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We study the scaling with the number of colors, Nc, of the weak amplitudes mediating kaon mixing and
decay. We evaluate the amplitudes of the two relevant current-current operators on the lattice for Nc ¼ 3–7.
We conclude that the subleading 1=Nc corrections in B̂K are small, but those in the K → ππ amplitudes are
large and fully anticorrelated in the I ¼ 0, 2 isospin channels. We briefly comment on the implications for
the ΔI ¼ 1=2 rule.
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I. INTRODUCTION

The prediction of flavor violating processes involving
kaons remains elusive. In particular, there is still no satisfac-
tory explanation of the strikingΔI ¼ 1=2 rule, nor a reliable
predictionof ϵ0=ϵ. In spite of the spectacular progress in lattice
QCD calculations in the past decade, few attempts have been
made at these difficult observables, and the systematic
uncertainties in the existing results [1] remain too large.
On theother hand, a rather precise determinationof theK − K̄
mixing amplitude (given by B̂K) has emerged [2,3].
The large Nc limit of QCD [4] has been invoked in many

phenomenological approaches to this problem (some relevant
references are [5–9]). This seems counterintuitive since
the strict largeNc limit of theΔI ¼ 1=2 rule fails completely.
The predictions therefore rely on significant subleading Nc
effects, which are however very difficult to predict accurately.
As a result, these approaches typically involve further
approximations beyond the strict large-Nc expansion.
In [10], the results of the most ambitious lattice compu-

tation of K → ππ to date were presented, and a significant
ΔI ¼ 1=2 dominance was observed. It was noted that the
ΔI ¼ 1=2 rule seems to be originating in an approximate
cancellation of the two diagrams (color connected and
disconnected) contributing to the ΔI ¼ 3=2 amplitude.
Unfortunately it is not possible to isolate these two con-
tributions physically, so it is not clear what to extract from
this finding. In the large Nc expansion however this is
possible since the leading scaling inNc of the contributions is
different. The cancellation can therefore be phrased in terms
of the sign and size of the 1=Nc corrections in the isospin
amplitudes. In fact, itwas in the context of phenomenological
approaches using the largeNc expansion where the opposite
sign of these contributions was first pointed out [6]. There is
however a strong correlation between the ΔI ¼ 3=2 ampli-
tude and B̂K , and therefore this suggest that the same
cancellation in the former should be affecting the latter,
suggesting a value of B̂K significantly smaller than the
Nc → ∞ value. The role of the 1=Nc expansion in the

interpretation of the results in [10] is also discussed in the
latest update ofRBC/UKQCD’s results for theK → ππΔI ¼
3=2 decay amplitude [11]. A study of the—related—issue of
deviations from the naïve factorization approximation to
K → ππ amplitudes can be found in [12].
The goal of this paper is to study from first principles the

large Nc behavior of certain ΔS ¼ 1 and ΔS ¼ 2 ampli-
tudes. More concretely we consider K-π and K-K̄ tran-
sitions mediated by the four-fermion current-current
operators on the lattice varying the number of colors
Nc ¼ 3–7. As it is well-known, these amplitudes fix B̂K
[up to SUð3Þ flavor breaking effects by quark masses] and,
up to chiral corrections, also the ΔI ¼ 3=2 contribution to
the nonleptonic kaon decay, K → ππ [13]. Furthermore, in
the GIM limit of degenerate charm and up quarks, the
ΔI ¼ 1=2 contribution to the nonleptonic decays can also
be determined from the current-current operator matrix
elements, only [14,15]. In fact this is the limit where the
cancellation of [10] can be more clearly isolated. For this
reason, we will consider only the SUð4Þ-flavor limit
mc ¼ mu ¼ md ¼ ms. We miss in this way the effects of
a heavy charm, which were originally argued to be the
origin of the ΔI ¼ 1=2 rule [16]. This fact, however, has
not been confirmed by nonperturbative studies [1,17].
The paper is organized as follows. In Sec. II we introduce

our method and set our notation. We present the main
results in Sec. III and conclude in IV.

