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The energy density and the pressure of SU(3) gauge theory at finite temperature are studied by
direct lattice measurements of the renormalized energy-momentum tensor obtained by the gradient flow.
Numerical analyses are carried out with β ¼ 6.287–7.500 corresponding to the lattice spacing
a ¼ 0.013–0.061 fm. The spatial (temporal) sizes are chosen to be Ns ¼ 64, 96, 128 (Nτ ¼ 12, 16, 20,
22, 24)with the aspect ratio, 5.33 ≤ Ns=Nτ ≤ 8. Double extrapolation, a → 0 (the continuum limit) followed
by t → 0 (the zero flow-time limit), is taken using the numerical data. Above the critical temperature, the
thermodynamic quantities are obtainedwith a fewpercent precision including statistical and systematic errors.
The results are in good agreement with previous high-precision data obtained by using the integral method.
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I. INTRODUCTION

Thermodynamic observables in QCD such as the energy
density ε and the pressure p as functions of temperature T
and baryon chemical potential μB provide fundamental
information for studying the physics of relativistic heavy-
ion collisions and compact stars. Because of their impor-
tance, high precision lattice simulations of ε and p in SU(3)
gauge theory [1–5] and in full QCD [6,7] on the lattice at
finite T have been carried out extensively for the past few
decades. In most of these studies the integral method [1] is
adopted, where ε and p are obtained by integrating so-called
the interactionmeasureΔ≡ ε − 3p calculated on the lattice.
Recently, a new method to calculate thermodynamic

quantities has been proposed [8,9] on the basis of the
gradient flow [10–14]. In this method, one makes use of
the renormalized energy-momentum tensor (EMT) operator
Tμν constructed from the “flowed field” at nonzero flow
time t [8]. Once EMT is defined, ε and p can be calculated
by simply taking thermal averages at any given temperature,

ε ¼ −hT44i; p ¼ 1

3

X3
i¼1

hTiii: ð1Þ

This method has been tested for the thermodynamics
of SU(3) gauge theory in Ref. [9] for the first time with
β ¼ 6=g20 ¼ 5.89–6.56 corresponding to the lattice spacing

a ¼ 0.041–0.11 fm and the spatial (temporal) size Ns ¼ 32
(Nτ ¼ 6, 8, 10). It was found that the ε and p obtained by
the gradient flow with small statistics can be comparable
to those obtained by the integral method with high statistics.
An extension of this method to full QCD has been also
formulated [15] and numerical results were reported
recently [16,17].
In the present paper, we report an improved analysis

of the thermodynamics of SU(3) gauge theory with
the gradient flow. Numerical analyses are carried out with
β ¼ 6.287–7.500 corresponding to the lattice spacing
a ¼ 0.013–0.061 fm. The spatial (temporal) sizes are
chosen to be Ns ¼ 64, 96, 128 (Nτ ¼ 12, 16, 20, 22, 24)
with the aspect ratio 5.33 ≤ Ns=Nτ ≤ 8. The double
extrapolation, a → 0 (the continuum limit) followed by
t → 0 (the zero flow-time limit), is taken using the data on
these fine lattices. We note that such a double limit could
not be taken in Ref. [9] due to the coarse lattice. The lattice
spacing a required for these analyses has been determined
on the basis of the gradient flow (see Ref. [18] and
Appendix A 1).
After taking the double limit, the final results of ε and p

above the critical temperature Tc reach a few percent
precision with both statistical error and systematic errors.
The latter errors are associated with the a → 0 and t → 0
extrapolations as well as the scale setting and lambda
parameter. Our high precision results based on the gradient
flow are found to be in good agreement with the previous
high precision results with the integral method.
This paper is organized as follows. In the next section we

introduce the gradient flow and the EMT operator used in
our study. After describing the setup of numerical
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simulations in Sec. III, the numerical results are presented
in Sec. IV. The last section is devoted to a short summary.
In the Appendix, the analyses of the lattice spacing and the
lambda parameter are described in detail.

II. BASIC FORMULATION

A. Yang-Mills gradient flow

Let us first recapitulate the essential features of the Yang-
Mills gradient flow [10] and its application to define the
renormalized EMT [8].
The gradient flow of the Yang-Mills field is generated by

the differential equation with a flow time t, which has a
dimension of inverse mass squared,

dAμðt; xÞ
dt

¼ −g20
δSYMðtÞ
δAμðt; xÞ

¼ DνGνμðt; xÞ: ð2Þ

Here the Yang-Mills action SYMðtÞ and the field strength
Gμνðt; xÞ are composed of the flowed field Aμðt; xÞ, which
is a function of t and the four-dimensional Euclidean
coordinate x. Color indices are suppressed for simplicity.
The initial condition at t ¼ 0 is taken to be Aμð0;xÞ¼AμðxÞ
with AμðxÞ being the ordinary gauge field in four-
dimensional Euclidean spacetime.
With Eq. (2), the gauge field flows along the steepest

descent direction of SYMðtÞ as t increases. At the tree level,
Eq. (2) is rewritten as

dAμ

dt
¼ ∂ν∂νAμ þ ðgauge dependent termsÞ; ð3Þ

which is a diffusion-type equation. Therefore, the gradient
flow for t > 0 acts as a cooling of the gauge field with the
smearing radius

ffiffiffiffi
8t

p
in the four-dimensional Euclidean

spacetime. In Ref. [19], it is proved in pure gauge theory
that all composite operators composed of Aμðt; xÞ take
finite values for t > 0. Also, the idea of the gradient flow
can be generalized to gauge theory with fermions [20].

