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We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent
proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall
fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution
to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have
form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of
an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown
to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of
chiral gauge theories in the continuum.
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I. INTRODUCTION

Defining a nonperturbative regulator for chiral gauge
theories has been a long-standing problem in quantum field
theory. While it may be that finding a regulator is just a
technical issue, one should be open to the possibility that its
resolution could entail new physics—either in the form of
new particles or interactions, or through elucidation of
some of the outstanding puzzles of the Standard Model,
such as the strong CP problem. The difficulty in construct-
ing a regulator comes down to defining a discretized
version of the Euclidian fermion kinetic operator D for
Weyl fermions in a complex representation of the gauge
group, where detD is the fermion contribution to the
integration measure for the gauge field path integral. The
naive target for the lattice theory is the kinetic operator
DP−, where Dμ is the gauge covariant derivative and
P� ¼ ð1� γ5Þ=2. However, as has been discussed exten-
sively in the literature, while the modulus of this determi-
nant is given by the square root of the Dirac determinant,
jdetDj ¼

ffiffiffiffiffiffiffiffiffiffiffi
detD

p
, its phase is not well defined. The

ambiguity in the phase arises because the operator D maps
negative chirality spinors into positive chirality spinors and
therefore its eigenvalues cannot be uniquely defined. As the
negative and positive chirality Hilbert spaces are indepen-
dent, redefining each basis by an unrelated phase redefines
the determinant by a phase which is an arbitrary functional
of the gauge field (although most choices of phase could
not result from a local fermion action). Furthermore, the
phase of the determinant is only gauge invariant when a
theory has no gauge anomalies.
A definition of the Euclidian chiral determinant in the

continuum was proposed in Ref. [1], where the authors

introduced neutral spectators of opposite chirality,
so that D ¼ ∂ þ iAP−, which in a chiral representation
looks like

D ¼
�

Dμσμ

∂μσ̄μ

�
; ð1Þ

with σμ ¼ f1;−i~σg, σ̄μ ¼ σ†μ. While this form of D is not
self-adjoint, it does have a well-defined eigenvalue problem
and its determinant can be uniquely determined [2].
This definition of D cannot be directly implemented on

the lattice, as is evident when considering the global Uð1Þ
chiral anomaly. Chiral symmetry of the fermion action can
be expressed by the equation fD; γ5g ¼ 0, or equivalently
(in the absence of exact zeromodes) as

fD−1; γ5g ¼ 0: ð2Þ

However, in the continuum the path integral measure
cannot be regulated in a way that preserves both gauge
and chiral symmetries [3], which gives rise to the anoma-
lous divergence of the axial current [4,5]

∂μj5μ ¼
α

2π
TrF ~F: ð3Þ

In contrast, the path integration measure on the lattice is
defined in away that is invariant under both gauge and chiral
symmetries. Since it involves only a finite number of degrees
of freedom, there are no anomalies and thus no anomalous
divergence of the axial current. The correct continuum limit
with the axial anomaly can therefore only be attained if the
lattice action is not invariant under chiral symmetry trans-
formations. In general such explicit symmetry breaking
requires fine-tuning to achieve a symmetry that is only
broken anomalously in the continuum limit. Additionally at

*grabow@uw.edu, dgrabowska@berkeley.edu
†dbkaplan@uw.edu

PHYSICAL REVIEW D 94, 114504 (2016)

2470-0010=2016=94(11)=114504(14) 114504-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.114504
http://dx.doi.org/10.1103/PhysRevD.94.114504
http://dx.doi.org/10.1103/PhysRevD.94.114504
http://dx.doi.org/10.1103/PhysRevD.94.114504


finite lattice spacing, important consequences of chiral
symmetry, such as multiplicative mass renormalization,
are usually lost. Ginsparg and Wilson argued, however,
that by modifying Eq. (2) to read

fD−1; γ5g ¼ aγ5; ð4Þ

where a is the lattice spacing,1 chiral symmetry would be
broken in just the right way to reproduce the anomaly
without fine-tuning [6]. It was subsequently shown that a
solution to the Ginsparg-Wilson equation indeed gives rise
to the correct anomaly, while at the same time ensuring an
exact symmetry of the action at finite lattice spacing that
enforces multiplicative mass renormalization and the
absence of fine-tuning [7,8]. In a chiral basis the general
solution to Eq. (4) is

D−1 ¼
�

0 S1
−S†2 0

�
þ a

2

�
1 0

0 1

�
; ð5Þ

where each block scales in size with the number of lattice
sites, and S1, S2 can be independent operators; they are
constrained by the desired continuum limit and locality, but
not by Eq. (4).
The Ginsparg-Wilson equation does not specify

whether D refers to fermions in a real (Dirac) or complex
(chiral) representation of the gauge group. Its solution in
the Dirac case is given by the Narayanan-Neuberger
overlap operator [9–12]. In this case S1 ¼ S2 and the
effect of the diagonal term in D−1 is very simple. The
eigenvalues of the continuum Euclidian Dirac propagator
D−1 lie on the imaginary axis while the eigenvalues ofD−1

lie along a parallel line displaced from the imaginary axis
by a=2; D−1 has an infinite density of eigenvalues
approaching the real axis while the lattice propagator
D−1 has a finite density, thanks to the lattice cutoff. The
second term on the right side in Eq. (5) is responsible for
the a=2 displacement and represents the explicit chiral
symmetry breaking that is required to reproduce the
continuum anomaly.
For a lattice regularization of the target theory given in

