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In this paper we describe a new integration method for the groups UðNÞ and SUðNÞ, for which we
verified numerically that it is polynomially exact for N ≤ 3. The method is applied to the example of one-
dimensional QCD with a chemical potential. We explore, in particular, regions of the parameter space in
which the sign problem appears due the presence of the chemical potential. While Markov chain
Monte Carlo fails in this region, our new integration method still provides results for the chiral condensate
on arbitrary precision, demonstrating clearly that it overcomes the sign problem. Furthermore, we
demonstrate that also in other regions of parameter space our new method leads to errors which are reduced
by orders of magnitude.
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I. INTRODUCTION

The sign problem in models of statistical and high-
energy physics constitutes one of the greatest challenges for
computational sciences, because of the difficulty of evalu-
ating such systems [1]. Many attempts using various
techniques have been developed but no general solution
to overcome the sign problem has been found so far [2]. On
the other hand, the sign problem appears in important
problems in physics. For example, in high-energy physics,
the sign problem prevents the full understanding of the
physics of the early Universe and the explaining and
interpreting of heavy ion collisions. In order to progress
with these questions, simulations within the framework of
lattice QCD with a nonzero chemical potential would be
required. However, these are impossible with present
techniques; see Refs. [3,4] for recent reviews. The reason
is that standard computations in lattice QCD employ
Markov chain Monte Carlo (MC-MC) methods which
need a positive integrand in order to be applicable.
However, in the problem just mentioned a chemical
potential is required, leading to a complex integrand and
therefore to an oscillating function. In particular, if the sign
cancellation errors due to the plural oscillations are of
significantly higher magnitude than the real integral value,
it becomes unfeasible to evaluate such systems.
Therefore, alternative approaches to MC-MC methods

need to be developed and in [5,6] we have proposed
and tested quasi–Monte Carlo and iterated numerical

integration techniques. These methods can improve the
convergence of the involved integrations and also have the
potential to deal with the sign problem. However, in this
paper we discuss yet another method of numerical inte-
gration for generic systems with a sign problem. This new
method leads to an arbitrarily precise evaluation of the
involved integrals and is based on a complete symmetriza-
tion of the integrals considered.
This can be achieved through new integration rules on

compact groups, as developed in this article, which lead to
polynomial exactness. We test the method on the example
of one-dimensional QCD with a chemical potential, see,
e.g., [7], for which other approaches have already been
used to solve the sign problem [8]. Although one-
dimensional QCD is a model with an interest in its own
as the strong coupling limit of QCD [9], we consider it here
only as a benchmark model for testing our approach,
especially since it is possible to compute observables
analytically and, thus, check the numerical results directly.
In particular, we will compute the chiral condensate for a
broad range of action parameters, including values of the
chemical potential that are impossible (for all practical
purposes) to address with standard Monte Carlo techniques.
The idea to symmetrize the involved integrals in a MC-

MC simulation to achieve positivity and stable results has
also been proposed in Refs. [10,11]. However, in these
works only an incomplete symmetrization has been used
and still a large number of Monte Carlo samples were
necessary to obtain accurate results. In our approach, we
perform a polynomially exact integration avoiding the
MC-MC step. This way, we only need a very small number
of integration points. In fact, we can reach arbitrary (up to
machine) precision for the targeted physical observables
and avoid the MC error completely.
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For our computations, we employ the compact groups
UðNÞ and SUðNÞ and give a description for a complete
symmetrization for N ≤ 3. As we will demonstrate, for
these cases with our new approach the sign problem is
completely avoided.
This paper is composed in the following way: In Sec. II,

we introduce the model of one-dimensional QCD, show
analytic results of the partition function Z, and demonstrate
the difficulty of computing Z for specific parameters
numerically. In Sec. III, we describe the polynomially
exact method based on completely symmetrized spherical

quadrature rules [12]. In Sec. IV, we explain our numerical
computations in more detail, show results for the partition
function and the chiral condensate, and explain their
behavior for different parameter values. In Sec. V, we
finally conclude the paper.

II. ONE-DIMENSIONAL LATTICE QCD

Let us consider the following Dirac operator (cf., e.g.,
[7]) for a lattice with n points

DðUÞ ¼

0
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ð1Þ

where all empty entries are zero and the corresponding one-
flavor partition function

Zðm; μ; G; nÞ ¼
Z
Gn

detDðUÞdhnGðUÞ ð2Þ

where G ¼ UðNÞ or G ¼ SUðNÞ, N ∈ N, and hG is the
corresponding (normalized) Haar measure on G.
In order to reduce the numerical effort in calculating

detD, we will first reduce the dimension using the
following theorem.
Theorem 1: Let U0 ≔ Un, ~m1 ≔ m,

∀ j ∈ ½2; n − 1� ∩ N∶ ~mj ≔ mþ 1

4 ~mj−1
; ð3Þ

and

~mn ≔ mþ 1

4 ~mn−1
þ
Xn−1
j¼1

ð−1Þjþ12−2j

~mj
Qj−1

k¼1 ~m2
k

: ð4Þ

Then,

detD ¼ det

�Yn
j¼1

~mj þ 2−ne−nμ
�Yn−1

j¼0

Uj

��

þ ð−1Þn2−nenμ
Yn−1
j¼0

Uj

�
: ð5Þ

The proof of this theorem can be found in Appendix A.
In particular, in the gauge satisfying Uj ¼ 1 except for

Un ¼ U, Theorem 1 yields

detD ¼ det

�Yn
j¼1

~mj þ 2−ne−nμU� þ ð−1Þn2−nenμU
�

¼ det ðc1 þ c2U� þ c3UÞ; ð6Þ

with c1 ≔
Q

n
j¼1 ~mj, c2 ¼ 2−ne−nμ, and c3 ¼ ð−1Þn2−nenμ.

