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The adaptive aggregation-base domain decomposition multigrid method [A. Frommer et al., SIAM J.
Sci. Comput. 36, A1581 (2014)] is extended for two degenerate flavors of twisted mass fermions. By fine-
tuning the parameters we achieve a speed-up of the order of a hundred times compared to the conjugate
gradient algorithm for the physical value of the pion mass. A thorough analysis of the aggregation
parameters is presented, which provides a novel insight into multigrid methods for lattice quantum
chromodynamics independently of the fermion discretization.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) is computa-
tionally demanding due to the fact that a linear system
of very large dimension needs to be solved repeatedly.
The linear system to be solved is given by

DðU; μÞv ¼ b ð1Þ

where DðU; μÞ is the Dirac operator. The Dirac operator
depends on the gauge configurationU and the twisted mass
(TM) parameter μ, which determines the quark mass. The
right-hand side (rhs) b is a known spinor source and v is the
solution to the equation. In order to collect enough statistics
for the observable under study, Eq. (1) needs to be solved
many times, with both varying gauge configurations and
the rhs. In fact the so-called point-to-all quark propagator is
obtained by solving Eq. (1) for twelve different rhs. Several
of these point-to-all propagators are calculated for different
space-time positions on each gauge configuration and a
large number of configurations is needed to obtain suffi-
cient statistical accuracy. The time for the inversion of the
Dirac operator depends on its condition number, which gets
worse as the mass of the light quarks or equivalently μ
decreases. Therefore it is crucial to use algorithms which
are less sensitive to the condition number and adapt them to
the specific features of the discretization. This is particu-
larly important for inversions using gauge configurations
simulated with up- and down-quark masses fixed to their
physical value, where improved solvers are indispensable
for speeding up the computations and enabling the accu-
mulation of enough statistics. Nowadays, such simulations
are intensively being pursued by a number of lattice QCD
collaborations and a lot of effort has been devoted in

speeding up the solvers. A very successful approach has
been based on multigrid ideas in preconditioning standard
Krylov subspace solvers. There is a number of variant
formulations of highly optimized multigrid solvers, which
yield improvements of more than an order of magnitude in
the case of the Wilson Dirac discretization, as reported in
Refs. [1–5]. The most known implementations of multigrid
algorithms, which are also available as open source soft-
ware, are the following: (i) a two-level multigrid approach
based on Lüschers inexact deflation [1] provided in the
software openQCD [6]; (ii) a multigrid approach developed
in Refs. [7–10], referred to as multigrid with generalized
conjugate residual (MG-GCR) which is part of the USQCD
package QOPQDP [11]; and (iii) an aggregation-based
domain decomposition multigrid approach [4], referred to
as DD-αAMG, recently made publicly available in the
DDalphaAMG library [12].
Although these solvers have been developed for clover

Wilson fermions they can be extended to other fermion
discretization schemes as has been done for example for the
overlap operator using DD-αAMG [13] or for domain-wall
fermions using MG-GCR [14].
In this work we focus on the TM Wilson Dirac operator.

This discretization scheme has the advantage that all
observables are automatically OðaÞ improved when tuned
to maximal twist [15], where a is the lattice spacing. This
formulation is thus particularly suitable for hadron structure
studies, since the probe such as the axial current needs no
further improvement in contrast to clover improved fer-
mions. Furthermore, the presence of a finite twisted mass
term bounds the spectrum ofDD† from below by a positive
term. This avoids exceptional configurations and, at the
same time, gives an upper bound to the condition number,
improving the convergence of numerical methods used
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in lattice QCD. Adding a small twisted mass term to the
Wilson Dirac operator is also utilized as a “trick” within
simulations with the Wilson Dirac operator. For example, it
is exploited in the case of quenched calculations using
Wilson fermions [16,17], in the simulation of clover
improved Wilson fermions where it is combined with
twisted mass reweighting [18,19] or in mass reweighting
[20]. Currently, the twisted mass formulation is the dis-
cretization scheme adopted by the European Twisted Mass
Collaboration for studying a wide range of observables. All
these simulations employing twisted mass fermions will
substantially benefit from an efficient multigrid method,
especially for the analysis at the physical value of the light
quark masses.
In this work we extend and optimize the DD-αAMG

method to the case of the twisted mass Wilson Dirac
operator. Therefore we exploit the Γ5-preservation within
DD-αAMG which complements the twisted mass formu-
lation. Our analysis shows that firstly the optimal param-
eters for the method are different from those in the Wilson
Dirac case, and secondly that, with appropriate parameter
choices, we can gain speed-ups of more than 1 order of
magnitude over methods previously used. The latter is
similar to what has been observed in the case of clover
improved fermions. Determining the appropriate parameter
set is crucial since the tuning is a highly nontrivial task,
and a complete analysis of how the method behaves for the
different values of the parameters is still missing in the
literature. We demonstrate in this study how the parameter
space can effectively be reduced by tuning first the
aggregation parameters. In doing so we also illustrate
the robustness of the method. Moreover, our tuning
approach can be easily applied to other aggregation-based
multigrid solvers and fermion discretization schemes.
The paper is structured as follows: In Sec. II we

introduce the twisted mass operator and discuss its proper-
ties with respect to multigrid preconditioning. In Sec. III
we present our numerical results for twisted mass
fermions, including the novel investigation of the aggre-
gation parameters. Finally, in Appendix A we give an
overview of the implementation of the method and how the
DDalphaAMG library is extended to the case of twisted
mass fermions [21].

II. DD-αAMG FOR TWISTED MASS FERMIONS

In this section we discuss the extension of the
DD-αAMG solver to the case of the twisted mass fermion
discretization scheme of the Dirac operator. For complete-
ness we first review the twisted mass discretization scheme
before we outline the various components of the multigrid
preconditioner, pointing out the modifications necessary
when going from the Wilson formulation to the twisted
mass formulation, along the lines of Ref. [4].
We work on a four-dimensional hypercubic lattice

defined by

V ¼ fx ¼ ðx0; x1; x2; x3Þ; 1 ≤ x0 ≤ NT; 1 ≤ x1; x2; x3 ≤ Lg
ð2Þ

with NT being the number of points in the temporal
direction and L the number of points in the spatial
directions x, y and z. Here and in what follows, the lattice
spacing a is set to unity. The lattice volume is given by
V ¼ NT · L3. Fermion fields are defined on the sites of
the lattice, and each has four spin and three color degrees
of freedom. The overall space is thus

Vs ¼ V × S × C ð3Þ

where S denotes the spin space and C the color space.