Eq. (1)—a chiral gauge theory with noninteracting mirror
fermions—we would expect that the solution Eq. (5) still
pertains, but with S1 ≠ S2 and eigenvalues therefore no
longer lying on a line parallel to the imaginary axis.
However, in this case the chiral symmetry violating part
of the solution apparently requires either violating the
gauge symmetry explicitly, or else allowing the mirror
fermions to participate in the gauge interactions. Either
choice is a significant departure from the perturbative
scheme. If gauge symmetry is explicitly broken, a path

to restoring it in the continuum limit must be devised [13];
if the mirror fermions are gauged, one must understand how
to decouple them in the continuum limit. Both strategies
have their theoretical challenges, and both have been
pursued in the literature; we do not intend to review past
work on the subject, but refer the reader to the review
Ref. [14] as well as the more recent papers Refs. [15–18]
and references therein.
The focus of this paper is an alternative approach based

on the proposal in Ref. [19]. In this theory fermions of one
chirality are surface modes on a five-dimensional slab
coupling to a gauge field A, while their mirror partners of
the opposite chirality are modes on the opposite surface
coupling to a different gauge field A⋆. The two gauge fields
are related by a gauge-covariant flow equation, where the
field A on one surface flows to A⋆ on the other. In the limit
of infinite extra dimension we find a solution to the
Ginsparg-Wilson equation of the form given in Eq. (5)
with the continuum limit

lim
a→0

D̂χ ¼
�

0 σμDμðAÞ
σ̄μDμðA⋆Þ 0

�
: ð6Þ

Since we only consider gauge-covariant flow equations, the
gauge fields A and A⋆ transform identically under gauge
transformations and the diagonal entries of D−1 at nonzero
lattice spacing do not violate gauge invariance. In the limit
of infinite extra dimension, A⋆ is the fixed point of the flow
equation given the initial data A. We will be interested in
two possible scenarios: one where A⋆ is the classical multi-
instanton solution with winding number equal to that of A,
and the other where A⋆ is pure gauge, the latter being a
possible fixed point for a gauge covariant gradient flow
equation on the lattice. In either case, with all dynamical
degrees of freedom damped out of A⋆, one might expect the
mirror fermions to entirely decouple in the continuum and
infinite volume limits, effectively realizing the continuum
construction in Eq. (1).
In the next section we review the proposal of Ref. [19]

for five-dimensional fermions coupled to a four-dimen-
sional gauge field, extended into the extra dimension via
gradient flow. We then review the technology developed by
Narayanan and Neuberger to construct the effective overlap
fermion operator for vectorlike gauge theories from domain
wall fermions with infinite extra dimension [9–12]. By
applying their reasoning to the theory of Ref. [19] we attain
the main result of this paper. After discussing the behavior
of the chiral overlap operator for gauge fields with non-
trivial topology we suggest a simulation to test key ideas
presented here.2

1When zeromodes are present, one must use the equation of
the operator itself, fD; γ5g ¼ aDγ5D.

2Preliminary versions of this work were presented at the 34th
International Symposium on Lattice Field Theory in South-
ampton, UK, 2016 [20,21].
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II. DOMAIN WALL FERMIONS FOR CHIRAL
GAUGE THEORIES

Domain wall fermions can be formulated as Dirac
fermions in five Euclidean dimensions with masses that
depend on the extra dimension. Specifically, consider the
coordinate of the extra dimension to be s ∈ ½−L;L�, with
periodic boundary conditions for a Dirac fermion field
which has a positive mass on half the space and a negative
mass on the other half [19,22,23]. The spectrum contains a
light bound state at each of the two mass defects that
behave as a four-dimensional Dirac fermion with a mass
which vanishes exponentially fast in the L → ∞ limit; the
two bound states become positive and negative chirality
eigenstates respectively in that limit. The domain wall
fermion construction provides a solution to the problem of
realizing chiral symmetry correctly for lattice fermions in a
vectorlike representation of the gauge group: (i) the chiral
anomaly is correctly realized via the Callan-Harvey effect,
where a Chern-Simons operator is generated by integrating
out the massive bulk fermions [24], and (ii) any small mass
term introduced for the light modes can only be multipli-
catively renormalized due to the vanishing wave function
overlap between the negative and positive chirality fermion
modes in the absence of such a mass term. Furthermore the
number and chiralities of the light surface modes in the
spectrum is a topological invariant of the bulk fermion
dispersion relation in momentum space, as shown in
Ref. [25], and is not simply given by the number of fields
in the five-dimensional theory.
An important feature discovered in Refs. [25,26] is that

in a regulated theory the contributions to the Chern-
Simons current can trivially vanish in half of the bulk,
making that region a true insulator. Thus one can take the
fermion mass to be infinite on the s ∈ ð−L; 0Þ half space,
essentially excising that part of the space, and instead only
consider the half-space s ∈ ½0; L�, with fermion zeromodes
confined to the surfaces of the slab. This gives rise to
Shamir’s formulation of domain wall fermions [27,28]
which serves as the foundation for practical simulations of
lattice QCD.
From the beginning, the physical separation of chiral

fermion modes in the extra dimension has been seen as a
promising starting point for the construction of chiral gauge
theories [22]. Multiple flavors of fermions in different
representations of the gauge group can be trivially incor-
porated in the construction, with either chirality localized at
a specific surface. Of particular interest are systems where
the coefficient of the bulk Chern-Simons operator in the
effective theory vanishes due to cancellations between
contributions from the different flavors of fermions, elimi-
nating charge exchange between the two surfaces. Such a
cancellation is equivalent to the group theoretical statement
that the chiral fermions at each surface are independently in
a representation that is free from gauge anomalies,
and hence each is in its own right a candidate for a healthy

four-dimensional gauge theory. Constructions of anomaly
cancellation models were examined in the early 1990s
[22,29,30], the most trivial consisting of two five-
dimensional (or three-dimensional) fermions in the same
gauge representation but with opposite signs for their
masses, rendering the theory P- and T-invariant, with
the zeromode spectrum at each surface consisting of a
massless Dirac fermion. Quantum field theories exhibiting
less trivial anomaly cancellation were also studied, such as
the 3-4-5 Uð1Þ gauge theory in two dimensions [26].
Models where the surface modes are Majorana fermions
were also constructed for the purpose of simulating
supersymmetry, where the massless Majorana fermions
serve as gauginos [31,32].
These phenomena have direct analogues in condensed

matter physics. The Chern-Simons operator with its quan-
tized coefficient and bulk current flow describes the integer
quantum Hall effect. The most basic model which exhibits
anomaly cancellation, giving rise to a massless Dirac
fermion at each defect, is the same model rediscovered
over a decade later in condensed matter systems by Kane
and Mele [33], and the anomalous flow of global chiral
charge between the two surfaces has been dubbed the
“quantum spin Hall effect.” Such materials are referred to
as topological insulators because of the topological stability
of the zeromodes as shown in Ref. [25]. Models with
Majorana surface modes were rediscovered in the context
of quantum computation in Ref. [34]. We are not aware of
condensed matter analogues of the less trivial anomaly
cancellation models, however, such as the 3-4-5 model
of Ref. [29].
While it is easy to construct models with chiral fermion