II. FORMALISM

The operator product expansion allows us to represent
the weak Hamiltonian that mediates CP-conserving ΔS ¼
1 transitions by an effective Hamiltonian in terms of four-
fermion operators. At the electroweak scale, μ≃MW , we
can neglect all quark masses and the weak Hamiltonian
takes the simple form

HΔS¼1
w ¼

Z
d4x

g2w
4M2

W
V�
usVud

X
σ¼�

kσðμÞQ̄σðx; μÞ; ð1Þ
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where g2w ¼ 4
ffiffiffi
2

p
GFM2

W . Only two four-quark operators of
dimension six can appear with the correct symmetry proper-
ties under the flavor symmetry group SUð4ÞL × SUð4ÞR,
namely

Q̄�ðx; μÞ ¼ Z�
QðμÞðJsuμ ðxÞJudμ ðxÞ � Jsdμ ðxÞJuuμ ðxÞ

− ½u ↔ c�Þ; ð2Þ

where Jμ is the left-handed current, Jαβμ ¼ ðψ̄αγμP−ψβÞ,
P� ¼ 1

2
ð1� γ5Þ, and parentheses around quark bilinears

indicate that they are traced over spin and color. Eventually,
Z�
QðμÞ is the renormalization constant of the bare operator

Q�ðxÞ computed in some regularization scheme as, for
example, the lattice. There are other bilinear operators of
lower dimensionality that could mix with those above:
however, they vanish in the GIM limit [14].
The operators Q̄σðμÞ are renormalized at a scale μ in

some renormalization scheme, being their μ-dependence
exactly canceled by that of the Wilson coefficients kσðμÞ.
It is common practice to define renormalization group
invariant (RGI) operators, which are defined by canceling
their perturbative μ-dependence, as derived from the
Callan-Symanzik equations,

Q̂σ ≡ ĉσðμÞQ̄σðμÞ; ð3Þ

with

ĉσðμÞ≡
�
Nc

3

g2ðμÞ
4π

�−
γσ
0

2b0
exp

�
−
Z

gðμÞ

0

dg

�
γσðgÞ
βðgÞ −

γσ0
b0g

��
;

ð4Þ

where gðμÞ is the running coupling and βðgÞ ¼
−g3

P
nbng

2n, γσðgÞ ¼ −g2
P

nγ
σ
ng2n are the β-function

and the anomalous dimension, respectively. The one-
and two-loop coefficients of the β-function, and the
one-loop coefficient of the anomalous dimensions, are
renormalization scheme-independent. Their values for
the theory with Nf flavors are [18,19]

b0 ¼
1

ð4πÞ2
�
11

3
Nc −

2

3
Nf

�
; ð5Þ

b1 ¼
1

ð4πÞ4
�
34

3
N2

c −
�
13

3
Nc −

1

Nc

�
Nf

�
; ð6Þ

and for the operators Q� [20]

γ�0 ¼ 1

ð4πÞ2
�
�6 −

6

Nc

�
: ð7Þ

The normalization of ĉσðμÞ coincides with the most popular
one for Nc ¼ 3, whilst using the ’t Hooft coupling

λ ¼ Ncg2ðμÞ in the first factor instead of the usual coupling,
so that the large Nc limit is well-defined.
Defining similarly an RGI Wilson coefficient

k̂σ ≡ kσðμÞ
ĉσðμÞ ; ð8Þ

we can rewrite the Hamiltonian in terms of RGI quantities,
which no longer depend on the scale, so we can write

k̂σQ̂σ ¼
�
kσðMWÞ
ĉσðMWÞ

�
½ĉσðμÞQ̄σðμÞ�

¼ kσðMWÞUσðμ;MWÞQ̄σðμÞ; ð9Þ

where μ is a convenient renormalization scale for the
nonperturbative computation of matrix elements of Q�,
which will be later set to the inverse lattice scale a−1. The
factor Uσðμ;MWÞ ¼ ĉσðμÞ=ĉσðMWÞ, therefore, measures
the running of the renormalized operator between the scales
μ and MW . Ideally one would like to evaluate this factor
nonperturbatively, as has been done for Nc ¼ 3 [21], but
this is beyond the scope of this paper. We will instead use
the perturbative results at two loops in the RI scheme [22]
to evaluate the ĉσðμÞ factors. This implies relying on
perturbation theory at scales above μ ¼ a−1 ∼ 2 GeV.
Our goal is to compute the K → π amplitudes mediated

by HΔS¼1
w . The hadronic contribution is encoded in the

ratios of three- and two-point functions

R̂� ≡ hπjQ̂�jKi
fKfπmKmπ

¼ ĉ�ðμÞZ�
R ðμÞR�; ð10Þ

where Z�
R ðμÞ are the renormalization factors for the ratios

and R� is the ratio of matrix elements of bare operators. In
the SUð3Þ limitms ¼ md ¼ mu, from Rþ we can determine
B̂K as