B. EMT from gradient flow

In the present study, we use the EMT defined by the short
flow-time expansion [8]. Let us consider a composite local
operator Oðt; xÞ defined from the field Aμðt; xÞ at positive
flow time t > 0. The short flow-time expansion [19] asserts
that in the small t limit this operator can be written as a
superposition of local operators of the original gauge theory
at t ¼ 0 as

Oðt; xÞ!
t→0

X
i

ciðtÞOR
i ðxÞ; ð4Þ

where OR
i ðxÞ in the right-hand side are renormalized

operators of the original gauge theory at t ¼ 0 with the
subscript i denoting a set of operators, while ciðtÞ are

associated c-number coefficients calculable in perturbation
theory for small t.
In order to define the EMT using Eq. (4), we consider

the short flow-time expansion of dimension-four gauge-
invariant operators [8]. In pure gauge theory, there are two
such operators;

Uμνðt; xÞ ¼ Ga
μρðt; xÞGa

νρðt; xÞ −
1

4
δμνGa

ρσðt; xÞGa
ρσðt; xÞ;

ð5Þ

Eðt; xÞ ¼ 1

4
Ga

μνðt; xÞGa
μνðt; xÞ: ð6Þ

Since they are gauge invariant, only gauge invariant
operators appear in the right-hand side of Eq. (4): Such
an operator with dimension-zero is an identity operator,
while operators with dimension-four are EMTs TμνðxÞ.
Up to this order, the short flow-time expansion of Eqs. (5)
and (6) thus gives1

Uμνðt; xÞ ¼ αUðtÞ
�
TμνðxÞ −

1

4
δμνTρρðxÞ

�
þOðtÞ; ð7Þ

Eðt; xÞ ¼ hEðt; xÞi0 þ αEðtÞTρρðxÞ þOðtÞ: ð8Þ

We normalize EMT so that the vacuum expectation values
vanish, hTμνðxÞi0 ¼ 0. This determines the coefficient of
the unit operator in the right-hand side of Eq. (8) to be
hEðt; xÞi0. The unit operator does not appear in Eq. (7)
since Uμνðt; xÞ is traceless. Contributions from the oper-
ators of dimension-six or higher are proportional to t or
higher from the dimensional reason, and thus they are
suppressed for small t.
Combining relations Eqs. (7) and (8), we have

TμνðxÞ ¼ lim
t→0

Tμνðt; xÞ; ð9Þ

with

Tμνðt; xÞ ¼
1

αUðtÞ
Uμνðt; xÞ

þ δμν
4αEðtÞ

½Eðt; xÞ − hEðt; xÞi0�: ð10Þ

The coefficients αUðtÞ and αEðtÞ are calculated perturba-
tively in the MS scheme in Ref. [8],

αUðtÞ ¼ ḡð1=
ffiffiffiffi
8t

p
Þ2½1þ 2b0s̄1ḡð1=

ffiffiffiffi
8t

p
Þ2 þOðḡ4Þ�; ð11Þ

αEðtÞ ¼
1

2b0
½1þ 2b0s̄2ḡð1=

ffiffiffiffi
8t

p
Þ2 þOðḡ4Þ�; ð12Þ

1This useful combination was first given in Ref. [21].
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where ḡðqÞ denotes the running gauge coupling in the MS
scheme with q ¼ 1=

ffiffiffiffi
8t

p
and

s̄1 ¼
7

22
þ 1

2
γE − ln 2≃ −0.08635752993; ð13Þ

s̄2 ¼
21

44
−

b1
2b20

¼ 27

484
≃ 0.05578512397; ð14Þ

with b0 ¼ 1
ð4πÞ2

11
3
Nc, b1 ¼ 1

ð4πÞ4
34
3
N2

c with Nc ¼ 3.

We note here that (i) the right-hand side of Eq. (9) is
independent of the regularization because of its UV finite-
ness, so that one can take, e.g., the lattice regularization
scheme, and (ii) the small t expansion of Uμνðt; xÞ and
Eðt; xÞ implies

Tμνðt; xÞ ¼ TμνðxÞ þOðtÞ: ð15Þ

C. Energy density and pressure on the lattice

The thermodynamic quantities are obtained from the
expectation values of diagonal elements of the EMT as in
Eq. (1). A combination of ε and p called the interaction
measure Δ is related to the trace of the EMT (the trace
anomaly):