representations for which gauge anomalies cancel at each
surface of the extra dimension theory, it is a challenge to
eliminate gauge couplings between the fermions at one
surface from their mirror partners at the other. This
difficulty is closely related to the problem discussed in
the previous section: the domain wall construction correctly
reproduces the chiral Uð1Þ anomaly by coupling the chiral
modes at the two surfaces to each other via the bulk
fermions, and gauge invariance then requires that they both
couple to the same gauge fields. This automatically gives
rise to a vectorlike gauge theory in the continuum unless
one either constructs a mechanism to gap the mirror
fermions in a gauge-invariant way, localizes the gauge
fields in the extra dimension in the region near one of the
surfaces, or resorts to explicit breaking of gauge invariance.
Numerous attempts to gap the mirror fermions have failed
(see, for example Ref. [17]) as have attempts to eliminate
mirror fermions by localizing the gauge fields (reviewed
in Ref. [14]).
An alternative was proposed in Ref. [19]. A four-

dimensional gauge field with an s-dependent profile,
Aμðx; sÞ, is defined throughout the five-dimensional space
s ∈ ½−L;L� as the solution to a gradient flow equation with
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periodic boundary conditions; the field is even in s.3 As
the gradient flow equation is a first order differential
equation in s, the field throughout the bulk is determined
by the value of the field at s ¼ 0, which is also the four-
dimensional gauge field AðxÞ appearing as the integration
variable of the path integral. For positive s the continuum
version of the flow equation advocated is the conventional
one discussed in the literature [35–37],

∂τAμ ¼ sgnðτÞDνF μν; Aμðx; 0Þ ¼ AμðxÞ; ð7Þ

where Dν and F μν are constructed from Aμðx; sÞ, with
Lorentz indices running over μ ¼ 1;…; 4. Here the “flow
time” τðsÞ is taken to be an odd monotonic function of the
coordinate s. The only reason we do not take τðsÞ ∝ s is
because we wish to consider the case of A changing
abruptly with s in between the two surfaces at s ¼ 0
and s ¼ �L.
The effects of gradient flow are simply explained with

the example of a two-dimensional Uð1Þ gauge field. In this
case the gauge field decomposes into a physical degree of
freedom λ and a gauge degree of freedom ω,

Aμðx; sÞ ¼ ϵμν∂νλðx; sÞ þ ∂μωðx; sÞ; ð8Þ

where ω shifts under a gauge transformation while λ is
invariant. The gradient flow equation, Eq. (7), for the
Fourier transforms of λ, ω takes the form

∂s
~λðp; sÞ ¼ −sgnðsÞp

2 ~λðp; sÞ
Λ

∂s ~ωðp; sÞ ¼ 0; ð9Þ

where we have set τðsÞ ¼ Λs and Λ is some mass scale.
The solutions are

~λðp; sÞ ¼ e−p
2jsj=Λ ~λðp; 0Þ ~ωðp; sÞ ¼ ~ωðp; 0Þ; ð10Þ

where ~λðp; 0Þ and ~ωðp; 0Þ are the boundary data for the
gauge field at s ¼ 0. We see that gradient flow causes the
physical field ~λ to vanish exponentially fast in s with an
exponent proportional to p2, while the gauge degree of
freedom ω is unaffected. A fermion which interacts with
Aμðx; sÞ therefore appears to be a charged particle, but one
with a Gaussian form factor, behaving as a particle of sizeffiffiffiffiffiffiffiffi
s=Λ

p
. Thus the fermion zeromodes localized at s ¼ 0

look like ordinary particles, while those localized at s ¼ L
effectively have size l ¼ ffiffiffiffiffiffiffiffiffi

L=Λ
p

and are dubbed “fluff”;
their size grows as L increases and in the limit L → ∞ they
become incapable of exchanging momenta with other
fermions via gauge boson exchange. In that limit the
physical gauge field λ decouples from the mirror fermions

and they only see the gauge degree of freedom ω; gradient
flow acts as a projection operator on the initial gauge field,
eliminating all physical degrees of freedom. This behavior,
that gradient flow only smooths out the physical degrees of
freedom, persists when looking at non-Abelian groups.
Therefore, for any gauge group the chiral zeromodes at
s ¼ 0 interact mainly with gauge field AðxÞ, while the
mirror fermions at s ¼ L interact with A⋆ðxÞ, where

A⋆ðxÞ ¼ Aðx; LÞ: ð11Þ

In the above example, the gauge covariance of the flow
equation, Eq. (7), under s-independent gauge transforma-
tions is reflected in the s-independence of the solution for
ω. This guarantees that the fields A and A⋆ at the two
domain walls transform identically under gauge trans-
formations, as do the zeromodes residing there. Since
the fermion fields have five-dimensional dynamics, this
makes our application of gradient flow quite different from
preceding applications, having physical consequences
rather than simply being a regularization scheme to smooth
out operators.
One feature of gradient flow is oversimplified in the

above example. No continuous flow equation can change
the topology of the gauge field and therefore a non-Abelian
gauge field A in four dimensions characterized by a
winding number ν can only flow to a gauge field A⋆ with
winding number ν⋆ ¼ ν. Thus for ν ≠ 0 A⋆ cannot be pure
gauge. More generally, any gauge field A will flow at large
L toward an attractive fixed point of the flow equation,
which for Eq. (7) implies a stable solution to the Euclidian
equations of motion. In each topological sector these fixed
points include at least all of the classical multi-instanton (or
anti-instanton) solutions. It seems plausible that these are in
fact the only attractive fixed points, and in particular that
there are no attractive fixed points containing an instanton-
anti-instanton pair. As discussed in Ref. [19], having
topological correlations between A and A⋆ will induce
correlations (e.g. interactions) between the zeromodes at
the two surfaces, even at infinite domain wall separation.
However these correlations will be neither local nor
extensive, and it is unclear whether they survive the infinite
volume limit. It was left as an open question there whether
these unusual topological properties of the theory could be
exploited to solve the strong CP problem in QCD, a
question recently revisited in more detail in [38].
The order of limits taken in Ref. [19]—where the

continuum limit was taken first, and the resulting theory
considered at large but finite L—plays a crucial role in the
above discussion about gauge field topology. Of course,
finite L is required if the five-dimensional theory is to be
numerically simulated. However, the mirror fermions in
such a theory couple to gauge fields with Gaussian form
factors expð−p2L=ΛÞ and while such form factors may be
very small in Euclidian space, they have no sensible