A. Wilson twisted mass fermions

The Wilson Dirac operator DW ¼ DðmÞ with the clover
term can be written as

ðDWψÞðxÞ

¼
�
ðmþ4ÞI12−

csw
32

X3
μ;ν¼0

ðγμγνÞ⊗ ðQμνðxÞ−QνμðxÞÞ
�
ψðxÞ

−
1

2

X3
μ¼0

ððI4−γμÞ⊗UμðxÞÞψðxþ μ̂Þ

−
1

2

X3
μ¼0

ððI4þγμÞ⊗U†
μðx− μ̂ÞÞψðx− μ̂Þ;

with m being the mass parameter and csw the parameter of
the clover term. The gauge links UμðxÞ are SUð3Þmatrices,
and the set fUμðxÞ∶ x ∈ L; μ ¼ 0; 1; 2; 3g is referred to as
a gauge configuration. The γ-matrices act on the spin
degrees of freedom of the spinor field ψðxÞ and fulfil
the anticommutation relation fγμ; γνg ¼ 2 · I4δμν for μ,
ν ¼ 0, 1, 2, 3.
The Wilson Dirac operator satisfies the relation Γ5DW ¼

D†
WΓ5 referred to as Γ5-Hermiticity, where Γ5 ¼ IV ⊗ γ5 ⊗

IC acts on the space Vs defined in Eq. (3) as a linear
transformation of the spin degrees of freedom at each lattice
site. In this paper we use a representation for γ5 ¼ γ0γ1γ2γ3,
which is diagonal in the spin space

γ5 ¼

0
BBB@

1

1

−1
−1

1
CCCA: ð4Þ

The clover term, Qμν, is given by
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QμνðxÞ¼UμðxÞUνðxþ μ̂ÞUμðxþ ν̂Þ†UνðxÞ†
þUνðxÞUμðx− μ̂þ ν̂Þ†Uνðx− μ̂Þ†Uμðx− μ̂Þ
þUμðx− μ̂Þ†Uνðx− μ̂− ν̂Þ†Uμðx− μ̂− ν̂ÞUνðx− ν̂Þ
þUνðx− ν̂Þ†Uμðx− ν̂ÞUνðx− ν̂þ μ̂ÞUμðxÞ†:

In the case of the clover improved Wilson Dirac operator,
the csw-term reduces the discretization error from OðaÞ to
Oða2Þ when csw is properly chosen.
The twisted mass formulation is a lattice regularization

that allows automatic OðaÞ improvement by tuning only
one parameter, namely the bare untwisted quark mass needs
to be tuned to the so-called critical mass. This formulation
is particularly appropriate to hadron structure studies since
the renormalization of local operators is significantly
simplified with respect to the standard Wilson regulariza-
tion. In the continuum, the twisted mass formulation is
equivalent to the standard QCD action in a different basis.
A mass term of the form iμτ3 ⊗ Γ5 can be added to the
standard quark mass, where τ3 ¼ diagð1;−1Þ is the third
Pauli matrix acting on a two-dimensional flavor space
[15,22]. By performing a suitable chiral transformation of
the quark fields the mass term can be rewritten in the
standard form. The twisted mass theory becomes nontrivial
on the lattice since Wilson fermions explicitly break chiral
symmetry. We denote the twisted mass parameter by μ ∈ R
and apply the twist in the flavor space of the up (u) and
down (d) quark. Then the twisted mass term acts with a
positive shift given by iμΓ5 on the u-quark operator and
with a negative shift given by −iμΓ5 on the d-quark
operator. The twisted mass term breaks the isospin sym-
metry between the u and the d quark explicitly, which
vanishes in the continuum limit. In the flavor space the
operator applied to a spinor field is given as

�
DðμÞ 0

0 Dð−μÞ

��
ψu

ψd

�
¼

� ðDWðψuÞðxÞ þ iμΓ5ψuðxÞ
ðDWðψdÞÞðxÞ − iμΓ5ψdðxÞ

�
;

ð5Þ

where

DðμÞ ¼ DW þ iμΓ5 ð6Þ

is what we refer to as the twisted mass Wilson Dirac
operator defined on the space Vs. Adding a clover term
reduces the isospin breaking induced by the twist.
Due to Γ5-Hermiticity, the symmetrized Wilson Dirac

operator HW ¼ Γ5DW is Hermitian (and indefinite), such
that we have

HW ¼ VΛV†;

where the diagonal matrix Λ contains the eigenvalues λj of
HW (which are all real) and the unitary matrix V of the

corresponding eigenvectors. The symmetrized twisted mass
operator HðμÞ ¼ Γ5DðμÞ ¼ HW þ iμ thus satisfies

HW þ iμ ¼ VΛV† þ iμ ¼ VeiΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ μ2

q
V†; ð7Þ

where the diagonal matrix eiΘ contains the complex phases
θj of the eigenvalues λj þ iμ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ μ2

p
their absolute

values. For the nonsymmetrized twisted mass operator
DðμÞ, analogously to the Wilson case [4], this gives the
singular value decomposition

DðμÞ ¼ Γ5VeiΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ μ2

q
V† ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ μ2

q
V† ð8Þ

with U ¼ Γ5VeiΘ and V being unitary. The smallest
singular value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2i þ μ2

p
is thus not smaller than μ, which

shows that a nonzero value of μ protects the twisted mass
operatorDðμÞ from being singular, unlike the Wilson Dirac
operator where this can happen for small quark masses m.
Similarly, for the squared twisted mass operator

D†ðμÞDðμÞ ¼ ðD† − iμΓ5ÞðDþ iμΓ5Þ
¼ D†Dþ μ2 ¼ H2

W þ μ2 ð9Þ

we have

H2
W þ μ2 ¼ VðΛ2 þ μ2ÞV†; ð10Þ

the eigenvalues of which are bounded from below by μ2.
Attaining automatic OðaÞ improvement on the lattice

can be accomplished by tuning the partial-conserved axial
current (PCAC) pion mass to 0. This corresponds to
setting the angle Θ of the axial transformation eiΘτ3Γ5 to
π=2. Then the renormalized light quark mass is directly
proportional to the twisted mass parameter μ with mR ¼
Z−1
P μ and ZP being the pseudoscalar renormalization

constant. The breaking of the isospin symmetry in the
twisted mass formulation results in the neutral pion being
lighter than the charged pion. This slows down or even
prohibits simulations for light quark masses close to the
physical value. By adding the clover term to the action,
the critical twisted mass value for the light quarks is
significantly reduced compared to simulations without
this term. This allows simulations at the physical point
with a value of the lattice spacing around a ¼ 0.1 fm or
even larger [23].
A special property of the twisted mass operator is that
at maximal twist the region just above μ2 is densely

populated with the eigenvalues of the squared operator,
cf. Eq. (9). We illustrate this in Fig. 1, which displays a
histogram of the (scaled) ensemble averaged moduli of the
eigenvalues of the nonsquared symmetrized even-odd
reduced (or preconditioned) twisted mass Dirac operator
Ĥ. The eigenvalues of the operator are measured on an
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ensemble simulated at a physical value of the light quark
mass doublet, which we refer to as the physical ensemble.
Ĥ is obtained using an even-odd ordering of the lattice sites
such that

D ¼
�
Doo Doe

Deo Dee

�

where Doo and Dee are diagonal in spinor space. Ĥ is then
given as Ĥ ¼ Γ5D̂ with

D̂ ¼ ðDee −DeoD−1
ooDoeÞ: ð11Þ

For csw ¼ 0, i.e. without the clover term, the spectrum of
D̂ is directly connected to the spectrum of the full operator
D, e.g. in the case of the small eigenvalues we have

