
Does the complex Langevin method give unbiased results?

L. L. Salcedo*

Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y
Computacional, Universidad de Granada, E-18071 Granada, Spain

(Received 14 October 2016; published 8 December 2016)

We investigate whether the stationary solution of the Fokker-Planck equation of the complex Langevin
algorithm reproduces the correct expectation values. When the complex Langevin algorithm for an action
SðxÞ is convergent, it produces an equivalent complex probability distribution PðxÞ which ideally would
coincide with e−SðxÞ. We show that the projected Fokker-Planck equation fulfilled by PðxÞ may contain an
anomalous term whose form is made explicit. Such a term spoils the relation PðxÞ ¼ e−SðxÞ, introducing a
bias in the expectation values. Through the analysis of several periodic and nonperiodic one-dimensional
problems, using either exact or numerical solutions of the Fokker-Planck equation on the complex plane, it
is shown that the anomaly is present quite generally. In fact, an anomaly is expected whenever the Langevin
walker needs only a finite time to go to infinity and come back, and this is the case for typical actions. We
conjecture that the anomaly is the rule rather than the exception in the one-dimensional case; however, this
could change as the number of variables involved increases.
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I. INTRODUCTION

As it is well known, in the functional integral formu-
lation of quantum field theories, the problem is formally
transformed into one of classical statistical mechanics
where the action plays the role of Hamiltonian in one
more spatial dimension. This entails Wick rotating to
Euclidean time, where the functional integral has a better
mathematical behavior [1]. In many cases, this is sufficient
to make the equivalent Boltzmann weight of the integral
real and positive, thereby allowing us to apply Monte Carlo
techniques in numerical calculations. Unfortunately, even
in the Euclidean formulation a positive weight is not always
guaranteed and sometimes one has to deal with complex
weights. A typical example comes from the introduction of
a baryon number chemical potential in lattice QCD [2].
Whether in field theory or in statistical mechanics, real but
nonpositive or more generally complex weights are present
in some problems. This is the famous sign (or phase)
problem. Although the partition function is well defined, a
straight application of the Monte Carlo method is not
available, and this makes the problem hard to attack
numerically [3]. Many ideas have been proposed to treat
the sign problem (see, e.g., [4–23]), with success in
particular cases, but it is fair to say that no efficient,
systematic, and robust approach exists yet to deal with this
problem.
A very general and mathematically sound approach

exists to deal with complex weights; this is the reweighting
technique [24]. Unfortunately, the method suffers from the
ubiquitous overlap problem: by using samples from a
different weight, importance sampling is violated and the

problem worsens for large systems, precisely where the
Monte Carlo approach would be the most efficient (or less
inefficient) method. Another more or less general method
is the complex Langevin approach of Parisi [4]. Unlike
reweighting, this method only applies to continuous
degrees of freedom, and moreover the action of the system
must admit a holomorphic extension to the complexified
version of the real manifold of physical configurations.
Nevertheless, analyticity is not a stringent restriction for
typical actions. A further recent technique is based on
integration on Lefschetz thimbles [25]. We comment on
this in Sec. VIII.
The complex Langevin approach shares an important

property with reweighting, namely, it does not spoil the
locality properties of the system to be simulated. By
locality of an action SðxÞ [x ¼ ðx1;…; xnÞ is the configu-
ration] we mean that for any variable xi, SðxÞ can be written
as S1ðxÞ þ S2ðxÞ where S1 does not depend on xi and S2
depends on xi and a small number of other variables (the
so-called neighbors of xi). This requirement is often crucial
for an efficient implementation of a Monte Carlo algorithm.
The complex Langevin algorithm is indeed a very intuitive
and handy approach, which, from the beginning, attracted
much attention [26–31]. Regrettably, unlike the real
Langevin method, its complex version has no sound
mathematical foundation, and many examples have been
found where the method does not converge or converges to
a wrong equilibrium solution [7,32–37].
In a typical application with a complex action SðxÞ, one

needs to compute expectation values of the complex
distribution PðxÞ ¼ e−SðxÞ defined on the manifold of
configurations of the physical system. In the complex
Langevin algorithm, walkers move on the complexified*salcedo@ugr.es
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manifold producing some normalized probability density
ρðz; tÞ there. The whole point of the approach is that after
equilibrium has been reached, the stationary density ρðzÞ
should reproduce the correct expectation values of PðxÞ,
in the sense of an analytical extension of the observables.
That is,

hAðxÞiP ¼ hAðzÞiρ; ð1:1Þ

where AðzÞ refers to holomorphic extension of the observ-
able AðxÞ, and hAiP and hAiρ stand for the expectation
values on the real manifold with P and on the complexified
manifold with ρ, respectively.
Following a suggestion in [34], Söderberg first pointed

out [38] that other densities ρðzÞ could exist fulfilling the
requirement (1.1) not necessarily derived from a complex
Langevin approach, and also properties of them were
studied there. In [9] such valid densities ρðzÞ defined on
the complexified manifold were named representations
[of the target complex probability PðxÞ]. In that work,
properties of the representations were analyzed and
explicit constructions were carried out for PðxÞ of the
form Gaussian times the polynomial of any degree and in
any number of dimensions, among others. Necessary and
sufficient conditions for the existence of representations
were established in [39]. That representations exist
quite generally, not only on Rn but also on Lie groups,
was shown in [40], with some explicit constructions.
Representations beyond the complex Langevin have
recently been considered in [41,42]. Even more recently,
a Gibbs sampling approach to complex probabilities using
representations has been described in [23].
There are complex actions for which the complex

Langevin algorithm fails to provide a proper representation
density ρðzÞ. The above considerations show that this is not
an intrinsic problem of those actions, but rather a limitation
of the complex Langevin approach. One such example is the
one-dimensional action SðxÞ ¼ iβI cosðxÞ with βI real and
different from zero. The complex Langevin arrives in this
case to a ρðzÞ on the complex plane which is independent of
x, thereby predicting vanishing expectation values for all eikx

except k ¼ 0. Such an incorrect result is not due to a
pathology of this action. Indeed, as shown in [23], just any
periodic one-dimensional action can be represented on the
complex plane by a positive probability density of the form

ρðzÞ ¼ Q1ðxÞδðy − YÞ þQ2ðxÞδðyþ YÞ; ð1:2Þ

where the periodic functions Q1;2ðxÞ are positive for real x.
By decomposing in Fourier modes it can be easily shown
that the condition (1.1) is fulfilled by taking

Q1;k ¼
ekYPk − e−kYP�

−k
2 sinhð2kYÞ ; Q2;k ¼ −

e−kYPk − ekYP�
−k

2 sinhð2kYÞ ;

k ≠ 0: ð1:3Þ

Clearly these modes correspond to real functions Q1;2ðxÞ.
Moreover, adding suitable zero modes, such Q1;2ðxÞ are
positive by taking Y above some critical value which
depends on the concrete complex action. The same formulas

)1.3 ) apply to nonperiodic actions too, and can be extended
to any number of dimensions. We refer to [23] for explicit
constructions.
The construction in Eq. (1.2) is a representation with

support on two lines parallel to the real axis, and we have
noted that positivity of ρ requires the separation 2Y to be
larger than some critical value dependent on PðxÞ. This
result is quite general: as a rule, the more complex a target
complex probability PðxÞ is, the more spread on the
complex plane should any representation of it be. For
instance, if a real observable develops a complex expect-
ation value (due to the complex action), such an expectation
value will not be reproduced by a density ρðzÞ lying too
close to the real axis (where the observable is real). This
observation can be made more precise: For any observable
AðxÞ, let A be the set of points z in the complexified
manifold such that jAðzÞj ≥ jhAiPj. Then clearly the sup-
port of any valid representation ρ of P should have some
overlap with A, since otherwise jhAiρj < jhAiPj.
The overlap condition just mentioned can be applied

immediately to the the complex Langevin discussion,
through an example noted in [23]. Consider the one-
dimensional action SðxÞ ¼ ðβ=4Þx4 þ iqx, with positive
β and q. In one applies a standard complex Langevin
approach here, the walkers will be subject to the usual
horizontal diffusion plus a drift with horizontal and vertical
components. However, on the real axis the vertical drift is
purely downwards, because the term with β does not
contribute there. This implies that at equilibrium all the
walkers will end up in the lower half plane, since once
they move there they have no way to cross the real axis
again. It follows that the support of the equilibrium
complex Langevin process ρCLðzÞ is entirely contained
in fy ≤ 0g. On the other hand, for k > 0, je−ikzj ¼ eky ≤ 1

if y ≤ 0, therefore jhe−ikziCLj ≤ 1. Yet for β ¼ 1=2, q ¼ 2,
he−ixi ¼ −4.98. So we can conclude that, for this action,
the complex Langevin algorithm is necessarily converging
to the wrong equilibrium distribution.
It is also known that the Langevin algorithm is afflicted

by the segregation problem [43], so it cannot be used to
represent a real but nonpositive weight such as
PðxÞ ¼ 1þ 2 cosðxÞ. We emphasize that there is nothing
intrinsically wrong with this PðxÞ or with the ðβ=4Þx4 þ
iqx action above. The two cases can be represented using,
for instance, the two-branch approach of Eq. (1.2).
The complex Langevin method has captivated many a

researcher due to its elegance [44,45]. Even some tentative
proofs of its validity were advanced (see, e.g., [46,47]).
Besides, the method has achieved some empirical success
in concrete problems [18,48]. Nevertheless, beautiful does
not imply correct and after 30 years the mathematical basis
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of the method has not been established beyond the rather
trivial cases of quadratic actions or real actions.
Convergence requires the real part of the eigenvalues of
the Fokker-Planck Hamiltonian on the complexified mani-
fold to be non-negative. This property, which is easily
established in the real case, has only been observed
numerically for certain actions in the complex version
[49]. Occasionally, convergence to a correct representation
has been guessed from the flow of walkers on the
complexified manifold and the nature of the fixed points
[50], but this is not conclusive.
Most studies on the validity of the complex Langevin

method are based on a mixture of analytical arguments and
Monte Carlo simulations analyzing the convergence of the
algorithm to correct solutions or not (see, e.g., [32,51–53]).
The present work complements those studies. Instead of
the Langevin process, our focus is on the Fokker-Planck
equation, a second order differential equation on the
complexified manifold describing the evolution of
ρðz; tÞ, and on its stationary solution, ρðzÞ. While a
complex probability admits many different representations,
a density ρðzÞ projects to a unique complex probability
PðxÞ. A natural way to justify the validity of the complex
Langevin method is to start with the Fokker-Planck
equation fulfilled by ρðzÞ, and to try to show that its
projection PðxÞ fulfills the projected Fokker-Planck equa-
tion (a differential equation on the real manifold) with the
target complex probability e−SðxÞ as a unique solution. This
is the path followed in [7]. However, it was shown there that
the projected Fokker-Planck equation may admit further
solutions besides e−SðxÞ. Moreover, the actual stochastic
process may choose one of the wrong solutions.
Nevertheless, the cases analyzed in that reference were
somewhat artificial, and such spurious solutions are not
often found in practice. Here we question the premise,
namely, whether or not the naive projected Fokker-Planck
equation is actually obtained after projection from the
complex to the real manifold. We find that, in general,
besides the standard naive terms, additional surface terms
may appear in the projected equation, and such anomalous
terms introduce a bias in the expectation value of the
observables. The crucial role played by boundary terms
from integration by parts has been noted before [51]. Here
we isolate the anomaly and show in concrete examples that
it is nonvanishing. Further, we check, by numerical solution
of the stationary Fokker-Planck equation, that the various
anomalous relations derived are fulfilled at a numerical
level. The origin of the anomaly is the slow falloff at
infinity of ρðzÞ in the imaginary direction. In order to
analyze the relevant region y ¼ ∞, we introduce changes
of variables which effectively compactify the complexified
manifold. The numerical solutions are obtained by solving
the differential equation in the original and in the com-
pactified coordinates and matching both solutions. The
analysis shows that the presence of an anomaly, and hence a

bias, can be a quite general phenomenon in the complex
Langevin approach.
The paper is organized as follows: Spurious solutions

are discussed in Sec. II. The form of the anomaly is isolated
in Sec. III. In Sec. IV anomalous relations are derived
for a periodic action in one dimension. In Sec. V we prove
that the anomaly is not vanishing for that action.
Generalizations to other periodic actions are discussed in
Sec. VI. A nonperiodic action is analyzed in Sec. VII.
Finally, conclusions are presented in Sec. VIII.

