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Chiral symmetry restoration high in the hadron spectra is expected but it remains to be confirmed both in
lattice QCD computations and in experiments. Recently, a theorem was derived, relating chiral symmetry
restoration high in the hadron spectra to the spontaneous generation of the dynamical quark mass in QCD.
We refine the theorem in the case of static-light mesons. Utilizing chiral quark model computations and
lattice QCD results for the spectrum of mesons composed by a static antiquark and a light quark, we
explore chiral symmetry restoration in the spectrum and the quark running mass mðkÞ.
DOI: 10.1103/PhysRevD.94.114517

I. INTRODUCTION

A. Chiral symmetry restoration high in the spectrum

Confinement and spontaneous chiral symmetry
(invariance under parity transformation) breaking (χSB)
constitute the main characteristics of QCD at ordinary
temperature and density, generating 98% of the mass of
visible matter in the Universe. To understand the mecha-
nisms of χSB, it is important to study how chiral symmetry
can be restored.
Chiral symmetry restoration has been clearly observed in

lattice QCD at high temperature, close to the deconfine-
ment crossover [1–4]. In what concerns large density, new
chiral phases are expected but they have not yet been
observed [5–7]. Chiral symmetry restoration is also impor-
tant for the modifications of the hadron spectrum in nuclear
matter [8,9]. Moreover, chiral symmetry is the remaining
symmetry in the conformal window of technicolor models
[10]. Nevertheless, hadron spectroscopy is where, possibly,
chiral restoration can be investigated with the highest
precision.
In the hadron spectra, chiral symmetry is clearly

broken for the ground states, but we expect chiral symmetry
restoration high in the spectrum of hadrons (χRS)
[11–16], with chiral doublets more and more degenerate,

jMP¼þ −MP¼−j → 0; ð1Þ

as we excite the hadrons.
Notice χRS is expectedonly if the constituent quark degrees

of freedom dominate the hadronic system. Other degrees of
freedom may be relevant, say the string/gluonic degrees of
freedom, or the valence quark/meson coupled channels
degrees of freedom, represented as partons in Fig. 1, may

compete with the radial and angular excitations in the
minimal quark degrees of freedom. For instance, the quark
spin crisis is an evidence for other relevant degrees of
freedom. Thus χRS, even theoretically, remains an open
problem, and deserves to be studied in great detail.

B. The conceptual simplicity of static-light mesons

Since the static antiquark-light quark system only has a
single light propagator in lattice QCD, it is a conceptually
simple hadronic system [17,18]. It is very convenient to
study open problems in hadrons such as the quark spin

FIG. 1. Artist illustration of the antistatic-light system, in a
quantum model perspective. In the quark model (left) the
angular momentum j is the sum of the spin s and orbital angular
momentum l of the light quark and this leads to a large
momentum p for the light quark. If several partons (right)
contribute to the angular momentum, it is mostly due to the
sum of the parton spins

P
iSi, and the light quark has a small

momentum. In the top drawings the light quark spin s is parallel
to j and in the bottom drawings it is antiparallel.*bicudo@tecnico.ulisboa.pt
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crisis [19], hybrid excitations [20] in the spectrum,
suggested for instance by the large degeneracy observed
in the meson spectra [21], chiral symmetry restoration in
the excited spectrum [11–16].
To search for a signal of χRS we thus address chiral

symmetry restoration in static-light systems. Static-light
systems are ideal mesons where, say the antiquark, is so
heavy it freezes, and only the light quark is dynamical.
Lattice QCD provides the framework to study the ideal
static-light mesons.
We consider the system of a static, extremely heavy with

mass mstatic and equivalent to spinless, antiquark in the 3̄
representation, and of a standard light quark. In lattice
QCD, the only dynamical degrees of freedom in this system
are the ones of the light quark and gluons, and the spectrum
only depends on the quantum numbers of the light degrees
of freedom j, l, n, s, as illustrated in Fig. 1.
In the scenario where all angular momentum and

dynamical energy reside in the light quark (left of
Fig. 1), we expect a Regge-like behavior for the meson
mass M, with M −mstatic ∝

ffiffi
j

p
. In case the angular

momentum and dynamical energy mostly reside in several
partons (right of Fig. 1), we expect an additive behavior
for both the energy and angular momentum, with
M −mstatic ∝ j. Thus in the large angular momentum limit,
we expect the component of the Fock space with a single
light quark and no partons to dominate the system, and
this is the scenario we will adopt from now on. This leads
to χRS, thus if there is no observed χRS the pure
quark-antiquark modeling of static-light systems should
be abandoned.
In case one would like to compare with an actual

heavylike meson [22], one would only need to add the
heavy antiquark spin, resulting in a �1=2 shift in the total
angular momentum J ¼ jþ sheavy.

C. The mechanism of χRS, and χRS as a probe
for the running quark mass

The only term breaking chiral symmetry in the QCD
Lagrangian is the mass term ψ̄mcurrentψ , it is not invariant
under flavor SUAðNfÞ chiral rotations ψ → exp iθγ5λa.
UAð1Þ is also broken due to the chiral anomaly. The
current quark masses are UV renormalized in the standard
model, and the result is that the light flavors u, d have very
light current masses when compared with the finite scale of
QCD (even the s quark can be approximated as a light
quark). The current quark mass is of the MeVorder, i.e. for
the quark up mcurrent ¼ 2.3þ0.7

−0.5 MeV and for the quark
down mcurrent ¼ 4.8þ0.7

−0.3 MeV [22].
Besides, spontaneous χSB also occurs. In lattice QCD,

χSB is directly measured with the noninvariant observable
hψ̄ψi, and the lattice QCD evidence is that it occurs in
coincidence with confinement [1–4]. In the continuum
perspective, χSB occurs via the solution of the nonlinear

Dyson-Schwinger equation for the quark propagator of
Fig. 2(a). The propagator includes a dynamically generated
quark mass mðkÞ, a function of the quark momentum k,
also known as constituent quark mass. Both perspectives
are related to confinement, and to the infrared scale of
QCD, say the scale of the string tension σ. The Dyson-
Schwinger approach is similar to the renormalization
program, however the quark and antiquark interaction
leading to mðkÞ is the confining one (not the UV inter-
action) and the equations resulting from the diagrams are
nonlinear (already at one loop). This results in multiple
solutions for mðkÞ.
In the Hamiltonian formalism, where a Bogoliubov-

Valatin transformation and the vacuum stability require-
ment are equivalent to the Dyson-Schwinger approach, it
was shown the solution with the largest mðkÞ is the one
corresponding to the stable, physical vacuum [23], and the
other solutions include the perturbative vacuum obtained
with UV calculations only. The constituent quarks mass, in
phenomenological quark models [24], is typically 2 orders
of magnitude larger than the current quark mass, with
mð0Þ ∼ 300 to 400 MeV.
Because the u and d current quark masses are so small,

the UV renormalization scheme is not relevant for the
present study. We can work in the chiral limit where
the UV renormalized current quark mass is ignored.
Nevertheless, we remark the nonperturbative renormali-
zation program in the Hamiltonian approach has been
detailed in Refs. [25–32]. In what concerns lattice QCD,
its renormalization is also nonperturbative. The lattice
QCD renormalization of the quark mass can be
compared to the perturbative M̄S scheme, see for instance
Ref. [33].

