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We investigate the critical endline of the finite temperature phase transition of QCD around the SU(3)-
flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki
gauge action and nonperturbatively OðaÞ-improved Wilson-clover fermion action. The critical endline is
determined by using the intersection point of kurtosis, employing the multiparameter, multiensemble
reweighting method to calculate observables off the SU(3)-symmetric point, at the temporal size NT ¼ 6

and lattice spacing as low as a ≈ 0.19 fm. We confirm that the slope of the critical endline takes the value of
−2, and find that the second derivative is positive, at the SU(3)-flavor symmetric point on the Columbia
plot parametrized with the strange quark mass ms and degenerated up-down quark mass ml.
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I. INTRODUCTION

The Columbia phase diagram plot [1] represents nature
of finite temperature phase transition of 2þ 1 flavor QCD
at zero chemical potential in the plane of the light quark
mass and strange quark mass (ml, ms). In the small quark
mass region, it is believed that the transition is of first order
[2], which turns into a region of crossover as quark masses
are increased. The boundary that separates the two regions
is the critical endline (CEL), which belongs to the Z2

universality class [3].
There is a longstanding issue that the results for the critical

endpoint (CEP) of 3 flavor QCD at zero chemical potential
obtained byWilson type and staggered type fermion actions
are inconsistent [4–10]. Recently, we have investigated CEP
with degenerate Nf ¼ 3 dynamical flavors of nonperturba-
tively OðaÞ-improved Wilson fermion action, and deter-
mined its locationby the intersectionpoints of kurtosis for the
temporal sizes NT ¼ 4, 6 and 8 [11]. The continuum
extrapolation implies a nonzero value mPS;CEP ≈ 300 MeV
for the pseudoscalar meson mass. Scaling violations are
large, however, necessitating further studies at larger NT to
obtain conclusive results for CEP.
In this article, we explore the properties of CEL. In

particular we ask how the CEL curves away from the
SU(3)-flavor symmetric point [we denote the SU(3)-flavor
symmetric quark mass on the CEL as msym]. This is a first
step to obtain a comprehensive view on the relation of CEL
and the physical point for which the strange quark mass is

significantly heavier than the degenerate up-down quark
mass. To set the stage for our analysis, let us consider the
kurtosisKO of some quantityOwhich can be either a gluonic
or quark quantity. The kurtosis generally depends on the
quark masses mu, md, and ms, and its Taylor expansion
around msym will have a form KO ¼ K0 þ ðδmu þ δmd þ
δmsÞK1 þOðδm2Þ, where δmqðq ¼ u; d; sÞ denotes the
difference from msym. Therefore, if one varies the quark
masses while keeping the average over the three quark
masses, i.e., δmu þ δmd þ δms ¼ 0, the kurtosis remains
unchanged up to second order in the variation of the quark
masses. For a degenerate up and down quark mass, we have
δml ¼ δmu ¼ δmd, and hence the change becomes

δms ¼ −2δml: ð1Þ

This means that the slope of CEL at msym should take the
value −2 on the Columbia plot.
There are no such constraints on the second derivative of

CEL with respect toml atmsym. If it is positive, CEL would
smoothly curve up to the tricritical point ms ¼ mtric

s located
on the axis for the strange quark mass around which CEL is
expected to behave as ms −mtric

s ∼m2=5
l [12]. So far, a

lattice QCD result obtained by using staggered fermions at
NT ¼ 4 with a lattice spacing a ≈ 0.3 fm supports such a
curve [10]. In this paper, we will also address this issue by
using Wilson-type fermions.
This paper is organized as follows. In Sec. II we present

the simulation details, including the parameters and the
simulation algorithm. Our numerical results are presented
in Sec. III. In Sec. IV, we provide a brief conclusion.
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II. SIMULATION DETAILS