II. SPURIOUS SOLUTIONS OF THE COMPLEX
LANGEVIN EQUATION

The complex Langevin approach is by far the most
frequently used method to construct representations of
complex probabilities. The method is easy to implement
efficiently and most importantly, if the action SðzÞ in
P ¼ e−S is local, i.e., only neighboring sites are coupled,
so is the complex Langevin algorithm. The main drawback
is that, unlike the real Langevin or other Monte Carlo
approaches for positive probabilities, the complex algo-
rithm does not have a sound mathematical basis. In fact, for
otherwise regular complex probabilities on the real axis, the
complex Langevin process may drift to infinity, or stabilize
at a wrong solution. The fact that this cannot be prevented is
a serious shortcoming of the method as a reliable tool.
Another limitation of principle is that the method requires
the target probability PðxÞ to have an analytical extension
on the complex plane. In practice this is not a crucial
problem since in many cases of interest in physics, SðzÞ is
holomorphic and so is PðzÞ.
As we will discuss in a moment, the complex Langevin

stochastic process dictates the evolution of a probability
density ρðz; tÞ on the complex plane Cn representing some
complex probability Pðx; tÞ on the real manifold Rn. (Here
we are simplifying; the construction can be carried out on
more general manifolds, such as Lie groups or coset
spaces.) The first problem is whether the stochastic process
converges at all. Assuming that this is the case, the main
goal is to make sure that complex probability at equilib-
rium, PðxÞ, fulfills the Fokker-Planck-like equation

0 ¼ ∇2PðxÞ þ ∇ð∇SðxÞPðxÞÞ: ð2:1Þ

Whether this is the case or not will be the subject of the
subsequent discussion. Momentarily we assume that
Eq. (2.1) holds. One can see that PðxÞ ¼ e−SðxÞ is a solution
of the equation and often this is actually the unique solution
in the space of normalizable functions. When the solution is
unique it automatically follows that the complex Langevin
algorithm correctly produces a representation of the target
complex probability, e−SðxÞ. However, a caveat sometimes
overlooked [47] is that one has to seek solutions in the
space of distributions, and not only in the space of regular
functions: because a distributional PðxÞ can be represented
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on the complex plane, the equilibrium solution ρðzÞ of the
Langevin process may also correspond to a distributional
complex probability on the real manifold. Without going
into details, in [7] (see also [33]) it was shown that spurious
solutions can be constructed through the following device
(here we consider a one-dimensional problem for simplic-
ity). For any observable AðxÞ and path Γ on the complex
plane, let

hAiΓ ¼
R
Γ dzPðzÞAðzÞR

Γ dzPðzÞ
; ð2:2Þ

where PðzÞ ¼ e−SðzÞ is the analytical extension of the target
complex probability. This procedure defines a complex
probability distribution PΓðxÞ through

hAiΓ ¼
Z

dxPΓðxÞAðxÞ: ð2:3Þ

Whenever Γ connects two zeros (finite or infinite) of PðzÞ,
or encircles a singularity of PðzÞ (so that

R
Γ dzPðzÞ is not

zero), PΓðxÞ turns out to be a solution of Eq. (2.1).
Homologous paths define the same distribution. Concrete
examples are shown in [7].
In practice, spurious solutions are only generated by the

complex Langevin algorithm if a kernel1 is chosen to select
them or if PðxÞ has zeros or singularities close to the real
axis. In this regard, it should be noted that even if the action
is regular in the natural coordinates, terms of the measure
can effectively go into the action and introduce singularities
there [55].

The reason for the preference of the algorithm for
smooth complex probabilities is related to the diffusion
term which tends to erase any wild x dependence. For
instance, for the action SðzÞ ¼ az4 with ReðaÞ > 0, inte-
gration along the real or along the imaginary axis defines
two different complex probabilities, both fulfilling
Eq. (2.1). However, the ρðzÞ produced by the complex
Langevin algorithm will be smooth in x and the Fourier
modes he−ikzi will go to zero for large k. This corresponds
to PðxÞ ¼ e−ax

4

. For the complex probability distribution
defined through integration along the imaginary axis, hekzi
will go to zero for large k but he−ikzi will not.

III. ANOMALY IN THE PROJECTED
FOKKER-PLANCK EQUATION

Wrong solutions can appear even for healthy looking
complex actions if Eq. (2.1) is not fulfilled due to the
presence of anomalous terms. This can be illustrated with
one exactly solvable case, namely, that with action2

SðxÞ ¼ iβI cosðxÞ; βI ∈ R: ð3:1Þ

Here x is a periodic variable and e−SðxÞ is normalizable in
½0; 2π�. The corresponding velocity flow is shown in the left
panel of Fig. 1. For this action, the Fokker-Planck equation
on the complex plane [Eq. (3.4) below] can be solved in
closed form and gives3
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FIG. 1. Velocity fields. Left: S ¼ i cosðzÞ with z ∈ ½−π; π� × ½−π; π�. Right: S ¼ cosðzÞ þ iz with z ∈ ½0; 2π� × ½−π; π�. The two
horizontal lines at y ¼ �arcsinhð1Þ indicate the strip where vyðzÞ ≤ 0 for all x.

1A kernel [54] is a modification in the algorithm that produces
0 ¼ −∂iðGijðxÞð∂jPðxÞ þ ∂jSðxÞPðxÞÞÞ. When GijðxÞ is a flat
metric, the modified process is equivalent to one without kernel
but in different variables.

2Besides a quadratic action and the trivial case ρðzÞ ¼
e−sðxÞδðyÞ when SðxÞ is real, we are not aware of further exact
equilibrium solutions of any complex Langevin dynamics.

3In the periodic case we use the normalizations
R
2π
0 dxPðxÞ ¼R

2π
0 dx

R∞
−∞ dyρðx; yÞ ¼ 1.
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ρðx; yÞ ¼ 1

4π

1

cosh2ðyÞ : ð3:2Þ

This density is translationally invariant (with respect to x)
so it corresponds to PðxÞ ¼ 1=ð2πÞ and certainly is not a
representation of PðxÞ ¼ e−iβI cosðxÞ unless βI ¼ 0. Note
that the expectation values he�iziρ are not ambiguous since
they are absolutely convergent, however they vanish, unlike
the correct result he�ixi ¼ iJ1ðβIÞ=J0ðβIÞ. The correct
results are reproduced by using a representation of the
two-branch-type [cf. Eq. (1.2)]. The distribution PðxÞ ¼
1=ð2πÞ is not a solution of Eq. (2.1), so this is not one of the
spurious solutions discussed in the previous section.
To analyze the problem related to violations of Eq. (2.1)

we will consider just the one-dimensional case with no
kernels. Since in the literature one can find “proofs” that the
complex Langevin method must converge to the correct
solution and much of what is known relies on numerical
experiments, we would like to reach here mathematically
solid conclusions at least for a simple but nontrivial case. In
the concrete example considered below [Eq. (4.1)], we find
that he−ikxi is correctly reproduced by the complex
Langevin method when k ¼ −1; 0; 1; 2; 3;… but wrong
values are obtained for k ¼ −2;−3;… For another study of
the reliability of the complex Langevin algorithm see [32].
Recall that complex Langevin is a Markovian process

with walker zðtÞmoving on the complex plane according to
the equation

dzðtÞ ¼ vðzðtÞÞdtþ ηðtÞ
ffiffiffiffiffiffiffi
2dt

p
; vðzÞ≡ −S0ðzÞ: ð3:3Þ

We always assume that the action can be holomorphically
extended to the complex plane, so SðzÞ is an entire function,
S0ðzÞ is its derivative, dt the infinitesimal fictitious time
step, and ηðtÞ is a real random variable independent for
each t with even distribution under η → −η and normalized
such that hη2i ¼ 1.
The real and positive probability density ρðz; tÞ of

finding the walker at z at time t, obeys the following
Fokker-Planck equation on the complex plane:

−∂tρ ¼ hρ≡ −∂2
xρþ ∂ðvρÞ þ ∂�ðv�ρÞ

¼ −∂2
xρþ ∇ · ðvρÞ: ð3:4Þ

Here

∂ ¼ 1

2
ð∂x − i∂yÞ; ∂� ¼ 1

2
ð∂x þ i∂yÞ;

v ¼ ðvx; vyÞ; v ¼ vx þ ivy: ð3:5Þ

In the complex Langevin process, the walker zðtÞ follows
a drift vðzÞ with a random noise η parallel to the real axis.
We will assume that the process reaches an equilibrium
distribution ρðzÞ, that is,

lim
t→þ∞

ρðz; tÞ ¼ ρðzÞ; hρðzÞ ¼ 0; ρ ≥ 0;
Z

d2zρ ¼ 1; ð3:6Þ

for arbitrary initial ρðz; t0Þ.
For the complex Langevin algorithm to work, Eq. (2.1)

must be a consequence of hρ ¼ 0. To discuss this matter, let
us introduce the projector operator that relates a density
ρðzÞ with its associated complex probability PðxÞ on the
real axis. This projector will be denoted K,

PðxÞ ¼ ðKρÞðxÞ: ð3:7Þ

The form of the operator K can be obtained from the
relation hAðxÞiP ¼ hAðzÞiρ, for any analytic observable A,

Z
dxdyρðx;yÞAðxþ iyÞ ¼

Z
dx

�Z
dyρðx− iy;yÞ

�
AðxÞ;

ð3:8Þ

therefore,

ðKρÞðxÞ ¼
Z

dyρðx − iy; yÞ;

ρðx − iy; yÞ≡ e−iy∂xρðx; yÞ: ð3:9Þ

The projection involves the analytical extension of ρðx; yÞ
as a function of x (we come back to this point below). The
relation is more transparent in terms of the Fourier modes.
Although many of the considerations extend to the non-
compact case, to be concrete we will consider in what
follows the case of periodic PðxÞ, with period 2π:

PðxÞ ¼ 1

2π

X
k∈Z

Pkeikx; ρðx; yÞ ¼ 1

2π

X
k∈Z

ρkðyÞeikx:

ð3:10Þ

For the projection

Pk ¼ ðKρÞk ¼
Z þ∞

−∞
dyekyρkðyÞ: ð3:11Þ

Let us note that Pk ¼ he−ikziρ, as defined from integra-
tion on the complex plane, is often conditionally conver-
gent. A suitable prescription is to integrate x first, and this
leads to the expression in Eq. (3.11). Of course, a necessary
condition for the complex Langevin approach to work at all
is to produce finite expectation values. Therefore, we will
assume that for the stationary solution the integrals in
Eq. (3.11) are convergent for all k, and in particular

lim
y→�∞

ekyρkðyÞ ¼ 0: ð3:12Þ
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If this is combined with the property