(a)

(b)

FIG. 2. Diagrammatic version of the Dyson-Schwinger equa-
tions, (a) the mass gap equation and (b) bound state equation. The
solution of (a) is the running quark mass mðkÞ present in the full
quark propagator S, whereas the free quark propagator S0 only
depends on the current quark mass mcurrent. In the diagrams, the
solid line is the quark propagator, the dotted line represents the
quark-antiquark interaction and the disks represent the effective
vertices of the interaction, and the Bethe-Salpeter vertices of the
bound states.
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QCD, including the spontaneous χSB generation of the
quark mass mðkÞ, accounts for 98% of the visible mass in
the Universe. This dynamically generated mass also breaks
χSB in the spectra of hadrons. In particular, in the Bethe-
Salpeter, or Dirac equations for QCD bound states of
Fig. 2(b), when the vertices are directly computed from
QCD and are chiral invariant,mðkÞ is the only term leading
to the mass splitting in chiral multiplets. Clearly, chiral
symmetry is broken in the light hadron spectrum, where the
parity doublet splitting in Eq. (1) is particularly large for
light hadrons. For instance, the splitting between the
pseudoscalar π and scalar a0 mesons or between the vector
ρ and axial vector a1 or b1 mesons is also of the order of
∼500 to 800 MeV ∼ 2mð0Þ.
For simplicity let us illustrate χRS with the quark

propagator (already dressed with the Dyson-Schwinger
equations). Let us consider the light quark full propagator
can be parametrized as

SðkÞ ¼ iZðkÞ
k −mðkÞ þ iϵ

: ð2Þ

The only term breaking chiral symmetry is the dynamically
generated quark mass mðkÞ. The quark propagator can be
computed in lattice QCD, when gauge fixing is imple-
mented. In the Dyson-Schwinger formalism, the massmðkÞ
is the solution of the self-energy, or mass gap, equation
illustrated in Fig. 2(a). The Dyson-Schwinger formalism,
even when truncated at the ladder approximation, is
consistent with the low energy chiral theorems [34]. In
light hadrons the average momentum of a constituent quark
is of the same order of its constituent quark mass. However,
in systems where

�
mðkÞ
k

�
→ 0; ð3Þ

in particular in excited hadrons, where we expect the
average momentum of the quark hki to increase with the
excitation level, we expect the constituent mass mðkÞ to be
negligible, leading to χRS.
Lattice QCD computations [35–40] indicate the quark

mass tends to vanish with an infrared momentum cutoff,
interpolating between the constituent quark massm at small
momentum and the current quark mass at large momentum,

lim
k→∞

mðkÞ → mcurrent; ð4Þ

where mcurrent ≪ m. This is promising for χRS, since a
possible decrease of the quark mass would also go in the
direction of Eq. (3). Possibly a finite number of hadronic
excitations could be sufficient to already observe χRS.
Indeed, the quark propagators, with a dynamical generated
quark mass, computed in any known approach [29], i.e. in
gauge fixed lattice QCD, gauge fixed Dyson-Schwinger
equations, or in chiral invariant quark models, all predict a

quark mass decreasing with momentum. Thus, according to
a recent theorem [16] an observation of χRS would be
welcome to discriminate which running quark mass is
quantitatively correct. It should provide a gauge invariant
definition of the running quark mass, interpolating between
the constituent and current quark masses.
However, not only χRS is not yet settled, moreover the

different theoretical approaches computing the constituent
quark mass produce very different functions mðkÞ, as
shown in Fig. 3. The discrepancies occur because the mass
gap equation is extremely nonlinear, and the solution mðkÞ
depends strongly on the details of confinement. Since so
far, before the χSR approach proposed here, there have
been no other known observables related to the dynamical
mass mðkÞ, models of QCD have been free to produce
extremely different mass behaviors. The most extreme
cases are the Nambu and Jona-Lasinio model [41] where
the mass jumps to zero with a step function, and the quark
model [42] where the quark mass is a finite constant. The
lattice computations with Landau gauge fixing [43] pro-
duce a function mðkÞ ∝ 1=k2 to 1=k2.5 in the large k limit,
but this may be gauge dependent and could be compared
with other lattice results [43–50]. Different behaviors for
mðkÞ are also observed in nonperturbative truncations of
QCD, either in the Hamiltonian formalism [51] where
mðkÞ ∝ 1=k4, or in the Dyson-Schwinger formalism [52].
For a definitive understanding of χRS and of the running
quark mass, experiment or lattice QCD observables are
necessary.
In lattice QCD, an indication of chiral symmetry

restoration in the spectrum has already been shown when
an infrared cutoff is imposed. When the quark moment is
forced to increase arbitrarily, approaching the limit k → ∞,
lattice QCD computations [35–40] show that hadrons
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FIG. 3. IR enhancement of the light quark mass due to
spontaneous χSB [16]. Shown are quark masses in the main
approaches to QCD, all multiplied by an arbitrary factor to match
them at quark momentum norm k → 0. We thank the authors of
Ref. [16] for this figure.
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group in degenerate chiral multiplets as in Eq. (1).
However, no direct evidence for χRS has been reported
previously in lattice QCD, although it is possible to
compute the static-light spectrum in lattice QCD, with
the correlators shown in Fig. 4.
In what concerns experiment, χRS is not settled yet. In

general it is difficult to observe highly excited hadrons.
There is evidence from the former Cristal Barrel collabo-
ration at CERN [53–57] of a symmetry in the excited
meson spectra [21,58–60], but it has not been confirmed yet
by other experiments. Moreover in mesons, and even more
so in hadrons, the spectra have many states with similar
quantum numbers, and parity partners are not straightfor-
ward to identify.

D. Summary

We extend the theorem predicted in Ref. [16] to anti-
static-light mesons. We expect the conceptual simplicity of
antistatic-light mesons, together with a possibly favorable
running quark massmðkÞmay produce a signal of χRS. We
are thus interested in studying possible trends in the mass
splitting jMþ −M−j as a function of increasing total
angular momentum of the light quark j.
In Sec. II we specialize the QCD inspired theorem [16],

deriving it for the case of χRS in static-light mesons. We
show how, from the spectrum of static-light mesons, a
power law relation for the running quark mass mðkÞ is
extracted.
In Sec. III we review chiral symmetric quark models and

apply them to static-light mesons. We test our theorem in
the particular case of the quadratic and linear confining
quarks models.

In Sec. IV we review the angular excitations of the
antistatic-light system, in lattice QCD [61–65]. We discuss
the lattice QCD spectrum for static-light mesons computed
with dynamical quarks and compare them with previous
lattice QCD computations with quenched light quarks. We
compare the lattice QCD results with our theorem, and
extract the trend for the running mass mðkÞ of the light
quarks.
Most of our work builds on Refs. [16,18,62,63,65]. We

finally conclude in Sec. V.