Mathematically speaking, (6) is an application of
“Fubini”1 and translation invariance of the Haar measure
since detD only depends on

Q
n−1
j¼0 Uj. We will frequently

assume this form of D in analytic computations and we
have implemented this form of D in order to reduce
computational overhead. Similarly, c1, c2, and c3 are
standard notations in this paper. Since U ∈ UðNÞ or U ∈
SUðNÞ detD is a polynomial of degree N.
As an observable of the model, we investigate the chiral

condensate

χðm; μ; G; nÞ ¼ ∂m lnZðm; μ; G; nÞ

¼ ∂mZðm; μ; G; nÞ
Zðm; μ; G; nÞ ¼

R
G ∂m detDdhGR
G detDdhG

: ð7Þ

Since detD is a polynomial of degree N and the derivative
∂m only acts on the term

Q
n
j¼1 ~mj in Theorem 1, ∂m detD

is still a polynomial of degree N and ∂m
Q

n
j¼1 ~mj can be

computed using symbolic differentiation.

1Since all our groups are compact, they are unimodular and the
Haar measures satisfy hG×H ¼ hG × hH and hG⋊H ¼ hG × hH
(cf., e.g., exercise 2.1.7 in [13]).
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Theorem 2 not only allows us to reduce numerical
overhead but we can furthermore calculate the partition
function (2) (and therefore also the chiral condensate)
analytically.
Theorem 2: Let c1 ≔

Q
n
j¼1 ~mj, c2 ¼ 2−ne−nμ, and

c3 ¼ ð−1Þn2−nenμ with ~mj as in Theorem 1. Then,

Zðm; μ; Uð1Þ; nÞ ¼
Z
Uð1Þ

detDðUÞdhUð1ÞðUÞ ¼ c1; ð8Þ

Zðm; μ; Uð2Þ; nÞ ¼
Z
Uð2Þ

detDðUÞdhUð2ÞðUÞ

¼ c21 − c2c3; ð9Þ

Zðm; μ; SUð2Þ; nÞ ¼
Z
SUð2Þ

detDðUÞdhSUð2ÞðUÞ

¼ c21 þ c22 − c2c3 þ c23; ð10Þ

Zðm; μ; Uð3Þ; nÞ ¼
Z
Uð3Þ

detDðUÞdhUð3ÞðUÞ

¼ c31 − 2c1c2c3; ð11Þ

and

Zðm; μ; SUð3Þ; nÞ ¼
Z
SUð3Þ

detDðUÞdhSUð3ÞðUÞ

¼ c31 − 2c1c2c3 þ c32 þ c33: ð12Þ

For the proof of this theorem, see Appendix B.
In addition, we can deduce the behavior of Z for m↘0.
Corollary 1: Let ~m1 ≔ m, ~mj ≔ mþ 1

4 ~mj−1
, ~mn ≔

mþ 1
4 ~mn−1

þPn−1
j¼1

ð−1Þjþ14−j

m
Q

j−1
k¼1

~mk ~mkþ1

, and c1 ≔
Q

n
j¼1 ~mj. Then,

lim
m↘0

c1 ¼
�
21−n; n ∈ 2N

0; n ∈ 2N − 1
: ð13Þ

In particular,

lim
m↘0

Zðm; μ; Uð1Þ; nÞ ¼
�
21−n; n ∈ 2N

0; n ∈ 2N − 1
; ð14Þ

lim
m↘0

Zðm; μ; Uð2Þ; nÞ ¼
�
3 · 2−2n; n ∈ 2N

−2−2n; n ∈ 2N − 1
; ð15Þ

lim
m↘0

Zðm; μ; SUð2Þ; nÞ

¼
�
3 · 2−2n þ 21−2n coshð2nμÞ; n ∈ 2N

21−2n sinhð2nμÞ − 2−2n; n ∈ 2N − 1
; ð16Þ

lim
m↘0

Zðm; μ; Uð3Þ; nÞ ¼
�
4 · 2−3n; n ∈ 2N

0; n ∈ 2N − 1
; ð17Þ

lim
m↘0

Zðm; μ; SUð3Þ; nÞ

¼
�
4 · 2−3n þ 21−3n coshð3nμÞ; n ∈ 2N

21−3n sinhð3nμÞ; n ∈ 2N − 1
: ð18Þ

For the proof of this corollary, see Appendix C.
If nμ is large and m small, we can see clearly why the

integrals in Theorem 2 are difficult to treat numerically,
especially the UðNÞ cases. If we assume a stochastic
approach, e.g., a Monte Carlo method, then each evaluation
of detD in the form (6) is a value in the vicinity of
jc2jN þ jc3jN ≈ jc3jN ¼ 2−NneNnμ.2 However, performing
the integration (or taking the limit of infinitely many
samples), there is a very high degree of cancellations to
be observed. Since discrete Markov chain Monte Carlo
methods perform poorly with respect to such cancellations,
they have to overcome an initial error in the vicinity of
eNnμ. In other words, as nμ grows larger, we need very good
algorithms to suppress the initial error and the convergence

error ≈
constantffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sample size

p

of Monte Carlo methods is simply not viable anymore. For
example, in Fig. 1, we compare a Monte Carlo method
(using reweighting) to our new, polynomially exact method
proposed in Sec. III (details of the numerical tests can be
found in Sec. IV). The error bars, the known rate of
convergence 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sample size
p , and the relative error of order 1

|χquadrature - χanalytic| / χanalytic

10-1

100

SU(2)

MCMC
poly. exact

10-14

10-13

10 000 50 000 100 000

Number of evaluation points

FIG. 1. Failure of MC-MCmethods. Comparison of the relative
error of the chiral condensate χ using polynomially exact
(bottom) and Monte Carlo (top) quadrature rules for SUð2Þ.
The polynomially exact rule used n ¼ 8 integration points,
m ¼ 0.25, μ ¼ 1.0, and the error bars have been computed from
20 independent repetitions.

2jc2jN þjc3jN ¼ 2−Nne−Nnμþjð−1ÞNnj2−NneNnμ≈2−NneNnμ ¼
jc3jN , due to the fact that ex > e−x for x ∈ R>0 and the (anti)
symmetric shape of ex � e−x.
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seen here show that the Monte Carlo method cannot reach
the same level of precision with a reasonable number of
samples (note the different scales for the Monte Carlo and
polynomially exact results).