3The field called Aðx; sÞ here was referred to as Āðx; sÞ in
Ref. [19].
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analytic continuation to Minkowski spacetime: p2, the
square of the gauge boson momentum transfer, is not
positive definite in Minkowski spacetime and so such form
factors can diverge for large L or large negative p2. For this
reason we consider in this paper the opposite order of
limits, taking the infinite L limit at finite lattice spacing
first, before taking the continuum limit. As Narayanan
and Neuberger showed, there exists at finite lattice spacing
a relatively simple four-dimensional description of vector-
like domain wall fermions in the L → ∞ limit in terms of
the overlap operator [9–12,31]. Therefore in this paper
we apply their analysis to the chiral domain wall theory
with gradient flow, seeking a purely four-dimensional
description of the five-dimensional lattice theory in the
L → ∞ limit.
One immediate consequence of working at finite lattice

spacing is that the flow equation, Eq. (7), must be replaced
by a discrete version, such as the discretized Wilson flow
equations for link variables discussed in Ref. [37]. It is
believed that Wilson flow has no nontrivial attractive fixed
points [39–42], in which case the discrete version of the A⋆
gauge field experienced by the mirror fermions can be pure
gauge with ν⋆ ¼ 0, regardless of the initial topology ν.
Other discretized flow equations [43–45] may behave more
like the continuum case, Eq. (7). Therefore the two cases of
greatest interest to us will be ν⋆ ¼ ν (the flow equation
preserves topology), and ν⋆ ¼ 0 (the flow equation com-
pletely destroys topology).4

III. REVIEW OF THE DERIVATION OF
VECTOR OVERLAP OPERATOR

The two salient features of the conventional domain wall
construction in the L → ∞ limit are (i) the correct reali-
zation of anomalies via the Chern-Simons term due to
nondecoupling of the bulk fermions, and (ii) the protection
of fermion mass terms from additive radiative corrections
due to the localization of the positive and negative chiral
modes far from each other in the extra dimension. However
neither feature can be dealt with simply or rigorously in the
five-dimensional formulation. A truly four-dimensional
lattice description of this theory was derived in a series of
brilliant papers by Narayanan and Neuberger who realized
that the domain wall partition function in the L → ∞ limit
can be described in terms of the overlap of vacua of two
different four-dimensional Hamiltonians [9,10]. With an
expression for the fermion determinant in hand as a guide,
they were then able to construct the fermion kinetic
operator (known as the overlap operator) and show that
it solves the Ginsparg-Wilson (GW) equation. Lüscher then
showed that simply by being a solution of the GWequation
the overlap operator correctly reproduces the index theorem

relating fermion zeromodes to gauge topology, accounting
for the physics of the Chern-Simons operator in the five-
dimensional formulation [8]. He also showed that the
overlap operator respects an exact Uð1Þ symmetry, even
at finite lattice spacing, ensuring that fermion masses could
only be multiplicatively renormalized. This was the final
piece of the puzzle to explain how domain wall fermions in
the limit L → ∞ correctly regulate massless Dirac fer-
mions. Here we review the construction of the conventional
overlap operator for the vectorlike theory, and then apply
the same analysis to the chiral theory.
Our starting point is the Shamir form of the five-

dimensional lattice theory on a slab to better make con-
nection with much of the literature on overlap fermions, in
particular Refs. [31,47,48]. The domain wall theory for
vectorlike gauge theories is pictured in Fig. 1, correspond-
ing to the lattice action

S ¼
X
x;s

ψ̄ ½−P−∇5 þ Pþ∇�
5 þ γ5H�ψ ; ð12Þ

where

γ5H ¼ 1

2
½γμð∇μ þ∇�

μÞ −∇μ∇�
μ� −m

≡Dw −m ð13Þ

with m is the fermion mass, μ ¼ 1;…; 4, and

P� ¼ 1� γ5
2

: ð14Þ

The coordinate runs over s ¼ 0;…; L, the γμ are Hermitian,
and we have set the lattice spacing and fermion mass to
a5 ¼ a ¼ 1. The forward and backward lattice covariant
derivatives are ∇ and ∇� respectively, defined as

∇αψn ¼ UαðnÞψnþα̂ − ψn;

∇�
αψn ¼ ψn −U†

αðn − α̂Þψn−α̂; ð15Þ

where Uα are the s-independent gauge links in the â
direction with U5 ¼ 1. The fermions satisfy the boundary
conditions

Pþψðx; 0Þ ¼ P−ψðx; LÞ ¼ 0: ð16Þ

Requiring that the negative chirality fermion be localized
near s ¼ 0 bounds the fermion mass to lie in the range
1 ≥ m > 0. We choose m ¼ 1 so that the negative chirality
fermion is confined to sit at the s ¼ 0 slice; similarly, the
positive chirality fermion is confined to s ¼ L.
The spectrum of this theory includes in the large L

limit a massless negative chirality fermion bound to the
surface at s ¼ 0, and a massless positive chirality fermion
bound to the surface at s ¼ L, where the mass vanishes

4For a discussion of topology on the lattice and how flow
equations derived from various actions will affect topological
charge, see Ref. [46].
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exponentially fast in L. In addition to the fermions,
Pauli-Villars fields with antiperiodic boundary conditions
at s ¼ 0; L but identical action are also needed [47].
Considering the discrete s coordinate as a flavor index,
the L → ∞ limit corresponds to Nf → ∞, and the role of
the Pauli-Villars fields, first introduced in Ref. [9], is to
cancel contributions from the bulk fermions that would lead
to divergences in this limit.
The effective kinetic operator for the surface modes was

computed in Ref. [48] using techniques developed in
Refs. [10,31] for computing the fermion determinant, with
the result that5

DV ¼ 2 lim
L→∞

Df

DPV
; ð17Þ

where Df, DPV are the fermion and Pauli-Villars contri-
butions respectively, computed to be (up to common
factors)

Df ¼ 1þ γ5 tanh L
2
H

1 − γ5 tanh
L
2
H

; DPV ¼ Df þ 1: ð18Þ

The large L limit can be taken by defining a matrix EðLÞ
V in

terms of the transfer matrix T ¼ exp ð−HÞ for propagation
in the fifth dimension

EðLÞ
V ¼ 1 − TL

1þ TL ¼ tanh
L
2
H: ð19Þ

The large L limit of EðLÞ
V is

lim
L→∞

EðLÞ
V ¼ ϵðHÞ; ð20Þ

where ϵ is the sign function which can be represented as

ϵðhÞ ¼ hffiffiffiffiffi
h2

p ð21Þ

for a Hermitian matrix h. Combining the above equations
leads to the result

DV ¼ lim
L→∞

ð1þ γ5E
ðLÞ
V Þ ¼ 1þ γ5ϵ; ð22Þ

where we adopt the abbreviation ϵ≡ ϵðHÞ. While the
Hamiltonian defined via the transfer matrix is not the same
as the Hamiltonian in Eq. (13), the latter can be used for
defining ϵ in the L → ∞ limit. This is the standard overlap
operator that solves the GW equation [11,12]; it solves the
GW equation by virtue of the fact that ϵ2 ¼ 1. The
important role of ϵ was already recognized in Ref. [9].