II. A QCD INSPIRED THEOREM FOR χRS
IN THE DIRECTION OF LARGE ANGULAR
MOMENTUM j OF THE LIGHT QUARK

IN THE STATIC-LIGHT MESON

We now aim at a model independent theorem for the χRS
in static-light systems at large angular momentum j. We
first decompose the Dirac quark spinors with 4 × 4 indices,
in quark and antiquark operators, each with 2 × 2 spin
indices. This enables us to decompose the Feynman-Dirac
quark propagator of Eq. (2),

SDiracðk0; ~kÞ ¼ uðkÞSqðk0; ~kÞu†ðkÞβ
− v†ðkÞSq̄ð−k0;−~kÞvðkÞβ; ð5Þ

where the quark and antiquark Weyl-Goldstone propaga-
tors are:

Sqðk0; ~kÞ ¼ Sq̄ðk0; ~kÞ ¼
i

k0 − EðkÞ þ iϵ
δss0 ; ð6Þ

and the quark and antiquark spinors are decomposed in

usðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1þ S
2

r
þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − S
2

r
k̂ · ~α

�
usð0Þ

vsðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1þ S
2

r
−

ffiffiffiffiffiffiffiffiffiffiffi
1 − S
2

r
k̂ · ~α

�
vsð0Þ; ð7Þ

where s ¼ �1=2 is the quark or antiquark spin subindex.
This is convenient to derive, from the Bethe-Salpeter
bound state equation in Minkowski momentum space, a
Hamiltonian formalism, where the quantum numbers for
the light quark are similar to the ones of the quark model,
i.e. its spin s, radial angular momentum l and total angular
momentum j. More detail on this decomposition is found in
Ref. [66] and references therein.
To derive our theorem, we now follow closely Ref. [16],

denoting HQCD0
χ as a term in the Hamiltonian of first order

in the hmðkÞ
k i expansion. We also utilize units of ℏ ¼ c ¼ 1.

We get

jMþ −M−j →
�
mðkÞ
k

HQCD0
χ

�
: ð8Þ

FIG. 4. Illustration of the antistatic-light system, in a lattice
QCD perspective, where the antiquark static source is a Wilson
temporal line (thick straight arrow) and the light valence quark
propagator (thin arrowed lines) is used as well. Moreover,
possible sea quark loops are present as well (thin dashed loops),
any possible gluonic excitations are also included (not repre-
sented in the figure), and lattice QCD includes all possible
contributions to the angular momentum j illustrated in Fig. 1.

PEDRO BICUDO PHYSICAL REVIEW D 94, 114517 (2016)

114517-4



In what concerns the term HQCD0
χ , for general hadrons,

say mesons or baryons, it may take different forms.
Nevertheless in the static-light system, since there is only
one unfrozen quark spin and only one unfrozen quark
momentum, we are able to determine its behavior. The only
spin-dependent potential, separating the P ¼ þ1 from the
P ¼ −1 cases, and actually the only operator able to
interpolate between the massive angular momentum barrier
and the j dependent only potential of Eq. (21), is the spin-
orbit potential s · l. Moreover, assuming a linear confine-
ment σr, which dominates the bound state wave functions
at large momentum of Fig. 2(b), a dimensional analysis
leads to a momentum dependence σ=k. Thus we arrive at

HQCD0
χ → cs · l

σ

k
: ð9Þ

where c is a simple constant we do not attempt to
determine here.
The spin-orbit term s · l ¼ jðjþ1Þ−lðlþ1Þ−sðsþ1Þ

2
. Note the

light quark parity is p ¼ ð−1Þl, whereas the static antiquark
has an intrinsic parity −1, P ¼ −p. In our case l ¼ j� 1

2
,

thus the spin-orbit term is the one breaking chiral symmetry
in the spectrum,

jhs · liþ − hs · li−j → j; ð10Þ
and thus we get

jMþ −M−j → cσj

�
mðkÞ
k2

�
: ð11Þ

To proceed with our demonstration, we change the
variable from the momentum k to the angular momentum
of the light quark j. We assume the jMþ −M−j mass
difference is decreasing. In the limit of large momenta, the
kinetic energy of the light quark tends to k and the spin
dependent terms are smaller than the kinetic energy and
the potential (including the centrifugal barrier). The
Hamiltonian is essentially equivalent to H → kþ σr where
σ is the string tension of the linear confinement. Applying
the relativistic virial theorem [67], we find the kinetic
energy and the potential energy are both proportional to the
total energy of the light quarks,

hki ∼ hσri → 1

2
M�: ð12Þ

Moreover, there is evidence light hadrons are in linear
Regge trajectories, consistent with the linear confining
potential [22], for instance in the leading trajectory of light
mesons with JPC of 1−−, 2þþ, 3−−, 4þþ. In the case of
static-light mesons, the trajectories are not studied yet.
Nevertheless we expect the light quark energyM� −mstatic
to be in a Regge trajectory, since the dynamics of the bound
state equation for one light quark is similar, in the Salpeter
equation, to the dynamics of the bound state equation for a

meson. In particular, both have a linear confining potential.
The two approximately degenerate massesMþ andM− are
in the same leading linear Regge trajectory, phenomeno-
logically fixing their j-dependence to

j ¼ α0 þ αðM� −mstaticÞ2 !
j→∞

αðM� −mstaticÞ2; ð13Þ

where α is the respective Regge slope.
Combining Eqs. (11)–(13) and assuming for large

angular momenta the momentum distribution has a small
variance, consistent with a single peak, we finally find

jMþ −M−j → c
4σ

α
m

�
1

2
ffiffiffi
α

p ffiffi
j

p �
: ð14Þ

Thus plotting the parity mass splitting jMþ −M−j as a
function of

ffiffi
j

p
should reproduce the momentum depend-

ence of the running quark dynamical mass as a function of
momentum. Notice, since jMþ −M−j is an observable of
lattice QCD, this result is gauge invariant.
Equation (14) is a general property of any theory or

model where the quarks are the only degrees of freedom,
the quark-antiquark interaction is chiral invariant and
linearly confining at large separations, and quarks are light.
Notice Eq. (14) only holds if the relevant degrees of
freedom are the ones of the light quark. In the case the
angular excitations in the spectrum would correspond to
add other degrees of freedom, say more constituent gluons
or quarks, in principle we would have M� ∼ j, different
from Eq. (13). Since linear trajectories similar to Eq. (13)
hold for different hadron spectra, we are confident in our
theorem.
On the other hand, our assumption that the angular

momentum is large and resides in the light quark
can be checked independently from the chiral splitting
jMþ −M−j, directly in the Regge trajectories. We now
apply the Bohr-Sommerferld quantization rule, kr → j.
Then, using the relativistic virial theorem, we find hk2i ¼
hσkri ¼ hσ2r2i → σj and we get the Regge trajectory,