λD
mþ 4

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λD̂=ðmþ 4Þ

q
≈
1

2

λD̂
mþ 4

ð12Þ

with λD and λD̂ being an eigenvalue of D and D̂,
respectively. Although this relation does not hold exactly
for the Hermitian even-odd reduced twisted mass Dirac
operator, we found that numerically this relation still
holds approximately for the eigenvalues close to μ. We
find that the largest relative deviation of the smallest
eigenvalue to the approximated cutoff 2μ is given by
jλmin − 2μj=2μ < 0.0005 MeV. Thus we rescale the spec-
trum by a factor 2 and relate it to the energy scale of the
MS-scheme defined at 2 GeV. The eigenvalue density is
shown in Fig. 1. In contrast to the spectrum of the Wilson
Dirac operator shown in Refs. [1,24], the density of the
eigenvalues increases close to the physical quark mass.
SinceDðμÞ is non-normal, the left and right eigenvectors

differ. For the twisted mass Dirac operator, the left

eigenvectors of the u quarks, represented by DðμÞ, are
connected to the right eigenvectors of the d quarks,
represented by Dð−μÞ. If φu

j;L and φu
j;R are left and right

eigenvectors of DðμÞ, respectively, with corresponding
eigenvalue λuj , then due to Γ5-Hermiticity, we have

λuj ¼ φu
j;L

†DðμÞφu
j;R ¼ ðφu

j;R
†ðDðμÞÞ†φu

j;LÞ†
¼ ðφu

j;R
†Γ5Dð−μÞΓ5φ

u
j;LÞ†

¼ ðφd
j;L

†Dð−μÞφd
j;RÞ† ¼ conjðλdj Þ: ð13Þ

Thus, eigenpairs of Dð−μÞ are connected to the eigenpairs
ofDðμÞ by the transformations λdj ¼ conjðλuj Þ, φd

j;L¼Γ5φ
u
j;R

and φd
j;R ¼ Γ5φ

u
j;L.

B. Multigrid preconditioning for twisted
mass fermions

Our task is to solve the linear system

DðμÞψ ¼ ðDþ iμΓ5Þψ ¼ b ð14Þ

for the Wilson twisted mass operator DðμÞ. The idea is to
precondition a flexible iterative Krylov solver at every
iteration step using a multigrid preconditioner.
Let ψ denote the current approximate solution to

Eq. (14); then the corresponding error is given by
ϵ ¼ D−1ðμÞb − ψ , and the residual r satisfies

r ¼ b −DðμÞψ ¼ DðμÞϵ: ð15Þ

In lattice QCD, preconditioners like the Schwarz alternat-
ing procedure (SAP [25]) efficiently reduce error compo-
nents belonging to ultraviolet (UV) modes, i.e. error
components belonging to eigenvectors to large eigenvalues.
Thus the error ϵ is then dominated by infrared (IR) modes,
i.e. eigenvectors corresponding to small eigenvalues. For
larger volumes, the increasing number of IR modes slows
down the preconditioned Krylov method.
Multigrid methods deal efficiently with both IR and UV

modes, independently of the volume size. Here we focus on
the DD-αAMG preconditioner. A generic preconditioning
step is described via its error propagation

ϵ ← ðI −MDÞkðI − PD−1
c ðμÞRDÞðI −MDÞjϵ: ð16Þ

Therein M denotes the smoother, P denotes the interpo-
lation which maps from a coarser space with fewer degrees
of freedom to Vs, and R denotes the restriction, the
counterpart of P, which maps from Vs to the coarser
space. Having P and R, the coarse grid operator DcðμÞ,
which can be seen as a coarse version ofDðμÞ, is defined by
the Galerkin condition

DcðμÞ ¼ RDðμÞP: ð17Þ

FIG. 1. The density of the approximated rescaled eigenvalues
of the Hermitian even-odd reduced twisted mass Dirac operator
measured on gauge configurations of the physical ensemble
cA2.09.48 (see Sec. III). The quark mass is given by mq ¼
3.89 MeV in the MS-scheme.
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Furthermore, I −MD denotes the error propagator of the
smoother. The powers j and k denote its repeated appli-
cation, i.e. we have j presmoothing and k postsmoothing
steps. This error propagator is supposed to act on the UV
modes; it reduces the error components belonging to UV
modes. I − PD−1

c ðμÞRD denotes the error propagator of
the coarse grid correction which acts complementary to the
error propagator of the smoother. It reduces the error
components belonging to IR modes. As an iteration
prescription, the coarse grid correction itself is given by

ψ ← ψ þ PD−1
c ðμÞRr: ð18Þ

This two-level approach can be recursively expanded to a
multilevel approach by using again a two-level approach
for the inversion of DcðμÞ. Then on each new level l,
transfer operators Rl and Pl are employed in the con-
struction of the next level operator Dlþ1ðμÞ ¼ RlDlðμÞPl
generalizing Eq. (17), and a smoother Ml is assigned.
DD-αAMG uses a K-cycle approach [26], which means
that at each level, a multigrid preconditioned Krylov
method is performed until a prescribed decrease of the
residual is obtained. Our numerical tests showed that the
inversion of the coarsest Dirac operator DL can be
evaluated at low accuracy, which reduces the computational
effort. This is not the case for the inexact deflation approach
from Ref. [1] as explained in Ref. [4].

C. Coarse grid

The coarse grid correction, given in Eq. (18), should
approximately remove the error corresponding to the IR-
mode components on the fine grid. An ideal, yet naive,
choice is to span the prolongation operator P by the right
eigenvectors corresponding to small eigenvalues of DðμÞ
and the restriction operator R by the left ones, since then the
coarse grid correction entirely removes the (right) IR modes
present in the error. Such a choice is very similar to exact
deflation of the small eigenvalues in that the coarse
grid correction solves directly the linear system of the
IR modes. In practice, the computational effort for gen-
erating such an “exact” coarse grid projection is more than
a magnitude higher than in aggregation-based approaches,
see e.g. Tables II and III in Sec. III A 2, and it scales with
OðV2Þ. Instead, the DD-αAMG solver uses a coarse grid
correction, which is based on aggregation and the property
of local coherence described in Ref. [1]. Local coherence
implies that it is possible to approximate the subspace
of the IR modes by aggregates over just a small set of
Oð20Þ test vectors vi. In this section, we discuss how to
construct the aggregation-based prolongation, the restric-
tion and the coarse grid operators from the test vectors,
while in Sec. II F we describe the strategy for generating the
test vectors.
The coarse grid is obtained by mapping an aggregate Aj

of the fine grid to a single site of the coarse grid, where

Aj ¼ Vj × Sj × Cj: ð19Þ

We use static blocks with a fixed size given by

Vj ¼ T j × Zj × Yj × X j ð20Þ

such that these blocks decompose the lattice Vs as shown in
Fig. 2. The number of sites on the coarse lattice Vc is then
given by Nb ¼ V=Vb with Vb being the block volume.
Now, a projection P and a restriction R between the fine

grid and the coarse grid

V × S × C⇌
R

P
Vc × Nv; ð21Þ

can be constructed by using the test vectors vi. For the
prolongation P the test vectors are decomposed into blocks
over the aggregates as