B̂K ¼ 3

4
R̂þ: ð11Þ

Concerning K → ππ decays, the two very different isospin
amplitudes

iAIeiδI ≡ hðππÞIjHW jK0i; I ¼ 0; 2 ð12Þ

can be related in chiral perturbation theory, and in the GIM
limit, to the K → π amplitudes A� ≡ k̂�R̂� [14]

A0

A2

¼ 1ffiffiffi
2

p
�
1

2
þ 3

2

A−

Aþ

�
: ð13Þ

The ΔI ¼ 1=2 rule, i.e. the large enhancement of the ratio
jA0=A2j ∼ 22, is therefore related in this limit to the ratio of
the amplitudes A−=Aþ.
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At this point, it is necessary to comment on the chiral
corrections. The relation between the K − K̄ and K →
ðππÞjI¼2 amplitudes is well-known to break down away
from the chiral limit for the physical case ms ≫ mu;d, since
the chiral logarithmic corrections are much larger for the
former amplitude [13]. On the other hand, this is not the
case in the SUð3Þ limit ms ¼ mu ¼ md, where the chiral
logs are the same for both amplitudes both in the full as in
the quenched case [23]. The following relation holds up to
one loop in ChPT in the leading-log approximation:

hπþπ0jHW jKi
m2

K −m2
π

				
ms¼md

¼ iFffiffiffi
2

p AþGFVudV�
us; ð14Þ

where F is the decay constant in the chiral limit and Aþ
contains one loop corrections. This shows that, in this
approximation, the 1=Nc corrections in the physical ampli-
tude are fixed [24] by those in Aþ. At the same order in
ChPT, we can relate the amplitudes for both choices of
quark masses

hπþπ0jHW jKþimπ→0 ¼ m2
K
hπþπ0jHW jKþi

m2
K −m2

π

				
ms¼md

×

�
1þ 9

4

m2
K

ð4πFÞ2 log
m2

K

ð4πFÞ2
�
:

ð15Þ
The chiral log term gives an additional negative 1=Nc
contribution to the amplitude at the physical point with
respect to that in the degenerate case.Another important point
to note is that, in the GIM limit, the chiral logs have been
shown to be fully anticorrelated in A� [29], and therefore an
extrapolation to the chiral limit using chiral perturbation
theory will not change the anticorrelation found at larger
masses. Unfortunately the computation of chiral logs in
K → ðππÞI¼0 in the GIM limit is not available, although it is
likely that the same anticorrelation holds also there.

III. RESULTS

We compute the ratios R̂� on the lattice from the ratio of
correlation functions

R� ¼ lim
z0−x0→∞
y0−z0→∞

P
x;yhPduðyÞQ�ðzÞPusðxÞiP

x;yhPduðyÞAud
0 ðzÞihAsu

0 ðzÞPusðxÞi ; ð16Þ

where PabðxÞ ¼ ψ̄aðxÞγ5ψbðxÞ, and Aab
0 ðxÞ ¼ ZAψ̄

aðxÞ×
γ0γ5ψ

bðxÞ. The renormalized ratios R̂� have been com-
puted in SUðNcÞ for Nc ¼ 3–7 and in the quenched
approximation. Note that the latter does not modify the
leading large Nc result, but it can modify the first
subleading 1=Nc corrections. We have implemented the
required correlation functions in the source code first
developed in [30] and further optimized in [31]. The
number of colors and the lattice size are given in the first
two columns of Table I. The spatial volume, L=a ¼ 16, is

kept fixed in all simulations. On the other hand, T=a ¼ 48
for Nc ¼ 3, 4, 5 and T=a ¼ 32 for Nc ¼ 6, 7. Following
[32] the bare coupling, β ¼ 2Nc=g20, is tuned with Nc in
such a way that the string tension remains constant
a

ffiffiffi
σ

p ≃ 0.2093; this results in a≃ 0.093 fm with
σ ¼ 1 GeV=fm. The bare ’t Hooft coupling λ is found to
be well described by the following scaling:

λ ¼ Ncg20 ¼ 2.775ð3Þ þ 1.90ð3Þ
N2

c
: ð17Þ

The coupling β as a function of Nc is given in the third
column of Table I. In order to preserve the multiplicative
renormalization of Q�, while avoiding the high computa-
tional cost of a simulation with exactly chiral lattice
fermions, we use a Wilson twisted-mass fermion regulari-
zation [33]. (For the gauge sector we employ the standard
plaquette action.) This allows us to devise a formulation of
valence quarks that not only preserves good renormaliza-
tion properties, but also prevents the appearance of linear
cutoff effects in a [34]. The full-twist condition amounts to
having a vanishing current quark mass mPCAC from the
axial Takahashi-Ward identity in so-called twisted quark
field variables. The value of amPCAC in our simulations is
given in the fourth column of Table I, where we can see that
the full-twist condition amPCAC ¼ 0, expected from an
accurate tuning of the Wilson critical mass (which we again
take from [32]), is satisfied to a varying degree of accuracy;
the deviations present are however irrelevant within the
precision of our results. The bare quark mass is chosen to
provide a pseudoscalar mass not far from the physical kaon
mass in all cases (see the fifth column of Table I).
Eventually, our results for the bare ratios R� defined in
Eq. (16), computed in the SUð3Þ limit, are shown in the last
two columns of the table.
In Table II we show the various renormalization constants

and renormalization group (RG) running factors needed to
compute the renormalized amplitudes B̂K and A� as a
function of the number of colors. First of all, in order to

TABLE I. Lattice simulation results. Lattice sizes are
ðL=aÞ3 × ðT=aÞ, with L=a ¼ 16 throughout. The twisted bare
mass is fixed to aμ ¼ 0.02. The lattice spacing is fixed by the
string tension through a

ffiffiffi
σ

p ≃ 0.2093 [32]. mPCAC is the current
mass obtained from the axial Takahashi-Ward identity in twisted
quark field variables. mPS is the kaon and pion mass in our mu ¼
md ¼ ms limit. R� are our results for the bare ratios given in
Eq. (16).

Nc T=a β amPCAC amPS Rþ
bare R−

bare

3 48 6.0175 −0.002ð14Þ 0.2718(61) 0.774(21) 1.218(31)
4 48 11.028 −0.0015ð11Þ 0.2637(39) 0.783(15) 1.198(19)
5 48 17.535 0.0028(9) 0.2655(31) 0.839(8) 1.145(12)
6 32 25.452 0.0013(7) 0.2676(28) 0.871(6) 1.125(7)
7 32 34.8343 −0.0034ð6Þ 0.2819(19) 0.880(5) 1.122(5)
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get the renormalized ratios R̂� from the bare ones computed
on the lattice, we have used the known one-loop lattice
renormalization constants in the RI scheme of Ref. [35].
Note that, due to the breaking of chiral symmetry in the
adopted regularization, the axial current requires a finite,
Nc-dependent, renormalization constant ZA, that has to be
included in the factors Z�

R in Eq. (10). This has also been
taken from Ref. [35]. The values of Z�ða−1Þ are given in the
rightmost column of Table II. The values of the normalization
coefficients ĉ�ða−1Þ and of the running of the renormalized
operators from the scale of lattice computations, μ ¼ a−1, to
the scale of the effective theory, MW , computed using
perturbative results at two-loops in the RI scheme [22], are
given in the fifth and fourth columns of Table II, respectively.
In the evaluation of the ĉσðμÞ factors we have used the large
Nc scaling of the Λ parameter found in Ref. [36],