III. EFFICIENT QUADRATURE RULES OVER
THE COMPACT GROUPS

Consider Zðm; μ; Uð1Þ; nÞ for the moment. As we have
mentioned before, the problem is that the integralR
Uð1Þð−1Þn2−nenμUdhUð1ÞðUÞ in (8) vanishes but the
modulus of each evaluation jð−1Þn2−nenμUj is large.
However, if we were also to evaluate at −U (or, more
generally, at t equally spaced points along the unit circle),
the two terms would cancel. However, the (geometric) idea
of taking opposite points or equally spaced points on circles
is not easy to formalize for SUðNÞ and UðNÞ with N ≥ 2.
Instead, we should note that the quadrature rule

Z
Uð1Þ

fðUÞdhUð1ÞðUÞ ≈ 1

tþ 1

Xtþ1

k¼1

fðe2πik
tþ1Þ ð19Þ

is a spherical t-design (i.e., an equal-weight quadrature
rule with spherical polynomial degree of exactness t;
cf. Example 5.14 in [14]). Since detD is a polynomial
of degree N over the matrix entries for UðNÞ and SUðNÞ,
it suffices to consider t-designs or “weighted” t-designs
(polynomially exact rules with possibly nonequal weights)
with t ¼ N.
In this section, we will discuss the construction of

weighted t-designs for N > 1 and, especially, why we
base the UðNÞ and SUðNÞ quadrature on the quadrature
rules [12] for the spheres SN .
Since

UðNÞ ≅ SUðNÞ⋊Uð1Þ; ð20Þ

holds, where ⋊ denotes the (outer) semidirect product, we
may construct a (weighted) t-design QUðNÞ over UðNÞ by
considering two different (weighted) t-design rules QSUðNÞ

andQUð1Þ over SUðNÞ and Uð1Þ correspondingly, and then
define the product rule QUðNÞ ¼ QSUðNÞ ×QUð1Þ. It is clear
that by defining QUðNÞ as a product rule in this way, we
obtain a (weighted) t-design over UðNÞ. Since t-designs
over Uð1Þ are easy to construct [see (19)], the entire
problem of constructing (weighted) t-designs for the
compact groups considered here reduces to the one of
constructing (weighted) t-designs over SUðNÞ.
Starting with SUð2Þ, we have a measure preserving

diffeomorphism SUð2Þ ≅ S3. An explicit mapping can be
given by

Φ∶ C2 → C2;2; ðα; βÞ ↦
�
α −β�

β α�

�
ð21Þ

whose restriction ΦjSUð2Þ
S3 : S3 → SUð2Þ is the mentioned

measure preserving diffeomorphism. Thus, for this case
we can resort to already well-known (weighted) t-designs
over the 3-sphere (see [12,15]) for obtaining (weighted)
t-designs over SUð2Þ trough the mapping Φ.
Moving on to SUð3Þ, we note that there is a correspon-

dence3 between SUð3Þ and S5 × SUð2Þ. More specifically,
we consider first the covering Φ1∶ ½0; 2πÞ3 × ½0; π

2
Þ2 → S5

defined by

x1 ¼ cosðα1Þ sinðφ1Þ
x2 ¼ sinðα1Þ sinðφ1Þ
x3 ¼ sinðα2Þ cosðφ1Þ sinðφ2Þ
x4 ¼ cosðα2Þ cosðφ1Þ sinðφ2Þ
x5 ¼ sinðα3Þ cosðφ1Þ cosðφ2Þ
x6 ¼ cosðα3Þ cosðφ1Þ cosðφ2Þ

and note that the restriction Φ1∶ ½0; 2πÞ3 × ð0; π
2
Þ2 → S51,

S51≔Φ1½½0;2πÞ3×ð0;π2Þ2�, is a diffeomorphism. Furthermore,
the set S50 ≔ S5nS51 is a null set. On the other hand, we have
the mapping Φ2∶ ð½0; 2πÞ3 × ½0; π

2
Þ2Þ × SUð2Þ → SUð3Þ

defined by

Φ2ððα;φÞ; UÞ ¼

0
B@ eiα1 cosðφ1Þ 0 eiα1 sinðφ1Þ

−eiα2 sinðφ1Þ sinðφ2Þ e−iα1−iα3 cosðφ2Þ eiα2 cosðφ1Þ sinðφ2Þ
−eiα3 sinðφ1Þ cosðφ2Þ −e−iα1−iα2 sinðφ2Þ eiα3 cosðφ1Þ cosðφ2Þ

1
CA�U 0

0 1

�
; ð22Þ

whose restriction Φ2∶ ð½0;2πÞ3×ð0;π
2
Þ2Þ×SUð2Þ→SUð3Þ1

with

SUð3Þ1 ≔ Φ2½ð½0; 2πÞ3 × ð0; π
2
Þ2Þ × SUð2Þ�; ð23Þ

is a bijection and the set SUð3Þ0 ≔ SUð3ÞnSUð3Þ1 is a Haar
null set. Thus, starting with a (weighted) t-design rule QS3

over S3 and a (weighted) t-designQS5
1
over S5, such that each

point of QS5
1
lies in S51, and considering the mapping

Φ3∶ S51 × S3 → SUð3Þ; ðx; yÞ ↦ Φ2ðΦ−1
1 ðxÞ;ΦðyÞÞ;

ð24Þ
3More precisely, SUðNÞ is a principal SUðN − 1Þ bundle over

S2N−1; cf., e.g., Eq. (22.18) of [16].
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we obtain a quadrature rule QSUð3Þ over SUð3Þ by setting
QSUð3Þ ≔ Φ3½QS5

1
×QS3 �.