ðM� −mstaticÞ2 → 4σj; ð15Þ
where for high j we neglect the intercept α0. This implies
α ∼ 4σ. Thus, measuring the linear leading Regge trajectory
in heavy-light mesons should provide an indication of both
the degrees of freedom of the system and of the string
tension. Comparing with Eq. (13), this reduces the number
of independent parameters, and we get

jMþ −M−j → cm
�

1

2
ffiffiffi
α

p ffiffi
j

p �
: ð16Þ

Presently, the different approaches to compute the quark
dynamical mass obtain very diverse quark masses, illus-
trated in Fig. 3, published in Ref. [16]. Equations (14) and
(16) provide a gauge invariant tool to measure the
momentum dependence of the dynamical quark mass.
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III. χRS IN CHIRAL INVARIANTQUARKMODELS
FOR ANTISTATIC-LIGHT MESONS

A. Chiral quark model with a quadratic potential

To illustrate the mechanism and the quantum numbers
for chiral symmetry restoration in the spectrum with a
practical example, we utilize the model of Ref. [18].
This model is derived directly from QCD in the local
coordinate gauge, also known as Balitski gauge, but it is
only approximate due to the truncation of the Dyson-
Schwinger equations. The resulting potential is quadratic
and not linear as we would expect from confinement
in QCD, and in that sense this framework can be
regarded as a toy model. This model was first solved
in Refs. [68–70], and the vacuum structure [23], bound
state [71,72] and coupled channel equations [73] have
also been solved.
The static-light spectrum of Ref. [18] already exhibited

χRS. Here we solve the numerical equations again, in order
to improve the numerical precision and perform tests of our
χRS theorem.
We apply Dyson-Schwinger techniques in Minkowski

space, convenient to compute the excited hadronic
spectrum. This approach to antistatic-light mesons
clarifies the interplay of the simple quantum operators
of the light quark, i.e. l, s and j. Reference [18]
arrives at a Hamiltonian for the light quark, with the
quadratic confining potential depending on a single
constant K0 related to the Wilson loop and the flux
tubes measured in lattice QCD. The resulting Salpeter
equation for the bound state equation, derived in
momentum space, in the chiral limit of a vanishing
current quark mass, reads

	
EðkÞ þ 2K3

0

�
1

2k2

�
1 −

mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðkÞ

p
�
2

þ 2

k2

�
1 −

mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðkÞ

p
�
S ·L − Δ

�

ΦðkÞ ¼ MΦðkÞ;

ð17Þ
where EðkÞ is the quark kinetic energy,

EðkÞ ¼ k2 þmcurrentmðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmðkÞ2

p

− K0
3
2ðk2 þmðkÞ2Þ þ ðmðkÞ − pm0ðkÞÞ2

2ðk2 þmðkÞ2Þ2 : ð18Þ

We solve the Salpeter equation with a standard eigen-
value technique, see Table I for the resulting spectrum
of Eq. (17).
Notice the quark mass mðkÞ is generated consistently

with the truncated Dyson-Schwinger equations, to stabilize
the physical vacuum [18],

m00ðkÞ ¼ 2

K0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmðkÞ2

q
½mðkÞ −mcurrent�

− 2
mðkÞ
k

kþ 2mðkÞm0ðkÞ − km0ðkÞ2
k2 þmðkÞ2 : ð19Þ

Hence this simple approach produces a propagator similar
to the one in Eq. (2), where the constituent massmðkÞ leads
to the spontaneous breaking of chiral symmetry, producing
a difference between the masses of mesons with opposite
parity.
Nevertheless, as anticipated in Sec. I, chiral symmetry is

restored high in the spectrum. This is clear in the spectrum

TABLE I. Meson massM in units of the potential parameter K0 as obtained [18] from Eq. (17) in the chiral limit of current quark mass
mcurrent → 0. jp, l are respectively the total angular momentum, the parity, and the orbital angular momentum of the light quark. JP is the
corresponding angular momentum and parity of the static-light meson, including the spin 1

2
of the heavy quark. We compute the

spectrum up to Jp ¼ 39=2� but only show the table up to 13=2� because the parity doublets with higher angular momenta are
essentially degenerate.

jp l JP n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8 n ¼ 9

1=2þ 0 0−, 1− 2.599 4.913 6.767 8.390 9.868 11.242 12.535 13.764 14.940 16.071
1=2− 1 0þ, 1þ 3.272 5.460 7.254 8.841 10.292 11.646 12.922 14.139 15.303 16.425
3=2− 1 1−, 2− 4.545 6.383 8.004 9.484 10.860 12.158 13.391 14.571 15.707 16.803
3=2þ 2 1þ, 2þ 4.616 6.487 8.127 9.618 11.003 12.307 13.544 14.728 15.866 16.964
5=2þ 2 2−, 3− 5.732 7.415 8.938 10.347 11.670 12.925 14.122 15.273 16.382 17.456
5=2− 3 2þ, 3þ 5.744 7.437 8.969 10.385 11.714 12.974 14.176 15.330 16.443 17.520
7=2− 3 3−, 4− 6.749 8.320 9.766 11.119 12.397 13.616 14.784 15.909 16.997 18.052
7=2þ 4 3þ, 4þ 6.752 8.325 9.775 11.130 12.412 13.633 14.804 15.931 17.021 18.077
9=2þ 4 4−, 5− 7.679 9.162 10.545 11.848 13.088 14.274 15.415 16.517 17.585 18.621
9=2− 5 4þ, 5þ 7.680 9.164 10.547 11.852 13.093 14.280 15.422 16.525 17.594 18.632
11=2− 5 5−, 6− 8.550 9.962 11.291 12.551 13.756 14.913 16.029 17.109 18.157 19.177
11=2þ 6 5þ, 6þ 8.550 9.963 11.291 12.552 13.757 14.915 16.031 17.112 18.161 19.181
13=2þ 6 6−, 7− 9.376 10.729 12.010 13.233 14.406 15.536 16.629 17.689 18.719 19.723
13=2− 7 6þ, 7þ 9.376 10.729 12.011 13.234 14.407 15.537 16.630 17.690 18.720 19.724
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of Table I. Notice restoration occurs for large angular
momentum quantum number j,

lim
j→þ∞

jMP¼þ −MP¼−j ¼ 0: ð20Þ

On the other hand, the chiral splitting apparently remains
finite with increasing radial excitation quantum number n.
The mechanism for χRS is the following. The

Hamiltonian includes an angular repulsive barrier and a
spin-orbit interaction. In the limit of large momentum,
where mðkÞ=k → 0, and working with spherical harmonics
to decouple the radial momentum k from the angular
coordinates, the spin and angular momentum terms in
the Hamiltonian of the Salpeter Eq. (17) are