IV. DERIVATION AND PROPERTIES OF A
CHIRAL OVERLAP OPERATOR

It is straightforward to generalize the derivation of DV
given in the previous section to the problem of interest here,
namely the marriage of domain wall fermions with gradient
flow for the gauge field, pictured in the middle panel of
Fig 1, where the negative chirality component interacts
with an arbitrary gauge field A, while the positive chirality
component sees a gauge field A⋆. For general flow we can
simply replace TL in Eq. (19) by

TL →
Y1
s¼L

TðsÞ ¼
Y1
s¼L

e−HðsÞ; ð23Þ

where the s-dependence of the transfer matrix is solely due
to the s-dependence of the flowing gauge field. The formal
expression for the chiral overlap operator is therefore

Dχ ¼ 1þ γ5Eχ ; ð24Þ

where

FIG. 1. Left: The conventional domain wall fermion construction, with negative and positive chiral modes bound to the s ¼ 0 and
s ¼ L surfaces of the extra dimension respectively; the gauge field A is constant over the extra dimension. Center: The chiral
construction where the gauge field in the extra dimension is a solution of the gradient flow equation, flowing from initial value A on the
left to the corresponding fixed point value A⋆ on the right. Right: Flow which makes an abrupt transition from A to A⋆, a case that is more
easily treated analytically. When assuming this scenario we place hats on our lattice operators, such as D̂χ .

5We use a canonically normalizedDV , differing from Ref. [48]
by a factor of 2.
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Eχ ¼ lim
L→∞

EðLÞ
χ ;

EðLÞ
χ ¼ 1 −

Q
sTðsÞ

1þQsTðsÞ
¼ tanh

�
L
2
log

�Y
s
TðsÞ

�1
L
�
; ð25Þ

and the logarithm is well defined as TðsÞ is positive. If one
regards the logarithm in the above expression as a sort
of averaged Hamiltonian with finite eigenvalues in the
large L limit then E2

χ ¼ 1, which ensures that Dχ obeys the
Ginsparg-Wilson equation. This is analogous to the vector
case where EV ¼ ϵðHÞ.
To allow for explicit analysis we consider the special case

shown in the right panel of Fig 1. The flow time τðsÞ in
Eq. (7) is a function of s such that the gauge field A remains
roughly constant over a region of OðLÞ near the s ¼ 0
boundary, then makes a quick transition to the fixed point
gauge fieldA⋆, which remains roughly constant over a region
of size OðLÞ near the s ¼ L surface. There are potential
problems with this simplification which we will address
below. The simplification allows us to construct the corre-
sponding chiral overlap operator D̂χ by simply replacing

TL → TL=2⋆ TL=2 ð26Þ
in Eq. (19) before taking the L → ∞ limit. The transfer
matrices T and T⋆ correspond to Hamiltonians with gauge
fields A and A⋆ respectively. Therefore we have

D̂χ ¼ ð1þ γ5ÊχÞ; ð27Þ
where the hats on D̂χ and Êχ signify the assumption of an
abrupt transition from A to A⋆, distinguishing them from the
more general formulas of Eqs. (24) and (25).We see that Êχ is
defined as the limit

Êχ ¼ lim
L→∞

ÊðLÞ
χ ¼ lim

L→∞

�
1 − TL=2⋆ TL=2

1þ TL=2⋆ TL=2

�
: ð28Þ

The matrix TL=2⋆ TL=2 in the above expression has positive
definite real eigenvalues, being the product of two positive
definite Hermitian matrices. Thus the eigenvalues of the
matrix ÊðLÞ

χ are bounded to lie in the interval ð−1; 1Þ. Since
the eigenvalues of both TL=2⋆ and TL=2 become either zero or
infinite in the infinite L limit, the eigenvalues of TL=2⋆ TL=2

will also become either zero or infinite in this limit except at
possible exceptional gauge field configurations for which the
spectra of H and H⋆ are related. This implies that the
eigenvalues of Êχ will equal �1. As an example of how this
conclusion could fail, suppose there exists a vector ψ

satisfying Hψ ¼ −H⋆ψ ¼ Eψ ; in this case Êχ has a zero
eigenvalue. This will not happen for generic gauge fields, nor
will it occur in perturbation theory.
A more useful form for Êχ can be found by making use of

the limits

lim
L→∞

1 − TL

1þ TL ¼ ϵ; lim
L→∞

1 − TL⋆
1þ TL⋆

¼ ϵ⋆; ð29Þ

where

ϵ≡ ϵðH½A�Þ; ϵ⋆ ≡ ϵðH½A⋆�Þ; ð30Þ

and H is the Wilson Hamiltonian in Eq. (13). By manipu-
lating the matrices carefully at finite L before taking the
L → ∞ limit we arrive a central result of this paper,

Êχ ¼
h
1 − ð1 − ϵ⋆Þ

1

1þ ϵϵ⋆
ð1 − ϵÞ

i
; ð31Þ

with chiral overlap operator D̂χ ¼ 1þ γ5Êχ.
The above expression requires some care in its interpre-

tation since the denominator ð1þ ϵϵ⋆Þ can have zero
eigenvalues. In fact, as we show in Appendix A, the
denominator has zero eigenvalues whenever gradient flow
destroys topology. However, the numerator also vanishes in
this case and soEq. (31) is consistentwith the boundwehave
placed on the eigenvalues of Êχ . We return to this case in the
next section but first we exhibit the key properties of D̂χ for
the case ν ¼ ν⋆, where ν and ν⋆ are integers defined as

ν≡ 1

2
Trϵ; ν⋆ ≡ 1

2
Trϵ⋆; ð32Þ

and both ϵ and ϵ⋆ have even dimension. In the continuum
limit, ν and ν⋆ can be identified as thewinding number in the
gauge fields A, A⋆ respectively. For the case ν ¼ ν⋆ that we
are considering here, 1þ ϵϵ⋆ is generically invertible and Êχ

well defined.