In fact, by considering (randomized) fully symmetric
interpolatory rules Qð1;3Þ and Qð1;5Þ from [12] as weighted
t-designs QS3 and QS5

1
, we checked numerically that the

resulting quadrature rule QSUð3Þ is again a weighted
t-design over SUð3Þ, for t ≤ 3. The latter observation
drove us to investigate a procedure in more detail for
constructing weighted t-design rules over SUðNÞ, for
arbitrary positive integers N and t. This procedure is based
on a generalization of the mapping Φ3 as stated above and
relies on the correspondence4 between SUðNÞ and
×N−1
j¼1 S

2jþ1. This new construction of quadrature rules over
SUðNÞ is subject of current research by the authors, but the
potential applications of this new method exceed the scope
of this article and will be not reported at this point.
Note that the procedure above is not the only way of

writing integrals over SUðNÞ as an integral over spheres.
For instance, using the eigenvalue decomposition of SUðNÞ
we obtain integrals over products of Uð1Þ. However, it
should be noted that the eigenvalue decomposition is not an
isomorphism and, thus, a functional determinant will
appear (which in itself is a polynomial). In other words,
the polynomial degree of the integrand will increase.
Nonetheless this is a viable approach to obtain polynomial
exactness, and using the points in Eq. (19) yields a method
equivalent to [17].

IV. NUMERICAL RESULTS

In this section we will provide a comparison of the
evaluation of the partition function Z and the chiral
condensate χ using MC-MC and our new polynomially
exact integration rules. First we will concentrate on the
partition function Z. We will have a short look at the
behavior of the analytic values of Z before comparing them
to the quadrature results of Z using the Monte Carlo and
polynomially exact method in terms of a relative error. To
present the real power of the polynomially exact method,
we will show computational results for two different
floating point number precisions. Then we will investigate
the relative error behavior of the chiral condensate. Since
we compute the relative error as the deviation of the
quadrature result from the computation using analytic
formulas, we explicitly differentiate these ways of compu-
tation in the following using the terms Zquadrature and
Zanalytic.
As stated above, for the here-considered model both Z

and χ can be computed analytically for the groups UðNÞ
and SUðNÞ. In particular, the expression of the partition
functions in Theorem 2 for SUðNÞ can be related to the one
for UðNÞ through

Zanalyticðm; μ; SUðNÞ; nÞ
¼ Zanalyticðm; μ; UðNÞ; nÞ þ cN2 þ cN3

¼ Zanalyticðm; μ; UðNÞ; nÞ

þ
�
21−Nn coshðNnμÞ; n ∈ 2N

−21−Nn sinhðNnμÞ; n ∈ 2N − 1.
ð25Þ

We note that for UðNÞ the partition function smoothly
approaches a much smaller value than cN2 þ cN3 when
decreasing the mass parameter m, while for SUðNÞ it
approaches a constant near cN2 þ cN3 as given in Theorem 2;
see also Corollary 1. The behavior of Zanalyticðm; μ; G; nÞ
as a function of the mass parameter m for G ∈
fUð3Þ; SUð3Þg, n ¼ 6, μ ¼ 1 is shown in Fig. 2 and there
we can clearly see the different behaviors of Zanalytic for
Uð3Þ and SUð3Þ for m↘0.
For the groups UðNÞ and SUðNÞ each point evaluation

of the quadrature rule is of order Oð2−NneNnμÞ; that is, a
double precision computation cannot resolve values below
10−162−NneNnμ. Since the behavior of the partition function
in comparison to the constant cN2 þ cN3 will be important
in order to understand the relative error jZquadrature −
Zanalyticj=Zanalytic, we also show the value of jc32 þ c33j ≈
2−3ne3nμ in Fig. 2 (see discussion at the end of Sec. II
above, as well) for the examples of Uð3Þ and SUð3Þ.
In Fig. 2, we furthermore distinguished three regions
with different behavior, indicated in the following as
region I, II, and III.

10-20

100

1020

1040

1060

10 -2 10 -1 100 101

m

Ι ΙΙ ΙΙΙ

2-3n exp(3 n μ)
Zanalytic(m, μ,   U(3), n)
Zanalytic(m, μ, SU(3), n)

FIG. 2. Order of the quadrature-rule point evaluation of the
partition function integrand, ð2−nenμÞ3, see (6), compared to the
analytic values of the partition functions for Uð3Þ and SUð3Þ (see
Theorem 2), using n ¼ 20, μ ¼ 1. As discussed in the paper, the
ratio Zanalytic=2−3ne3nμ determines the relative errors of the
partition function and the chiral condensate to a large extent.
In particular, we identify three regions (I, II, and III) in which the
relative error exhibits qualitatively different behavior. (These
computations were performed with 1024-bit floating point
arithmetic.)

4Induction over SUðjÞ being a principal SUðj − 1Þ bundle
over S2j−1 [see Eq. (22.18) of [16]] and SUð2Þ ≅ S3.
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Let us first discuss the group Uð3Þ. For large values ofm
(region III) 2−3ne3nμ is negligible compared to Zanalytic. We
therefore expect a small deviation of Zquadrature from Zanalytic

and hence a small relative error. On the other hand, for
small values of m (region I) Zanalytic becomes much smaller
than 2−3ne3nμ and we expect a significant relative error due
to rounding errors. There is also a transition regime in m
(region II) in which the values of Zanalytic and 2−3ne3nμ have
the same order of magnitude. Hence, we expect a signifi-
cant increase in the relative error while decreasing m, but
the smooth behavior of Zanalytic for Uð3Þ suggests that there
will be a similarly smooth increase of the relative error as a
function of m. As we will discuss below, this expectation is
indeed verified in our numerical tests.
In the SUð3Þ case, we have the additional constant c32 þ

c33 which, for small m, is significantly larger than
ZanalyticðUð3ÞÞ, see (25). Looking at Fig. 2, we expect a
relative error similar to theUð3Þ case in region III. In region
I, though, the relative error should be much less now due to
the fact that the analytic value and order of magnitude of
each point evaluation are closer together than in the Uð3Þ
case. In the transition region II, the behavior may be
different from Uð3Þ as well, although this is not deduced
from the figure per se but from the differences in the
formulas of Zanalytic (25). There, the m-dependent term of
Zanalytic, the constant cN2 þ cN3 , and the point evaluation in
the quadrature rules are of the same order of magnitude
Oð2−NneNnμÞ. Thus, this additional term cN2 þ cN3 , not
present at UðNÞ, could lead to competing effects for the
relative error and, hence, an irregular behavior of the
relative error (at least in the MC-MC case).
Let us now move on to our numerical experiments.