ð22Þ

For the restriction operator, R† is constructed similarly from
a possibly different set of test vectors wi. For numerical
reasons, the parts of all test vectors over a given aggregate
are orthonormalized.
It is possible to extend the Γ5-Hermiticity of the Wilson

Dirac operator to the coarse grid operator. This can be done
by decomposing the aggregation in the spin space S with
an aggregate

Aj;þ ¼ Vj × S0;1 × C; ð23Þ

which collects the two upper spin components 0 and 1,
and an aggregate

FIG. 2. Block aggregation of the Dirac operator and symbolic
representation of the movement from the fine operator to the
coarse operator and vice versa.
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Aj;− ¼ Vj × S2;3 × C; ð24Þ

which collects the two lower spin components 2,3. In the
chiral basis, Γ5 acts with þ1 to the components of the
aggregate Aj;þ and with −1 on the other aggregates.
Now, the coarse grid Γ5;c can be defined by Γ5;c ¼ IVc

⊗
τ3 ⊗ INv

, where τ3 acts on the different spin aggregates.
This type of aggregation was proposed in Ref. [8] for the
MG-GCR method and it is used as well in the DD-αAMG
method, where it is termed standard aggregation. The
Γ5-compatible prolongation P satisfies

Γ5P ¼ PΓ5;c ð25Þ

which can be represented as

ð26Þ

With the standard aggregation the coarse grid operator with
a finite twisted mass term is given by

DcðμÞ ¼ RðDþ iμΓ5ÞP ¼ RDPþ iμΓ5;cRP: ð27Þ

As pointed out in Ref. [4], the natural choice for the
restriction operator is R ¼ ðΓ5PÞ† since in this way the
restriction approximates the subspace of the small right
eigenvectors of the Wilson Dirac operator for the case
in which the interpolation approximates the small left
eigenvectors. Using this formulation, the resulting coarse
grid operator RDðμÞP is equivalent to Hc þ iμ with
Hc ¼ P†HP, which is a complex shifted maximally
indefinite operator [cf. Eq. (7)]. Due to the commutativity
relation between P and Γ5, given in Eq. (25), and already
noted in Ref. [9], the coarse grid corrections obtained by
R ¼ ðΓ5PÞ† and R ¼ P† are identical. DD-αAMG thus
uses R ¼ P†, and the coarse grid twisted mass operator
there is defined by

DcðμÞ ¼ P†DPþ iμΓ5;c: ð28Þ

DcðμÞ preserves several important properties of the fine
grid operator DðμÞ. It preserves the sparse structure in that

only neighboring aggregates are coupled. In the square
coarse grid operator

D†
cðμÞDcðμÞ ¼ D†

cDc þ μ2; ð29Þ

the eigenvalues are again bounded from below by μ2, and
there is a Γ5;c-symmetry which reproduces the connection
between the u- and d-quark operators as

D†
cðμÞ ¼ P†ðDþ iμΓ5Þ†P

¼ P†ðΓ5DΓ5 − iμΓ5ÞP ¼ Γ5;cDcð−μÞΓ5;c: ð30Þ

Although the dimension of the coarse grid operator is
reduced, it can develop a large number of small eigenvalues
close to μ. This can critically slow down the convergence of
a standard Krylov solver to be used on the coarsest grid
such that the time spent in the coarsest operator inversions
dominates by far the overall inversion time even though
only poor accuracy is required. We therefore decrease
the density of small eigenvalues of the coarsest grid
operator by increasing the twisted mass parameter by a
factor of δ given by

Dcðμ; δÞ ¼ Dc þ iδμ · Γ5;c ð31Þ

with δ ≥ 1.1

We analyze the effect of δ in detail in Sec. III C 2. As
compared to the standard Wilson Dirac operator, for the
twisted mass Dirac operator it turns out that the overall
execution time is minimized if one relaxes even further the
accuracy of the coarsest grid solve as is described in more
detail in Sec. III C 2 as well.

D. Smoother

In the DD-αAMG approach, a red-black SAP is used as a
smoother. This domain decomposition method was intro-
duced to lattice QCD in Ref. [25], where it was used as a
preconditioner. The lattice is partitioned into alternated “red
(r)” and “black(b)” lattice blocks in a checkerboard manner,
and the subdomains are obtained as the full color-spin
space over the respective lattice block [see Eq. (20)].
Reordering the Dirac twisted mass operator such that the
red blocks come first, we obtain

Dþ iμΓ5 ¼
�
Drr þ iμΓr

5 Drb

Dbr Dbb þ iμΓb
5

�
; ð32Þ

where Drr and Dbb are block diagonal matrices filled with
the respective subdomains, while Drb and Dbr connect the
neighboring blocks. Note that the operator D has only next

1This trick is used in heavy Nf ¼ 2 twisted mass simulations
at the charm quark mass and we thank Björn Leder for this
suggestion.
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neighbor interactions and thus blocks of a specific color do
not couple to the same color. The eigenmodes of the
blocks have a higher cutoff than the full operator, given by
pν ¼ π=Lb in the free case for μ ¼ 0 due to the Dirichlet
boundary conditions.
If now the role of the smoother is to reduce the UV

modes, a natural choice for the operator M in the error
propagation [see (16)] is given by the inverse of the block
operator, resulting in

ESAP ¼ ðI −MSAPDðμÞÞ
¼ ðI − BrrðμÞDðμÞÞðI − BbbðμÞDðμÞÞ; ð33Þ

where BrrðμÞ and BbbðμÞ are the block inverses defined as

Brr ¼
� ðDrr þ iμΓr

5Þ−1 0

0 0

�
and

Bbb ¼
�
0 0

0 ðDbb þ iμΓb
5Þ−1

�
: ð34Þ

In practice, the (approximate) inversion of the blocks on
the diagonal of Brr and Bbb is performed with small
computational cost by a few steps of an iterative method
like the minimal residual method [4,27]. Note that we fix
the block size to coincide with the aggregates on each level
of the multigrid hierarchy.

E. Krylov subspace methods

A Krylov subspace method preconditioned by the
chosen multigrid approach has to be a flexible algorithm,
since the smoother as well as the solver on the coarse grid
system are nonstationary processes. Flexible solvers,
which have been employed in multigrid preconditioning
for lattice QCD are the flexible biconjugate gradient (CG)
stabilized method ([28]), generalized conjugate residual
([29]) and flexible generalized minimal residual [(F)
GMRES, [30]] solver. In the DD-αAMG approach a
FGMRES solver is used for the inversion of the fine
grid operator and in the K cycle for the inversion of the
coarser operators except for the coarsest. The latter is
inverted by even-odd preconditioned GMRES, i.e.
GMRES is run for the even-odd reduced system D̂ϕo ¼
ηo −DoeD−1

ee ηe with D̂ from Eq. (11) and then ϕe in the

solution ½ ϕe

ϕo
� of D½ϕe

ϕo
� ¼ ½ ηe

ηo
� is retrieved as ϕe ¼

D−1
ee ðηe −DeoϕeÞ. Even-odd preconditioning is also used

in the smoother when inverting the blocks. In both cases a
speed-up of up to 50% compared to the full operator can
be achieved. This can be explained by the fact that the
small eigenvalues are increased by a factor of 2 as seen
from Eq. (12).
In general, the accuracy of the coarse grid inversions may

be very much relaxed as compared to the target accuracy

of the fine grid inversion. Indeed, for DD-αAMG with the
K-cycle strategy, optimal results are obtained when requir-
ing the (approximate) inversions of the coarser operators to
reduce the residual by just 1 order of magnitude.