ρ�kðyÞ ¼ ρ−kðyÞ; ð3:13Þ

which follows from ρðzÞ being real, the stronger statement
obtains

lim
y→�∞

ejkyjρkðyÞ ¼ 0: ð3:14Þ

Next, it can be easily verified that the projection operator
K fulfills the following algebraic relations:

K∂x ¼ ∂xK; K∂y ¼ i∂xK − 2iK∂�;

K∂ ¼ ∂xK − K∂�; KfðzÞ ¼ fðxÞK ðfor analyticfðzÞÞ;
ð3:15Þ

as well as

ðK∂�pÞðxÞ ¼ i
2
pðx − iy; yÞ

���y¼þ∞

y¼−∞
: ð3:16Þ

[As usual fðxÞjba stands for fðbÞ − fðaÞ.]
These relations can be used to project the Fokker-Planck

equation, Eq. (3.4). This gives, on the real axis,

−∂tPðx; tÞ ¼ HP −A; ð3:17Þ

with

HP≡ −∂2
xPþ ∂xðvPÞ; A≡ 2iK∂�ðvyρÞ: ð3:18Þ

Assuming that the complex Langevin process converges
for large t, and provided that the anomalous term A
vanishes in that limit, the naive projected Fokker-Planck
equation is recovered

HP ¼ 0: ð3:19Þ

This is just Eq. (2.1).
At a formal level the anomaly A would be expected to

vanish quite generally.4 Indeed, using Eq. (3.16)

AðxÞ ¼ −ðvyρÞðx − iy; yÞjy¼þ∞
y¼−∞ ≔ AðxÞþ −AðxÞ−:

ð3:20Þ

This is a surface term that would vanish for a sufficiently
convergent vyρ.
The anomaly can be obtained in closed form for the

action S ¼ iβI cosðxÞ, using the known expression of ρðzÞ
and Eq. (3.20). This gives

AðxÞ� ¼ � iβI
4π

e�ix;

AðxÞ ¼ AðxÞþ −AðxÞ− ¼ iβI
2π

cosðxÞ: ð3:21Þ

The same result follows from using P ¼ 1=ð2πÞ and the
anomalous projected Fokker-Planck equation, Eq. (3.17).
The relation

AðxÞþ ¼ −Að−xÞ− ð3:22Þ

follows from parity symmetry of the action, and hence
of ρðzÞ.
A comment is in order related to the analytical exten-

sion implied in ρðx − iy; yÞ. Quite independently of the
complex Langevin problem, any sufficiently convergent
function ρðx; yÞ on the complex plane will produce finite
expectation values for a relevant set of holomorphic
observables (sufficiently well behaved at infinity) which
includes e−ikx. So we expect that ρðx; yÞ admits a decom-
position in Fourier modes with respect to x, with finite
components ρkðyÞ. The density ρðx; yÞ itself can have a
wild nonanalytic dependence (or even have distributional
character) with respect to x, but still we can formally work
with ρðx − iy; yÞ through its Fourier modes ekyρkðyÞ. If the
sum over k of these components does not converge [and so
ρðx − iy; yÞ does not exist as a function] they still define a
distribution and this is enough since in practice the
projected complex probability PðxÞ [Eqs. (3.7) and
(3.9)] or the anomaly AðxÞ [Eq. (3.20)] will be needed
within integrals over x weighted with some observable. In
the particular case of ρðx; yÞ produced by the complex
Langevin algorithm, we conjecture that the dependence on
x will be regular due to the smoothing effect of the
diffusion, so ρðx; yÞ could admit an analytical extension in
this case, even if this is not required for our analysis. What
will be relevant for the vanishing or not of the anomaly is
whether ekyρkðyÞ goes to zero sufficiently fast for large y.
Before proceeding we want to make the following

observation: the Fokker-Planck equation can also be
written as

−∂tρ ¼ −∂2ρþ ∂ðvρÞ − ∂�2ρþ ∂�ðv�ρÞ − 2∂∂�ρ:

ð3:23Þ

Upon projection to the real plane, the last term is formally
zero in the sense that for sufficiently convergent functions,
K∂� ≡ 0. If this term is removed one obtains the separable
solution ρ ¼ jPj2 which is real and positive but never
normalizable. jPðzÞj2 is formally a representation of PðxÞ
since

R
d2zAðzÞPðzÞPðzÞ� ¼ R

dzAðzÞPðzÞ R dz�PðzÞ� ¼R
dzAðzÞPðzÞ ¼ hAiP. As noted in [9], the convolution

of a representation with a radially symmetric positive
function automatically produces a new representation,

4In what follows, by anomaly we mean the anomaly
corresponding to the stationary solution of the Fokker-Planck
equation.
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so, in principle, jPj2 could be transformed into a valid
representation by applying a convolution.5 This is actually
the role of the last term −2∂∂�ρ ¼ − 1

2
∇2ρ, which imple-

ments a radially symmetric diffusion. The quadratic form
−∂2 − ∂�2 is not positive definite as it has a component of
diffusion in the x direction and another of antidiffusion in
the y direction. The term − 1

2
∇2ρ just cancels the anti-

diffusion. (One can add a further term −λ∇2, λ ≥ 0 and still
have an algorithm formally equivalent to the complex
Langevin. The solution will be more dispersed which, in
general, is not what one wants.) So the complex Langevin
algorithm is essentially equivalent to sampling jPj2 but
introducing some (minimal) diffusion at each step to
obtain a normalizable representation. A problem with this
approach is that neither jPj2 nor the radially symmetric
diffusion have a preference for the real axis as an
integration path, so spurious solutions are not always
screened out.

IV. ANALYSIS OF A U(1) ACTION

In this section we will analyze the anomaly problem for
the following periodic action:

SðxÞ ¼ β cosðxÞ þ imx; β; m > 0; m ∈ Z:

ð4:1Þ

This study is of interest because it would seem that
the complex Langevin method should work for this action
(see, e.g., [50]). The reason to expect this is that the
deterministic flow (i.e., the velocity field v) has an
attractive fixed point at

ðx ¼ π; y ¼ −y0Þ; y0 ≡ arcsinhðm=βÞ: ð4:2Þ

(See Fig. 1, right panel.) This point is outside the real axis
and this is a desirable property to obtain complex expect-
ation values for real observables such as cosðxÞ. Moreover,
if one computes the expectation values he�ixi for various β
and m using the complex Langevin they turn out to be
numerically correct.
However, there are reasons for concern. For one thing,

actions of the type β cosðzÞ with complex β behave as
1
2
βe�iz for y → ∓ ∞, so the phase of β can be absorbed by

a shift in x and only the modulus matters. This implies that
real or imaginary β are qualitatively similar in the region
relevant to the anomaly, and we have already seen that for
the imaginary case the algorithm gives incorrect results, at
least for m ¼ 0.

For another, the flow and the complex Langevin process
on the complex plane is qualitative similar whether the real
parameterm is an integer number or not. Regardless of this,
there will be some ρðzÞ of equilibrium which certainly will
be periodic by construction. Therefore, such ρðzÞ cannot
represent e−SðxÞ, which is not a periodic function for
noninteger m.
To proceed with the analysis of the action in Eq. (4.1) we

will exploit the following observation. For an action of the
type:

SðxÞ ¼ S0ðxÞ þ imx; S0ðxÞ ∈ R; m > 0; ð4:3Þ

it follows immediately that vyðx; 0Þ ¼ −m < 0 for all x.
Consequently a walker below the real axis will never cross
it again. If an equilibrium solution exists and is unique, this
implies that its support will be contained entirely on the
lower half plane, y ≤ 0.
Specifically, for S ¼ β cosðxÞ þ imx one finds that

vy < 0 on the strip jyj < y0 (Fig. 1, right panel), thus
the support of the equilibrium solution will lie in the
half-plane y ≤ −y0.

ρ ¼ 0 for y > −y0: ð4:4Þ

Another useful property of this action, which holds
whenever S0ðxÞ is an even function, is that the flow, and
hence ρðzÞ, is reflection symmetric with respect to the
imaginary axis, even if PðxÞ ¼ e−SðxÞ does not have such a
symmetry,6

ρðx; yÞ ¼ ρð−x; yÞ: ð4:5Þ

A direct application of Eq. (3.20) gives for the anomaly
(noting that the upper limit y → þ∞ vanishes in our case)

AðxÞ ¼
�
1

2
β cosðxÞ sinhð2yÞ þ iβ sinðxÞsinh2ðyÞ −m

�

× ρðx − iy; yÞ
���
y¼−∞

: ð4:6Þ

At this point an argument can be given suggesting that
the anomaly does not vanish: In the periodic case x is a
compact variable, so it can be expected that the random
noise tends to flatten the x dependence of ρ. Thus, in the
large y limit, the variation with y will be much more
important. Neglecting ∂xρ in the Fokker-Planck equation
one obtains (using the Cauchy-Riemann equation
∂xvx ¼ ∂yvy)

5For instance, a Gaussian e−x
2=a convoluted with e−x

2=b gives
e−x

2=ðaþbÞ; a negative a can be compensated with a sufficiently
positive b.

6This emergent symmetry is not the signal of a problem, it also
appears in the two-branch representations discussed in the
Introduction.
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0 ≈ ð∂xvxÞρþ ∂yðvyρÞ ¼
1

vy
∂yðv2yρÞ; ð4:7Þ

and hence the following estimate is obtained:

ρðx; yÞ ≈ CðxÞ
v2yðx; yÞ

: ð4:8Þ

[CðxÞ is an integration constant, with respect to y.] Since
one expects ρðx − iy; yÞ to behave like ρðx; yÞ for large y
(if the Fourier mode k ¼ 0 is dominant) this implies in our
case

ρðx − iy; yÞ ∼ e2y for y → −∞: ð4:9Þ

This asymptotic behavior allows a nonvanishing anomaly
in Eq. (4.6).
Incidentally, the ansatz in Eq. (4.8) will actually be exact

when vy is a separable function of x and y. In this case CðxÞ
can be chosen in such a way that ρ depends only on y.
However, the additional condition requiring vðzÞ to be a
holomorphic function leaves as essentially unique solution
that already given in Eqs. (3.1) and (3.2).
The annoying analytic extension implied in ρðx − iy; yÞ

in Eq. (4.6) can be dealt with by using Fourier modes.
Because ρ is an even real function of x it follows that

ρkðyÞ ¼ ρ−kðyÞ ¼ ρ�kðyÞ ∀ y; k: ð4:10Þ

An easy calculation gives for the anomaly (4.6) in terms of
Fourier modes

Ak ¼
�
1

2
β sinhðyÞðρkþ1 þ ρk−1Þ −mρk

�
eky

����
y¼−∞

;

ð4:11Þ

which can be simplified using Eq. (3.12):

Ak ¼ −
1

4
βeðk−1Þyρkþ1

���
y¼−∞

: ð4:12Þ

This result can be sharpened using Eq. (3.14), which
results in

Ak ¼
�
0 k ≥ 0

− 1
4
βeðk−1Þyρkþ1ðyÞjy¼−∞ k < 0

: ð4:13Þ

The condition that Ak should not diverge (necessary if
the complex Langevin algorithm should work at all)
implies that actually ρk must vanish at least as eð2þjkjÞy
for large negative y, i.e.,

lim
y→−∞

e−ð2þjkjÞyρkðyÞ < ∞: ð4:14Þ

This condition is more restrictive than Eq. (3.14).
According to Eq. (4.13), the first possible anomaly

comes from k ¼ −1,

A−1 ¼ −
1

4
βe−2yρ0ðyÞ

���
y¼−∞

: ð4:15Þ

In order to see the effect of the anomaly on the expect-
ation values he−ikxi ¼ Pk, let us rewrite the projected
Fokker-Planck equation, Eq. (3.17), in terms of Fourier
modes