A. The continuum limit of D̂χ

In order for D̂χ to be the Euclidean fermion operator for
Weyl fermions, it must have the expected continuum limit,
i.e. the negative and positive chirality Weyl fermions must
decouple. The continuum limit should be as given in
Eq. (6). The operator ϵðHÞ has the continuum expansion

ϵ ¼ γ5ð−1þDðAÞ þOðaÞÞ;
ϵ⋆ ¼ γ5ð−1þDðA⋆Þ þOðaÞÞ; ð33Þ

where we have set m ¼ 1. For the vector theory this
expansion leads to the continuum limit

DV ¼ DþOðaÞ; ð34Þ

the proper normalization occurs because with m ¼ 1, the
zeromodes are completely confined to the four-dimensional
surfaces at s ¼ 0 and s ¼ L to leading order in perturbation
theory. Performing the same expansion for D̂χ in Eq. (31)
we find
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D̂χ ¼
�

0 σμDμðAÞ
σ̄μDμðA⋆Þ 0

�
þOðaÞ: ð35Þ

This result is then identical to Eq. (6), and confirms that in
the continuum limit, the negative chirality zeromode sees a
field A while its positive chirality partner sees the flowed
field A⋆. This is a desirable result, but in itself is insufficient
to show that the mirror fermions decouple in the con-
tinuum, as it is a tree level calculation. One would like to
see the determinant factor into fermion and mirror con-
tributions in the continuum limit, but being a loop calcu-
lation, the subleading terms dropped in Eq. (35) can spoil
the desired factorization.

B. D̂χ satisfies the Ginsparg-Wilson equation

Any operator of the form

D ¼ 1þ γ5E ð36Þ

satisfies the Ginsparg-Wilson equation if E2 ¼ 1. For the
vector overlap operator,

EV ¼ ϵ ð37Þ

and so E2
V ¼ 1. For the chiral overlap operator, we have

already argued that except for possible exceptional gauge
fields, the eigenvalues of Eχ equal�1, assuring thatDχ also
satisfies the GW equation. For an explicit calculation using
the expression in Eq. (31) we can write

Êχ ¼
�
1 − ð1 − ϵ⋆Þ

1

1þ ϵϵ⋆
ð1 − ϵÞ

�

¼
�
ϵþ ð1þ ϵÞ 1

ϵþ ϵ⋆
ð1 − ϵÞ

�
; ð38Þ

and in the latter form one sees that the second term does not
contribute to Ê2

χ and so it follows immediately that Ê2
χ ¼ 1.

Therefore D̂χ satisfies the GWequation. The chiral solution
is also a generalization of the vector solution, since for the
special case A⋆ → A one has ϵ⋆ → ϵ and D̂χ → DV , as is
evident from the five-dimensional domain wall construc-
tion when gradient flow is turned off.

C. D̂χ does not suffer from phase ambiguity

To see that there is no phase ambiguity in the definition
of the determinant of D̂χ , it is convenient to consider the
five-dimensional domain wall construction of Ref. [19]
shown in Fig. 2, with a Dirac fermion living in the space
s ∈ ½−L;L� with s ¼ �L identified. The fermion mass
changes sign across the defects at s ¼ 0 and s ¼ �L, while
the gauge field equals A near the s ¼ 0 defect and A⋆ near
the s ¼ L defect. Two Pauli-Villars fields can be introduced
to eliminate bulk effects, one with mass M on s ∈ ½−L; 0�

and the other with mass −m on s ∈ ½0; L�, both with
antiperiodic boundary conditions in s. Thus there are four
distinct regions in s corresponding to the two values for the
fermion mass and the two values of the gauge field,
described by the Hamiltonians

H1 ¼ γ5ðDwðAÞ þMÞ;
H2 ¼ γ5ðDwðAÞ −mÞ;
H3 ¼ γ5ðDwðA⋆Þ −mÞ;
H4 ¼ γ5ðDwðA⋆Þ þMÞ; ð39Þ

where Dw is the Wilson operator given in Eq. (13), and we
will take M → ∞ and set m ¼ 1 in lattice units.
In the original Narayanan-Neuberger derivation, there is

no gradient flow and so A⋆ ¼ A. Inserting a complete basis
of states at two of the four s-slices (i and ii in Fig. 2) and
taking the large L limit, with the distances between all the
relevant surfaces becoming infinite, all excited energy
states are projected out and the partition function can be
expressed in terms of the many-body ground states of the
Hamiltonians Hn, denoted jΩni, as

detDV ¼ hΩ1jΩ2ihΩ2jΩ1i
hΩ1jΩ1ihΩ2jΩ2i

; ð40Þ

where the numerator arises from the fermions while the
denominator is due to the Pauli-Villars fields. The jΩni
ground states in each case correspond to a filled Dirac sea
and their overlap can be expressed as determinants of the
overlap of negative energy single-particle wave functions.
Extending the Narayanan-Neuberger procedure to the

more complicated system we are interested in with A⋆ ≠ A,
we insert a complete set of states at all four s-slices (i–iv)
shown in Fig. 2 and take the L → ∞ limit. Again, the
partition function can be expressed in terms of the jΩni
states as

det D̂χ ¼
hΩ1jΩ2ihΩ2jΩ3ihΩ3jΩ4ihΩ4jΩ1i

jhΩ2jΩ3ij2jhΩ1jΩ4ij2
: ð41Þ

FIG. 2. The four regions in the domain wall construction of
Ref. [19].
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While Eq. (41) is not particularly useful for deriving D̂χ , the
cyclic arrangement of the four jΩnihΩnj factors in the
numerator—which follows from the compact nature of
the fifth dimension in the domain wall formulation—makes
this expression for the chiral partition function both
manifestly complex and independent of any phase con-
vention for the ground states jΩni. This is to be contrasted
with earlier attempts to define the chiral determinant on a
noncompact fifth dimension [9,22] which suffered the same
phase ambiguity encountered in defining the chiral fermion
determinant in the four-dimensional continuum, namely
that the right and left Hilbert spaces are subject to
independent phase conventions.