Δ ¼ ε − 3p ¼ −hTμμðxÞi: ð16Þ

Also, the entropy density s at zero chemical potential is
given by ε and p as

sT ¼ εþ p ¼ −hT44ðxÞi þ
1

3

X3
i¼1

hTiiðxÞi: ð17Þ

In the practical numerical analysis, we calculate Eq. (10)
on a flowed gauge field with t > 0. With finite a, the lattice
gauge field has to be smeared by the gradient flow
sufficiently to suppress the lattice discretization effect.
Since the smearing length of the gradient flow is given
by

ffiffiffiffi
8t

p
, this condition requires

ffiffiffiffi
8t

p ≳ a. On the other hand,
the value of

ffiffiffiffi
8t

p
has to be small enough compared with half

the temporal extent of the lattice, 1=ð2TÞ, so that the
smearing by the gradient flow does not feel the periodic
boundary condition. From these requirements, the meas-
urement has to be performed in the range

a≲ ffiffiffiffi
8t

p ≲ 1

2T
: ð18Þ

When Eq. (10) shows approximate linear dependence as
shown in Eq. (15) in a range of t given by Eq. (18), one can
take the small t limit and obtain Eq. (9). The linear
dependence Eq. (15) can also be violated for large t when
the perturbative results of the coefficients in Eqs. (11) and

(12) are no longer applicable. This happens when
ffiffiffiffi
8t

p
approaches the lambda parameter ΛMS.
For the measurement of Δ, we have to calculate

hEðt; xÞi0 to carry out vacuum subtraction. This means
that the numerical analysis for vacuum configuration is
needed in addition to T > 0 simulation. On the other hand,
the analysis of sT, which depends only on the traceless part,
does not require the vacuum subtraction and hence can be
performed solely with a nonzero T simulation. This is an
advantage of our method compared with the integral
method.2

III. SIMULATION SETUP

We have performed numerical simulations of SU(3)
gauge theory on four-dimensional Euclidean lattices. We
considered the Wilson plaquette gauge action under the
periodic boundary condition with several different values of
β ¼ 6=g20 with g0 being the bare coupling constant. Gauge
configurations are generated by the pseudo-heat-bath
algorithm with the over-relaxation, mixed in the ratio
of 1∶5. We call one pseudo-heat-bath update plus five
over-relaxation sweeps as a “Sweep.” Each measurement
is separated by 200 Sweeps. Statistical errors are then
estimated by the jackknife method. The binsize Nbin of the
jackknife analysis is determined so that the total number of
jackknife bins is 50 unless otherwise stated. We have
checked that the Nbin dependence of the statistical error is
not observed with this binsize.
We use the Wilson gauge action for SYMðtÞ in the flow

equation, Eq. (2). The gradient flow in the t-direction is
numerically solved by the third order Runge-Kutta (RK)
method [10]. The RK time step is taken to be 0.01 for small
t and is increased gradually as t increases. Accumulation
errors due to the RK method are found to be more than
2 orders of magnitude smaller than the statistical errors in
all the analyses discussed below.
For the operator Uμνðt; xÞ in Eq. (5) necessary to analyze

s=T3, we use Ga
μνðt; xÞ written in terms of the clover leaf

representation. For Eðt; xÞ in Eq. (6) necessary to analyze
Δ=T4, we use the mixed representation [23,24],

Eðt; xÞimp ¼
3

4
Eðt; xÞclover þ

1

4
Eðt; xÞplaq; ð19Þ

where Eðt; xÞclover is constructed from the clover leaf
representation of Ga

μνðt; xÞ in Eq. (6), while Eðt; xÞplaq is
defined as [10]

Eðt; xÞplaq ¼
1

18
Pðt; xÞ; ð20Þ

2An alternative method to analyze sT without vacuum sub-
traction is recently proposed in Refs. [5,22].
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with the plaquette Pðt; xÞ ¼ 1=ð6NcÞ
P

μ;νReTr ½Uμðt; xÞ×
Uνðt; xþ μ̂ÞU†

μðt; xþ ν̂ÞU†
νðt; xÞ�. If the Wilson gauge

action is employed for both the gauge action and SYMðtÞ
in Eq. (2), the Oða2Þ discretization errors in Eðt; xÞimp are
canceled out in the tree level [23].
To specify temperature of a lattice as well as to perform

the continuum extrapolation, we need to relate β to the
lattice spacing a. For this purpose, we have previously
performed measurements of a in the range 6.3 ≤ β ≤ 7.5
using the gradient flow [18]. As summarized in the
Appendix, we derived a relation between the dimensionless
reference scale w0=a and β as

w0

a
¼ exp

�
4π2

33
β − 9.1268þ 41.806

β
−
158.26
β2

�
; ð21Þ

which is applicable in the range 6.3 ≤ β ≤ 7.4. The
statistical error of Eq. (21) associated with the fitting
parameters is less than 0.4%. Topological freezing of the
data may also introduce an extra 1% error to this result
(see Appendix A 1 for more details). To determine T of a
lattice in the unit of Tc, we use the critical coupling after
the infinite volume extrapolation βc ¼ 6.33552ð47Þ at
Nτ ¼ 12 [25] and Eq. (21), which gives

w0Tc ¼ 0.25244ð17Þ: ð22Þ
In the definition of the EMT operator, Eq. (10), we need

the running coupling ḡðqÞ in the MS scheme which appears
in the coefficients αUðtÞ and αEðtÞ given by Eqs. (11) and
(12). To obtain ḡðqÞ at q ¼ 1=