In Fig. 3, we compare the quadrature rule

ZMCMC
quadratureðm; μ; G; nÞ

¼
Z
G
detDdhG ≈

1

#QG

X#QG

k¼1

detDðUkÞ ð26Þ

where each Uk is chosen randomly in G (uniformly with
respect to the Haar measure) and the polynomially exact
version

Zpoly: exact
quadratureðm; μ; G; nÞ ¼

Z
G
detDdhG

≈
1

#QG

X
V∈QG

detDðVU1Þ ð27Þ

where U1 is the U1 sampled in the nonexact version in
(26).5 Here, we chose

QG¼

8>>>>>>>><
>>>>>>>>:

fe2πik
4 ;k∈Z4g; G¼Uð1Þ

Φ½QS3 �; G¼SUð2Þ
fe2πik

4 U;k∈Z4;U∈Φ½QS3 �g; G¼Uð2Þ
Φ3½QS5

1
×QS3 �; G¼SUð3Þ

fe2πik
4 U;k∈Z4;U∈Φ3½QS5

1
×QS3 �g; G¼Uð3Þ

ð28Þ

whereQS3 andQS5
1
are randomized fully symmetric rules of

polynomial degree 3 on S3 and S5 according to [12]. To
obtain the error estimates, we repeated each numerical
experiment 50 times.
Figure 3 shows the relative error of the partition function

computed according to (26) and (27). The same m-regions
(I, II, and III), as shown in Fig. 2, are indicated here as well
and we can see that the behavior of the relative error is quite
distinct for each of the three regions. For large values of m
(region III), both methods operate with double precision as
expected from the discussion above.
Regarding regions I and II, we will consider the UðNÞ

case first. As we move to smaller m, we enter the transition
region (II) and for UðNÞ the relative error increases
significantly but in a smooth way. As shown in Fig. 2,

double precision

|Zquadrature - Zanalytic|

Zanalytic

10-15

10-12

10-9

10-6

10-3 SU(2)

|Zquadrature - Zanalytic|

Zanalytic

MCMC
poly. exact

10-15

10-12

10-9
10-6

10-3

10-2 100 102

m

SU(3)

Zanalytic

10-12

10-2

108

1018

Ι ΙΙ
U(1)

ΙΙΙ

10-12

10-2

108

1018 U(2)

10-12

10-2

108

1018

10-2 100 102

m

U(3)

FIG. 3. Comparison of the relative error of the used methods,
namely the polynomially exact and Monte Carlo quadrature rules
to calculate the partition function Z for SUð2Þ and SUð3Þ (left
column, top to bottom), andUð1Þ,Uð2Þ, and Uð3Þ (right column,
top to bottom) with n ¼ 20, μ ¼ 1, m ∈ ½0.001; 100�. Averages
and standard deviations (error bars) have been computed from 50
independent computations. Here we used double precision to
carry through the numerical calculations. The different behaviors
of the relative error regarding different values of m are divided
into regions I, II and III, corresponding to Fig. 2.

5Any U1 ∈ G would be perfectly fine; in fact, choosing the
identity for U1 would be a good canonical choice. However, we
chose U1 randomly (uniformly with respect to the Haar measure)
in order to approximate the error.
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for very small values ofm (region I) Zanalyticðm; μ; UðNÞ; nÞ
is significantly smaller than 2−NneNnμ; hence, Zanalyticðm; μ;
UðNÞ; nÞ is negligible compared to the machine error and
we observe large relative errors in region I of Fig. 3. Note
that the polynomially exact computation still sums values
of magnitude 2−NneNnμ; i.e., the relative error of the exact
method cannot be below 10−16 times the error of the
nonexact method which is, indeed, what we see in Fig. 3.
Returning to Fig. 2 and the UðNÞ discussion above, the
observed smooth increase of the relative error in region II
matches our expectations.
In the SUðNÞ case, the relative error is comparable to the

UðNÞ case in regions I and III; we simply obtain smaller
errors in region I since 2−NneNnμ does not dominate Zanalytic

as is the case for UðNÞ. However, in the transition region II
of Fig. 3, we can see a rather irregular behavior, the
possibility for which to occur we already mentioned in
the discussion of Zanalytic above. This can be attributed to
the fact that the mass-dependent term of Zanalyticðm; μ;
UðNÞ; nÞ and the constant cN2 þ cN3 , see (25), as well as the
point evaluations in Zquadrature, are of the same order of
magnitude. Hence neither term can suppress the error of
the other, which we interpret as the cause of the peak in the
relative error.
Figure 4 shows the same comparison as Fig. 3 but

computations were performed with 1024-bit floating

point arithmetic,6 i.e., approximately 307-digit preci-
sion. Again, we observe that the polynomially exact
method operates on machine precision (as to be
expected). The averages and standard deviations of
the relative error were computed from 50 independent
computations for G ∈ fUð1Þ; SUð2Þ; Uð2Þg and from
10 independent computations for G ∈ fSUð3Þ; Uð3Þg.
All computations were performed on an IBM laptop
in less than an hour.7 The behavior of the relative
error, for both, Monte Carlo and polynomially exact
method, is very similar to the double precision case
in Fig. 3. Note that the polynomially exact integration
always leads to machine precision results even in this
extreme case of 1024-bit precision, whereas the
relative error of the MC-MC results does not notably
decrease in regions I and II when replacing double
precision floats in Fig. 3 with 1024-bit extended
floats in Fig. 4.