V. THE INDEX OF THE CHIRAL
OVERLAP OPERATOR

The Uð1ÞA anomaly for the vector overlap operator can
be expressed by the index theorem

−
1

2
Trγ5DV ¼ −ν ¼ ðNþ − N−Þ; ð42Þ

where N� are the number of exact zeromodes of DV and ν
is defined in Eq. (32). Only the fact that DV satisfies the
GW equation is required to prove this relation [8]. In the
continuum limit and for smooth gauge fields, the integer ν
as calculated from ϵ can be equated to the usual topological
winding number of the gauge fields, proportional toR
TrF ~F. In this case Eq. (42) coincides with the continuum

index theorem for a Dirac fermion [49–51].
To understand what to expect for the index equation

for Dχ analogous to Eq. (42) we first consider the
continuum operator, Eq. (6). From the properties of the
Dirac operator in a background gauge field A with winding
number ν, we know that there are 1

2
ðjνj þ νÞ normalizable

two-component solutions to the differential equation

DμðAÞσμϕ ¼ 0; ð43Þ

and 1
2
ðjνj − νÞ normalizable solutions to

ðDμðAÞÞ†σμϕ ¼ 0: ð44Þ

Here we are ignoring “accidental zeromode” solutions for
special gauge field which are not mandated by topology.
Analogous equations hold substituting A → A⋆ and
ν → ν⋆. Since σ̄μ ¼ σ†μ if follows that Dχ in Eq. (6) has
n� right zeromodes with chirality �1 and n̄� left zerom-
odes with chirality �1, where

nþ ¼ jν⋆j − ν⋆
2

; n− ¼ jνj þ ν

2
;

n̄þ ¼ jνj − ν

2
; n̄− ¼ jν⋆j þ ν⋆

2
; ð45Þ

giving rise to nonzero matrix elements of the generic form

hψ̄ n̄−
R ψ̄ n̄þ

L ψnþ
R ψn−

L i ð46Þ

which violates the chiral charge by

ΔQ5 ¼ −

 
ðn− − n̄þÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ν

þ ðn̄− − nþÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ν⋆

!

¼ −ðνþ ν⋆Þ: ð47Þ

Thus we expect the analogue to Eq. (42) for the chiral
operator should be

−Trγ5Dχ ¼ −ðνþ ν⋆Þ ¼ 2ðNþ − N−Þ; ð48Þ

where

n− ¼ n̄− ¼ N−; nþ ¼ n̄þ ¼ Nþ: ð49Þ

We now compute the lattice version of Eq. (48) directly
from our expression for D̂χ, understood as the limit in
Eq. (28). Since D̂χ obeys the GWequation, it too obeys the
chiral anomaly equation

−Trγ5D̂χ ¼ −TrÊχ ¼ 2ðNþ − N−Þ; ð50Þ

with

Êχ ¼
�
1 − ð1 − ϵ⋆Þ

1

1þ ϵϵ⋆
ð1 − ϵÞ

�
: ð51Þ

What remains to do, then, is to show that TrÊχ ¼ ðνþ ν⋆Þ.
This is easy to do for the case of topology preserving flow,
where ν ¼ ν⋆. As discussed in Appendix A, for this case
ð1þ ϵϵ⋆Þ is invertible and the trace can be trivially
computed using the form in Eq. (38) with the desired
result that

TrÊχ ¼ 2ν for ν ¼ ν⋆: ð52Þ

For unconstrained ν and ν⋆, relevant for when the lattice
gradient flow equation causes topology to vanish, the
analysis is more complicated since ð1þ ϵϵ⋆Þ is no longer
invertible and Êχ must be defined as the limit in Eq. (28). In
Eq. (B8) this trace is computed with the result

TrÊχ ¼ ðνþ ν⋆Þ þ
Xjν−ν⋆j
i¼1

ξi; ξi ¼ �1: ð53Þ

In the above expression the first term is the contribution
from eigenstates of U ¼ ϵϵ⋆ with eigenvalue þ1, and the
second term is the contribution from eigenstates of U with
eigenvalue −1. This second term vanishes when the flow
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preserves topology and ν ¼ ν⋆. The ξi parameters cannot
be determined solely in terms of ν and ν⋆ as they depend on
the interplay between the two gauge fields; they must take
on values of �1. While U also has eigenstates with
generally complex eigenvalues, they are shown not to
contribute to the trace. We see that for cases where
jν − ν⋆j is an even integer it might be possible for the ξi
sum to vanish, recovering the correct continuum anomaly,
Eq. (48); however for odd jν − ν⋆j this is never possible.
The conclusion of this section is that when we assume a

rapid transition from A to A⋆ in the bulk, obtaining the
correct index theorem requires topology preserving gra-
dient flow on the lattice.

VI. PROBLEMS WITH SUDDEN FLOW

In order to be able to treat the derivation of the chiral
overlap operator analytically we have chosen to consider
the sudden flow scenario pictured in the third panel of
Fig. 1, instead of the gradual flow shown in the middle
panel. This allowed us to replace the general form for the
product of transfer matrices in Eq. (23) with the more
tractable form in Eq. (26). From the five-dimensional
picture, however, the decoupling of fermions on one
surface from their mirror partners on the other relied on
the fermions having purely local interactions with a mass
gap in the bulk. In effect the sudden transition from A to A⋆
in the middle of the sample implies that a fermion in the
bulk can couple simultaneously to the gauge fields at both
boundaries. On integrating out the bulk fermion one can
then in principle generate gauge invariant operators which
are functions of the difference ðA − A⋆Þ, an object that
transforms homogeneously under gauge transformations.
An example of such an unwanted term for the theory

considered here in the sudden gauge field flow scenario was
found in Ref. [52], which computed the anomaly for
smooth gauge fields. The authors of that paper found that
the divergence of the fermion current included a Lorentz-
violating operator of the formX

μ

∂μTrC3
μ; ð54Þ

where C ¼ ðA⋆ − AÞ. This operator is seen to vanish under
the same condition that ensures cancellation of gauge
anomalies, namely that the symmetrized trace of three
gauge generators vanishes, TrTafTb; Tcg ¼ 0. However,
chiral gauge theories will contain other Uð1Þ charges for
which such a term will not vanish. A simple example is an
SUð5Þ chiral gauge theory with Weyl fermions transform-
ing as 5̄ ⊕ 10. Such a theory has no SUð5Þ gauge anomaly;
it also has an anomaly-free global Uð1Þ symmetry where
the 5̄ carries charge Q ¼ 3 and the 10 carries charge
Q ¼ −1. The results of Ref. [52] imply that computation of
the divergence of this current on the lattice using the sudden
flow result Eq. (31) will result in a term of the form