We perform the kurtosis intersection method [11] to
determine CEP and also a multiparameter, multiensemble
reweighting method [13] for CEL away from msym. All
observables for Nf ¼ 2þ 1 QCD are computed by using a
κ reweighting from Nf ¼ 3 configurations, which were
generated in our previous study [11]. We will see that a κ
reweighting is very useful to determine many CEPs such as
a continuous line aroundmsym without doing new ensemble
generation. This is our motivation to use the reweighting
method even in the zero density case. The details of κ
reweighting are given in the Appendix. Here we only
mention that the evaluation of the determinant in the
reweighting factor is approximately done by using the
expansion of the logarithm of the determinant to fourth
order [14]. The validity of this approximation will be
addressed in the next section.
Calculations are made at a temporal lattice size NT ¼ 6

and the spacial sizes NL ¼ 10, 12, 16, and 24, with Nf ¼ 3
degenerate flavors of dynamical quarks using the Iwasaki
gluon action [15] and the nonperturbativelyOðaÞ-improved
Wilson fermion action [16]. The periodic boundary con-
dition is imposed for gluon fields while the antiperiodic
boundary condition is employed for quark fields. We use a
highly optimized HMC code [17], applying mass precon-
ditioning [18] and RHMC [19], the second order minimum
norm integration scheme [20]. We put the pseudofermion
action on multiple time scales [21] and use a minimum
residual chronological method [22] to choose the starting

guess for the solver. We generate 63 ensembles of
Oð100; 000Þ trajectories on HA-PACS and COMA at
University of Tsukuba, System E at Kyoto University
and PRIMERGY CX400 tatara at Kyushu University.
Measurements are done at every 10th trajectory and
statistical errors are estimated by the jackknife method
with the bin size ofOð1; 000Þ configurations. In Table I, we
summarize the simulation parameters and statistics.
As a probe to study the phase structure, we use the quark

condensate, which is not a real order parameter at finite
quark mass, but will be a real order parameter in the chiral
limit. In this study, we use the susceptibility, χ, of the quark
condensate to determine the transition point, and its
kurtosis, K, for intersection analysis to locate CEL. The
quark condensate, Σ, and skewness, S, are used to check
that the transition point is determined appropriately. The
quantities Σ, χ, S, and K are defined by

Σ¼ hQ1i
N3

LNT
;

χ¼hQ2i− hQ1i2
N3

LNT
;

S¼hQ3i−3hQ2ihQ1iþ2hQ1i3
ðhQ2i− hQ1i2Þ3=2

;

K¼hQ4i−4hQ3ihQ1i−3hQ2i2þ12hQ2ihQ1i2−6hQ1i4
ðhQ2i− hQ1i2Þ2

;

ð2Þ

where the quark loop contributions Q1;2;3;4,

Q1 ¼ Nf tr½D−1
f �;

Q2 ¼ −Nf tr½D−2
f � þ ðNf tr½D−1

f �Þ2;
Q3 ¼ 2Nf tr½D−3

f � − 3N2
f tr½D−2

f �tr½D−1
f � þ ðNf tr½D−1

f �Þ3;
Q4 ¼ −6Nf tr½D−4

f � þ 8N2
f tr½D−3

f �tr½D−1
f � þ 3ðNf tr½D−2

f �Þ2
− 6Nf tr½D−2

f �ðNf tr½D−1
f �Þ2 þ ðNf tr½D−1

f �Þ4; ð3Þ

with the Wilson-Clover Dirac operator Df,

Df ¼ 1

2κf
þ i
4
cswσμμFμνðnÞδm;n

−
1

2

X4
μ¼1

½ð1 − γμÞUμðnÞδn;mþμ̂

þ ð1þ γμÞU−μðnÞδn;m−μ̂�: ð4Þ

The trace in Eq. (3) is taken for color, spinor, and
coordinate space and numerically estimated by the sto-
chastic method using 20 noises that is checked to be
sufficient to control the noise errors. There are some
choices for the quark condensate in Nf ¼ 2þ 1 QCD.

TABLE I. Simulation parameters and statistics for Nf ¼ 3 runs.