10-40

1001024bit extended precision

|Zquadrature - Zanalytic|

Zanalytic

10-310

10-290

1024bit extended precision

|Zquadrature - Zanalytic|

Zanalytic

10-40

100

1024bit extended precision

|Zquadrature - Zanalytic|

Zanalytic

SU(2)

MCMC
poly. exact

10-310

10-290

10-40

100

SU(3)

10-310

10-290

10-2 100 102

m

10-40

100

U(1)

Ι ΙΙ ΙΙΙ

10-310

10-290

U(2)

U(3)

10-2 100 102

m

FIG. 4. Comparison of the relative error as shown in Fig. 3 but
here using 1024-bit extended floats. Averages and standard
deviations (error bars) have been computed from 50 independent
computations for Uð1Þ, Uð2Þ, and SUð2Þ, and from 10 indepen-
dent computations for SUð3Þ and Uð3Þ. Again n ¼ 20, μ ¼ 1,
and m ∈ ½0.001; 100� are used.

10-4
100
104

1024bit extended precision

|χquadrature - χanalytic|

χanalytic

10-310

10-300

1024bit extended precision

|χquadrature - χanalytic|

χanalytic

10-4
100
104

1024bit extended precision

|χquadrature - χanalytic|

χanalytic

SU(2)

MCMC
poly. exact

10-310

10-300

10-4
100
104

SU(3)

10-310

10-300

10-10 10-7 10-4 10-1 102

m

10-4
100
104

U(1)

Ι ΙΙ ΙΙΙ

10-310

10-300

U(2)

U(3)

10-10 10-7 10-4 10-1 102

m

FIG. 5. Comparison of the relative error of the chiral con-
densate χ ¼ ∂m lnZ using polynomially exact and Monte Carlo
quadrature rules for SUð2Þ and SUð3Þ (left column, top to
bottom), and Uð1Þ, Uð2Þ, and Uð3Þ (right column, top to bottom)
with n ¼ 8, μ ¼ 1.0, and m ∈ ½10−11; 103�. We use 1024-bit
extended floats. Averages and standard deviations (error bars)
have been computed from 50 independent computations for
SUð2Þ, Uð1Þ, and Uð2Þ and from 5 for SUð3Þ and Uð3Þ. The
different behaviors of the error regarding different values ofm are
divided into regions I, II, and III.

6These are 1024 mantissa bits; double precision (about 15-digit
precision) corresponds to 53 bits.

7For SUð3Þ and Uð3Þ only, runtime was considerably longer
than a few minutes.
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In general, we observe in Figs. 3 and 4 that the poly-
nomially exact quadrature rule always provides machine
error results.
In order to test our new polynomially exact method

against an actual physical observable, Fig. 5 shows the
comparison of the relative error of the chiral condensate
(again using 1024-bit extended floats). The analytic values
of the chiral condensate have been obtained through
symbolic differentiation of the formulas in Theorem 2;
the numerical values by symbolic differentiation of (6).
We observe that the relative error follows the trend we have
already seen for the partition function in the three different
regions.8

Let us discuss the relative error in Fig. 5 in a bit more
detail. A first observation is that the polynomially exact
method operates on the level of machine precision and,
as such, reduces the relative error by (many) orders of
magnitude for all values of m. Even more interesting
and striking is the size of the relative error of the chiral
condensate in the small-m region. As pointed out in [7],
in this region of parameter space there is a severe
sign problem. Indeed, for the MC-MC method the
relative error becomes Oð1Þ for sufficiently small m;
i.e., no statistically significant result for the chiral
condensate can be obtained with standard MC-MC
calculations. [In Fig. 5, this behavior can only be seen
for UðNÞ but it is also present and was observed by us
for SUðNÞ for m-values smaller than the ones shown
here.9] This is a clear manifestation of the infamous sign
problem.
In contrast, our polynomially exact method again

provides results on machine precision. Thus, the
polynomially exact method completely overcomes the
sign problem and can lead to very accurate results
even in regions where MC-MC computations are
unfeasible.

V. CONCLUSION

In this work, we have developed and tested a new
integration method for the groups UðNÞ and SUðNÞ.
As a major outcome of our work, we could in fact
provide a numerical verification that the method devel-
oped here leads to polynomial exactness of the integra-
tion for N ≤ 3. We have applied the method to the
one-dimensional QCD with a chemical potential where
for certain values of the action parameters a sign

problem appears with MC-MC methods. Using the
groups Uð1Þ; Uð2Þ; Uð3Þ and SUð2Þ; SUð3Þ we have
demonstrated that even for cases when the sign
problem is most severe, the chiral condensate of this
model can be computed to arbitrary precision with the
new method. In contrast, standart MC-MC methods
show large Oð1Þ relative errors and do not give any
statistically significant result. For this comparison, we
even went to 1024-bit extended precision and were able
to show that our new method still achieves results on the
level of machine precision. We therefore conclude that
our polynomially exact integration method can com-
pletely avoid the sign problem. Furthermore, it is
important to point out that it also leads to errors reduced
by orders of magnitude compared to MC-MC even in
regions of parameter space where no sign problem
occurs.
The fact that our new integration method overcomes the

sign problem and leads in general to errors reduced by
orders of magnitude in the one-dimensional QCD consid-
ered here is certainly a very promising finding and stands as
a result by itself. However, this benchmark model can only
be regarded as a toy example. It will be necessary to
demonstrate that the method can also be applied in higher
dimensions. To this end, we are presently considering the
Schwinger model as an example of a quantum field theory
in two dimensions.
In addition, so far we do not have proof yet of the

polynomial exactness for the groupsUðNÞ and SUðNÞwith
general N. Although we are very confident that our
integration method leads to polynomial exactness for
general N, we are working on a proof to substantiate this
statement.
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APPENDIX A: PROOF OF THEOREM 1

Let

Y ¼
�
A B

C D

�
ðA1Þ

be a block decomposition where A and D are square
matrices and A is invertible. Then,

detY ¼ detA det ðD − CA−1BÞ: ðA2Þ

Here, we are considering matrices of the form

8Here, the range of the regions differs from before.
9The larger relative error > Oð1Þ for SUðNÞ at small m

seen here is due to limm↘0χanalyticðm; μ; SUðNÞ; nÞ ¼ 0, because
limm↘0∂mZanalyticðm; μ; SUðNÞ; nÞ ¼ 0 and limm↘0Zanalytic

ðm; μ; SUðNÞ; nÞ ≠ 0. Thus, the analytic result for some
small m is already at machine precision while the quadrature
result is not, such that division by this small machine
precision number yields a value which can be larger than one.
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X ¼

0
BBBBBBBBBBBB@

m1
eμ
2
U1

e−μ
2
U�

n

− e−μ
2
U�

1 m2
eμ
2
U2

− e−μ
2
U�

2 m3
eμ
2
U3

. .
. . .