ΛMSffiffiffi
σ

p ¼ 0.503ð2Þð40Þ þ 0.33ð3Þð3Þ
N2

c
: ð18Þ

Eventually, the Wilson coefficients k�ðMWÞ, also computed
following Ref. [22], are given in the third column of Table II,
while their RGI counterparts k̂�, defined in Eq. (8), are given
in the second column.
Our results for B̂K as a function of 1=Nc are shown in

Fig. 1 together with a linear fit to the data, represented by a
solid black line. The grey band shows the 1σ error on the fit.
We compare our results with our own evaluation of the
predictions of the phenomenological analysis in Ref. [5],
represented by a light red band for Nf ¼ 3 and by a blue
band for Nf ¼ 0. For Nf ¼ 3 we use in the latter the same
values for hadronic masses and decay constants as in [5],
and obtained the decay constant for Nc ≠ 3 by rescaling
FK ¼ FKðNc ¼ 3Þ ffiffiffiffiffiffiffiffiffiffiffi

Nc=3
p

. For Nf ¼ 0 we use as input for
the hadronic quantities, including their Nc dependence, the
interpolating formulas provided in [32], matched to our

measured values of MK . In both cases the band covers the
difference between setting the matching scaleM in Eq. (62)
of [5] at 0.6 GeVand at 1 GeV; forNf ¼ 0 it also comprises
the uncertainty due to our value of MK not being constant
within errors as a function of Nc. Notice that both
theoretical predictions give B̂K ¼ 3=4 in the Nc → ∞
limit. From Fig. 1 we can see that the subleading 1=Nc

corrections in B̂K are small (which goes in the direction of
the predictions in [5], but not those in [7], that correspond
to the chiral limit). The parameter of the linear fit to the data
are shown in the first two lines of Table III for a different
choice of the data points included in the fit, together with
the corresponding p-values. The third line of the same table
shows our result for a quadratic fit to the data. We can see
that, in this case, the large Nc limit obtained is consistent
with the theoretical expectation, albeit with large errors.
Note that a significant Oða2Þ uncertainty for Rþ can be
expected, cf. theOð10%Þ effect for Nc ¼ 3, Nf ¼ 2 shown
by the data of [37] at a lattice spacing comparable to ours.
The smallness of 1=Nc corrections in B̂K is related to the

RGI normalization of this quantity, ĉþða−1Þ: the significant
Nc-dependence of Rþ (see Table I) is canceled to a large
extent by the RGI Wilson coefficient k̂þ (see Table II). In
contrast, the total K → π amplitudes show very significant

TABLE II. Perturbative renormalization constants and RG
running factors. Zσða−1Þ at one-loop have been extracted from
[35], whereas Uσ and kσ are computed using the two-loop MS
coupling [with ΛMS taken from Eq. (18) from Ref. [36]].

Nc k̂þ kþðMWÞ Uþða−1;MWÞ ĉþða−1Þ Zþða−1Þ
3 0.642 1.030 0.875 1.404 0.983
4 0.658 1.025 0.895 1.394 0.988
5 0.679 1.021 0.910 1.368 0.991
6 0.700 1.018 0.921 1.340 0.994
7 0.719 1.016 0.930 1.315 0.996

Nc k̂− k−ðMWÞ U−ða−1;MWÞ ĉ−ða−1Þ Z−ða−1Þ
3 2.398 0.940 1.319 0.517 1.059
4 1.998 0.958 1.210 0.580 1.043
5 1.780 0.968 1.156 0.620 1.035
6 1.643 0.974 1.124 0.666 1.030
7 1.550 0.978 1.103 0.696 1.026

FIG. 1. B̂K versus 1=Nc. The grey band (solid line) is a linear fit
to our five data points. The red and blue bands use the model
prediction of [5].