F. Setup phase

In the setup phase we have to compute a sufficient
number of approximate low modes vi, which when
chopped into aggregates approximate the IR modes well
due to the local coherence property. We employ the setup
algorithm from Ref. [4] for the twisted mass operator.
The vectors fvig are generated by using a variant of

block inverse iteration

vðkÞi ¼ D−1ðμÞvðk−1Þi ;

i ¼ 1;…; Nv; k ¼ 1;…; nsetup;

vð0Þi chosen randomly; ð35Þ

where the vðkÞi vectors converge to the eigenvectors with
eigenvalues of smallest modulus. In practice, in order to
maintain numerical stability, after each iteration k the

vectors vðkÞi spanning the space of approximate IR modes
have to be orthonormalized, and D−1ðμÞ is replaced by a
multigrid iteration with prolongation operator constructed

from the current set of approximate low modes vðkÞi . For
k ¼ 1, where a multigrid hierarchy is not yet available, we
just apply some steps of the SAP smoother. This approach
results in a self-adapting procedure where the multigrid
hierarchy is improved while using it to expose the small
eigenmodes. Typically, a small number of setup iterations
nsetup is sufficient.

III. NUMERICAL RESULTS FOR TWISTED
MASS FERMIONS

The DD-αAMG approach uses a wide range of param-
eters, and its time to solution depends on a good choice
of the parameters. The purpose of this section is therefore
threefold. We first provide a set of default parameter
choices, which in our extensive numerical testing turned
out to yield good overall performance. Secondly, we show
that for physically relevant configurations, appropriately
chosen parameters yield speed-ups of about 2 orders of
magnitude compared to standard methods for twisted mass
fermions. We also show numerically that these parameters
can be kept fixed over a whole statistical ensemble without
a notable decrease in performance. Finally, we present an
analysis on the dependence of several parameters which
implies a general strategy for obtaining good parameters for
a given ensemble and computer. All the presented numeri-
cal results have been obtained on SuperMUC phase 2 at the
Leibniz Supercomputing Centre, an Intel Haswell Xeon
computer on which we used up to 4096 cores. We have also
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performed runs on JURECA at the Julich Supercomputing
Centre and on Cy-Tera at the Computation-based Science
and Technology Research Center Cyprus obtaining com-
patible results. The stopping criterion of the overall
iteration was fixed such that the residual is reduced by a
factor of 109.

A. Default parameters

Table I summarizes our default parameter set used for
DD-αAMG. The parameter tuning was done for the
ensemble cA2.09.48 [23] with a lattice volume of V ¼
96 × 483 and lattice spacing of a ¼ 0.0931ð10Þ fm as
determined from the nucleon mass. This ensemble was
generated at a pion mass close to the physical one, namely
mπ ¼ 0.131 MeV [23].

1. Discussion

As explained in Sec. II F, in each iteration of the adaptive
setup routine the currently available multigrid hierarchy

is used to perform one iteration with the multigrid
preconditioner on each test vector. If not stated otherwise,
we used the parameters from Table I for the preconditioner
in the setup phase and in the solve phase.
As the setup iteration proceeds the test vectors become

more rich in low mode components. This also leads to a
more ill-conditioned coarse operator Dc and higher iter-
ation counts on the coarse grid [cf. Ref. [4]], i.e. one can
observe a higher cost per setup iteration as the setup
proceeds. This can be seen in Table III where the setup
times for nsetup ¼ 3 and nsetup ¼ 5 are stated. Indeed a
factor of 5 in computing time between both setups can be
observed. The suggested value nsetup ¼ 5 from Table I thus
yields a good value when several inversions [Oð100Þ and
more] with the same operator are desired. The relatively
large setup time can be neglected in this case. We did not
find that more setup iterations than nsetup ¼ 5 yield sub-
stantial further improvement in the solve time. On the other
hand, when solving for a few rhs, a good balance of setup
and solve time has to be found. Therefore a smaller number
of setup iterations like nsetup ¼ 3 might be more suitable.
For larger pion masses one can, in principle, improve the

generation of the subspace of small eigenmodes in the setup
by using a smaller mass parameter m or a smaller twisted
mass parameter μ, which helps to probe the small eigenm-
odes more rapidly within the setup phase. However, at least
at the physical point, we do not find a significant improve-
ment by using different mass parameters.
We use the same subspace for the u quark with þμ and

the d quark with −μ, i.e. we run the setup phase only once
for both quarks. Although the eigenspace changes, numeri-
cally we do not find a large difference. This also saves
computing time for many applications where the square
operator has to be inverted, e.g. during the integration
within the hybrid Monte Carlo (HMC) algorithm [31,32].

2. Comparison with CG

To put the improvements for twisted mass simulations in
perspective, we start with an experiment for Wilson Dirac
fermions, thus complementing the results from Ref. [5]
for our target machine. We use the default parameter set
from Ref. [5] and a configuration from ensemble VII [33]
with a pion mass of amπ ¼ 0.05786, a lattice spacing of
a ¼ 0.0071 fm and a lattice volume of V ¼ 64 × 483.
Table II presents a comparison of the inversion times of

the CG solver, the CG solver with exact deflation (CG-eDe)
[27,34] and the DD-αAMG solver. For CG and CG-eDe we
use the publicly available software package tmLQCD [35]
that is commonly used for simulations with the twisted
mass operator and provides a count of floating point
operations per second (Flop=s) for the CG solver. This
makes it possible to rescale results obtained on different
systems.
The conjugate gradient solver requires a positive definite

Hermitian matrix, which is obtained by solving the linear

TABLE I. The parameter set used in DD-αAMG, obtained by
parameter tuning for the TM fermion ensemble cA2.09.48 [23].