. . .
.

− e−μ
2
U�

n−2 mn−1
eμ
2
Un−1

− eμ
2
Un − e−μ

2
U�

n−1 mn

1
CCCCCCCCCCCCA

ðA3Þ

where all mi are positive. Choosing A to be the m1 block in X, we obtain

D ¼

0
BBBBBBBBBB@

m2
eμ
2
U2

− e−μ
2
U�

2 m3
eμ
2
U3

− e−μ
2
U�

3 m4
eμ
2
U4

. .
. . .

. . .
.

− e−μ
2
U�

n−2 mn−1
eμ
2
Un−1

− e−μ
2
U�

n−1 mn

1
CCCCCCCCCCA

ðA4Þ

and

−CA−1B ¼ −1
m1

0
BB@

− 1
4

0 − e−2μ
4
U�

1U
�
n

0 0 0

− e2μ
4
UnU1 0 − 1

4

1
CCA: ðA5Þ

In other words, D − CA−1B is of the initial form again and

detX ¼ mN
1 detðD − CA−1BÞ ðA6Þ

¼ det

0
BBBBBBBBBBBB@

m2 þ 1
4m1

eμ
2
U2

2−2e−2μ
m1

U�
1U

�
n

− e−μ
2
U�

2 m3
eμ
2
U3

− e−μ
2
U�

3 m4
eμ
2
U4

. .
. . .

. . .
.

− e−μ
2
U�

n−2 mn−1
eμ
2
Un−1

2−2e2μ
m1

UnU1 − e−μ
2
U�

n−1 mn þ 1
4m1

1
CCCCCCCCCCCCA
: ðA7Þ

Let U0 ≔ Un, ~m1 ≔ m1,

∀j ∈ ½2; n − 1� ∩ N∶ ~mj ≔ mj þ
1

4 ~mj−1
; ðA8Þ

and

~mn ≔ mn þ
1

4 ~mn−1
þ
Xn−1
j¼1

ð−1Þjþ12−2j

~mj
Qj−1

k¼1 ~m2
k

: ðA9Þ

Then, we obtain inductively
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detX ¼
Yn−3
j¼1

~mN
j det

0
BBBBB@

~mn−2
eμ
2
Un−2

2−ðn−2Þe−ðn−2ÞμQ
n−3
j¼1

~mj

�Q
n−2
j¼1 Uj−1

��
− e−μ

2
U�

n−2 mn−1
eμ
2
Un−1

ð−1Þn−22−ðn−2Þeðn−2ÞμQ
n−3
j¼1

~mj

Q
n−2
j¼1 Uj−1 − e−μ

2
U�

n−1 mn þ
P

n−3
j¼1

ð−1Þj2−2j
~mj

Q
j−1
k¼1

~m2
k

1
CCCCCA ðA10Þ

¼
Yn−1
j¼1

~mN
j det

�
~mn þ

ð−1Þn2−nenμQ
n−1
j¼1 ~mj

Yn
j¼1

Uj−1 þ
2−ne−nμQ

n−1
j¼1 ~mj

�Yn
j¼1

Uj−1

���
ðA11Þ

which finally yields

detX ¼ det

�Yn
j¼1

~mj þ ð−1Þn2−nenμ
Yn
j¼1

Uj−1 þ 2−ne−nμ
�Yn

j¼1

Uj−1

���
: ðA12Þ

APPENDIX B: PROOF OF THEOREM 2

Note that the Uð1Þ case is trivial. Hence, we will start considering UðNÞ with N ≥ 2 and use the notations

U�
ij ≔ ðU�Þij ðB1Þ

and

∀p ∈ N0 ∀ I; J ∈ Np
≤N∶ UIJ ≔

Yp−1
k¼0

UIkJk ∧ U�
IJ ≔

Yp−1
k¼0

ðU�ÞIkJk : ðB2Þ

Furthermore, we set ∀p; q ∈ N0 ∀ I; J ∈ Np
≤N ∀ K;L ∈ Nq

≤N ,

hI; JjK;Li ≔
Z
UðNÞ

U�
IJUKLdhUðNÞðUÞ ðB3Þ

and use abbreviations for empty sets or singletons similar to

h0; 1ji ≔ hð0Þ; ð1ÞjðÞ; ðÞi: ðB4Þ

The following identities are well known (cf., e.g., [18]):
(i) p ≠ q ⇒ hI; JjK;Li ¼ 0
(ii) hji ¼ 1
(iii) hi; jjk; li ¼ δilδjk

N .
For N ¼ 2, we may expand the determinant inZ

Uð2Þ
detDdhUð2Þ ¼

Z
Uð2Þ

det ðc1 þ c2U� þ c3UÞdhUð2ÞðUÞ ðB5Þ

¼
Z
Uð2Þ

det

�
c1 þ c2U�

00 þ c3U00 c2U�
01 þ c3U01

c2U�
10 þ c3U10 c1 þ c2U�

11 þ c3U11

�
dhUð2ÞðUÞ ðB6Þ

directly and, using the identities above, we obtainZ
Uð2Þ

detDdhUð2Þ ¼ c21 − c2c3: ðB7Þ

Similarly, we can expand the determinant in
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Z
Uð3Þ

det

0
B@ c1 þ c2U�

00 þ c3U00 c2U�
01 þ c3U01 c2U�

02 þ c3U02

c2U�
10 þ c3U10 c1 þ c2U�

11 þ c3U11 c2U�
12 þ c3U12

c2U�
20 þ c3U20 c2U�

21 þ c3U21 c1 þ c2U�
22 þ c3U22

1
CAdhUð3ÞðUÞ ðB8Þ

using Sarrus’s rule, which yieldsZ
Uð3Þ

detDdhUð3Þ ¼ c31 − 2c1c2c3 ðB9Þ

using the identities above.
For SUðNÞ, we have
(i) p ≠ q ⇒ hI; JjK;Li ¼ 0
(ii) hji ¼ 1
(iii) hi; jjk; li ¼ δilδjk