ffiffiffiffi
8t

p
, we need a functional

form of ḡðqÞ and the relation between the lattice spacing
andΛMS. We use the iterative formula for four-loop running
coupling [26] and

w0ΛMS ¼ 0.2154ð5Þð11Þ: ð23Þ
See Appendix A 2 as well as Ref. [18] for more details.
Note that topological freezing would introduce an extra 1%
error to this result, too.
The simulation parameters are summarized in Tables I

and II. We perform the numerical simulations for eight
different temperatures in the range 0.93 ≤ T=Tc ≤ 2.69
on the lattice of volume N3

s × Nτ as summarized in Table I.
For each T=Tc, we perform numerical simulations for three
different values of Nτ. The value of β, lattice volume
N3

s × Nτ and the number of configurations are shown in the
table. The aspect ratios Ns=Nτ of all lattices are within the
range 5.33 ≤ Ns=Nτ ≤ 8. The values of Nτ for two coarse
lattices are fixed to Nτ ¼ 12 and 16. The finest lattice has
the value of Nτ in the range Nτ ¼ 20–24; because the
corresponding vacuum simulation on 1284 lattice requires a
large numerical cost, we make use of a single vacuum
simulation for several values of T by changing Nτ.
Since the lattice spacing determined by Eq. (21) has 1%

error, the value of T=Tc on each lattice is expected to have

a similar-size uncertainty. Also, there is a possible finite
volume effect, although it is expected to be small due to our
large aspect ratio, 5.33 ≤ Ns=Nτ. These small uncertainties
are not considered in the final results of Δ=T4 and s=T3 to
be shown at the end of this paper.
For the measurement of Δ=T4, we need the vacuum

simulation for vacuum subtraction. We carry out the
simulations on Nτ ¼ Ns lattices corresponding to the
temperatures in the range 0.93 ≤ T=Tc ≤ 1.68. The sim-
ulation parameters are shown in Table II. The configuration

TABLE I. Simulation parameters β ¼ 6=g20, N3
s × Nτ and

the number of configurations for nonzero temperature simula-
tions at T=Tc. The * symbol in the far right column shows the
set of configurations that the corresponding vacuum simulation
(Ns ¼ Nτ) is available.

T=Tc β Ns Nτ Configurations Vacuum

0.93 6.287 64 12 2125 *
6.495 96 16 1645 *
6.800 128 24 2040 *

1.02 6.349 64 12 2000 *
6.559 96 16 1600 *
6.800 128 22 2290 *

1.12 6.418 64 12 1875 *
6.631 96 16 1580 *
6.800 128 20 2000 *

1.40 6.582 64 12 2080 *
6.800 128 16 900 *
7.117 128 24 2000 *

1.68 6.719 64 12 2000 *
6.941 96 16 1680 *
7.117 128 20 2000 *

2.10 6.891 64 12 2250
7.117 128 16 840 *
7.296 128 20 2040

2.31 7.200 96 16 1490
7.376 128 20 2020
7.519 128 24 1970

2.69 7.086 64 12 2000
7.317 96 16 1560
7.500 128 20 2040

TABLE II. Parameters for vacuum simulations (Ns ¼ Nτ).

β Ns;τ Configurations

6.287 64 2125
6.349 64 950
6.418 64 1000
6.582 64 800
6.719 64 1000
6.495 96 840
6.559 96 840
6.631 96 900
6.941 96 837
6.800 128 992
7.117 128 1028
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sets whose vacuum subtraction is available are shown by
the � symbol in the far right column in Table I.
To obtain the expectation values of the EMT with

Eqs. (9) and (10), the double extrapolation ðt;aÞ→ ð0;0Þ
has to be taken. To proceed this analysis, we first take the
continuum limit, a → 0, with fixed t in physical unit. Since
the leading lattice discretization effect on the thermody-
namic quantities with the Wilson plaquette gauge action is
of order a2 [1], we take the following parametrization to
take the continuum limit:

hTμνðt; xÞilat ¼ hTμνðt; xÞicont þ
bμνðtÞ
N2

τ
: ð24Þ

Here, hTμνðt; xÞilat is the expectation value obtained on the
lattice with Nτ. One has to determine bμνðtÞ for each t
independently. Then, we take t → 0 extrapolation by fitting
the continuum extrapolated result,

hTμνðt; xÞicont ¼ hTμνðxÞi þ Cμνt; ð25Þ

according to Eq. (15). Cμν has in principle logarithmic
t dependence, but we treat it as a constant in our
extrapolation.

IV. NUMERICAL RESULTS

A. hTμνðt;xÞilat and its t and a dependences

We first focus on the result for T ¼ 1.68Tc to see the t
and a dependences of the numerical results. Shown in
Fig. 1 are the t dependence of Δ=T4 ¼ ðϵ − 3pÞ=T4 (left)
and entropy density s=T3 ¼ ðεþ pÞ=T4 (right) as func-
tions of tT2 at fixed temperature, T=Tc ¼ 1.68, for three
different values of the lattice spacing, β ¼ 6.719, 6.941 and
7.117 (a ¼ 0.033, 0.025 and 0.020 fm). For Δ=T4, the
improved operator in Eq. (19) is adopted. Let us discuss
the three regions of t separately: (i) For 0 <

ffiffiffiffi
8t

p ≲ a, the
lattice discretization effect becomes prominent as discussed
in Sec. II C. One finds, particularly in the right panel, that

FIG. 1. Flow-time t dependences of trace anomaly Δ=T4 ¼ ðε − 3pÞ=T4 (left) and entropy density s=T3 ¼ ðεþ pÞ=T4 (right) for
T=Tc ¼ 1.68 with Nτ ¼ 12, 16 and 20.