Number of configurations
β κ NL ¼ 10 NL ¼ 12 NL ¼ 16 NL ¼ 24

1.715 0.140900 7300 4200
1.715 0.140920 8000 3800
1.715 0.140940 8000 8600 7900
1.715 0.140950 8100 7900 8000
1.715 0.140960 9500 8800 7900
1.715 0.140970 9400 6900 8400
1.715 0.140980 9699 6800 8800
1.715 0.140990 9500 6300 8599
1.715 0.141000 10000 8700 9400
1.715 0.141010 8800 8500 8300
1.715 0.141020 8700 8900 8600
1.715 0.141100 8600
1.73 0.140420 7900 7900 8900 5250
1.73 0.140430 7900 7900 8900 5100
1.73 0.140440 7900 7900 8900 5200
1.73 0.140450 8600 7900 7300 4900
1.75 0.139620 12200 10450 10100
1.75 0.139640 12900 10400 10100
1.75 0.139660 11700 10450 10100
1.75 0.139680 12900 10400 9700
1.75 0.139700 8378 4900 10100
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For example, Eq. (2) for ss is defined by κf ¼ κs and
Nf ¼ 1. In this study, we choose κf ¼ κl and Nf ¼ 2 since
the signal for uuþ dd and its higher moments turns out to
be better than the others. Even if we made different choices,
we expect to obtain the same results because all such “order
parameters”would behave equally as pure magnetization in
the thermodynamic limit.

III. RESULTS

We check first the validity of the reweighting from
Nf ¼ 3 to Nf ¼ 2þ 1. Figure 1 compares Σ, χ, S, and K
obtained by the reweighting of the Nf ¼ 3 runs at β ¼ 1.73
with direct Nf ¼ 2þ 1 simulations at ðβ; NL; κsÞ ¼
ð1.73; 12; 139500Þ as a function of κl. They are in good
agreement with each other. Note that in Fig. 1, the multi-
ensemble reweighting curve is obtained by using only
Nf ¼ 3 data without using Nf ¼ 2þ 1. Thus, there is no
statistical correlation between the curve and direct data

points. The statistics for Nf ¼ 2þ 1 direct simulations are
O(4000–8000) configurations. This is 4–8 times smaller
statistics than that used in the reweighting curve. Therefore,
the error of the reweighting result is much smaller than that
of direct simulations.
The reweighting results for the susceptibility and kur-

tosis are illustrated in Fig. 2 for β ¼ 1.715 and 1.73 and
three values of κs as a function of κl. The peak position of
susceptibility gives us a very precise value of κl for the
transition point, and a corresponding value of kurtosis, for
each β, κs, andNL. We observe that the volume dependence
of the transition point κl is mild; thus we extrapolate to the
infinite volume limit with a simple 1=N3

L correction term.
The resulting transition line in the thermodynamic limit
projected on the (β, κl) plane is plotted in Fig. 3. Each line
corresponds to the interpolated transition line with the
functional form for each value of κs,

κl ¼ c0 þ c1β þ c2β2: ð5Þ

FIG. 1. Σ (top left), χ (top right), S (bottom left), and K (bottom right) as a function of κl obtained by the reweighting ofNf ¼ 3 data in
Table I (curves) and those at β ¼ 1.73, κs ¼ 0.13950, NL ¼ 12 obtained by the direct Nf ¼ 2þ 1 simulations (square data points).

CRITICAL ENDLINE OF THE FINITE TEMPERATURE … PHYSICAL REVIEW D 94, 114507 (2016)

114507-3



Figure 4 shows the kurtosis at the transition point for
three values of κs in Fig. 2 as a function of β with various
fitting results (dashed lines). The fitting ansatz inspired by a
finite-size scaling to second order is given by

K ¼ KE þ AN1=ν
L ðβ − βEÞ þ BN2=ν

L ðβ − βEÞ2; ð6Þ

where βE and KE are the values of β and K at each CEP
and ν is the critical exponent along CEL. Here A and B
are also fitting parameters. We examine three cases of
fitting, namely, (1) the linear functional form [no B-term
in Eq. (6)] with two β points, (2) the linear functional
form with three β points, and (3) the quadratic functional
form Eq. (6) with three β points. The resulting fitting
parameters for the three values of κs are summarized in
Table II. All three cases show consistent results on βE,
KE, and ν with reasonable χ2=d:o:f:; thus this kurtosis
intersection analysis is shown to be robust. In the end,
we decide to use values of fitting parameters obtained by
the first choice in the following analysis, and the values
of βE, KE, and ν in 0.13910 ≤ κs ≤ 0.14170 are sum-
marized in Table III. We find that ν and KE are consistent
with the values of the three-dimensional Z2 universality
class in the range of κs. The results for κs < 0.13910 or
κs > 0.14170 are too noisy to determine CEP because
they are too far away from the original simulation points
along the SU(3)-symmetric line. Table III also lists the
value of κl;E. To obtain this, we go back to the analysis in
Fig. 3. Using the interpolated formula of the transition
line for a given κs, we obtain κl;E by setting β ¼ βE
as input.
In Fig. 5, we plot 1=κs;E as a function of 1=κl;E by open

circles; they represent our estimate of CEL. The error of
βE in Table III has been propagated to that of κl;E. We also
plot the points where we have performed zero temperature
simulations to calculate the pseudoscalar meson masses.
We have generated Oð500Þ configurations at β ¼ 1.72