Parameter Optimal

Multigrid Number of levels nl 3
Number of setup iterations nsetup 5
Number of test vectors on level 1 Nv;1 28
Number of test vectors on level 2 Nv;2 28
Size of lattice blocks for
aggregates on level 1

Vb;1 44

Size of lattice blocks for
aggregates on level l, l > 1

Vb;2 24

Solver Mixed precision (F)GMRES
Relative residual tolerance
(restarting criterion)

10−6

Smoother Red-black multiplicative SAP
(SAP) Size of lattice-blocks on level 1 44

Size of lattice-blocks
on level l;l > 1

24

Number of postsmoothing steps 4
MINRES iterations to
invert the blocks

3

K-cycle With single precision FGMRES
Restart length 5
Number of maximal restarts 2
Relative residual tolerance
(stopping criterion)

10−1

Coarsest Solved by even-odd
preconditioned GMRES

grid Twisted mass parameter μcoarse 5.2 · μ
Restart length 100
Number of maximal restarts 5
Relative residual tolerance
(stopping criterion)

10−1
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system with the squared even-odd reduced operator given
by D̂†D̂x ¼ b0 with b0 ¼ D̂†b. This squares the condition
number of the involved matrix.
The CG-eDe and the DD-αAMG solver involve a setup

phase, which has to be done for each new configuration
once before the linear system is solved. In the case of the
CG-eDe solver, Oð100Þ lowest eigenmodes of the squared
even-odd reduced Dirac operator are calculated (here we
use 800 for the case of Wilson case and 1600 for the
twisted mass case). The number of eigenvectors in
CG-eDe is obtained by optimizing the time to solution
(setupþ inversion time) for computing the Oð1000Þ rhs.
Indeed the setup phase is extremely expensive which makes
CG-eDe inefficient for a small number of rhs. The low
mode computation is done by using the publicly available
package ARPACK with tmLQCD [35].
Table II shows that in the case of Wilson Dirac fermions,

the DD-αAMG solver speeds up the time to solution by
roughly a factor of 200 compared to CG and roughly by a
factor 5 compared to the CG-eDe solver. When including
the setup time, DD-αAMG is roughly a factor of 12 faster
than CG for one rhs, while CG-eDe is not competitive due
to its computationally demanding setup.
In the twisted mass fermion case, we are able to achieve

the same speed-ups as for the Wilson fermion case. This it
not straightforward as it requires the coarsest grid twisted
mass μcoarse to be chosen as different from the fine grid

twisted mass μ. We choose μc ¼ 5.2μ (cf. Table I) for
reasons that are explained in Sec. III C 2. The results for
twisted mass fermions are shown in Table III.
Indeed, we are able to achieve a speed-up in inversion

time of roughly a factor of 220 compared to the CG and
roughly by a factor 6 compared to the CG-eDe solver, with
the time for the setup being almost a factor of 100 less as
compared to CG-eDe. For nsetup ¼ 3 we used the param-
eters from Table I except for the number of test vectors on
the fine level Nv;1 being 20 instead of 28. For nsetup ¼ 5 we
used a further optimized set which is given in the last
row of Table IV. This yields another factor of 1.5 speed-up
in the inversion time at the expense of increasing the
setup time.
In Fig. 3 we show the speed-up in total time

(setupþ solve) compared to one CG solve for
DD-αAMG and CG-eDe as a function of the number of
rhs nrhs. The difference between the two blue curves in the
figure on the right-hand side is due to results from a
different number of setup iterations (3 and 5) and a different
number of test vectors (20 and 28), where three setup
iterations are optimal for few rhs (blue dotted line) and five
setup iterations are optimal for many rhs (blue line). In
summary, the results for twisted mass fermions show that
for one rhs DD-αAMG is roughly 30 times faster than
the CG for one rhs, 120 times faster for twenty rhs and
220 times faster for a thousand rhs.

TABLE II. Results for clover Wilson fermions.a Comparison of CG (tmLQCD), eigCG (tmLQCD þ ARPACK)
with 800 eigenvectors and DD-αAMG with parameters from Ref. [5]. The results were for a 483 × 64 lattice from
ensemble VII of Ref. [33] with mπ ¼ 0.1597ð15Þ GeV.

Solver
Setup time
(core hrs)

Inversion time
(core hrs)

Total iteration count
of the fine grid solve

Total iteration count
of coarse grid solvers

CG 174.8 26 937
CG-ede 1527.4 5.4 649
DD-αAMG 13.3 0.9 16 2988

aThe timings for CG and eigCG have been normalized to 1.0 Gflop=s per core (the average of standard
performance ∼0.7 Gflop=s and optimal performance ∼1.3 Gflop=s); the rhs of the equation Dψ ¼ b has been
randomly generated and in all the cases the propagator ψ has been computed to a relative precision of 10−9.

TABLE III. Results for TM fermions.a Comparison of CG (tmLQCD), eigCG (tmLQCDþ ARPACK) with 1600
eigenvectors and DD-αAMG. The results were computed for the cA2.09.48 ensemble [23] with mπ ¼ 0.131 GeV.

Solver
Setup time
(core hrs)

Inversion time
(core hrs)

Total iteration count
of the fine grid solve

Total iteration count of
coarse grid solvers

CG 338.6 34 790
CG-eDe 6941.1 9.8 695
DD-αAMG

7.7 2.5 28 16 619
for nsetup ¼ 3
DD-αAMG

38.3 1.5 15 11 574
for nsetup ¼ 5

aThe timings for CG and eigCG have been normalized to 1.0 Gflop=s per core (the average of standard
performance ∼0.7 Gflop=s and optimal performance ∼1.3 Gflop=s); the rhs of the equation Dψ ¼ b has been
randomly generated and in all the cases the propagator ψ has been computed to a relative precision of 10−9.
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B. Stability of optimal parameters

Empirically we find that the solver performance is stable
for the tuned parameter set. Within the ensemble cA2.09.48
we do not find any configurations where the iteration

counts or the time to solution differ by more than 5%, as
can be seen in Fig. 4. This behavior is also corroborated
by the performance of the multigrid solver during the force
computation in the HMC algorithm, where it shows very
stable iteration counts for simulations at the physical
point; see Fig. 5.

C. Analysis of parameter settings and tuning strategy

As demonstrated in the previous section, well-tuned
parameters are important for good performance, and they
tend to be stable at least for configurations from a given
ensemble. It is therefore advisable to invest some effort in
obtaining good parameters. Since the parameter space is
large, it cannot be searched exhaustively, and there is thus a
need for a strategy of how to tune the method in practice.
Our suggestion for twisted mass simulations is to keep the
default parameters given in Table I, but tune the aggrega-
tion parameters and the twisted mass parameter on the
coarsest level, μcoarse. This is justified by the analysis that
we explain in the subsequent sections as follows: In
Sec. III C 1, we present a novel analysis of the aggregation
parameters without tuning μcoarse, i.e. we fix δ ¼ 1; in
Sec. III C 2, we show the benefits obtained by increasing
μcoarse and we repeat the previous analysis; in Sec. III C 3,

TABLE IV. Summary of δ parameters yielding the optimal
solve time for various block sizes Vb;1. The shown numbers were
computed for the cA2.09.48 ensemble and a relative residual
tolerance of 10−9. The number of test vectors was chosen as in
Fig. 6(c) according to the block size Vb;1. All other parameters
were fixed to the values in Table I.

Block
size Vb;1

Test
vectors
Nv;1

δ for the
coarsest

μμcoarse ¼ δμ
Setup time
(core hrs)

Inversion time
(core hrs)

33 × 4 24 7.8 31.1 3.19(3)
2 × 43 24 6.6 27.5 2.71(5)
32 × 42 24 8.6 23.5 2.47(2)
3 × 43 28 5.4 28.0 2.04(5)
44 28 5.2 22.2 1.75(4)
43 × 6 36 4.5 37.4 1.74(6)
43 × 8 40 4.0 40.7 1.73(5)
42 × 62 40 4.1 37.7 1.59(6)
4 × 63 44 4.0 38.3 1.52(4)

FIG. 3. Speed-up over CG using the results of Tables II and III.