FIG. 2. t dependence of Δ=T4 for T=Tc ¼ 1.68 with Nτ ¼ 12 (left) and Nτ ¼ 20 (right) calculated by different discretizations,
Eðt; xÞimp, Eðt; xÞclover and Eðt; xÞplaq.
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this region becomes narrower as a decreases. (ii) For the
smallest a in this figure (red points), Δ=T4 has a plateau
and s=T3 has a linear behavior in the range 0.005≲ tT2 ≲
0.015 in accordance with Eq. (15). (iii) The deviation from
the linear behavior is seen for tT2 ≳ 0.015, which is
attributed to the over-smearing as discussed in Sec. II C.
These considerations indicate that there exists a window of
t from which the values of Δ=T4 and s=T3 at t ¼ 0 can be
extracted.
To check the effect of different choices for the operator

Eðt; xÞ in Δ=T4, we compare three cases in Fig. 2,
Eðt; xÞimp, Eðt; xÞclover and Eðt; xÞplaq, for T=Tc ¼ 1.68
and Nτ ¼ 12, 20. In both figures, the improved operator,
Eq. (19), shows the least discretization error for Δ=T4.

B. Double extrapolation

Let us now describe the procedure for the double
extrapolation ðt; aÞ → ð0; 0Þ. As discussed in Sec. III,
we first take the continuum limit with t fixed. This
extrapolation is taken by fitting the results with three
different values of Nτ with Eq. (24). To obtain the values
of hTμνðt; xÞilat at the same t for different Nτ, we apply the
cubic spline interpolation to the data for each Nτ.

In Figs. 3 and 4, we show the Nτ dependences of
Δ=T4 and s=T3 at tT2 ¼ 0.005, 0.01, 0.015 and 0.02
together with the result of continuum extrapolation
with Eq. (24). In Fig. 3, three results obtained by the
different choices for the operator Eðt; xÞ are shown. The
value of χ2=dof is within the range χ2=dof ≲ 2.0 for
0.005 ≤ tT2 ≤ 0.02. The error of the continuum extrapo-
lation is estimated by the jackknife analysis. For values
of tT2 smaller than 0.005, the fitting becomes worse
particularly for s=T3. Therefore, in the following,
we will use the results only for 0.005 ≤ tT2 ≤ 0.02.
Figure 3 also shows that the continuum extrapolated
results with different discretizations for Eðt; xÞ agree
with each other.
In Fig. 5, we show the t dependences of Δ=T4 and

s=T3 after the continuum extrapolation by the black
line with the error band together with the data for finite
lattice spacings, Nτ ¼ 12, 16 and 20. We make linear t
extrapolation by using the continuum extrapolated data for
0.005 ≤ tT2 ≤ 0.02 according to Eq. (25). We employ
three fitting ranges,
Range-1 0.01 ≤ tT2 ≤ 0.015,
Range-2 0.005 ≤ tT2 ≤ 0.015,
Range-3 0.01 ≤ tT2 ≤ 0.02.

FIG. 3. Nτ dependence of Δ=T4 at tT2 ¼ 0.005, 0.01, 0.015 and 0.02 together with the result of continuum extrapolation using
Eq. (24). The results with three discretizations for Eðt; xÞ are plotted.
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In Fig. 5, the black solid bar at t ¼ 0 with a squared
symbol denotes the result of the extrapolation with Range-1,
while the open circle and triangle symbols denote the results

with Range-2 and Range-3, respectively. χ2=dof in these
fittings is smaller than unity. Then, we use the result of
Range-1 as a central value, while those of Range-2 and

Range-3 are used to estimate the systematic error associated
with the fit range.3

FIG. 5. Results of continuum extrapolation (black band) for Δ=T4 (left) and s=T3 (right) as functions of tT2. The extrapolation to
t ¼ 0 using the data in Range-1 is shown by the dashed line, and the extrapolated value with the error is given by the filled square at
t ¼ 0. The extrapolated values with Range-2 and Range-3 are also shown around the origin.

FIG. 4. Nτ dependence of s=T3 at tT2 ¼ 0.005, 0.01, 0.015 and 0.02 together with the result of continuum extrapolation using
Eq. (24).

3In our previous exploratory study of Δ=T4 and s=T3 in
Ref. [9], the continuum limit has been taken, while the flow time
was fixed to be tT2 ¼ 0.02. There was no resolution to detect the
slope Cμν owing to limited statistics and coarse lattice.
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In order to estimate the systematic error from the
uncertainly of aΛMS discussed in Sec. III, we show the
continuum extrapolated results under�1% change of aΛMS
in Fig. 6. As the figure shows, the systematic error forΔ=T4

(s=T3) is negligible (comparable) to the other statistical and
systematic errors.