FIG. 3. Phase diagram in bare parameter space of (β, κl). Each
line represents a transition line with the quadratic form in Eq. (5)
for each value of κs. Open symbols denote transition points at
β ¼ 1.715, 1.73, and 1.75. Filled symbols denote critical end
points. Note that the values of β at critical end points are almost
constant for 0.1391 ≤ κs ≤ 0.1417.

FIG. 2. χ and K for κs ¼ 0.13910, 0.14070, and 0.14170 as a function of κl at β ¼ 1.715 (upper) and 1.73 (lower).
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on a 163 × 32 lattice for each (κl, κs). The simulation
parameters together with the Wilson flow scale

ffiffiffiffi
t0

p
=a

[23] and pseudoscalar meson masses are summarized in
Table IV.

To calculate the pseudoscalar meson masses along the
CEL, a linear interpolation in Ward identity quark masses is
sufficiently good in such a tiny parameter region. Thus, we
perform a fit constrained by flavor symmetry of the form

TABLE II. Fit results for Eq. (6) with various choices are summarized. The meaning of fit forms such as “Linear
þ2 points” is defined in the text.

κs Fit form βE KE ν A B χ2=d:o:f:

0.13910 Linear þ2 points 1.72359(61) −1.410ð13Þ 0.633(46) 0.40(12) � � � 0.58
0.13910 Linear þ3 points 1.72370(82) −1.415ð15Þ 0.630(39) 0.369(92) � � � 1.17
0.13910 Quadratic þ3 points 1.72300(71) −1.420ð12Þ 0.607(33) 0.334(73) −0.0141ð77Þ 0.80
0.14070 Linear þ2 points 1.72396(52) −1.431ð11Þ 0.647(39) 0.45(11) � � � 0.43
0.14070 Linear þ3 points 1.72387(81) −1.443ð16Þ 0.608(40) 0.325(90) � � � 1.48
0.14070 Quadratic þ3 points 1.72314(80) −1.448ð14Þ 0.593(37) 0.304(79) −0.0113ð79Þ 1.19
0.14170 Linear þ2 points 1.72299(49) −1.443ð11Þ 0.631(38) 0.42(10) � � � 0.47
0.14170 Linear þ3 points 1.7229(10) −1.458ð20Þ 0.578(50) 0.26(10) � � � 2.35
0.14170 Quadratic þ3 points 1.72193(83) −1.465ð15Þ 0.554(41) 0.234(78) −0.0096ð68Þ 1.50

FIG. 4. Typical kurtosis intersection plots for κs ¼ 0.13910, 0.14070, and 0.14170 from left to right, and the linear functional form
with two β points (top), linear with three points (middle), and quadratic with three points (bottom).
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ðamπÞ2 ¼ 2A1ml þ 2A2ms;

ðamKÞ2 ¼ ðA1 þ A3Þml þ ðA2 þ A4Þms;

ðamηsÞ2 ¼ 2A3ml þ 2A4ms;ffiffiffiffi
t0

p
=a ¼ A5 þ 2A6ml þ A6ms; ð7Þ

where ml ¼ 1=κl − 1=κ0 and ms ¼ 1=κs − 1=κ0. We obtain
κ0 ¼ 0.1419248ð25Þ, A1 ¼ 3.0896ð55Þ, A2 ¼ 0.8494ð37Þ,
A3 ¼ 1.8091ð54Þ, A4 ¼ 2.1228ð38Þ, A5 ¼ 0.87742ð43Þ,
A6 ¼ −0.5034ð20Þ, and χ2=d:o:f: ¼ 16.9.
Figure 6 shows the results for ð ffiffiffiffi

t0
p

mπÞ2 and ð ffiffiffiffi
t0

p
mηsÞ2

along the CEL. We fit the data points by the following third
order polynomial function with the constraint of−2 slope at
the symmetric point. The data points are also fitted by

Eq. (8) with b2 ¼ 0 in order to check higher order
contributions against the second derivative.

fðxÞ ¼ b0 − 2ðx − b0Þ þ b1ðx − b0Þ2 þ b2ðx − b0Þ3; ð8Þ

where fðxÞ ¼ ð ffiffiffiffi
t0

p
mηsÞ2 and x ¼ ð ffiffiffiffi

t0
p

mπÞ2. The fit results
are given in Table V. We find that the results are reasonably
consistent with a slope of −2 and a positive second
derivative at CEP.