FIG. 4. We depict the average iteration counts on computing quark propagators for several configurations of the ensemble cA2.09.48.
For the black square points the setup is generated with the same μ while for the red circle points the setup is generated with a
TM parameter μ with opposite sign.
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we demonstrate that also other multigrid approaches can
benefit from an increasing μcoarse. All the tests are per-
formed on one configuration averaging the time to solution
for the u and d propagator. This choice is motivated by the
stability of the solver presented in the previous section.

1. Aggregation parameters

Aggregation parameters are the number of the test
vectors Nv;l and the size of the lattice blocks Vb;l on each
level l. They should be tuned simultaneously since they
define the size of the coarser Dirac operator and conse-
quently the size of the projected subspace. In the present
analysis, the solver is restricted to a three-level implemen-
tation. We do not find an improvement in the time to
solution by using a fourth level, which is also the result
found in Ref. [5] for the Wilson operator with similar lattice
sizes. On the other hand, the inversion time increases when
just a two-level multigrid method is used.
To optimize the aggregation parameters on the first level,

we fix the values of the parameters on the second level for
which we find a block size of Vb;2 ¼ 24 and a number of
test vectors around 28 to work well. Fixing these param-
eters by setting Nv;2 ¼ maxð28; Nv;1Þ we analyze how the
time needed to solve for one rhs and for the setup depends
on the block size Vb;1 and the number of test vectors Nv;1.
The results are depicted in Fig. 6 for the cA2.09.48
ensemble and a scaling parameter δ ¼ 1 on all levels has
been used.

We find that every block size has an optimal number of
test vectors as shown in Figs. 6(a) and 6(b) that minimizes
the time to solution. By fitting the data to a polynomial
of order 2 in Nv;1 we estimate the minima and find that
the optimal number of test vectors grows approximately
linearly for block sizes Vb;1 < 8 · 43 with the block
volume

Nv;1 ¼ αþ βVb;1; ð36Þ

which is shown in Fig. 6(c). This indicates a nontrivial
connection between the fine grid size and the dimension of
the coarse grid operator given by

dimðDc;1Þ ¼ 2

�
α

Vb;1
þ β

�
V: ð37Þ

This implies that the optimal size of the coarse grid operator
increases linearly with the volume V at fixed aggregation
block size. For larger block sizes the behavior deviates from
this linear dependence, however. For this case the minimum
of the time to solution is already reached for a smaller
number of test vectors. We can interpret this complex
behavior as giving some insight into the nontrivial link
between coarse grid size and local coherence.
The time to solution of the multigrid method is

dominated by the solves with the coarse grid operator.
We use a K cycle and a three-level approach where, due
to fixing the blocks of the coarsest grid, it follows that
dimðDc;1Þ ∝ dimðDc;2Þ. The numerical effort needed for a
matrix-vector multiplication involving Dc;1 depends lin-
early on dimðDc;1Þ. Allowing for an additional second
order term we model the time for an inversion as

tsolve ¼ γ0 þ δ0 dimðDc;1Þ þ ε0 dimðDc;1Þ2: ð38Þ

By using the dependence on Vb;1 of Eq. (37) we can rewrite
tsolve with

tsolve ¼ γ þ δV−1
b;1 þ εV−2

b;1: ð39Þ

Within this model, connecting Nv;1 and Vb;1 according to
Eq. (36) and Fig. 6(c), the time to solution can be fitted very
well up to Vb;1 ≈ 82 × 42 as shown in Fig. 6(d). In Fig. 7,
we display the data obtained for the ensemble cA2.09.64
with a lattice size of 128 × 643. The other lattice parameters
are the same as those for cA2.09.48. In contrast to the
discussed analysis of cA2.09.48, the coarse grid scale factor
is set to δ ¼ 5 on the coarsest grid. The full analysis on the
dependence of the algorithm on δ is reserved for the next
section. For both lattice sizes the inversion times reach the
minimum for the same block volumes. The asymptotes γ
from Eq. (39) are given by 1.64(13) for the cA2.09.48
ensemble and by 6.3(5) for the cA2.09.64 ensemble, which
is an increase of V5=4. As mentioned above, for larger

FIG. 5. We show the (F)GMRES iteration counts averaged over
the trajectory when the solver is used for computing the force
terms in an HMC simulation. The data is for the ensemble
cA2.09.64 with statistics of 2000 trajectories and the squared
operator D̂†D̂þ ρ2i is inverted, i.e. two inversions are performed
with DD-αAMG inverting D̂þ iρiΓ̂5 and D̂

† − iρiΓ̂5 where Γ̂5 is
the restriction of Γ5 to the odd lattice sites. The parameter ρi sets
the mass for the Hasenbusch preconditioning [36]; the integration
scheme is equivalent to the one presented in Ref. [23] for the
ensemble cA2z:09.48. As a setup strategy within the HMC, we
produce an initial set of test vectors using three setup iterations.
Right before every inversion for ρ0 we update the setup using one
setup iteration at ρ0. The resulting preconditioner is used for all
other Hasenbusch masses until the next update.
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FIG. 7. Analysis of aggregation parameters for cA2.09.64 and δ ¼ 5 on the coarsest grid. The sets of raw data are presented in (a);
from each set, the value of the minimum has been extracted with a parabolic interpolation and plotted with red points in (b). The black
points are for the ensemble cA2.09.48 and δ ¼ 5 on the coarsest grid.

FIG. 6. Analysis of the aggregation parameters for the cA2.09.48 ensemble. For each set of raw data presented in (a) and (b) the
position and value of the minimum has been extracted with a parabolic interpolation and displayed in (c) and (d), respectively. In (d)–(f),
Nv;1 and Vb;1 are connected according to the minima found in (c), i.e. (d) shows the inversion time and (e) the setup time, both for the
minima from (c). The estimated average total time per right-hand side ðtsetup þ nrhstsolveÞ=nrhs is shown in (f). The fitting functions are
explained in the text.
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block sizes, the linear connection of Nv;1 and Vb;1 does no
hold and the solution time is increased. This is also
observed for the time spent in the setup. We also observe
that with increasing lattice volume the region where the
linear dependence holds is shifted.
During the setup procedure the solver is applied on

Nv;1 test vectors for several iterations. Here, the test
vectors are orthonormalized at the end of each iteration
and used for building the multigrid hierarchy. We model
the setup time by allowing for a linear and quadratic
term as

tsetup ¼ ζ þ ηNv;1tsolve þ θ dimðDc;1Þ; ð40Þ

where the amount of computation which does not involve
the solver scales with dimðDc;1Þ at leading order. Figure 6(e)
shows that the measured timings are indeed very well
described by the ansatz given in Eq. (40). We remark that
for block sizes Vb ∼ 44 up to 62 × 42 the time to solution
shows a relatively large plateau, which makes the timings for
the multigrid solver relatively stable. Further fine-tuning in
this region leads only to small improvements.
The optimal choice for Nv;1 and Vb;1 depends on the

number of rhs nrhs. The total time is given by

ttotal ¼ tsetup þ nrhstsolve; ð41Þ

and we find a nontrivial dependence of Vb;1 on nrhs for an
optimal time to solution, as depicted in Fig. 6(f). This
motivated our suggestion to consider two different values
for nsetup, depending on the number of rhs.