H ¼ EðkÞ þ 2K3
0

�
1

2k2
þ 2

k2
s · l − Δ

�

¼ EðkÞ þ 2K3
0

�
1

2k2
þ 2

k2
s · lþ 1

k2
l · l −

d2

dk2

�

¼ kþ 2K3
0

�
−

3

2k2
þ 1

k2
j · j −

d2

dk2

�
: ð21Þ

The final equation is unidimensional, in the radial momen-
tum coordinate only. Due to the mass independent part of
the spin-orbit potential, the Hamiltonian now depends only
on j · j ¼ jðjþ 1Þ and not anymore on l · l ¼ lðlþ 1Þ as a
nonrelativistic quark model would. This implies a degen-
eracy between parity þ and parity − mesons, and thus we
obtain χRS.
Moreover, when the limit mðkÞ=k → 0 is not exact, a

finite splitting jMþ −M−j remains in the spectrum, due to
the remaining spin-orbit correction,

−2K3
0

2

k2
mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðkÞ
p s · l → −

4K3
0

k2
mðkÞ
k

s · l ð22Þ

and we find that, the breaking of the χRS is due to a spin-
orbit potential, as derived in our theorem, confirming the
s · l is the only possible tensor potential depending on the
angular momentum l and spin s of the light quark.
Moreover, the breaking of the χRS is proportional as
expected to mðkÞ=k and to a term with the scale of the
interaction, K3

0=k
2. In the quadratic model, this multipli-

cative term replaces the term σ=k of our theorem.

B. Effective chiral quark model with a linear potential

We now illustrate the mechanism and the quantum
numbers for chiral symmetry restoration in the spectrum
with the effective model introduced in Ref. [74] as the first
confining and chiral invariant quark model for spontaneous
chiral symmetry breaking. This model is similar to the
quadratic model of Sec. III A but is more effective since the
confining potential is linear.

Notice the dynamically generated running quark mass
mðkÞ follows a power law for largemomentummðkÞ ∝ m−4,
with an excellent Padé fit [51] already provided with three
parameters only,

mðkÞ ¼
ffiffiffi
σ

p
6.24900þ 26.7910σ1k2 þ 17.5059σ−2k4

: ð23Þ

The linear confining potential is observed in static-static
potentials in lattice QCD, computed with Wilson loops.
Moreover, the linear confining potential leads to linearRegge
trajectories, in agreement with experiment. The bound state
equation for mesons was solved in Refs. [75,76]. Recently,
the static-light spectrum was computed in Ref. [77].
However, with the linear potential, the equations are

integral in momentum space, and very large terms cancel
numerically, thus an excellent numerical precision is more
difficult to achieve. The results of Ref. [77] are displayed in
Table II, and we assume the numerical precision is half of
the last digit.

C. Checking our theorem with
the chiral invariant quark models

1. Quadratic model

We now verify our theorem of Sec. II with the two chiral
invariant quark models.
The model used in Sec. III A, leading to the bound

state Eqs. (17) and (21) and to the mass Eq. (19) has a
quadratic potential and not linear as we would expect from
confinement in QCD. In the large momentum limit, all
these equations lead to Airy-like functions, with a decay in
∼ exp ð−constk3=2Þ for large momenta k. For instance, in
the limit of large momentum, the mass mðkÞ,

mðkÞ → 0.74K0 exp½−0.96ðk=K0Þ3=2�; ð24Þ

in the quadratic model decreases extremely fast with k as in
an Airy function. This is one of the models with the fastest
convergence of mðkÞ → 0 we know of, see Fig. 3.

TABLE II. Meson mass M in units of the potential parameterffiffiffi
σ

p
as obtained by Ref. [77].

jp n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

1=2þ 1.84 2.87 3.71 4.42
1=2− 2.04 3.08 3.91 4.61
3=2þ 2.84 3.67 4.38 5.01
3=2− 2.82 3.63 4.32 4.94
5=2þ 3.47 4.18 4.80 5.37
5=2− 3.48 4.19 4.82 5.39
7=2þ 4.02 4.65 5.23 5.76
7=2− 4.02 4.65 5.22 5.75
9=2þ 4.49 5.07 5.60 6.09
9=2− 4.49 5.07 5.60 6.10
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Nevertheless, feeding the bound state Eq. (17) with
different mass functionsmðkÞ in the model, we get different
tests of our theorem of Eqs. (14) and (16) adapted to the
quadratic model. Equation (8) is unchanged and the first
part of (12) remains qualitatively correct, but Eqs. (9) and
(13) must be adapted since this model’s confining potential
is quadratic.
Equation (9) is replaced by Eq. (22). In what concerns

the linear Regge trajectory, it is replaced by another
power law relation. The semiclassical Bohr-Sommerfeld
quantization of orbits implies [58] at large j we have
rk → j. Moreover, from the light quark Hamiltonian H →
kþ 2K0

3r2 we find, using the relativistic virial theorem [67]
we find both hki∼2h2K0

3r2i∼4K0
3hri2 and hki→ 2

3
M�,

h2K0
3r2i→ 1

3
ðM�−mstaticÞ. Combining these simple rela-

tionships and assuming the probability distributions are well
behaved, with a single peak as in Fig. 5, we find the
momentum k dependence in j,

hk=K0i → ð2jÞ23; ð25Þ
andwe find theRegge trajectory for the quadraticmodel is no
longer linear as in QCD, and is changed to

M� −mstatic →
3

2
1
3

j
2
3K0: ð26Þ

Moreover, replacing Eq. (25) in Eq. (22), we finally find,
in the quadratic model, the theorem for the mass dependence
of the light quark total angular momentum is changed to

jMþ −M−j → m½hkiðjÞ�
j

: ð27Þ
Thus we get an extra power law of 1j when compared with the
result we expect in QCD.
To verify Eqs. (26) and (27), we plot in Fig. 6 the static-

light energy M� −mstatic and the chiral mass splitting
jMþ −M−j as a function of the total angular momentum j.
In Fig. 6(a), we find a good agreement with Eq. (26).

A better fit to the light quark energy, including a next to
leading order term to fit the intercept, is M� −mstatic →
3

2
1
3

ðjþ 1.33Þ23K0, and thus we find an intercept

α0 ∼ 2 × 31=3K0.
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k K0

0.6
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(b)
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k K0
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FIG. 5. The quadratic model wave functions as a function of
momentum in units of K0 (a) for the first ten radial excitations
and (b) for the first 20 angular excitations of the ground state
jp ¼ 1=2þ up to 39=2−. The radial excited wave functions in
(b) have a complicated momentum distribution with many peaks
and nodes. The angular excited wave functions (a) have a well-
defined momentum distribution with a single peak, and the
average momentum clearly increases monotonously with j.

(a)

(b)

FIG. 6. (a) The quadratic model energy static-light energy
(M� −mstatic) and (b) chiral mass splittings jMþ −M−j in units
of K0, for angular excited wave functions, as a function of j.
In solid lines we draw the prediction of our chiral theorem,
adapted to the quadratic model. Since the quadratic model’smðkÞ
vanishes too fast for a graphically visible result, in (b) we utilize
in the Salpeter equation an arbitrary small mass mðkÞ ¼ 0.02K0,
the agreement with the theorem is excellent already for j > 1=2.
Moreover we checked numerically our theorem when using the
quadratic model’s mðkÞ.
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With the running mass mðkÞ of Eq. (24) we checked
numerically that our theorem, Eq. (27), is accurate. Since
the mass of Eq. (24) decreases extremely fast, for a clearer
view of our theorem, in Fig. 6(b) we use an arbitrary
constant small massmðkÞ ¼ 0.02K0. Indeed in Fig. 6(b) we
find jMþ −M−j → m=j with an excellent agreement with
Eq. (27). While for the lowest j ¼ 1=2 the deviation with
the theorem is still large, for the next j ¼ 3=2; 5=2;… the
large j theorem already reproduces the chiral splitting.