IV. SUMMARY

We have investigated the CEL of the finite temperature
phase transition of QCD with nonperturbatively OðaÞ-
improved Wilson-clover fermion action around the SU(3)-
symmetric point at zero chemical potential and NT ¼ 6.
Our method of kurtosis intersection point analysis aided
by multiparameter, multiensemble reweighting works
well. As a result, we could precisely determine the CEL
over a range 0.25 ≤ ð ffiffiffiffi

t0
p

mπÞ2 ≤ 0.35, sandwiching the
SU(3)-symmetric point at ð ffiffiffiffi

t0
p

mπÞ2 ≈ 0.3, and found −2
for the slope and a positive second derivative around msym

on the Columbia plot.
We need to add to the remarks on our results. First, for

zero temperature simulations, we used a slightly different β
than βE. We think that this difference will not change our
conclusion since it is only an effect of 0.3% or so in hadron

FIG. 5. Results for the critical endpoints in the plane of 1=κl and
1=κs (black open circles). Also shown (red squares) are the points
where zero temperature simulations are carried out to calculate
hadron masses. An SU(3)-symmetric line is drawn in pink, while
for the green and blue lines the sum of three quark masses is
constant.

TABLE III. Fitting results for the kurtosis intersection whose
fitting form is linear in β and includes two β points; namely,
βE, KE, and ν for each κs are summarized. On the other hand,
κl;E is obtained by interpolation with βE as input after fitting
with the quadratic function of β in Eq. (5). See text for more
details. The error of κl;E contains only that from the inter-
polation formula but the error of βE is not yet propagated to
that of κl;E at this point. κs;E have no error because we fix
them as target parameters of the reweighting method. The
values of KE and ν are roughly consistent with those of the
three-dimensional Z2 universality class, that is, −1.396 and
0.63, respectively.

κs;E βE κl;E KE ν

0.13910 1.72359(61) 0.1413751(20) −1.410ð13Þ 0.633(46)
0.13920 1.72364(60) 0.1413321(21) −1.411ð13Þ 0.635(46)
0.13930 1.72370(60) 0.1412884(21) −1.412ð13Þ 0.637(45)
0.13940 1.72376(59) 0.1412441(21) −1.414ð12Þ 0.638(45)
0.13950 1.72381(58) 0.1411993(20) −1.415ð12Þ 0.639(44)
0.13960 1.72386(57) 0.1411540(21) −1.416ð12Þ 0.641(44)
0.13970 1.72391(57) 0.1411085(21) −1.417ð12Þ 0.642(43)
0.13980 1.72395(56) 0.1410623(21) −1.418ð12Þ 0.643(43)
0.13990 1.72398(56) 0.1410159(21) −1.420ð12Þ 0.644(42)
0.14000 1.72401(56) 0.1409692(21) −1.421ð12Þ 0.645(42)
0.14010 1.72404(55) 0.1409220(21) −1.422ð12Þ 0.645(42)
0.14020 1.72405(55) 0.1408747(59) −1.423ð12Þ 0.646(42)
0.14030 1.72406(55) 0.1408273(21) −1.425ð12Þ 0.646(42)
0.14040 1.72405(54) 0.1407798(22) −1.426ð12Þ 0.646(41)
0.14050 1.72403(53) 0.1407324(28) −1.428ð12Þ 0.646(41)
0.14060 1.72400(53) 0.1406849(22) −1.429ð11Þ 0.647(40)
0.14070 1.72396(52) 0.1406374(22) −1.431ð11Þ 0.647(39)
0.14080 1.72390(51) 0.1405899(22) −1.433ð11Þ 0.646(39)
0.14090 1.72384(50) 0.1405421(22) −1.434ð11Þ 0.646(38)
0.14100 1.72376(49) 0.1404941(27) −1.436ð11Þ 0.645(38)
0.14110 1.72368(49) 0.1404459(22) −1.437ð11Þ 0.643(38)
0.14120 1.72359(49) 0.1403976(23) −1.439ð11Þ 0.641(38)
0.14130 1.72349(49) 0.1403490(22) −1.440ð11Þ 0.639(38)
0.14140 1.72338(49) 0.1403004(23) −1.441ð11Þ 0.636(38)
0.14150 1.72326(50) 0.1402515(23) −1.442ð11Þ 0.633(38)
0.14160 1.72312(50) 0.1402023(27) −1.443ð11Þ 0.631(38)
0.14170 1.72299(49) 0.1401529(28) −1.443ð11Þ 0.631(38)
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mass values. Second, our study is conducted at just a single
lattice spacing of a ≈ 0.19 fm. We are pursuing simulations
with a larger NT to obtain conclusive results, especially for
the second derivative. Finally, the physical point at