2. Tuning the coarse grid scale factor δ

At physical quark masses, the density of the low-lying
eigenvalues for the twisted mass operator increases
compared to the Wilson Dirac operator, as explained in

Sec. II A. Densely populated low eigenvalues slow down
the iteration of the Krylov subspace solvers on the coarsest
grid and thus of the whole multigrid method. This is much
more pronounced for the twisted mass Dirac operator than
it is for the Wilson Dirac operator. For the latter, Table II
reports a total of around 3000 coarse grid iterations for the
considered ensemble, whereas data depicted in Fig. 8(a)
show that for δ ¼ 1 we have roughly 40 times more coarse
grid iterations in the twisted mass case, an unexpectedly
large increase.
When using a larger twisted mass value on the coarsest

grid operator, given by μcoarse ¼ δμ with δ ≥ 1, we make
the small eigenvalues less dense in the low-lying part of the
spectrum. This speeds up the inversion time on the coarsest
grid. We also analyze the effect of the scaling factor δ
as a function of the block size. The results are depicted in
Fig. 8 and we find that the optimal aggregation parameters
determined in the previous section do not depend on the
chosen coarse grid scale factor δ. In Table IV we present the
final results for the cA2.09.48 ensemble, summarizing the δ
parameters which minimize the inversion time for various
block sizes and the corresponding optimal numbers of test
vectors. By using a scaling factor δ ¼ 2 the iteration count
on the coarsest grid is already reduced by a factor of 5,
which results in a speed-up of the fine grid inversion time
by roughly a factor of 3. Optimal performance is achieved
for a relatively large plateau around δ ∼ 5. Obviously, a
large scaling factor δ causes a distinct violation of the
Galerkin condition, i.e. P†DðμÞP ≠ DcðδμÞ. However, we
only find a minor increase in the iteration count of the fine
grid solver from 14 to 16 iterations.

3. The scale factor δ and different
multigrid approaches

In addition to the studies of the delta parameter in
DD-αAMG we tested the influence of a delta parameter

FIG. 8. The number of coarse grid iterations as a function of the δ parameter and the inversion time for different δ-values depending on
the block size. The results depicted in (a) are for a block size of Vb;1 ¼ 44 and compare the number of iterations on the coarse grid with
the fine grid inversion time. The number of iterations has been scaled down by a factor 10000. The behavior for the coarse grid iterations
is proportional to 1=δ2, while the inversion time has an additional term linear in δ due to the increase in the fine grid iteration count.
The results depicted in (b) show the inversion time for different values of δ and different block sizes. The behavior is similar to the one
observed in Fig. 6(d).
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in the QUDA implementation of MG-GCR [37] and in
openQCD [6].2 The latter is restricted to a two-level
approach. For both approaches we found that the iteration
counts on the coarsest grid were reduced by using a scale
factor δ > 1, also resulting in reduced inversion and setup
times. For δ ≈ 5 we observe speed-ups similar to those for
DD-αAMG for the cA2.09.48 ensemble.
For MG-GCR this behavior is to be expected since both

approaches share the same type of Γ5-respecting interpo-
lation [cf. Eq. (25)]. However, the interpolation within the
openQCD multigrid solver is not Γ5 respecting, resulting in
a nondiagonal summand P†Γ5Pδμ on the coarse grid
instead of Γ5;cδμ in Eq. (31).
We indeed find cases where the openQCD solver and

DD-αAMG show different behaviors. When going to the
cA2.09.64 ensemble with a bigger volume, we observe that
the optimal δ for the openQCD solver increases while it
remains constant for DD-αAMG. Furthermore, when solv-
ing for Dð−μÞ with a setup built for DðμÞ from the
cA2.09.48 ensemble, we find that the optimal δ increases
by a factor of 4 within the openQCD solver whereas it
remains constant for DD-αAMG.
For the Wilson fermion case it was reported in Ref. [5]

that the two-level openQCD solver shows about the same
performance as the three-level DD-αAMG approach. For
the twisted mass ensemble cA2.09.48, the openQCD solver
is roughly a factor of 4 slower than DD-αAMG.

IV. CONCLUSIONS AND OUTLOOK

The DD-αAMG solver is extended to the case of Nf ¼ 2

twisted mass fermions. By carefully tuning the parameters
we show that one can achieve speed-ups similar to those
obtained in the case of Wilson fermions, to be precise, a
factor of 200 compared to the CG. This is mainly achieved
by adapting the twisted mass parameter on the coarsest grid
operator such that computing the coarsest grid correction
becomes less time consuming. Using a factor δ ∼ 5 to
increase μcoarse ¼ δ · μ on the coarsest level decreases the
coarse grid iteration count by roughly a factor around 10 and
improves the time to solution by a factor of around 4 for the
case of ensembles generated at the physical pion mass.
An optimal set of parameters for different applications of

the solver is presented and the strategy for tuning the
aggregation parameters and the factor δ for the twisted mass
parameter is discussed in detail. Using the optimal set of
parameters, inversions are more than 2 orders of magnitude
faster as compared to the standard CG. Within the HMC,
DD-αAMG achieves a speed-up of an order of magnitude
compared to the standard CG.
The DDalphaAMG library for twisted mass fermions

is publicly available, and an interface to the tmLQCD

software package is provided. The technical details are
summarized in Appendix A.
For the future we plan to extend multigrid methods

to the heavy doublet sector of the twisted mass
formulation.
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APPENDIX: OVERVIEW OF THE
DDALPHAAMG LIBRARY

The DDalphaAMG solver library, available at
Ref. [12], has been recently released under GNU
General Public License. This software package includes
an implementation of the DD-αAMG for clover Wilson
fermions as described in Ref. [4]. The implementation
is of production code quality; it includes a hybrid MPI/
openMP parallelization, state-of-the-art mixed precision
and odd-even preconditioning approaches and also
SSE3 optimizations. Implementation details can be found
in Ref. [38].
Based on the DDalphaAMG code we developed a

version, which supports twisted mass fermions, available
in Ref. [21]. We added the following features to the library:
Nf ¼ 2 twisted mass fermions and twisted boundary
conditions are supported, and different twisted mass shifts
on the even and odd sites can be applied, which are required
for the Hasenbusch mass preconditioning in the HMC
when even-odd preconditioning is used.
User documentation for the library can be found

in src/DDalphaAMG.h, and a sample code that

2We use for the tests a modified openQCD version, which is
optimized for twisted mass fermions, i.e. where the even-odd
reduced twisted mass Dirac operator is implemented.
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illustrates how to use the library interface functions
can be found in tests/DDalphaAMG_sample.c.
Moreover, the library has been integrated in the
tmLQCD program [35]; therefore we also adjusted

the library interface. The interfaced code is available
in Ref. [39]. Details on the employment of
DDalphaAMG within tmLQCD are available in
Ref. [40].
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