarding the
signs in front of some of the triplet components 3̂i, since
these might change with a rephasing of fields components.
However, the 1ffiffi

2
p factors cannot be absorbed, so the

expression in Eq. (A3) for the sextet differs in a material
way from the one used in [13,17,66], for example, agreeing
instead with [16].10

Finally, we consider what happens to gauge bosonsWL;i
(i ¼ 1; � � � 8) which are in the adjoint representation (8) of
SUð3ÞL. The representation ð8; 0Þ of SUð3ÞL ×Uð1ÞX
breaks into one SUð2ÞL triplet 3̂, one singlet 1̂ and two
doublets 2̂ and 2̂0 with opposite hypercharges; for definite-

ness let us consider 2̂ to be the one with y ¼
ffiffi
3

p
2
β—see

Eq. (4). Contractions with (anti)triplets are done in the
standard way (8ij3̄i3j), resulting in the following identi-
fication of the octet components:

8 ¼

0
BBB@

1ffiffi
6

p 1̂ − 1ffiffi
2

p 3̂0 3̂1 −2̂1=2

−3̂−1 1ffiffi
6

p 1̂þ 1ffiffi
2

p 3̂0 −2̂−1=2

−2̂0−1=2 2̂01=2 −
ffiffi
2
3

q
1̂

1
CCCA: ðA5Þ

In the case of gauge bosons, we are dealing with a real field
transforming as 8 hence the SUð2ÞL 2̂ and 2̂0 doublets are
not independent. Indeed, one can alternatively write
8 ¼ 1ffiffi

2
p Waλa, where λ1;…;8 are the Gell-Mann matrices

WL ¼ 1ffiffiffi
2

p

0
BB@

W3
L þ 1ffiffi

3
p W8

L W1
L − iW2

L W4
L − iW5

L

W1
L þ iW2

L −W3
L þ 1ffiffi

3
p W8

L W6
L − iW7

L

W4
L þ iW5

L W6
L þ iW7

L − 2ffiffi
3

p W8
L

1
CCA:

ðA6Þ

Equating the expressions in Eqs. (A5) and (A6), we get the
identification

0
BB@

3̂1

3̂0

3̂−1

1
CCA ¼

0
BB@

3̂�−1
3̂�0
3̂�1

1
CCA ¼

0
BB@

ðW1
L − iW2

LÞ=
ffiffiffi
2

p

−W3
L

ðW1
L þ iW2

LÞ=
ffiffiffi
2

p

1
CCA; ðA7Þ

�
2̂1=2

2̂−1=2

�
¼
� 2̂0�−1=2

−2̂0�1=2

�
¼
� ð−W4

L þ iW5
LÞ=

ffiffiffi
2

p

ð−W6
L þ iW7

LÞ=
ffiffiffi
2

p
�
; ðA8Þ

1̂ ¼ W8
L: ðA9Þ

It is then obvious that the Standard Model SUð2ÞL gauge
bosons correspond to the triplet 3̂ (i.e., W1;2;3

L ) while the
singlet 1̂ (i.e., W8

L) mixes with the Uð1ÞX gauge boson WX
to form the Uð1ÞY gauge boson B

B ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2L þ g2Xβ

2
p ðgXβW8

L þ gLWXÞ: ðA10Þ

In this expression, gL and gX stand for the gauge coupling
constants of SUð3ÞL and Uð1ÞX, which are related to gY
through the relation11

g−2Y ¼ β2g−2L þ g−2X : ðA11Þ

Finally, note that the charge of the various components of
WL depend only on β

QðWLÞβ ¼

0
B@

0 þ 0

− 0 −
0 þ 0

1
CA

− 1ffiffi
3

p

;

0
B@

0 þ þ
− 0 0

− 0 0

1
CA

1ffiffi
3

p

;

0
B@

0 þ −
− 0 −−
þ þþ 0

1
CA

−
ffiffi
3

p
;

0
B@

0 þ þþ
− 0 þ
−− − 0

1
CA ffiffi

3
p
:

ðA12Þ

10Without these 1ffiffi
2

p factors, it is easy to check that a mass term
Trð6†6Þ will not correspond to the sum of the norm-squared of all
six components.

11The relation changes if we choose instead to normalize the X
and Y charges in a different way [15].
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