−∂tPk ¼ kðkþmÞPk −
1

2
βkðPkþ1 − Pk−1Þ −Ak: ð4:16Þ

When ∂tPk ¼ 0 (equilibrium) and Ak ¼ 0 (no anomaly),
this recurrence relation (removing a global factor k) is that
of the Bessel functions. Its unique downward solution,
constrained by the conditions Pk → 0 for k → þ∞ and
P0 ¼ 1, is

Pk ¼
Imþkð−βÞ
Imð−βÞ

: ð4:17Þ

These are the correct expectation values of e−ikx

for SðxÞ ¼ β cosðxÞ þ imx.
We assume that, as a result of the diffusion term in the

complex Langevin, Pk → 0 for large k. Noting that the
quantities Ak vanish for k ≥ 0 and using P0 ¼ 1, it follows
from Eq. (4.16) that the Pk obtained by complex Langevin
will be correct for all k ≥ −1,

ΔPk ¼ 0 for k ≥ −1: ð4:18Þ

(ΔPk is the shift in the complex Langevin estimate
compared to the unbiased result.) The first anomalous
(i.e., biased) expectation value takes place for P−2.
Equation (4.16) at equilibrium provides the following
relation for k ¼ −1:

ΔP−2 ¼ −
2

β
A−1 ¼

1

2
e−2yρ0ðyÞ

���
y¼−∞

: ð4:19Þ

V. PROOF OF THE PRESENCE OF ANOMALIES

A. Compactification and numerical solutions

From inspection of the Fokker-Planck equation or the
complex Langevin process, it is not easy to decide whether
ρ0ðyÞ goes to zero faster than e2y for large negative y or not,
as required in Eq. (4.19). In order to clarify this issue we
will make a change of variables, from (x, y) to (X, Y), or
ðR;φÞ in polar form, such that φ≡ x and y ¼ −∞ will be
the new origin R ¼ 0,
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φ ¼ x; R ¼ −
1

sinhðyÞ ðy < 0Þ;

X ¼ R cosðφÞ; Y ¼ R sinðφÞ: ð5:1Þ

The coordinates (X, Y) only cover the lower half complex
plane of z. This is sufficient in our case. The original
manifold was a cylinder due to x ¼ 0≡ 2π. In the new
coordinates we have compactified the lower end of this
cylinder, y ¼ −∞, to a point, R ¼ 0, which is now a regular
point of the manifold (X, Y) (namely, its origin). Wewant to
show that R ¼ 0 is also a regular point of the complex
Langevin process in the new variables.
Let us denote σ the new density in coordinates (X, Y)

Z
2π

0

dx
Z

0

−∞
dyρ ¼

Z
R2

dXdYσ; ρ ¼ χR2σ;

χ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
: ð5:2Þ

We introduce Fourier modes as usual

σ ¼ 1

2π

X
k

eikφσkðRÞ; σk ¼ σ−k ¼
1

χR2
ρk: ð5:3Þ

The radial coordinate RðyÞ is such that ρ ≈ 4e2yσ for
large and negative y, thus

1

8π
ρ0ðyÞe−2y

���
y¼−∞

¼ σ0ð0Þ
2π

¼ σ
���
R¼0

≡ σð0Þ: ð5:4Þ

In this way the leading anomaly, Eq. (4.19), becomes

ΔP−2 ¼ 4πσð0Þ; ð5:5Þ

and its value depends on the value of the density σðX; YÞ at
the origin.
In the new coordinates, the Fokker-Planck equation takes

the form

−∂tσ ¼ −∂2
φσ þ ∂XðvXχσÞ þ ∂YðvYχσÞ ð5:6Þ

with

vX ¼ −mX − β; vY ¼ −mY; ∂φ ¼ X∂Y − Y∂X:

ð5:7Þ

The most relevant condition on the choice of RðyÞ is that
R ∼ ey. This ensures that (vX, vY) is finite at y → −∞. The
precise form of RðyÞ in Eq. (5.1) is such that vY has no
contribution from β. The function χ is harmless since it
equals 1 at the origin and is everywhere smooth (in fact
analytic) on the (X, Y) plane. For the present discussion χ
can be absorbed in σ.
The flow (vX, vY) is displayed in Fig. 2. We can see from

Eq. (5.7) that in (X, Y) coordinates the deterministic part of
the flow is just an inwards radial field with the center at the

attractive fixed point ðX ¼ −Rm; Y ¼ 0Þ, with Rm ≡ β=m.
The point R ¼ 0 (corresponding to y ¼ −∞) is not special
in any way for that flow. On top of this, −∂2

φσ is an angular
diffusion term which accounts for random shifts in the
angle φ of the walker without changing R. So this diffusion
term does not directly produce an increase nor decrease of
the density σ at the origin.
The stochastic angular jumps are of order 1 (times

ffiffiffiffiffi
dt

p
)

in the variable φ but they are small in the (X, Y) variables as
R approaches zero. The fields (vX, vY) and ∂φ are regular
everywhere. In the (X, Y) variables R ¼ 0 is a regular
point of the stochastic process and there is no mechanism at
work that would enforce σð0Þ ¼ 0. The conclusion is that
σð0Þ > 0 and there is a bias in the complex Langevin
method already for P−2.
The conclusion just mentioned is confirmed by numerical

solutions of Eq. (5.6) for the stationary case (see Fig. 3).
Among the various numerical approaches used (including
polar and Cartesian coordinates), we have obtained the best
result by using Fourier modes for the dependence on the
angular variable φ (rather than directly a mesh on φ) and a
regular grid for R. For the solution displayed in Fig. 3 we
have used 64 Fourier modes for φ and 64 points in R. We
have carried out calculations for several values of β and m.
As it would be expected, the value of σð0Þ, and hence the
anomaly, is enhanced for small values of β or large values
of m.
The expectation values Pk numerically obtained from

this σðX; YÞ agree well with the Bessel function exact result
for k ¼ þ1;−1, 2. For k ¼ −2, the exact expectation value
is P−2 ¼ 1. Instead of this, numerically one obtains P−2 ¼
4.86 for β ¼ 0.5 and m ¼ 1. This bias is quite consistent
with the relation (5.5),

1

1

2 21

2

1

2

FIG. 2. Velocity field of S ¼ cosðzÞ þ iz in variables (X, Y) in
the range ½−2; 2� × ½−2; 2�. The fixed point is at ð−1; 0Þ. The
circle indicates the boundary of the support of the equilibrium
solution, i.e., the locus of y ¼ −y0. The diffusion moves the
walker along circles centered at the origin (not displayed in the
figure).
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ΔP−2 ¼ 3.86; 4πσð0Þ ¼ 3.89 ðβ ¼ 0.5; m ¼ 1Þ:
ð5:8Þ

A standard complex Langevin simulation also correctly
reproduces Pk for k ¼ þ1;−1, 2 but becomes noisy
for k ¼ −2.
As we mentioned before, the unphysical case of non-

integer m is qualitatively similar to that of integer m as
regards to the complex Langevin process on the complex
plane, and this is also obvious from Eq. (5.7). Remarkably,
the arguments leading to Eqs. (4.18) and (4.19) hold for
noninteger m as well and we have confirmed this numeri-
cally: For m ¼ 0.5 or m ¼ ffiffiffi

2
p

we still find that the Pk as
obtained from σðX; YÞ reproduce Eq. (4.17) for k ≥ −1
whereas P−2 fulfills (5.5) at a numerical level.

B. Proof of the presence of anomalies from analyticity

Because establishing in an unambiguous manner the
existence of a bias in the expectation values of e−ikx is
important, we provide a different argument, based on the
analyticity of σðX; YÞ. In the absence of angular diffusion,
the walkers would accumulate at the attractive fixed point
ðX ¼ −Rm; Y ¼ 0Þ and, at equilibrium, σ would become a
Dirac delta there. The diffusion moves the walkers along
circumferences centered at the origin. The result (see
Fig. 3) is an equilibrium distribution with support on the
disk R ≤ Rm. The coefficients of the differential equa-
tion (5.6) are real-analytic functions at all points, so one
should expect that σ is real analytic for R < Rm. Certainly it
cannot be analytic on R ¼ Rm because σ becomes iden-
tically zero for R > Rm but σ should be C∞ there (except at
the fixed point) since the vanishing of the function is not
imposed as a boundary condition; instead it follows
automatically from the differential equation (this is also

observed numerically). The only point where σ may be
nonsmooth is at the fixed point. There, the vanishing of vX
and vY allows us to have a discontinuous radial derivative
of σ (although the function itself is continuous). The
angular derivative must be continuous due to the smoothing
effect of the diffusion. At equilibrium σ fulfills the differ-
ential equation at all points except at the fixed point. As a
distribution, σ fulfills the differential equation everywhere.
Therefore, the origin is a regular point of σðX; YÞ and this

can be used to show that not all the anomalies Ak can
vanish simultaneously. First note that the nontrivial anoma-
lies, Eq. (4.13), can be expressed as

A−k−1 ¼ −β
�
2

R

�
k
σkðRÞ

����
R¼0

; k ≥ 0: ð5:9Þ

That σ, or equivalently χσ, is real analytic at R ¼ 0 implies
that

χσk ¼ RjkjfkðR2Þ; ð5:10Þ

where the functions fkðξÞ are also analytic. Thus,

A−k−1 ¼ −β2kfkð0Þ; k ≥ 0: ð5:11Þ

So, analyticity of σ already guarantees that the anomalies
Ak are finite (instead of divergent).
Let us assume that all anomalies were vanishing. In this

case, fkð0Þ ¼ 0 for all k (recall that fk ¼ f−k since σk
and ρk have the same property). This merely implies that
σ ¼ R2τ with τðX; YÞ analytic, but it is not inconsistent
with σ being analytic. To find a contradiction one must
resort to the equilibrium Fokker-Planck equation. In terms
of the fkðξÞ (ξ≡ R2) the equation takes the form

0.4 0.2 0.0 0.2 0.4
0

2

4

6

8

10

FIG. 3. Function σðX; YÞ for β ¼ 0.5 andm ¼ 1. Left: σ on the (X, Y) plane. The support is located on R ≤ Rm ¼ β=m. The numerical
calculation uses 64 Fourier modes in φ and 64 points in the mesh of the variable R. Numerical derivatives in R were obtained using 5
points. Right: Sections of σðX; YÞ along the X (solid blue line) and Y (dashed black line) axes. σð0Þ ¼ 0.310.
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0 ¼ −2mðf0 þ ξf00Þ − 2βðf1 þ ξf01Þ;

0 ¼
�
k2

χ
−mðkþ 2Þ

�
fk − βðkþ 1Þfkþ1 − 2mξf0k

− βðf0k−1 þ ξf0kþ1Þ ðk ≥ 1Þ; ð5:12Þ

where the prime indicates differentiation with respect
to ξ.
Incidentally, the first equation in (5.12), correspond-

ing to k ¼ 0, is equivalent to the condition that at
equilibrium no net flux traverses any y ¼ constant line,R
dxvyρ ¼ 0. That equation admits the closed solution

σ1 ¼ − m
β Rσ0. Since jσkj ≤ σ0 one would obtain a con-

tradiction for R > Rm. The resolution is that σ ≡ 0
for R > Rm.
Coming back to the proof, let us assume that fkð0Þ¼0

for all k (no anomaly). Setting ξ ¼ 0 in the second
equation in (5.12) immediately implies f0kð0Þ ¼ 0 for all
k as well. From this, taking a derivative with respect to ξ
and setting ξ ¼ 0 one obtains in turn f00kð0Þ ¼ 0. In fact,

by induction, having already fðnÞk ð0Þ ¼ 0 for 0 ≤ n ≤ N,
it follows that ∂N

ξ ðξf0kÞð0Þ ¼ 0, so applying ∂N
ξ to the

equation and taking ξ ¼ 0 one concludes fðNþ1Þ
k ð0Þ ¼ 0.