N
(iv) hði; jÞ; ðk; lÞji ¼ hjði; jÞ; ðk; lÞi ¼ − ð−1Þδik

2
¼ ð−1Þεik

2
in SUð2Þ

(v) hjði; j; kÞ; ðl; m; nÞi ¼ hði; j; kÞ; ðl; m; nÞji ¼ εijkεlmn

6
in SUð3Þ.

Hence [analogous to the UðNÞ computations],Z
SUð2Þ

detDdhSUð2Þ ¼ c21 þ c22 − c2c3 þ c23 ðB10Þ

andZ
SUð3Þ

detDdhSUð3Þ ¼ c31 − 2c1c2c3 þ c32 þ c33: ðB11Þ

APPENDIX C: PROOF OF COROLLARY 1

By induction, we note for 2j < n

lim
m↘0

~m2j−1

jm
¼ 1 and lim

m↘0

~m2j
1

4jm

¼ 1: ðC1Þ

This is trivially true for ~m1 ¼ m and ~m2 ¼ mþ 1
4m. Then,

we observe for j > 1

lim
m↘0

~m2j−1

jm
¼ lim

m↘0

mþ 1
4 ~m2j−2

jm
¼ lim

m↘0

1

j
þ

1
4 ~m2j−2

jm
ðC2Þ

¼ lim
m↘0

1

j
þ

1

4
~m2j−2

1
4 ðj−1Þm

1
4 ðj−1Þm

jm
ðC3Þ

¼ 1

j
þ j − 1

j
¼ 1 ðC4Þ

and

lim
m↘0

~m2j
1

4jm

¼ lim
m↘0

mþ 1
4 ~m2j−1

1
4jm

¼ lim
m↘0

4jm2þ jm
~m2j−1

¼ 1: ðC5Þ

Thus, we obtain

lim
m↘0

~mk ~mkþ1 ¼
8<
:

lim
m↘0

~mk
jm

~mkþ1
1

4jm

jm
4jm ; k ¼ 2j − 1

lim
m↘0

~mk
1

4jm

~mkþ1

ðjþ1Þm
ðjþ1Þm
4jm ; k ¼ 2j

¼
(

1
4
; k ¼ 2j − 1

jþ1
4j ; k ¼ 2j

ðC6Þ

and for n ∈ 2N

lim
m↘0

c1 ¼ lim
m↘0

m ~mn

Yn2−1
j¼1

~m2j ~m2jþ1|fflfflfflfflffl{zfflfflfflfflffl}
→1

4
jþ1
j

ðC7Þ

¼ 21−nn lim
m↘0

m ~mn ðC8Þ

¼ 21−nn lim
m↘0

m

�
mþ 1

4 ~mn−1
þ
Xn−1
j¼1

ð−1Þjþ14−j

m
Qj−1

k¼1 ~mk ~mkþ1

�
ðC9Þ

¼ 21−nn lim
m↘0

� n
2
m

4 ~mn−1

2

n
þ
Xn−1
j¼1

ð−1Þjþ14−jQj−1
k¼1 ~mk ~mkþ1

�
ðC10Þ

¼ 21−nn

 
1

2n
þ lim

m↘0

Xn
2

j¼1

ð−1Þð2j−1Þþ14−ð2j−1ÞQð2j−1Þ−1
k¼1 ~mk ~mkþ1

þ
Xn2−1
j¼1

ð−1Þ2jþ14−2jQ2j−1
k¼1 ~mk ~mkþ1

!
ðC11Þ

¼ 21−nn

 
1

2n
þ
Xn

2

j¼1

41−2jQ2ðj−1Þ
k¼1 limm↘0 ~mk ~mkþ1

−
Xn2−1
j¼1

4−2jQ2j−1
k¼1 limm↘0 ~mk ~mkþ1

!
ðC12Þ

¼ 21−nn

 
1

2n
þ
Xn

2

j¼1

41−2j

42−2j
Qj−1

k¼1
kþ1
k

−
Xn2−1
j¼1

4−2j

41−2j
Qj−1

k¼1
kþ1
k

!

ðC13Þ

¼ 21−nn

�
1

2n
þ
Xn

2

j¼1

1

4j
−
Xn2−1
j¼1

1

4j

�
ðC14Þ

¼ 21−nn

�
1

2n
þ 1

2n

�
ðC15Þ

¼ 21−n: ðC16Þ

Similarly, for n ∈ 2N − 1,
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lim
m↘0

c1 ¼ lim
m↘0

~mn

Yn−12
j¼1

~m2j−1 ~m2j|fflfflfflfflffl{zfflfflfflfflffl}
→1

4

ðC17Þ

¼ 21−n lim
m↘0

0
B@mþ 4 n−1

2
m

4 ~mn−1
1

4n−1
2

m

þ
Xn−12
j¼1

41−2j

m
Q2j−2

k¼1 ~mk ~mkþ1

−
Xn−12
j¼1

4−2j

m
Q2j−1

k¼1 ~mk ~mkþ1

1
CA ðC18Þ

¼ 21−n lim
m↘0

�Xn−12
j¼1

41−2j

42−2jjm
−
Xn−12
j¼1

4−2j

41−2jjm

�
ðC19Þ

¼ 0: ðC20Þ

Finally, the asserted identities for Zðm; μ; G; nÞ with
G ∈ fUð1Þ; SUð2Þ; Uð2Þ; SUð3Þ; Uð3Þg are a trivial cor-
ollary substituting limm↘0c1 into the formulas given in
Theorem 2.
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