ð ffiffiffiffi
t0

p
mπÞ2 ≈ 0.01 is quite far from the SU(3)-symmetric

point. Thus, Nf ¼ 2þ 1 simulations are needed to inves-
tigate CEL as it approaches the physical point.
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APPENDIX: MASS PARAMETER REWEIGHTING

We consider the mass parameter reweighting from Nf ¼
3 to Nf ¼ 2þ 1. The multiparameter reweighting for bare

TABLE IV.
ffiffiffiffi
t0

p
=a and pseudoscalar masses in lattice units at β ¼ 1.72 on 163 × 32.

κl κs
ffiffiffiffi
t0

p
=a amπ amK amηs

0.140600 0.140900 0.78338(31) 0.7054(10) 0.6917(10) 0.6778(10)
0.140650 0.140800 0.78324(33) 0.7015(10) 0.6947(10) 0.6878(10)
0.140700 0.140700 0.78391(32) 0.6960(11) 0.6960(11) 0.6960(11)
0.140750 0.140600 0.78369(31) 0.6925(11) 0.6994(11) 0.7063(11)
0.140800 0.140500 0.78331(31) 0.6881(13) 0.7019(13) 0.7154(13)
0.140900 0.140300 0.78397(43) 0.6755(13) 0.7032(13) 0.7300(13)
0.141100 0.139900 0.78420(39) 0.6573(12) 0.7133(12) 0.7654(12)
0.141200 0.139700 0.78538(33) 0.6444(10) 0.7146(10) 0.7788(09)
0.141300 0.139500 0.78639(25) 0.6319(12) 0.7170(11) 0.7936(11)
0.141400 0.139300 0.78784(27) 0.6174(12) 0.7174(11) 0.8059(10)
0.141500 0.139100 0.78799(45) 0.6018(14) 0.7173(12) 0.8176(11)
0.139900 0.141700 0.77075(28) 0.7996(11) 0.7226(11) 0.6368(12)
0.140000 0.141500 0.77037(26) 0.7895(16) 0.7252(17) 0.6549(18)
0.140100 0.141300 0.77002(25) 0.7835(09) 0.7321(09) 0.6770(10)
0.140250 0.141000 0.76907(26) 0.7722(09) 0.7401(09) 0.7067(09)
0.140300 0.140900 0.76882(27) 0.7696(11) 0.7438(11) 0.7172(11)
0.140350 0.140800 0.76894(27) 0.7652(11) 0.7459(11) 0.7260(11)
0.140400 0.140700 0.76868(27) 0.7620(14) 0.7491(14) 0.7360(14)
0.140450 0.140600 0.76857(27) 0.7583(11) 0.7519(11) 0.7453(11)
0.140500 0.140500 0.76843(27) 0.7542(12) 0.7542(12) 0.7542(12)
0.140550 0.140400 0.76875(27) 0.7491(10) 0.7555(10) 0.7620(10)
0.140600 0.140300 0.76887(28) 0.7428(11) 0.7558(11) 0.7687(11)
0.141200 0.139100 0.77111(26) 0.6845(11) 0.7780(10) 0.8619(10)

FIG. 6. CEL in the plane of ð ffiffiffiffi
t0

p
mπÞ2 and ð ffiffiffiffi

t0
p

mηsÞ2 and the
slope along CEL calculated by the fit in Eq. (8). The pink line
denotes the line of SU(3) symmetry (Nf ¼ 3).