C. Temperature dependence

The analysis in the previous subsection for T=Tc ¼ 1.68
is repeated for all T=Tc listed in Table I. We show the
results of these analyses with different values of T=Tc in
Fig. 7 forΔ=T4 and in Fig. 8 for s=T3. The values of χ2=dof
are within a reasonable range χ2=dof ≲ 2 for all fits with an
exception for s=T3 at T=Tc ¼ 1.40. As these figures show,
the double extrapolation works rather stably for all T=Tc.

The numerical results after double extrapolation are
summarized in Table III. The table shows that Δ=T4 and
s=T3 are determined within 3% precision including all
systematic errors except for those at T=Tc ¼ 0.93. Note
that we do not haveΔ=T4 for the highest three temperatures
owing to the lack of vacuum simulations needed to make
vacuum subtraction (see Table I).
Finally, we depict the T=Tc dependences of our Δ=T4

and s=T3 in Fig. 9 together with the previous data obtained
by the integral method in Refs. [1,4]. By taking into the
estimated errors of the previous results, three results are
consistent with each other.4

FIG. 6. Systematic errors originated from �1% of change of ΛMS.

FIG. 7. Similar plots with the left panel of Fig. 5 for different values of T=Tc.

4We note that s=T3 recently studied in the shifted boundary
method [5,22] also seems to agree.
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V. SUMMARY

We performed measurements of thermodynamic quan-
tities of the SU(3) Yang-Mills theory from the direct analysis
of the expectationvalue of energy-momentum tensor (EMT),
Eq. (9), constructed by the Yang-Mills gradient flow with a
flow time t. The numerical simulations with the Wilson
plaquette gauge action have been performed at finite temper-
ature with the lattice spacing a ¼ 0.013–0.061 fm and the
aspect ratio, 5.33 ≤ Ns=Nτ ≤ 8.

Using the lattice data, the double extrapolation (t → 0
after a → 0) has been performed to obtain the interaction
measure ΔðTÞ and the entropy density sðTÞ with a few
percent precision including statistical and systematic errors.
The results agree quite well with the previous high-
precision data using the integral method.
The present approach with EMT provides a new tool not

only to calculate QCD equation of state accurately but
also to study correlation functions and transport coeffi-
cients of the quark-gluon plasma with firm theoretical

FIG. 8. Similar plots with the right panel of Fig. 5 for different values of T=Tc.
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basis. The first step along these directions will be reported
in the forthcoming paper [27].

ACKNOWLEDGMENTS

The authors thank E. Itou for discussions in the early stage
of this study. Numerical simulation for this studywas carried
out on IBM System Blue Gene Solution at KEK under its
Large-Scale Simulation Program (No. 13/14-20, No. 14/15-
08, and No. 15/16-15). This work is supported in part by
Japan Society for the Promotion of Science KAKENHI
Grants No. 24340054, No. 25287046, No. 25287066,
No. 25800148, No. 26400272, No. 16H03982 and by
RIKEN iTHES Project.

APPENDIX: LATTICE SPACING
AND Λ PARAMETER

In this Appendix, we summarize our analysis of the
lattice spacing and ΛMS. The numerical data used are those

given in Ref. [18]. A possible error originating from the
topological freezing is also mentioned.

1. Reference scale and lattice spacing

Numerical simulations of the SU(3) Yang-Mills theory
with the Wilson plaquette action were performed on
N4

s ¼ 644–1284 lattices under the periodic boundary con-
dition. The values of β ¼ 6=g20, Ns and the number of
configurations Nconf are summarized in the three left
columns in Table IV.
We adopt the reference scale w0 defined by [29]

t
d
dt

t2hEðtÞij
t¼w2

0

¼ 0.3; ðA1Þ

with the operator EðtÞ constructed by the clover-type
representation of the flowed field Ga

μν at time t. We use
theWilson gauge action SYM for the flow equation in Eq. (2),
and each measurement is separated by 1000 Sweeps. The
values of w0=a with statistical errors are summarized in the
fourth column of Table IV. The lattice spacings in physical
unit estimated byw0 ¼ 0.1670ð10Þ fm [28] are also given in

FIG. 9. Temperature dependences of Δ=T4 and s=T3 (red circles) together with the previous studies based on the integral method
(solid and dashed lines) [1,4]. The error bars of the red circles are smaller than the size of symbols.

TABLE III. Summary of the equation of state with statistical
and systematic errors. The first error is the statistical one, while
the second error shows the systematic error associated with the
choice of the fit range. The last error comes from 1% uncertainties
of ΛMS from possible topological freezing.Δ=T4 at T=Tc ¼ 2.10,
2.31 and 2.69 are not available due to the lack of corresponding
vacuum configurations.