2. Effective linear model

The effective model of Sec. III B includes linear confine-
ment, with static-light spectrum computed in Ref. [77], and
thus it should directly comply with our chiral theorem. In
Fig. 7 we first check whether the model produces a linear
Regge trajectory, and then test the chiral mass splittings.
In Fig. 7(a) the linear Regge trajectory is plotted

and indeed the slope α ¼ 4σ we used in our theorem is
correct. A better fit to the light quark Regge, including
a next to leading order term to fit the intercept, is
ðM� −mstaticÞ2 → ð2.0þ 4jÞσ, and thus the static-light
spectrum [77] corresponds to an intercept α0 ∼ 2.0σ.

In Fig. 7(b) we check our theorem on the chiral splitting.
Indeed we get a perfect fit with jMþ −M−j → 0.05

ffiffiffi
σ

p
j−2,

with the correct power law [51] corresponding to mðkÞ ∝
k−4 of Eq. (23).

IV. ANALYSIS OF PARITY DOUBLETS
IN THE LATTICE QCD SPECTRA

A. Lattice setup

The lattice QCD setup is quite different from the
continuum calculations with quark models. While it is
easy to set the heavy antiquark mass as infinite, we notice
several light quark masses have already been studied with
present state of the art lattice QCD techniques, and the
extrapolation to the limit of mcurrent → 0 has been recently
achieved [63,64] for the static-light spectrum. We now
detail how the lattice QCD techniques impact on the
computed static-light meson spectrum.
The static-light spectrum is computed with the correlators

illustrated in Fig. 4. The antiquark static source is placed
in the lattice with a Wilson temporal line L (thick straight
arrow), the operators corresponding to the light quark wave
functionΓ are representedbygreydisks, and the light valence
quark propagator S by a thin arrowed line. Note the lattice
QCD propagator is defined in Euclidean position space,
whereas the Dyson-Schwinger propagator is defined in
momentum space. Moreover, possible sea quark loops are
present as well (thin dashed loops), any possible gluon
excitations are also included (not represented in the figure),
and lattice QCD includes all possible contributions to the
angular momentum j illustrated in Fig. 1.
The light quark operator wave function Γ is an appro-

priate combination of spherical harmonics and gamma
matrices coupling angular momentum and quark spin to
yield well-defined total angular momentum j and parity p
for the light quark [62–65].
The space lattice has usually a cubic symmetry, smaller

than the rotation group symmetry SOð3Þ. This limits the
number of angular excitations which are straightforward to
identify. Whereas in the continuum the spherical harmonics
may have any angular momentum, in the continuum only
rotations multiple of π=2 maintain the lattice. In practice,
only the ground state and two angular excitations are
straightforward to identify. For more excitations, it is
necessary to compare degenerate bound states belonging
to different representations, extrapolated to the continuum
limit. Due to these difficulties, presently only the light
quark angular momenta j ¼ 1=2, 3=2, 5=2 are available in
lattice QCD static-light mesons, see Tables III and V.
The energies in the static-light spectrum are computed

with effective mass plateaux. The energy splittings in the
spectrum are well determined in lattice QCD. However,
when computing the static quark potentials with Wilson
lines the energy of the ground state is in general not
precisely determined. For instance, this occurs in the static

(a)

(b)

FIG. 7. (a) The effective linear model energy static-light energy
(M� −mstatic) (b) chiral mass splittings jMþ −M−j in units of σ,
for angular excited wave functions, as a function of j. The points
are the results of the effective model and in solid lines we draw
the prediction of our chiral theorem.
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quark–static antiquark potential, as a function of their
spacial distance r computed with the Wilson loop, where
the shape of the potential is stable except for a constant
energy shift depending on the lattice spacing. In particular
the Wilson loop is identical to 1 when r ¼ 0, whereas the
potential should be divergent due to the Coulomb term.
Thus in Tables III and V, the energies are all expressed
relatively to the ground state energy.

B. Lattice QCD results with dynamical quarks

References [62,63] compute the static-light spectrum
using dynamical Nf ¼ 2 flavor gauge configurations pro-
duced by the European Twisted Mass Collaboration
(ETMC). Three different values of the lattice spacing
a ¼ 0.051, 0.064, and 0.080 fm are used together with
various values of the pion mass in the range
280 MeV ≤ mπ ≤ 640 MeV. All lattice volumes are big
enough to fulfill mπL > 3.2. The extrapolation to the
continuum limit is performed with the different lattice
spacings.
Importantly to our study, the two parity p ¼ �1 ground

states with light quark j ¼ 1=2, 3=2, 5=2 are clearly
determined, computed and extrapolated, not only to the
physical current quark mass, but also to the chiral limit
of mcurrent → 0.
In Tables III and IV and Fig. 8, we review the results of

Refs. [62,63]. All masses in Tables III and IVare computed
respective to the ground state, S and s-wave with Jp ¼ 1

2
þ.

The next considered states are
(i) S�, the radial excitation of the ground state, an

s-wave with jp ¼ 1
2
þ, j ¼ l − 1

2
,

(ii) P−, a p-wave with jp ¼ 1
2
−, j ¼ l − 1

2
,

(iii) Pþ, a p-wave with jp ¼ 3
2
−, j ¼ lþ 1

2
,

(iv) D�, a d-wave with jp ¼ 3
2
þ, j ¼ l − 1

2
,

(v) Dþ, a d-wave with jp ¼ 5
2
þ, j ¼ lþ 1

2
,

(vi) F�, a f-wave with jp ¼ 5
2
−, j ¼ l − 1

2
.

In Fig. 8 we plot the masses of the static-light mesons in
Tables III and IV. Moreover, we fit the masses in order to
study the Regge trajectories and the chiral restoration.