Now, if all the derivatives of the fkðξÞ vanish at a point
and the functions are analytical they must be identically
zero, along with σ for all (X,Y). This incorrect conclusion
is avoided if some of the anomalies are not zero.

C. Alternative proof of the presence of anomalies

We have just shown for S ¼ β cosðxÞ þ imx (β ∈ R) that
the analyticity of σðX; YÞ plus the assumption of a
vanishing of all anomalies would imply the absurd con-
clusion σðX; YÞ≡ 0. Here we want to show that a contra-
diction can be obtained assuming only that all the Fourier
modes ρkðyÞ fall off exponentially for large negative y. This
is a weaker assumption because analyticity requires pos-
itive integer powers of ey and here we allow fractional
powers.
Specifically we assume

∀k ≥ 0 lim
y→−∞

e−αkyρkðyÞ ¼ ak;

lim
y→−∞

e−αkyρ0kðyÞ ¼ akαk; ð5:13Þ

(the prime indicates derivative with respect to y) with

αk ¼ kþ 2þ δk; δk ≥ 0; ak ≠ 0: ð5:14Þ

The condition δk ≥ 0 implements Eq. (4.14). The corre-
sponding anomaly vanishes if δk > 0.
The Fokker-Planck equation in terms of Fourier modes

of ρ takes the form

0 ¼ k2ρk −mρ0k þ
β

2
coshðyÞððkþ 1Þρk−1 − ðk − 1Þρkþ1Þ

þ β

2
sinhðyÞðρ0k−1 þ ρ0kþ1Þ: ð5:15Þ

Using ρk ∼ akeαky and retaining the leading terms yields,
for k ≥ 1,

0¼ ðk2 −mðkþ 2þ δkÞÞakeðkþ2þδkÞy −
β

4
ak−1δk−1eðkþδk−1Þy

−
β

4
ð2kþ 2þ δkþ1Þakþ1eðkþ2þδkþ1Þy þ subleading:

ð5:16Þ

If we assume that all δk > 0 (no anomalies), it follows
that the term with ak−1 does not vanish (because δk−1 ≠ 0)
and this term will be dominant, thus violating the equation,
unless δk−1 is sufficiently large to match the two other
terms. Specifically,

δk−1 ≥ 2þminðδk; δkþ1Þ ∀ k > 0: ð5:17Þ

However, it easy to see that such a strict condition is
unattainable. Starting from some large N, the assumption
δN; δN−1 > 0 implies δN−2 > 2; in turn this implies
δN−3 > 2 and hence δN−4> 4, and eventually δN−2n > 2n
whenever 2n ≤ N. But N is arbitrary, thus Eq. (5.17) can
only hold if δk is larger than any even number, i.e., δk ¼ ∞.
In other words, any exponential falloff is incompatible
with the assumption of no anomalies. Since a falloff faster
than exponential seems incompatible with the complex
Langevin algorithm we conclude that Eq. (2.1) gets an
anomaly for the action S ¼ β cosðxÞ þ imx.
The behavior ρ ∼ e2y not only gives rise to anomalies in

Eq. (2.1), it also entails that the integrals
R
d2zρðzÞe−ikz are

not absolutely convergent for jkj ≥ 2, although they can be
given a natural meaning by expressing them in terms of
Fourier modes. The conditional convergence implies that
the variance would diverge in a straight Monte Carlo
approach of those expectation values. Once again we point
out that there is nothing pathological with the action
β cosðxÞ þ im itself; any holomorphic observable on the
finite complex plane has an absolutely convergent expect-
ation value using a two-branch representation of the type
described in the Introduction, since the support of such
representations is bounded.

VI. GENERALIZATION TO OTHER U(1) ACTIONS

A. Action β cosðxÞ with complex β

As for generalizations of the previous analysis to other
actions, let

DOES THE COMPLEX LANGEVIN METHOD GIVE … PHYSICAL REVIEW D 94, 114505 (2016)

114505-11



SðxÞ ¼ β1eix þ β−1e−ix þ imx; β�1 ∈ C; m ∈ Z:

ð6:1Þ

Following similar steps as for S ¼ β cosðxÞ þ imx one
easily obtains [using Eq. (3.12)]

Ak ¼ −
1

2
β�1e

ðk−1Þyρkþ1ðyÞ
���
y¼−∞

−
1

2
β�−1e

ðkþ1Þyρk−1ðyÞ
���
y¼þ∞

: ð6:2Þ

A0 must vanish since this is equivalent to conserving the
number of walkers and we have already assumed that the
process has a stable normalizable equilibrium solution. For
the remaining anomalies, in the present case there are no
symmetries helping to remove some of them. In particular,
barring accidental cancellations there will be anomalies
A�1 coming from ρ0ðyÞ at y ¼ �∞. In fact, doing changes
of variables R ∼ e∓y to compactify y ¼ �∞ as before, one
finds again that the points at infinity are regular, the density
in the transformed coordinates are finite (nonzero) and
these anomalies do not vanish. These two anomalies
contaminate all the expectation values through the recur-
rence relation. The action S ¼ iβI cosðxÞ illustrates this
effect. There all the Ak vanish except A�1 (due to ρk ¼ 0
for k ≠ 0) and all expectation values other than P0 are
incorrect (they vanish).
In order to sustain the previous arguments more quanti-

tatively, let us consider an action of the type

SðxÞ ¼ β cosðxÞ; β ∈ C: ð6:3Þ

This action is an even function of x; correspondingly, the
equilibrium solution of the Fokker-Planck equation, ρðzÞ, is
an even function of z.
We have proceeded to numerically solve the Fokker-

Planck equation at equilibrium. The differential equation
can be written in variable z ¼ xþ iy; nevertheless, in order
to study the region of large jyj, relevant for anomalies, it is
convenient to use additional suitable variables. Specifically,
we use the variables (X, Y) introduced in Eq. (5.1), and the
associated density σðX; YÞ. These variables compactify the
complex plane and have the virtue that the corresponding
drift has a finite velocity at X ¼ Y ¼ 0 with vanishing
diffusion there. The variables (X, Y) only cover the lower
half-plane y < 0; however, since ρðzÞ is an even function
we can work on that lower half-plane without loss of
generality.
Our approach has been to solve the differential equation

for ρðx; yÞ on the strip−yc < y < yc (actually −yc < y < 0
suffices due to the symmetry) and solve for σðX; YÞ on the
disk R < Rc, where Rc ¼ 1= sinhðycÞ. The two solutions
are matched at R ¼ Rc. The matching parameter yc is
chosen for a given β attending to numerical convenience.
Once again we use Fourier modes for the dependence on

the variable, x≡ φ, in both sectors, and regular meshes for
y and R. The correct boundary condition at R ¼ 0 is
selected by imposing that no net flux passes through the
origin (or in fact any circle R ¼ constant, we take R ¼ Rc).
The exact solution is known for purely imaginary non-

vanishing β, namely,

ρ ¼ 1

4π

1

cosh2ðyÞ ; σ ¼ 1

4π

1

χ3ðRÞ ðβ ¼ −β�Þ: ð6:4Þ

[χðRÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
.] Note that the integral of σ over the

(X, Y) plane is 1=2 since this covers only y < 0.
A numerical solution for β ¼ 0.25þ i0.5 is displayed in

Fig. 4. The matching of the two sectors has been chosen at
Rc ¼ 2. The two forms ρðx; yÞ (left) and σðX; YÞ (right) are
shown. As one would anticipate, for this β the value of ρð0Þ
is larger than 1=ð4πÞ ≈ 0.08 while σð0Þ < 1=ð4πÞ. The
value 1=ð4πÞ corresponds to purely imaginary β [see
Eq. (6.4)]. The presence of a real part in β brings the
distribution closer to the real axis, hence, enhancing ρð0Þ
and quenching σð0Þ. As shown subsequently, Eq. (6.6), a
nonzero value of σð0Þ, as clearly displayed in Fig. 4 (right
panel), implies the presence of an anomaly in the projected
Fokker-Planck equation.
Regarding the anomaly for the actions β cosðxÞ, since the

Fokker-Planck equation preserves the parity of the action,
one has

Ak ¼ A−k: ð6:5Þ

From Eq. (6.2) and Eq. (3.14), it follows that

A1 ¼ −
1

4
β�e2yρ0ðyÞ

���
y¼þ∞

¼ −β�σ0ð0Þ ¼ −2πβ�σð0Þ:
ð6:6Þ

Therefore, as expected there is an anomaly whenever
σðX; YÞ is sizable near R ¼ 0. This is a regular point of
the stochastic process in the new variables and σð0Þ is
nonvanishing in general (Fig. 4).
To see the bias introduced by the anomaly of Eq. (6.6) on

the expectation values, we again make use of the projected
Fokker-Planck equation, Eq. (4.16), with m ¼ 0 and
complex β. Selecting the stationary case, ∂tPk ¼ 0, gives
for k ¼ 1, using P0 ¼ 1,

0 ¼ P1 −
β

2
ðP2 − 1Þ þ 2πβ�σð0Þ: ð6:7Þ

This equation holds with σð0Þ ¼ 0 for the exact expectation
values in Eq. (4.17). Therefore, the biases ΔP1, ΔP2

introduced by the anomaly fulfill the relation

ΔP1 −
β

2
ΔP2 ¼ −2πβ�σð0Þ: ð6:8Þ
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Numerically, we obtain ðβ ¼ 0.25þ i0.5Þ

ΔP1 −
β

2
ΔP2 ¼ −0.103539þ i0.207078;

−2πβ�σð0Þ ¼ −0.103545þ i0.207089: ð6:9Þ

The existence of a bias for complex β is consistent with
similar findings in the recent work [37] which studies the
analytically solvable two-dimensional Yang-Mills theory
with a complex coupling constant.

B. Other U(1) actions

One can consider more general actions of the form

SðxÞ ¼
Xn
k¼n0

βkeikx þ imx; n0 ≤ n: ð6:10Þ

The case n ¼ n0 ¼ 0 is of no interest (and it is not
normalizable unless m ¼ 0) so either n > 0 or n0 < 0 or
both. Let us assume n > 0 for definiteness. In this case, the
analytically extended action SðzÞ will be dominated by the
mode k ¼ n for large negative y; i.e., as regards to its
behavior at y ¼ −∞, this action is equivalent to βneinz.
This is a periodic action with period 2π=n, and in each
period it is equivalent to the action βneiz with z ∈ ½0; 2π�,
which brings us to Eq. (6.1) already studied. Therefore,
barring accidental cancellations, one should expect that
anomalies are generated at y ¼ −∞ yielding a bias in the
expectation values.
For a different generalization, one can consider a lattice

with variables at sites or links and contributions of the type
β cosðϕÞ to the action, with a chemical potential or other

mechanism making the variables to go to the complex
plane. One can expect that the use of the complex Langevin
algorithm will introduce a bias in the expectation value of
the observables. The reason is that once the ensemble has
reached the equilibrium, one can always keep updating the
configurations without changing that equilibrium. This is
true if one chooses to update just a single variable, and this
leads us to the one-dimensional case we have been study-
ing. In this view, a bias in the conditional distribution of a
single variable implies a bias in the full distribution. On the
other hand, updating just one variable is not the prescription
of the standard complex Langevin algorithm, so this
argument is not conclusive.