T=Tc Δ=T4 s=T3

0.93 0.066ð32Þðþ3
−2 Þð0Þ 0.082ð33Þðþ3

−6 Þð0Þ
1.02 1.945ð57Þðþ8

−7 Þð0Þ 2.104ð63Þðþ16
−2 Þð8Þ

1.12 2.560ð33Þðþ12
−8 Þð0Þ 3.603ð46Þðþ39

−0 Þð13Þ
1.40 1.777ð24Þðþ14

−3 Þð0Þ 4.706ð35Þðþ49
−0 Þð17Þ

1.68 1.201ð19Þðþ10
−0 Þð0Þ 5.285ð35Þðþ44

−0 Þð18Þ
2.10 — 5.617ð34Þðþ66

−0 Þð18Þ
2.31 — 5.657ð55Þðþ82

−15 Þð18Þ
2.69 — 5.914ð32Þðþ70

−0 Þð18Þ

TABLE IV. Simulation parameters for scale setting, β ¼ 6=g20,
the lattice size Ns, and the number of configurations Nconf , as
well as the numerical results of w0=a. The lattice spacing a and
the physical length Nsa in the physical unit determined from
w0 ¼ 0.1670ð10Þ fm [28] are also shown.

β Ns Nconf w0=a a [fm] Nsa [fm]

6.3 64 30 2.877(5) 0.058(4) 3.72(22)
6.4 64 100 3.317(4) 0.050(3) 3.22(19)
6.5 64 49 3.797(8) 0.044(3) 2.81(17)
6.6 64 100 4.356(9) 0.038(2) 2.45(15)
6.7 64 30 4.980(23) 0.034(2) 2.15(13)
6.8 64 100 5.652(17) 0.030(2) 1.89(11)
7.0 96 60 7.297(18) 0.023(1) 2.20(13)
7.2 96 53 9.348(66) 0.018(1) 1.71(10)
7.4 128 40 12.084(61) 0.014(1) 1.77(11)
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the table together with the physical lattice volume L ¼ Nsa.
Extra error due to topological freezing is estimated to be
about the 1% level as discussed later.5

For the parametrization of w0=a as a function of β, we
introduce the fitting function motivated by the one-loop
perturbation theory. It provides a reasonable result
(χ2=dof ¼ 1.104) for nine data points in 6.3 ≤ β ≤ 7.4
without overfitting as shown in Fig. 10:

w0

a
¼ exp

�
4π2

33
β − 9.1268þ 41.806

β
−
158.26
β2

�

× ½1� 0.004ðstatÞ�: ðA2Þ
The difference from other fitting Ansätze (such as poly-
nomial functions as shown in Appendix A in Ref. [18]) is
found to be less than 1%. The 0.4% error in Eq. (A2)
originates from the statistical errors of w0=a except for the
topological freezing.
For the analysis of w0=a in Table IV, we have used

30–100 configurations separated by 1000 Sweeps. In order
to estimate the effect of the topological freezing on these
simulations, we have performed an independent measure-
ment at β ¼ 6.88 on N4

s ¼ 644 lattice by accumulating
Nconf ¼ 1290 configurations with each measurement sep-
arated by 2000 Sweeps. This lattice setup corresponds to
the physical size, 64 × 0.027 fm≃ 1.7 fm, which is com-
parable to the smallest lattice volume in Table IV. Since
observables depend more on the topological sector for
smaller spatial volume [33], this analysis would serve as the
most severe test for the topological freezing of the data sets
in Table IV.
The topological charge is defined by Q≡

− 1
32π2

ϵμνρσ
R
V d

4xtr½GμνðxÞGρσðxÞ�. We take the value of
Q at t ¼ t0 defined by t2hEðtÞijt¼t0 ¼ 0.3 [10]. From this
measurement of Q, we find that the autocorrelation

length is about 100 × 2000 Sweeps which is 2–6 times
larger than the maximum number of Sweeps used to obtain
w0=a in Table IV. Therefore, there is indeed a danger
of the topological freezing. Shown in Fig. 11(a) is a
histogram of Q2 obtained in the simulation. The resultant
fluctuation of Q reads hQ2i ¼ 12.2� 3.2. Corresponding
topological susceptibility is estimated as χa4 ≡ hQ2i=V ¼
ð7.3� 1.9Þ × 10−7, with the error by the jackknife
analysis with binsize 100. By using Eq. (A2) and the
reference values w0 ¼ 0.1670ð10Þ fm and r0 ¼ 0.49 fm
[28], we find χr40 ¼ 0.084ð22Þ which is in the 1.5σ level
of agreement with the accurate determination, χr40¼
0.0544ð18Þ [34].
In Fig. 11(b), we plot w0=a at fixed topology, hw0=aiQ,

normalized by the expectation value hw0=ai without fixing
Q. The red band corresponds to the error of hw0=ai with
total configurations. By combining the typical value
expected from the topological susceptibility (jQj <ffiffiffiffiffiffiffiffiffiffi
hQ2i

p ≲ 4) and the results of Fig. 11, we estimate the
effect of the topological freezing is about 1% level.

2. Determination of ΛMS

For the value of w0ΛMS, we adopt a procedure similar
to the one in Ref. [35] for the determination of r0ΛMS.

FIG. 10. Result of the three parameter fit of w0=a in Eq. (A2).
The shaded band shows the uncertainties from the fit parameters.

FIG. 11. (a) Histogram of Q2 for β ¼ 6.88 and N4
s ¼ 644.

(b) The values of w0=a with fixed Q2 normalized by the
expectation values using all configurations.