In Fig. 8(a) we show the positive and negative parity
masses Mp −Mþ

1
2

as a function of j. We plot the negative

p ¼ − states with red circles and the positive p ¼ þ with
green squares. The points show a trend compatible both
with Regge trajectories and with chiral restoration.
In Fig. 8(b) we analyze the Regge trajectories. We expect

the square of the absolute ground state masses for each j,
ðMpÞ2 to be aligned in a linear trajectory with the light
quark angular momentum j. To obtain the trajectory,
j ¼ α0 þ αM2, we would need the absolute value of the
masses. However, we only have the masses relative to the
absolute ground state Mþ

1
2

. Thus to study the trajectory, our

best option is to computeMp −Mþ
1
2

as a function of
ffiffi
j

p
and

fit it with a linear relation. Indeed we find a trajectory with
an acceptable linear fit χ2=dof ¼ 2.02,

Mp −Mþ
1
2

¼ −730ð24Þ þ 1033ð34Þ
ffiffi
j

p
MeV: ð28Þ

The leading trajectory is the one with the lightest masses,
with the natural parity p ¼ jþ 1

2
corresponding to the

angular momenta j ¼ lþ 1
2
. Moreover, we also fit the

trajectory with the odd parity, in a perfect linear line, with
χ2=dof ¼ 0.014,

Mp −Mþ
1
2

¼ −232ð5Þ þ 902ð4Þ
ffiffi
j

p
MeV: ð29Þ

This suggests the dominant degrees of freedom in these
trajectories are the ones of the constituent quark. This is
favorable to χRS.
Figures 8(c) and 8(d) exhibit the power law in 1=k of the

chiral mass splitting. Using the quadratic model of Sec. II
as a case study, we do not expect the point at J ¼ 1=2 to
allow one to study the large j behavior. Nevertheless,
possibly J ¼ 3=2 and j ¼ 5=2 are already large enough to
observe a quantitative behavior. In Fig. 8(c) we plot the

TABLE III. MðjPÞ −MðSÞ in MeV extrapolated to physical
light quark masses, same table as in Refs. [62,63].

P− Pþ D� Dþ F� S� χ2=d:o:f:

406(19) 516(18) 870(27) 930(28) 1196(30) 755(16) 0.95

TABLE IV. Antistatic-light meson mass splittings in MeV
computed in lattice QCD [62,64] with dynamical quarks.

j Mþ −Mþ
1=2 M− −Mþ

1=2 jMþ −M−j (MeV)

1=2 406(19) 0 406(19)
3=2 516(18) 870(27) 354(32)
5=2 1196(30) 930(28) 266(41)

TABLE V. Same Table as in Ref. [65]. The splitting between
the ground state in the G1u (S-wave) irrep and the other states
determined in this analysis by fits to the full optimized correlation
matrices. The lattice spacing was determined from the spin-
averaged 1P-1S splitting in charmonium, on the same ensemble.

Channel O(3) Wave △E (GeV)

G1u, 1st excitation 1=2þ S 0.504(8)
G1u, 2nd excitation 1=2− S 0.82(2)
G1g, ground state 1=2−, 7=2− P 0.371(6)
G1g, 1st excitation 1=2−, 7=2− P 0.76(3)
Hg, ground state 3=2−, 5=2−, 7=2− P 0.405(6)
Hg, 1st excitation 3=2−, 5=2−, 7=2− P 0.84(2)
Hu, ground state 3=2þ, 5=2þ D 0.706(2)
Hu, 1st excitation 3=2þ, 5=2þ D 1.02(2)
G2u, ground state 5=2þ D 0.65(3)
G2u, 1st excitation 5=2þ D 1.02(6)
G2g, ground state 5=2−, 7=2− F � � �
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antistatic-light meson splittings jMþ −M−j, as a function
of j and it is clear χRS occurs monotonously. According
to Eq. (14), the momentum k ∝

ffiffi
j

p
. Thus in Fig. 8(d) we

plot the antistatic-light meson splittings jMþ −M−j, as a
function of 1=

ffiffi
j

p
. Moreover, we test different power law

relations for the quark mass mðkÞ ∝ 1=kn. Our fits suggest
jMþ −M−j ∼ c0=

ffiffi
j

p
. We conclude the best fit of the chiral

mass splitting, with χ2=dof ¼ 0.061, is the power law

jMþ −M−j ¼ 431ð5Þj−1=2 MeV; ð30Þ
consistent with a mass depending of momentum with the
leading power law at large momentum,

mðkÞ ∝ 1=k; ð31Þ
according to the theorem in Eq. (14).

C. Lattice QCD results with quenched quarks

It is interesting to compare static-light mesons computed
in quenched versus dynamical lattice QCD. The differences
can be traced to sea quarks. In principle, if quark loops are

important for the spectrum, the differences should be
noticeable. In Fig. 9 and Tables V and VI we report the
results of the quenched calculation of Ref. [65].
In this case the continuum limit is not reached, and lattice

effects of the octahedral group Oh in the lattice may still be
present. The irreducible representations of the group SOð3Þ
in the continuum do not coincide with the irreducible
representations of the octahedral group in the lattice.
Continuum states with a jz angular momentum continuum
quantum number are in general divided between the lattice
irreducible representations. For example, states with quan-
tum numbers jp ¼ 5

2
þ, corresponding to a six-dimensional

representation of Oð3Þ, appear in both the G2g and Hg

octahedral irreducible representations. The continuum
degeneracy is broken by lattice artifacts. In a numerical
study one hopes to determine the 5=2þ energy levels by
identifying near-degenerate levels in the G2g and Hg

irreducible representations which converge in the approach
to the continuum limit.
In the notation of Ref. [65], the correspondence between

the octahedral irreducible representations and the con-
tinuum representations is the following:

(a) (b)

(c) (d)

FIG. 8. Lattice static-light spectrum computed with dynamical QCD [62,63], and fits. (a) Spectrum Mp −Mþ
1
2

as a function of j, red
circles correspond to p ¼ − and green squares correspond to p ¼ þ. (b) Regge trajectories Mp −Mþ

1
2

as a function of
ffiffi
j

p
, solid fit for

natural p ¼ j − 1
2
and dashed fit for odd p ¼ jþ 1

2
. (c) Chiral mass splittingMþ −M− as a function of j and fit ∝

ffiffi
1
j

q
of last two points,

(d) as a function of
ffiffi
1
j

q
.
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(i) The s-wave, which has jp ¼ 1
2
þ, lies in theG1u irrep.

(ii) The 1
2
− p-wave and the 3

2
− p-wave appear in the G1g

and Hg irreps respectively.
(iii) The d-wave multiplets are labeled 3

2
þ and 5

2
þ. Both of

these appear in the Hu irrep, and the 5
2
þ states also

arise in the G2u irrep.
(iv) The lowest-lying states in the remaining lattice irrep,

the G2g representation, are expected to have the
quantum numbers 5=2−, corresponding to f-wave
excitations.