TABLE III. Fit parameters of Aσ assuming a linear (l) or
quadratic (q) dependence, and various fit ranges. The order at
which each coefficient enters in the polynomial ansatz in powers
of 1=Nc is indicated, alongside with the p-value for each fit.

obs fit 1 1=Nc 1=N2
c p-value

B̂K l, Nc ≥ 3 0.802(17) −0.03ð10Þ � � � 0.24
l, Nc ≥ 4 0.808(27) −0.07ð16Þ � � � 0.14
q, Nc ≥ 3 0.788(79) 0.12(78) −0.3ð1.8Þ 0.12

Aþ l, Nc ≥ 3 0.956(20) −0.89ð11Þ � � � 0.10
l, Nc ≥ 4 0.981(18) −1.05ð11Þ � � � 0.39

A− l, Nc ≥ 3 0.984(28) 1.77(17) � � � 0.21
l, Nc ≥ 4 0.996(39) 1.69(24) � � � 0.14
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subleading 1=Nc corrections, as shown in Fig. 2. In Fig. 2,
we present our data for A� obtained from the ratios R� of
Eq. (16) and the results of a linear (dashed lines) and
quadratic (solid lines) fit to the data. The parameters of
the linear fit for Aþ and A− are shown in the fourth and
fifth (sixth and seventh) lines of Table III, respectively. We
can see from Fig. 2 that the corrections at Nc ¼ 3 are
naturally ∼30% and that they are strongly anticorrelated
in A�. For the quadratic fit, and in order to clarify further
this correlation, we have considered the combinations
1
2
ðA− � AþÞ; the results are shown in Fig. 3. The curves

correspond to the following best fits:

A−þAþ

2
¼1.01ð3Þþ1.08ð11Þ

N2
c

ðp-value¼0.81Þ;
A−−Aþ

2
¼0.01ð2Þþ1.35ð11Þ

Nc
ðp-value¼0.12Þ: ð19Þ

The subleading 1=Nc effects seem to cancel in the first
combination, while they are the only visible corrections in
the second one. The parameters of the quadratic fit in Fig. 2
are obtained from the results of Eq. (19).

We have not included any systematic error in these
results. There are two obvious sources: finite lattice spacing
and the quenched approximation. Although it is impossible
to quantify those errors, we do not expect them to be larger
that those observed at Nc ¼ 3, where they have been
studied. We have already commented above on the
expected size of Oða2Þ discretization effects, based on
the results of [37]. Concerning the quenching error, it is
well-known that B̂K is remarkably insensitive to the
number of dynamical quark flavors, cf. [2] and benchmark
quenched studies [38]; we thus expect a small effect in Aþ.
The pioneering large-Nc study of dynamical QCD in [39]
shows that an extension of our work to take into account
unquenching effects is feasible.

IV. CONCLUSIONS

Wehave presented the first computationon the lattice of the
1=Nc corrections to theΔS ¼ 1 amplitudesK − π in theGIM
and SU(3) limit mc ¼ mu ¼ ms ¼ md. The size and sign of
1=Nc corrections are relevant to give a solid physical basis to
the observation made in [10] that suggests that theΔI ¼ 1=2
rulemight originate in a near cancellation of twocontributions
to the K → ðππÞI¼2 amplitude, that add up in the I ¼ 0
channel. The observed cancellation can be traced to large and
anticorrelated1=Nc corrections in the two isospin amplitudes.
We have quantified the subleading 1=Nc dependence of the
simpler K − π amplitudes, A�, that are closely related to the
K − ππ ones in the degenerate light quark limit, ms ¼ md.
Our results show that the subleading 1=Nc corrections in Aσ

are large and consistent with being equal and opposite in sign
for Aþ and A−, supporting the observation in [10]. However,
the size of these corrections is natural, i.e. Oð1Þ=Nc and not
large enough to explain theΔI ¼ 1=2 rule, although we have
argued that larger 1=Nc corrections could be present at the
physical point,ms ≫ md, suggested by a large chiral log.We
have also studied the subleading Nc corrections to B̂K and
found that they are significantly smaller than those in the
closely related amplitude Aþ, because of the different
normalization. This shows that a value of B̂K close to the

FIG. 2. A� versus 1=Nc. The grey bands (solid lines) are
obtained from the results of the fits to 1=2ðA− � AþÞ in Eqs. (19);
the red bands (dashed lines) are linear fits including Nc ¼ 4–7
from Table III.

FIG. 3. A−�Aþ
2

versus 1=Nc. The bands (solid lines) are quadratic and linear fits in 1=Nc, respectively.
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Nc → ∞ value is consistent with large 1=Nc corrections in
the ΔS ¼ 1 amplitudes.
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