VII. ANALYSIS OF A NONPERIODIC ACTION

We have already noted in the Introduction that a harmless
looking action such as S ¼ x4=8þ 2ix cannot be repro-
duced by complex Langevin algorithm. The reason is that
he−ixi ¼ −4.98, yet at equilibrium all Langevin walkers are
below the real axis, so jhe−ixiCLj ≤ 1.
In this section we want to study the presence of

anomalies in a nonperiodic system. Specifically, we con-
sider the following one-dimensional action:

SðxÞ ¼ β
x4

4
; Reβ > 0: ð7:1Þ

Clearly, the symmetry SðxÞ ¼ Sð−xÞ will be shared by the
complex Langevin equilibrium solution on the complex
plane,

ρðzÞ ¼ ρð−zÞ; z ∈ C: ð7:2Þ

FIG. 4. Stationary solution of the Fokker-Planck equation of S ¼ β cosðxÞ for β ¼ 0.25þ i0.5. Left: ρðx; yÞ for 0 ≤ x ≤ 2π. This
function is periodic in x and ρðx; yÞ ¼ ρð−x;−yÞ. Right: σðX; YÞ. In the numerical solution the matching was set at Rc ¼ 2. For x≡ φ,
64 Fourier modes were used and 64 points in the R and y grids. Numerical derivatives in R and y were obtained using 5 points.
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The fixed point of the deterministic flow is at z ¼ 0. It is
attractive in one direction (the real axis rotated by β1=2) and
repulsive in the orthogonal one.7

For convenience, we will allow an extra isotropic
diffusion term in the complex Langevin process:

−∂tρ ¼ −∂2
xρþ ∇ · ðvρÞ − λ∇2ρ; λ ≥ 0: ð7:3Þ

As noted before, this is formally correct and the algorithm
with nonvanishing λ has as much mathematical justification
as the standard treatment. However the extra diffusion
tends to spread the equilibrium distribution, thereby
increasing the variance in the Monte Carlo calculation of
the observables. Also, a possible anomaly is enhanced as
regions away from the real axis become more populated.
Mathematically, the equilibrium solution is better behaved
for positive λ, in particular, we expect ρðzÞ to be real
analytic for all finite z.
For the action in Eq. (7.1), the Fokker-Planck equation,

with λ, becomes

−∂tρ ¼ −β∂ðz3ρÞ − β�∂�ðz�3ρÞ − ∂2ρ − ∂�2ρ

− 2ð1þ 2λÞ∂∂�ρ: ð7:4Þ

Because the anomaly is related to the large y region, we
will introduce a new set of coordinates (X, Y) centered at
z ¼ ∞. Specifically,

Z ¼ X þ iY ¼ 1

z2
; z ¼ xþ iy: ð7:5Þ

Let us denote by σðX; YÞ the density in the new coordinates,

ρðzÞ ¼ 4R3σðZÞ; R ¼ jZj: ð7:6Þ

Note that the Z plane only covers a half-plane of z. This
is sufficient due to the symmetry z → −z of ρðzÞ. Of
course, σ is normalized on the Riemann surface, so it has
normalization 1=2 on the Z plane.
The new coordinate has been chosen so that the new

deterministic flow has a finite velocity near Z ¼ 0. Indeed,
the Fokker-Planck equation in coordinates (X, Y) takes
the form

−∂tσ ¼ ∂ðð2β þ 6Z2ÞσÞ þ ∂�ðð2β� þ 6Z�2ÞσÞ
− 4∂2ðZ3σÞ − 4∂�2ðZ�3σÞ − 8ð1þ 2λÞ∂∂�ðR3σÞ;

ð7:7Þ

and the velocity at Z ¼ 0 is 2β.
Using the two sets of coordinates, z and Z, we have

obtained numerical solutions for various values of β
and λ. Similarly to the treatment in Sec. VI, the original
coordinates (x, y) are used on a disk r ¼ jzj ≤ rc and the
new coordinates (X,Y) are used on R ¼ jZj ≤ Rc with
Rc ¼ 1=r2c. The two solutions are matched at the boundary,
imposing the condition of zero net flux there. This con-
dition fixes the regularity condition at Z ¼ 0. Grids are
used for r and R and a finite number of Fourier modes are
used for the angular variable. Numerical results for ρðzÞ
and σðZÞ with β ¼ 0.1þ i0.5 are displayed in Fig. 5 for
λ ¼ 0 and Fig. 6 for λ ¼ 0.5. As it would be expected, ρ is

FIG. 5. The functions ρðx; yÞ (left) and σðX; YÞ (right) for S ¼ βx4=4 with β ¼ 0.1þ i0.25 and λ ¼ 0. The matching is taken at
rc ¼ 1.414. A 64 point mesh is used for the interval 0 < r < rc and 128 for 0 < R < Rc. Thirty-two Fourier modes are used for argZ
(corresponding to 64 modes for arg z). Numerically we find σð0Þ ¼ 0.011 for this action.

7Stationary points (S00 ¼ 0) which are nondegenerated (S000 ≠ 0),
are either attractive [ReðS000Þ > 0], repulsive [ReðS000Þ < 0], or
neutral [ReðS000Þ ¼ 0]; however, z ¼ 0 is a degenerated fixed point
in our case.
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smoother and wider for λ ¼ 0.5 and also σ is larger near
to Z ¼ 0.
Numerically we find an anomaly in the expectation

values. The effect is more visible for nonvanishing λ and
this is the case we study in what follows. In order to
elucidate the presence or not of an anomaly in the projected
Fokker-Planck equation Eq. (3.17), we will analyze the
behavior of σðZÞ in the region Z ¼ 0, equivalent to large z.
From inspection of the Fokker-Planck equation for σ, it
follows that the diffusion does not play a dominant role
near R ¼ 0. In that region, the equilibrium equation can be
simplified to

0 ≈ β∂σ þ β�∂�σ ¼ βR∂Xσ þ βI∂Yσ; β ¼ βR þ iβI:

ð7:8Þ

Defining rotated variables

u ¼ X
βR

−
Y
βI

; u0 ¼ X
βI

þ Y
βR

; ð7:9Þ

Eq. (7.8) expresses that σ depends only on u and not on u0.
We have verified this scaling in our numerical solution. In
Fig. 7 we plot the values of σðX; YÞ against u in the region
jyj ≥ 3 for the same action and λ as in Fig. 6. The result
shows scaling, in the sense that u alone determines the
value of σ.
Fig. 7 not only shows scaling in u in the large y limit, but

it also suggests that σðuÞ is actually rather flat. This can be
understood as a consequence of the diffusion: the flux is
constant along the flux lines and the diffusion (which is
active not too close to Z ¼ 0) tends to equate the flux on the
different lines, making the flux to be nearly constant
everywhere. Near the origin, a constant flux implies a
constant density σ, since there the velocity is almost
constant. This observation suggests a simple model for

the behavior of ρðx; yÞ in the region of large jyj, namely
[using Eq. (7.6)]

σ ≍ σð0Þ; ρ ≍ ρsðzÞ≡ 4σð0Þ
jzj6 ðjyj → ∞Þ: ð7:10Þ

The numerical validity of such asymptotic dependence is
verified in Fig. 8. Figure 8(a) represents the ratio ρ=ρs on
the (x,y) plane. This ratio is close to unity outside a
bounded region around the origin z ¼ 0. Figure 8(b) shows
the marginal density NðyÞ ¼ R

dxρðx; yÞ compared to that
corresponding to ρs, NsðyÞ ¼ 3πσð0Þ=ð2y5Þ.
The combination of mathematical arguments and

numerical evidence on the validity of the asymptotic form
in Eq. (7.10) suggests that ρsðzÞ contains the relevant

FIG. 6. Same as Fig. 5 for λ ¼ 0.5. Numerically σð0Þ ¼ 0.292.

FIG. 7. For β ¼ 0.1þ i0.25 and λ ¼ 0.5, values of the density
σðZÞ plotted against the scaling variable u ¼ X=βR − Y=βI . The
444 values shown correspond to a subset of the points used
in the numerical solution of the differential equation (except
that the 32 Fourier modes have been traded for 32 angular
directions) defined by the condition jyj ≥ 3. For these parameters
σð0Þ ¼ 0.292.
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information regarding the existence of an anomaly in the
projected Fokker-Planck equation. [Note however that we
would really need to estimate ρðx − iy; yÞ rather than
ρðx; yÞ.] In the presence of the new diffusion parameter
λ, the anomaly (3.20) picks up an additional term and it is
changed to

AðxÞ ¼ −ðvyρþ 2iλ∂zρÞðx − iy; yÞjy¼þ∞
y¼−∞

≡AðxÞþ −AðxÞ−: ð7:11Þ

The new term with λ is more convergent that the standard
one and so it is irrelevant to the anomaly. Nevertheless, the
parameter λ has an indirect effect on the anomaly through
its influence on ρðzÞ. A direct calculation assuming that ρs
saturates the anomaly gives

AðxÞ� ¼ 2iβ�σð0Þ
x3

: ð7:12Þ

As expected the term with λ has a vanishing contribution in
the jyj → ∞ limit.
As it stands AðxÞþ ¼ AðxÞ−, and the anomaly would

cancel. In fact, PðxÞ is an even function, and AðxÞ must
also be even since parity is not broken by the Fokker-
Planck equation. Hence, the AðxÞ� just found, which are
odd functions, could never have a net contribution to the
anomaly. However, the result is singular at x ¼ 0 and a
local distribution of the same dimension, δ00ðxÞ, can be
present upon regularization. Such a local distribution is an
even function and would contribute to the anomaly. In order
to have a regularized result we turn to the computation in
momentum space. The anomaly in Eq. (7.11) takes the
form

~AðkÞ� ¼ −ekyð ~vy � ~ρs þ λð∂y − kÞ~ρsÞjy¼�∞: ð7:13Þ

Use of the relations ~z� ¼ ið∂k þ yÞ, ~z�� ¼ ið∂k − yÞ in
vy ¼ −ðβz3 − β�z�3Þ=2i and

~ρsðk; yÞ ¼ 4πσð0Þðk2y2 þ 3jkyj þ 3Þ e
−jkyj

8jyj5 ð7:14Þ

yields well-defined distributions in momentum space,
namely,

~AðkÞ� ¼∓ 2πβ�σð0Þk2θð�kÞ; ð7:15Þ

which correspond to

AðxÞ� ¼ 2iβ�σð0ÞP 1

x3
� πβ�σð0Þδ00ðxÞ: ð7:16Þ

So finally, the assumption that ρs saturates the anomaly
yields

AðxÞ ¼ 2πβ�σð0Þδ00ðxÞ: ð7:17Þ

When this expression is introduced in the anomalous
projected Fokker-Planck equation at equilibrium,