5See Refs. [30–32] for simulation strategies which are
supposed to avoid the topological freezing.
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The dimensionless parameter aΛMS can be obtained by
matching the tadpole improved lattice perturbation theory.
The boosted coupling constant g□ is defined by

g2
□
≡ g20ðaÞ=u40; ðA3Þ

where u40 ≡ P ¼ hTrU□i=3.
As for the choice of the renormalization scale and the

running coupling constant, we take the following two
methods:

(i) Method I

aΛMS ¼ aμ�FMSðgMSðμ�ÞÞ ðA4Þ
at the scale

aμ� ¼ exp

�
t□1
2b0

�
; ðA5Þ

and

1

g2
MS

ðμ�Þ
¼ 1

g2
□
ðaÞ þ

�
b1
b0

t□1 − t□2

�
g2
□
ðaÞ þOðg4

□
Þ:

ðA6Þ

(ii) Method II

aΛMS ¼ aΛ□ exp

�
t□1
2b0

�
; ðA7Þ

with

aΛ□ ¼ F□ðg□ðaÞÞ: ðA8Þ
This scheme corresponds to choosing a scale at

aμ¼ ¼ exp

�
t□1
2b0

�
F□ðg□ðaÞÞ
FMSðg□ðaÞ

ðA9Þ

in Method I.

At the three-loop order, FS (S ¼ □, MS) is expressed as

ΛS

M
≡ FSðgSðMÞÞ ¼ exp

�
−

1

2b0g2S

�
ðb0g2SÞ−

b1
2b0

×
�
1þ b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0bSs

p
2b0

g2S

�−pS
A

×

�
1þ b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4b0bSs

p
2b0

g2S

�−pS
B

; ðA10Þ

where

pS
A ¼ −

b1
4b20

−
b21 − 2b0bS2

4b20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0bS2

p ; ðA11Þ

TABLE V. Simulation parameters β and Ns. The plaquette value, w0=a and w0ΛMS using Method I, II and II with
Padé approximation. The last row corresponds to the values at the continuum limit obtained from linear
extrapolation without using two coarse lattice data at β ¼ 6.3 and 6.4 (the italic numbers).

w0ΛMS

β Ns Plaquette w0=a Method I Method II Method II Padé

6.3 64 0.622 420 85(30) 2.877(5) 0.2017(3) 0.2021(3) 0.2004(3)
6.4 64 0.630 632 88(13) 3.317(4) 0.2046(2) 0.2050(2) 0.2033(2)
6.5 64 0.638 361 33(35) 3.797(8) 0.2063(5) 0.2067(5) 0.2051(4)
6.6 64 0.645 669 58(12) 4.356(9) 0.2087(4) 0.2091(4) 0.2075(4)
6.7 64 0.652 608 39(39) 4.980(23) 0.2106(10) 0.2109(10) 0.2095(10)
6.8 64 0.659 215 11(11) 5.652(17) 0.2112(6) 0.2115(6) 0.2101(6)
7.0 96 0.671 556 729(89) 7.297(18) 0.2133(5) 0.2136(5) 0.2123(5)
7.2 96 0.682 891 86(22) 9.348(66) 0.2142(15) 0.2144(15) 0.2132(15)
7.4 128 0.693 365 795(68) 12.084(61) 0.2173(11) 0.2176(11) 0.2164(11)
∞ 1 ∞ 0.2163(5) 0.2165(5) 0.2154(5)

(χ=dof) (0.927) (0.902) (0.991)

FIG. 12. Values of w0ΛMS by the Method II with Padé
improvement as a function of lattice spacing a2. The continuum
limit is shown at a2=w2

0 ¼ 0. The finest lattice data at β ¼ 7.4
deviates from the fitting line. We note that the continuum
extrapolation is consistent within the statistical error without
using the result at β ¼ 7.5.
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pS
B ¼ −

b1
4b20

þ b21 − 2b0bS2
4b20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0bS2

p : ðA12Þ

In the [1,1] Padé approximation, it leads to

FS
½1;1�ðgSðMÞÞ ¼ exp

�
−

1

2b0g2S

��
b0g2S

1þ ðb1b0 −
bS
2

b1
Þg2S

�− b1
2b0
:

ðA13Þ

In SU(3) Yang-Mills theory, the coefficients are given by

b0 ¼
11

ð4πÞ2 ; b1 ¼
102

ð4πÞ4 ; bMS
2 ¼ 1

ð4πÞ6
2857

2
;

b□2 ¼ bMS
2 þ b1t□1 − b0t□2 ; ðA14Þ

with

t□1 ¼ 0.1348680; t□2 ¼ 0.0217565: ðA15Þ

The expectation values of the plaquette, w0 and w0ΛMS
with three schemes are summarized in Table V. Following
Ref. [35], we adopt Method II with Padé improvement to
estimate the central value of w0ΛMS. The values in the
continuum limit are obtained by a linear fit as a function
of a2=w2

0 without using the coarse results at β ¼ 6.3 and
6.4 (see Fig. 12). We used the results of the other methods
to estimate the systematic error. From this analysis we
find

w0ΛMS ¼ 0.2154ð5Þð11Þ: ðA16Þ

Note that the topological freezing discussed in
Appendix A 1 would introduce another 1% error to this
number.
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