TABLE V. Results of polynomial fitting for CEL.

Fitting formula b0 b1 b2 χ2=d:o:f:

Eq. (8) with b2 ¼ 0 0.30520(66) 3.0(1.8) � � � 0.027
Eq. (8) 0.30514(67) 3.4(2.0) 16(31) 0.016
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quark mass parameters ml (up-down light quark mass) and
ms (strange quark mass) can be done by the formula

hOðml; msÞiml;ms
¼

D
ðdetDðmlÞ
detDðmÞÞ2ðdetDðmsÞ

detDðmÞ Þ1Oðml; msÞ
E
mD

ðdetDðmlÞ
detDðmÞÞ2ðdetDðmsÞ

detDðmÞ Þ1
E
m

;

ðA1Þ

whereDðmfÞ ¼ Df has been assumed.ml andms are target
mass parameters whilem is an actual simulation parameter.
The average h…iml;ms

in the lhs is taken by using the
Boltzmann factor, including the Nf ¼ 2þ 1 quark deter-
minant at parameter ml ≠ ms, while the average h…im in
the rhs is taken by using the Boltzmann factor, including
the degenerate Nf ¼ 3 quark determinant at mass param-
eter m. In the above equation, we have explicitly written
down the bare parameter dependence on the observ-
able Oðml; msÞ.
In Eq. (A1), one needs to evaluate the reweighting factor,

�
detDðmlÞ
detDðmÞ

�
2
�
detDðmsÞ
detDðmÞ

�
1

: ðA2Þ

The ratio of quark determinants requires the high cost of
computation if one tries to calculate it directly at many
target parameter points. Therefore we adopt a cheaper
approximation method, that is, the Taylor expansion of the
logarithm of the determinant, which is known to have a
better convergence property than the other expansion
schemes [14],

ln

�
detDðml;sÞ
detDðmÞ

�
¼

X∞
j¼1

Δmj
l;s

j!

� ∂
∂m

�
j
ln detDðmÞ; ðA3Þ

with

Δml;s ¼ ml;s −m ¼ 1

2κl;s
−

1

2κ
: ðA4Þ

Once some leading coefficients in the expansion are
calculated, one can easily evaluate the ratio at many
reweighted points up to truncation errors. In our calcu-
lation, we evaluate the coefficients up to fourth order and

the explicit form of the approximated ratio of the deter-
minant is given by

detDðml;sÞ
detDðmÞ ≈ exp

�X4
j¼1

ð−Þjþ1Δmj
l;s

j
trD−jðmÞ

�
: ðA5Þ

For the same reason as the ratio of the determinant, we
use an expansion form for the observable. In the following
we restrict ourselves to consider an observable that depends
on single mass parameter, Oðml;sÞ. Such an observable can
also be expanded:

Oðml;sÞ ¼
X∞
j¼0

Δmj
l;s

j!

� ∂
∂m

�
j
OðmÞ: ðA6Þ

For the trace of higher powers of the quark propagator that
are included in the higher moments of the quark con-
densate, we apply the following approximation:

trD−1ðml;sÞ ≈ trD−1ðmÞ þ
X3
j¼1

ð−ÞjΔmj
l;strD

−ðjþ1ÞðmÞ

;ðA7Þ

trD−2ðml;sÞ ≈ trD−2ðmÞ þ
X2
j¼1

ð−Þjðjþ 1Þ

× Δmj
l;strD

−ðjþ2ÞðmÞ; ðA8Þ

trD−3ðml;sÞ ≈ trD−3ðmÞ þ
X1
j¼1

ð−Þjðjþ 1Þðjþ 2Þ

× Δmj
l;strD

−ðjþ3ÞðmÞ; ðA9Þ

trD−4ðml;sÞ ≈ trD−4ðmÞ: ðA10Þ

The validity of this approximation for the moments was
confirmed in Ref. [11] and furthermore the direct com-
parison between the reweighting results and the direct
simulation results is done in Fig. 1, and then it turns out that
the truncation error of this approximation is smaller than
the statistical errors in our parameter region.
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