0 ¼ ∂xðvP − ∂xPÞ − aδ00ðxÞ; a≡ 2πβ�σð0Þ; ð7:18Þ

the normalized biased solution is obtained as

PðxÞ ¼ ð1þ aÞP0ðxÞ − aδðxÞ ð7:19Þ

where P0ðxÞ is the normalized unbiased solution
P0 ∝ e−βx

4=4.
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FIG. 8. For the solution of Fig. 6: (a) Ratio ρ=ρs ¼ σ=σð0Þ on the z plane. ρ is close to ρs in the asymptotic region. (b) Marginal
probabilities NðyÞ of ρ (solid line, blue) and ρs (dashed line, black). They only differ in the region jyj < 2.
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For a generic observable OðxÞ, the anomalous expect-
ation value becomes

hOi ¼ ð1þ aÞhOi0 − aOð0Þ; ð7:20Þ

where hOi0 is the unbiased result. In particular8

hxni ¼ ð1þ aÞhxni0; n > 0: ð7:21Þ

This relation can be tested numerically. For β ¼ 0.1þ
i0.25 and λ ¼ 0.5, a ¼ 0.184 − 0.459i, and we obtain

hx2i0 ¼ 1.079 − 0.730i; hx4i0 ¼ 1.379 − 3.448i;

hx2i ¼ 0.946 − 1.238i; hx4i ¼ 0.107 − 4.664i;

ð1þ aÞhx2i0 ¼ 0.942 − 1.359i;

ð1þ aÞhx4i0 ¼ 0.050 − 4.714i: ð7:22Þ

These results show that there is indeed a bias in the
complex Langevin solution. Furthermore, the anomaly
estimated from Eq. (7.17) gives a fair description of the
bias in hx2i and hx4i. For higher powers the numerical
errors accumulate and it is harder to draw definite con-
clusions. Also, in the most interesting case of λ ¼ 0, σð0Þ is
too small and any possible bias competes with the numeri-
cal error of the calculation.
It is possible that asymptotic subleading corrections to ρs

could give a contribution to the anomaly. An easy calcu-
lation generalizes the result in Eq. (7.17). Specifically, a
subleading term of the type

cn;m
jzj6

1

znz�m
ð7:23Þ

in ρ would yield a contribution to AðxÞ equal to

cn;mπβ�
ð−1Þn
ðnþ 2Þ! δm;0δ

ðnþ2ÞðxÞ: ð7:24Þ

Such terms would modify the expectation values of higher
powers of x.
Note that we have not directly applied the analytic

projection operator K to ρsðzÞ to obtain an estimate of
PðxÞ. From dimensional considerations, the projection of
ρsðzÞ would yield a δð4ÞðxÞ term. However, when this is
analyzed in momentum space, it can be seen that the k4

term comes from the small y region, where the estimate
ρsðzÞ is not reliable. If the small y region is removed, one
obtains instead k2, i.e., a δ00ðxÞ estimate for PðxÞ. The
problem with this procedure is that it is not clear which part
of the estimate is anomalous and which part is just a regular
contribution from P0ðxÞ ¼ e−SðxÞ.

VIII. SUMMARY AND CONCLUSIONS

As noted in the Introduction, very general complex
probability distributions admit a representation on the
complexified manifold. The goal of the complex
Langevin method is to construct one such valid represen-
tation for e−SðxÞ. While the method is certainly handy and
elegant, in the Introduction it is shown that perfectly valid
complex actions cannot be reproduced with this approach,
just from an analysis of the support of ρCLðzÞ on the
complexified manifold. Also it is shown that barring the
cases of quadratic or real actions, the only known exact
solution of a stationary Fokker-Planck solution [see
Eqs. (3.1) and (3.2)] gives completely incorrect results,
even for the two Fourier modes for which the integrals are
absolutely convergent.
It was already known [7] that even if the projected

Fokker-Planck equation is the naive one, spurious solutions
of it can be selected by the algorithm. This is briefly
reviewed in Sec. II. However, in practice such spurious
solutions have to be enforced by using a suitable kernel or
by choosing a complex probability with zeros or poles on
the complex plane. A more pressing problem is discussed
in Sec. III, namely, the emergence of an anomaly in the
projected Fokker-Planck equation [see Eqs. (3.17) and
(3.20)]. The anomaly AðxÞ is a surface term which would
be absent if the stationary density ρðzÞ were sufficiently
convergent far from the real manifold. Similar boundary
terms have been described in the analysis of [51]. Here we
provide a precise mathematical form to the anomaly which
allows us to derive explicit anomalous relations between
the behavior at infinity and the bias induced on the
observables [see e.g., Eqs. (4.19), (6.8), or (7.21)].
In Sec. IV we analyze the one-dimensional periodic

action β cosðxÞ þ imx (with real β and integer m). This
action is of interest because in a Monte Carlo simulation
using the complex Langevin, correct expectation values are
obtained for cosðxÞ and sinðxÞ. Also, the flow on the
complex plane looks healthy and with suitable located fixed
points [see Fig. 1, (right panel)], yet this is not guarantee of
a correct behavior. As noted, the flow would be qualita-
tively similar when m is not an integer, and in that case the
stochastic process would produce some necessarily peri-
odic distribution which certainly would not be a represen-
tation of e−β cosðxÞ−imx, which is not a periodic function.
Also, the anomaly depends on how often the Langevin
walkers visit the remote regions far from the real manifold
and this is not obvious from the topology of the flow. As it
turns out, we are able to show that the anomaly does not
affect the expectation values of Fourier modes with k ¼
−1; 0; 1; 2; 3;… (for positive m), and hence the complex
Langevin method provides a stationary solution which
correctly reproduces all those modes. However, an anomaly
is present and all the k < −1 modes are biased. This warns
us that conclusions based solely on numerical experiments
could be misleading.8hxni0 ¼ ð4=βÞn=4Γðnþ1

4
Þ=Γð1

4
Þ for even nonnegative n.
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That an anomaly is necessarily present for the action
β cosðxÞ þ imx is proven in detail in Sec. V. For positivem,
the support of ρðzÞ (the stationary solution of the complex
Langevin process) lies entirely on the lower half plane. Our
approach is to make a change of variables (x, y) to (X, Y)
which effectively compactifies the large negative y region
to a point; this is the origin in the new variables. We show
that this point is perfectly regular for the stochastic process
in the new variables [see Eq. (5.7) and Fig. 2], and in
particular the density σðX; YÞ [related to ρðx; yÞ by the
Jacobian of the change of variables] is strictly nonzero at
ðX; YÞ ¼ 0. This suffices to show that there is an anomaly
in the projected Fokker-Planck equation for this action [see
Eq. (5.5)]. Further, we numerically solve the differential
equation using a finite number of Fourier modes for the
periodic variable x and a mesh for R (related to y). This
allows us to verify numerically all the relations previously
derived.
The study of anomalies in more general periodic

actions is addressed in Sec. VI. It is argued that the
anomaly does not vanish in the general case. We analyze
in some detail the actions of the form β cosðxÞ for
complex β. Once again, we use compactifying coordi-
nates (X, Y) and show that the anomaly is controlled by
the behavior of σðX; YÞ near X ¼ Y ¼ 0 [see Eq. (6.6)].
For these actions the support of the stationary solution of
the complex Langevin process is no longer restricted to a
half-plane [although parity is preserved by ρðzÞ]. So we
use simultaneously the original coordinates (x, y) and the
new coordinates (X, Y) in two juxtaposed patches, in
order to solve numerically the Fokker-Planck equation.
The two partial solutions are matched by requiring that
there is no net flux through the boundary of the patches.
The numerical solution allows us to establish the
unequivocal presence of an anomaly, and moreover,
the corresponding predicted bias is correctly reproduced,
at a numerical level [see Eq. (6.9)].
Finally, in Sec. VII, a nonperiodic action is analyzed,

namely, SðxÞ ¼ −βx4=4, for Reβ > 0. In this case, in order
to compactify and regularize the problem at infinity, the
change of variables Z ¼ 1=z2 is applied. These coordinates
cover half of the z plane but this is sufficient since ρðzÞ is an
even function. In this way, the Fokker-Planck equation is
solved numerically in two patches (one including z ¼ 0, the
other Z ¼ 0) and the solutions are matched at the common
boundary. Once again the behavior of σðZÞ near Z ¼ 0 is
expected to determine the presence of an anomaly in the
projected equation; however, the value found for σð0Þ is
numerically small, and this prevents us from establishing,
in an unambiguous way, whether an anomaly is present or
not. The same situation takes place in the expectation
values: any possible bias competes with the numerical error
in the calculation. In order to obtain a clearer case, an extra
diffusion is added in the complex Langevin process
controlled by a positive parameter λ [see Eq. (7.3)].

Such a term has been considered before in similar studies
[32,51]. The extra diffusion, although formally correct, has
a negative effect on the complex Langevin process as a
Monte Carlo method, yet simultaneously it greatly
improves the mathematical behavior of the stationary
solution, regarding its analyticity. This is advantageous
both for the numerical solution of the differential equation
and for the analysis of asymptotic behaviors. As a conse-
quence, for positive λ, we are able to unambiguously
establish the existence of an anomaly and a bias in the
expectation values [see Eq. (7.22)]. In fact, from the
asymptotic analysis we obtain an analytical form for
the anomaly [see Eq. (7.17)] which is fully confirmed
by the numerical calculation.9

One could wonder if a better estimate would be obtained
for the observables by chopping off somehow the anomaly-
generating contributions in the ρðzÞ produced by the
complex Langevin. It is difficult to give a complete answer
without entering into casuistic. Nevertheless, there are two
cases which are quite clear. For the action S ¼ x4=8þ 2ix
noted in the Introduction, after stabilization, the support of
ρðzÞ lies entirely below the real axis. Removing part of the
support does not change this. So the expectation value of
e−ix would still be smaller than unity (in absolute value),
while the correct result is roughly −5. Therefore, the error
would be sizable anyway. Another clear case is that of
S ¼ i cosðxÞ, with an exact solution for the Fokker-Planck
equation ρðx; yÞ ∝ sech2ðyÞ. This (incorrectly) predicts the
vanishing of all expectation values of e−ikx (for k different
from 0). If we remove all points in the complex plane with
jyj larger than some cutoff, still the new ρ will be a function
of y only, and it will produce the same incorrect expectation
values.
Since the anomaly is due to too frequent visits of the

Langevin walker to remote regions far from the real
manifold, the use of new variables, in which y ¼ ∞ is a
regular point, has played an important role our in the
analysis of the anomaly. The choice of the new variables is
such that for them y ¼ ∞ becomes a finite point, say
Z ¼ 0, but more importantly, the velocity of the drift in the
new variables, VðZÞ, is strictly finite in a neighborhood of
Z ¼ 0, that is, neither zero nor infinite. Also, the diffusion
becomes negligible there, because a finite stochastic jump
in z is a small jump in Z. This can be done systematically
by choosing ZðzÞ such that (we discuss the one-dimen-
sional case only, however, similar changes of variables can
be carried out in higher dimensions)

dZ
dz

¼ 1

vðzÞ ; ð8:1Þ

which yields (Z ¼ X þ iY)

9Actually, we first observed empirically the relation in
Eq. (7.21), with a ¼ cβ�σð0Þ and c ≈ 6.
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−∂tσ ¼ −
1

J
∂2
xðJσÞ þ ∂Xσ; ð8:2Þ

with

ρ ¼ Jσ; J ¼ 1

jvðzÞj2 : ð8:3Þ

Up to corrections from the diffusion, this implies that the
drift velocity V is constantly equal to 1, so the walkers
move uniformly to the right. Essentially, these are the
variables used in Eq. (7.5) for S ¼ βx4=4, and also in
Eq. (5.1) for the periodic actions.10