The respective masses are summarized in Table V. In
principle, for the ground states of each irreducible repre-
sentation, the corresponding continuum quantum numbers

are clear. Possibly the same quantum numbers can be
maintained for the first excited state, assuming it is a radial
excitation with the same quantum numbers as the ground
state. To identify higher angular momenta, a very careful
continuum limit and studies of the degeneracies betweenOh
irreducible representations would be necessary, and thus
we do not pursue it. We arrive at the spectrum depicted in
Fig. 9(a). The spectrum shows evidence for Regge trajecto-
ries in the ground states for each angular momentum.
Again, to study the leading trajectory, our best option is

to compute Mp −Mþ
1
2

as a function of
ffiffi
j

p
and fit it with a

linear relation. In Fig. 9(b) we plot the trajectories. For the
leading trajectory, the one with the lightest masses, with the
natural parity p ¼ ð−1Þj−1=2 corresponding to the angular
momenta j ¼ lþ 1

2
, there are three points. Indeed we are

able to fit them with a linear trajectory, with χ2=dof ¼ 1.14,

Mp −Mþ
1
2

¼ −550ð8Þ þ 778ð12Þ
ffiffi
j

p
MeV: ð32Þ

However, for the odd parity trajectory, we only have two
points, insufficient to compute the χ2=dof with a linear fit.
Nevertheless, this trajectory is essentially parallel to the

(a) (b)

(c) (d)

FIG. 9. Lattice results with quenched QCD of Ref. [65], and fits. (a) Spectrum Mp −Mþ
1
2

as a function of j, red circles correspond to
p ¼ − and green squares correspond to p ¼ þ. (b) Regge trajectories withMp −Mþ

1
2

as a function of
ffiffi
j

p
and fit of the natural p ¼ j − 1

2

in a solid line. (c) Regge trajectory in the radial excitations withMp −Mþ
1
2

as a function of
ffiffiffi
n

p
, and fit in a solid line. (d) Chiral splitting

jMþ −M−j as a function of j in blue circles, and purple squares for the first excitation splitting.

TABLE VI. Antistatic-light meson mass splittings in MeV
computed in Ref. [65], with quenched lattice calculation.

j Mþ −Mþ
1=2 M− −Mþ

1=2 jMþ −M−j (MeV)

1=2 0.371(6) 0 0.371(6)
3=2 0.405(6) 0.706(2) 0.301(6)
1=2� 0.76(3) 0.504(8) 0.26(3)
3=2� 0.84(2) 1.02(2) 0.18(3)
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leading one, and this suggests, as in the dynamical case,
both may have a comparable slope.
In the quenched case, it is interesting as well to study the

Regge slope for radial excitations, since we have two
excitations of the ground state with jp ¼ 1

2
þ. In Fig. 9(c) we

plot the masses as a function of
ffiffiffi
n

p
. As in the chiral quark

models of Sec. III, we assume n ¼ 0 for the ground state
and n ¼ 1, 2 for the two excited states. With power laws inffiffiffi
n

p
, the best fit we find is a linear one, though it is not a

very good fit, with χ2=dof ¼ 21.7,

Mp −Mþ
1
2

¼ 522ð32Þ ffiffiffi
n

p
MeV: ð33Þ

Although the χ2=dof is large, it is nevertheless interesting
to notice the radial Regge slope 522(32) is of the same
order of the one of the angular Regge slope 550(8). This is
an interesting result, possibly pointing to hybrid effects,
e.g. quantum numbers beyond the valence quark ones [58],
in the radial excited spectrum [21], as observed at the
former Cristal Barrel collaboration at CERN [53–57] for
light-light mesons.
Moreover, in Fig. 9(d), where we plot the chiral mass

splittings of Table VI, there is a clear evidence of χRS,
between the ground state trajectories with natural and off
parities. We do not attempt to fit quantitatively the amount
of restoration, because we only have two points.
Nevertheless it is also interesting to note there is also
evidence, in Fig. 9(d), for chiral restoration in the first
excited trajectories.
Comparing the quenched and dynamical results, there is

no strong qualitative difference. The only quantitative differ-
ence is in the slope in the Regge trajectories. This suggests
the valence light quark degrees of freedom dominate the
angularly excited spectrum of static-light systems.

V. CONCLUSION

The static-light mesons constitute an ideal system to test
new ideas and theorems in QCD.We specialize the theorem
on the quark dynamical massmðkÞ of Ref. [16] to the static-
light system. In [78] it was shown how it is possible that
mðkÞ can be well reproduced with a quite different ZðkÞ.
Thus it would also be interesting [78] to focus on the quark
wave function renormalization ZðkÞ but we do not address
it here.
We compute, in two different chiral invariant quark

models, with quadratic and linear confinement, the chiral
mass splittings between positive and negative parity part-
ners jMþ −M−j in the antistatic-light spectrum, up to
jp ¼ 39=2�. We utilize the chiral models as benchmarks to
test our theorem.
We apply the theorem in order to extract the quark

running mass mðk ∝
ffiffi
j

p Þ from the available lattice data.
We find a trend of decreasing jMþ −M−j as a function of j.
This is a signal for χRS, a very interesting result for the

first time identified in a lattice QCD spectrum. Moreover,
the linearity of Regge trajectories, together with the χRS,
suggest the valence/constituent quark degrees of freedom
are the dominant ones in the leading trajectories of static-
light systems.
We expect jMþ −M−j to produce hmðk ∝

ffiffi
j

p Þi. While
this cannot be applied to the very small j ¼ 1=2, consid-
ering the next two values of j ¼ 3=2 and j ¼ 5=2 we
find in lattice QCD an indication hmðkÞi ∝ 1=

ffiffi
j

p
. This is

equivalent to a power law of mðkÞ ∝ k−1, explaining how
the running quark mass interpolates between the light
constituent quark mass of 300 to 400 MeV to the much
smaller current quark masses. Due to the difficulties of the
cubic/octahedral symmetry, there are no available static-
light lattice QCD masses for j > 5=2.
This momentum dependence of the quark mass is

very interesting because it is qualitatively quite different
from the one of constituent quark models, of chiral quark
models, of the Nambu and Jona-Lasinio model and of
Dyson-Schwinger approaches, shown in Fig. 3. We expect
the present result to motivate further progress of the study
of the running mass mðkÞ in chiral models of QCD.
Notice jMþ −M−j is gauge invariant, in a sense it

provides a gauge invariant definition of the quark running
mass. In the future, it would be very interesting to extend
the static-light lattice data to higher total angular momenta
j > 5=2. Indeed, more lattice data is necessary to clearly
determine the power law in Eq. (16). For instance,
excluding the point with lowest j in Figs. 8(c) and 8(d),
we clearly get a power law of m ∝ j−1=2 as in Eq. (30).
But including the first low j point, and adding an extra
parameter to the fit, as in Fig. 10, then we find that any
m ∝ j−γ with 1 ≤ γ ≤ 4 produce fits with good χ2=dof ≤ 1.
The Landau gauge fixed quark propagators suggest γ ≃ 1,
since Ref. [43] produces a function mðkÞ ∝ 1=k2 to 1=k2.5

in the large k limit, as depicted in Fig. 3.

FIG. 10. Best fit of the dynamical lattice QCD [62,63] chiral
splitting jMþ −M−j, including all three points, with an ansatz
a=ðbþ jγÞ. We fit the a and b parameters with fixed exponent γ.
The solid line illustrates the γ ¼ 5=2 case, producing the best
χ2=dof.
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It would be tantalizing for the QCD community if the
experimental collaborations, say LHCb at CERN, could
study the spectrum of more B mesons; so far we only
have three confirmed states in the leading trajectories, with
JP ¼ 1− and JP ¼ 2þ in the natural parity trajectory and
JP ¼ 1þ in the inverse parity trajectory [22]. At least the
double of states would be necessary to compare with the
lattice QCD spectrum.
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