When the Langevin walker follows an orbit of vðzÞ (let
us obviate the diffusion at the moment) and this orbit visits
a very remote region on the complex plane z before
returning, in the Z plane this corresponds to a regular
orbit passing near Z ¼ 0. The fact that the velocity V is
strictly finite there suggests that σð0Þ will not be infinite
(which would follow from V ¼ 0) nor zero (which would
follow from V ¼ ∞). The point Z ¼ 0 (i.e., z ¼ ∞) is a
regular point and there is an orbit passing through it, taking
a finite Langevin time to reach z ¼ ∞ and come back. The
diffusion introduces irregularities but its effect is small in a
neighborhood of Z ¼ 0. Actually, the diffusion should help

to flatten σ there: in general the walkers will have a chance
to be moved to X < 0 by diffusion (this is confirmed by
studying the lines x ¼ constant on the Z plane in the
previous examples, see Fig. 2 and Fig. 9) and so inevitably
the constant drift will move them to a neighborhood of
Z ¼ 0, implying that σ should be finite there. All this
indicates that σ might be continuous and nonvanishing at
Z ¼ 0 or at least have a finite limit from X < 0. The value
of σð0Þ might be exceedingly small in practice but
nevertheless it would signal a bias in the algorithm.
Because we have seen in the various cases analyzed

above that a nonnull σð0Þ is tied to an anomaly, the
arguments just presented tend to suggest that a nonnull
anomaly, and so a bias in the estimates of the expectation
values of the observables, would be the rule rather than the
exception in the complex Langevin dynamics. An obvious
objection is that the change of variable breaks down at the
fixed points of v; however, this is not a problem if the set of
fixed points is bounded: in this case the change of variable
is still well defined in a neighborhood of Z ¼ 0, and a
different coordinate can be used elsewhere. Alternatively,
one can work on the Riemann surface; this is technically
hard, but it does not invalidate the construction. A more
substantial critique is that y ¼ ∞ needs not correspond to a
finite Z. That the infinity of z can be brought to Z ¼ 0
follows from the explicit solution of Eq. (8.1)

Z ¼
Z

z

∞

dz
v
; ð8:4Þ

for points z lying beyond all the fixed points.11 A problem
arises if the integral is not convergent. This is the case for a
quadratic action, since v ∼ z for large z, and the integral
diverges logarithmically. The integral converges provided v
increases faster than jzj as jzj → ∞. There is an intuitive
explanation for this behavior. In fact, Z in Eq. (8.4)
represents the time that the walker needs to reach infinity
following an orbit of the field velocity. The integral
converges if this time is finite. It seems to be a sensible
criterion that when it takes only a finite time for the
Langevin walker to arrive to infinity, the visits there will be
frequent and ρðzÞ will falloff much too slowly for the
integration by parts to be justified. This introduces an
anomaly and a bias in the expectation values. For a
quadratic action the construction does not go through
and an anomaly does not arise.
In order to investigate whether the anomaly could be

obtained in closed form, let us momentarily assume that
the regions y ¼ �∞ are sufficiently well described by
σðZÞ ≈ σ�ð0Þ, where we allow two different values in the
two regions. In this case the density can be approximated as

0.2 0.1 0.1 0.2

0.1

0.2

0.1

0.2

FIG. 9. Velocity field of S ¼ βx4=4 in the variable
Z ¼ 1=ð2βz2Þ, for β ¼ 0.1þ i0.25. The solid curves correspond
to lines of x ¼ constant, for x ¼ 2, 3, and 5. The diffusion
randomly moves the Langevin walkers along these lines allowing
them to visit a neighborhood of Z ¼ 0. This suggests that σð0Þ, or
at least its limit from negative X if this function is not continuous
at Z ¼ 0, will not be exactly zero. [The peak of σðX; YÞ displayed
in Fig. 5 falls at Z ¼ 0.32 − i0.18 here.]

10Actually, a velocity v ¼ sinðzÞ yields Z ¼ logði tanðz=2ÞÞ
[with logð1Þ ¼ 0 and −π < arg < π], whereas the change in
Eq. (5.1) is W ¼ 2eixþy=ð1 − e2yÞ; however, Z¼ logððWþ1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jWj2þ1
p

Þ=ðW−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWj2þ1

p
ÞÞ¼−W�þ 1

12
ð3W−W�ÞW�2þ

OðjWj5Þ so the change of variables between the variables in
Eq. (5.1) and Eq. (8.1) is regular and real analytic at Z ¼ 0.

11Here we are assuming that y ¼ �∞ have neighborhoods free
from fixed points. These two patches need not overlap. Avariable
Z is defined in each patch.
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ρðzÞ ≍ ρs;�ðzÞ≡ σ�ð0Þ
jvðzÞj2 ; y → �∞: ð8:5Þ

This formally yields for the anomaly, using Eq. (3.20),12

AðxÞ� ¼ −
�
v − v�

2i
σ�ð0Þ
vv�

�
ðx − iy; yÞ

���
y¼�∞

¼ −
σ�ð0Þ
2i

�
1

vðxþ 2iyÞ� −
1

vðxÞ
����

y¼�∞

¼ 1

2i
σ�ð0Þ
vðxÞ : ð8:6Þ

This calculation would indicate that there is an anomaly
if and only if σþð0Þ ≠ σ−ð0Þ. [An exception would perhaps
occur at the points where vðxÞ ¼ 0, as seen in Sec. VII.] In
particular, for even actions there would be no anomaly.
However, we have shown that S ¼ β cosðxÞ, for instance, is
anomalous. The paradoxical result is avoided by noting that
the asymptotic relation ρ ≍ ρs refers to the limit y → ∞
with x fixed, while the anomaly requires to have a control
on ρ in the limit ρðx − iy; yÞ as y → ∞ with x fixed. This
can be seen for the action S ¼ iβI cosðxÞ for which ρ is
known in closed form. In this case σ�ð0Þ ¼ β2I =4π, so

ρðx; yÞ ¼ 1

4πcosh2ðyÞ ≍
e−2jyj

π
;

ρsðx; yÞ ¼
β2I =4π

β2I j sinðxþ iyÞj2 ≍
e−2jyj

π
; ð8:7Þ

and ρs correctly accounts for the behavior of ρ for large y.
On the other hand, with fixed x and y → �∞,

ρðx − iy; yÞ ≍ e−2jyj

π
;

ρsðx − iy; yÞ ≍∓ e∓ix

2i sinðxÞ
e−2jyj

π
: ð8:8Þ

The incorrect extra factor in ρsðx − iy; yÞ, as compared to
ρðx − iy; yÞ, produces the incorrect expression in Eq. (8.6)
instead of Eq. (3.21).
The previous discussion indicates that a reasoning that

correctly estimates ρðx; yÞ in the y ¼ �∞ regions does not
necessarily suffice for describing the behavior of
ρðx − iy; yÞ, as required in the anomaly expressions.
Nevertheless, it remains true that, in all cases analyzed,
a nonvanishing value of σð0Þ is tied to the presence of an
anomaly and a bias in complex Langevin results, and we
have argued that this will be the case quite generally. The
numerical results do not allow us to clearly establish

whether σð0Þ vanishes or not for S ¼ βx4=4 with λ ¼ 0
(the interest of λ > 0 is rather academic) but it seems clear
that a positive value of σð0Þ would yield an anomaly also in
this case.
Another question is how these findings are modified

by increasing the number of variables. Here we have
studied one-dimensional problems, concluding that an
anomaly is present quite generally, and this conclusion
immediately extends to ultralocal actions, however, it is
conceivable that, in general, the strength of the anomaly
might depend on the dimension of the configuration
manifold. In the instances in which the anomaly were
decreasing to zero in the continuum or thermodynamic
limits, the bias would eventually be screened by the
standard Monte Carlo fluctuations and the method would
be valid there. Also, a kernel modifies the algorithm
while keeping its formal validity. It would be interesting
to explore whether a suitable kernel could keep the
walkers close to the real manifold thereby quenching
or removing the anomaly. These points deserve further
study.
We want to briefly comment on the relation between this

work and the method of Lefschetz thimbles [25]. Like the
complex Langevin, this technique to attack the sign
problem also relies on the fact that the action is a
holomorphic function. It amounts to trade the original real
submanifold Rn (embedded within the complex manifold
of complex configurations Cn) by one or more cleverly
chosen submanifolds of the same dimension, the Lefschetz
thimbles, whose combination is homologous to the real
submanifold, in the sense that holomorphic functions
weighted with the Boltzmann factor of the action have
the same integral in both treatments. (A smeared version of
this technique is studied in [56]; another interesting
extension can be found in [57].)
In the complex Langevin deterministic flow, nondegen-

erated fixed points are attractive or repulsive (or neutral) but
not saddle points. Lefschetz thimbles are based on the
gradient flow of ReðSÞ which shares the same fixed points,
but now as saddle points. Passing through each fixed point
there are two ImðSÞ ¼ constant submanifolds, one for
which the fixed point is a maximum of ReðSÞ and another
for which is a minimum, the latter is the (stable) Lefschetz
thimble associated to the fixed point (the other submanifold
being the unstable thimble). This choice of integration
manifold generalizes the stationary phase approximation.
In practice, a subset of the (stable) thimbles have to be
joined to form a manifold homologous toRn (namely, those
whose fixed point have the unstable thimble intersecting
Rn) [58].
Several studies have analyzed the relation between both

techniques and how a wrong convergence of complex
Langevin could be understood from the Lefschetz thimble
point of view (see, e.g., [59]). Although this is not a fixed
rule, the support of the complex Langevin distribution

12The result in Eq. (7.12) follows this scheme, albeit with a
different normalization in σ since there Z ¼ 1=z2 instead of
1=ð2βz2Þ.
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tends to follow the Lefschetz thimble and gives better
results when there is a single dominant thimble. (A
technique to enforce this feature as a way to improve
complex Langevin is studied in [60].) Reference [61] finds
that complex Langevin fails if multiple Lefschetz thimbles
dominantly contribute with different complex phases. In
fact, if there is just one dominant thimble this will usually
correspond to the basin of a stable fixed point of the
complex Langevin dynamics; however, if additional thim-
bles corresponding to repulsive points are relevant, such
regions will not be visited by the Langevin walker and one
can expect a bias in the estimates. For another argument
related to the present work, the thimbles are boundaryless
noncompact n-dimensional manifolds in Cn. Keeping those
having a contribution and with suitable orientation, their
union forms a manifold homologous to Rn. Typically when
there is more than one (contributing) fixed point, the
thimble stems from the fixed point towards infinity and
there joins with the thimble of another fixed point.13

Although the deterministic flow of complex Langevin
and the gradient flow of ReðSÞ are different, they coincide
asymptotically [59]. This means that when two relevant
thimbles join at infinity they do so at a runaway trajectory
of the Langevin walker. If the walker has to visit both
thimbles for a proper sampling it necessarily must expend
some time at infinity and this introduces an anomaly. This

would be a relation between the problems observed in
complex Langevin when there is more than one dominant
thimble and the presence of an anomaly in the projected
Fokker-Planck equation. This heuristic argument implicitly
assumes that a proper sampling can only be achieved when
the support of the complex Langevin walker is close to the
support of the relevant thimbles. A possible caveat though
is that each thimble carries a different global phase and also
a local phase through the Jacobian since the thimbles are
not horizontal submanifolds in general. In other words, the
thimbles do not define a proper representation with positive
weight as defined in the Introduction, and this would
account for the different supports in the two treatments.
In this regard, it is interesting to point out that in [40] it is
shown that any periodic action in any number of dimen-
sions, can be represented using just two horizontal sub-
manifolds, with positive weights on them, and the method
has been extended to nonperiodic actions in [23] (albeit in
the one-dimensional case). In this view, the study of the
systematic construction of such two-branch representation
seems worthwhile.
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