X
μ

∂μTrQC3
μ ð55Þ

which will not vanish. This result, which persists in the
continuum limit, is incompatible with the fermion deter-
minant successfully factorizing into fermion and mirror
contributions. From the five-dimensional picture we do not
expect such terms to exist when gradual gauge flow is used,
as in Eq. (23), but that remains to be shown.6

VII. DISCUSSION

We have considered here the lattice formulation of the
proposal in Ref. [19] for combining five-dimensional
domain wall fermions with gradient flow for the gauge
fields. Our proposal, Eqs. (24) and (25), for a chiral fermion
operator follows a venerable list of such proposals in the
literature that have succumbed for various reasons.
Therefore it is important to explore this new one further,
both analytically and numerically, to test its viability. In
particular it is important to understand better the issue of
factorization of the fermion determinant in the continuum
limit. One possibly interesting avenue for numerical
exploration is the role of topologically induced interactions
between matter and fluff, as discussed briefly in Ref. [19],
and whether they persist in the large volume limit. These
questions can most likely be explored by constructing Dχ

for two fermions in conjugate representations of the gauge
group, so that the “chiral” gauge theory being considered is
actually vectorlike. Choosing a theory such as QCD, which
has been well studied on the lattice, allows for comparison
with conventionally obtained results and is likely to not be
afflicted by a sign problem, unlike less trivial chiral gauge
theories.
In order to treat Dχ explicitly we considered the

particular choice of abrupt flow from A to A⋆, pictured
in the third panel of Fig. 1, for which the expression D̂χ was
derived in Eq. (27). This allowed us to illustrate explicitly
that D̂χ obeyed the GW equation and, for topology
preserving flow, gave the relation between the its index
and the topological index ν. However, in relating ν to the
winding number of smooth gauge fields, the results of
Ref. [52] exhibit a pathological dependence on the gauge
fields which indicates that fermions and their mirrors do not
successfully decouple from each other. We therefore
believe that the gradual flow form given by Eq. (23) is
the proper formulation of our idea, although we do not have
a simple analytical form for the fermion operator in this
case. Since our conclusion that the flow has to be topology
preserving is only based on the abrupt flow scenario, we
remain agnostic about whether or not a topology changing
flow equation on the lattice must be ruled out entirely.

6Our discussion in this section has benefitted greatly from
comments by Lüscher and Poppitz.
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It is also necessary to understand better the role of gauge
anomalies, a topic not addressed in this paper. A feature of
our proposal is that it is manifestly gauge invariant, while a
chiral gauge theory with an anomalous fermion represen-
tation in the continuum is not. In the five-dimensional
domain wall construction of the theory, models which do
not have anomaly cancellation at each defect are charac-
terized by a nonzero coefficient for a bulk Chern-Simons
operator, which is nonlocal due to the gradient flow of the
gauge field [19]. We have not explored here the conse-
quences of anomalous fermion representations for our
four-dimensional chiral overlap operator D̂χ. The subject
of global anomalies has also been recently explored for
domain wall fermions with gradient flow in Ref. [53], but
how that physics manifests itself in the chiral overlap
operator remains to be explored.
Finally, it would be gratifying to be able to establish a

connection between the chiral overlap operator derived
here, and Lüscher’s lattice construction of Abelian chiral
gauge theories and consistency conditions on non-Abelian
ones presented in Refs. [54,55].
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APPENDIX A: PROPERTIES OF ϵϵ⋆
Here we discuss some properties of the matrix U ≡ ϵϵ⋆,

where ϵ and ϵ⋆ are the sign functions of two independent
2N × 2N Hermitian matrices H and H⋆,

ϵ ¼ Hffiffiffiffiffiffi
H2

p ; ϵ⋆ ¼ H⋆ffiffiffiffiffiffiffi
H2⋆

p ; ðA1Þ

with traces given by

Trϵ ¼ 2ν; Trϵ⋆ ¼ 2ν⋆: ðA2Þ

The properties of

U ≡ ϵϵ⋆ ðA3Þ

are important for understanding our expression for Dχ as it
involves the inverse of Δþ ¼ ð1þ UÞ; these properties are
examined in this section.
Lemma 1.—Eigenvalues of U take the values of �1, or

come in complex conjugate pairs, where ϵ is the con-
jugation matrix.
As matrixU is unitary its eigenvalues are phases; left and

right eigenvectors are conjugates of each other and we can
represent them using Dirac’s bra-ket notation:

Ujmi ¼ ηmjmi; hmjU ¼ ηmhmj ðA4Þ

with jηmj2 ¼ and hmjni ¼ δmn. The state jmi must also
satisfy

U†jmi ¼ η�mjmi: ðA5Þ

Since U ¼ ϵϵ⋆ and U† ¼ ϵ⋆ϵ,

Uϵjmi ¼ ϵU†jmi ¼ η�mϵjmi: ðA6Þ

Therefore the complex eigenvalues of U must come in
conjugate pairs, while the real eigenvalues can only take the
values þ1 or −1.
Lemma 2.—The number of nonaccidental �1 eigenval-

ues of U equals jν� ν⋆j.
If we define the projection operators Q� and Q�⋆ as

Q� ¼ 1� ϵ

2
; Q�⋆ ¼ 1� ϵ⋆

2
; ðA7Þ

and

Δ� ≡ ð1� UÞ; ðA8Þ
then they are related by

Δþ ¼ ϵðϵþ ϵ⋆Þ ¼ 2ϵðQþ −Q−⋆ Þ ¼ 2ϵðQþ⋆ −Q−Þ;
Δ− ¼ ϵðϵ − ϵ⋆Þ ¼ 2ϵðQþ −Qþ⋆ Þ ¼ 2ϵðQ−⋆ −Q−Þ:

ðA9Þ

If these are all 2N × 2N matrices, then ϵ is rank 2N while
Q� and Q�⋆ are rank N � ν and N � ν⋆ respectively. It
follows from the subadditivity of rank that

rankΔ� ≤ 2N − jν ∓ ν⋆j; ðA10Þ

meaning that Δ� must have at least jν ∓ ν⋆j zero eigen-
values. We will assume that typically this inequality is
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saturated, and that additional accidental zeromodes are not
important. Thus U has jν� ν⋆j nonaccidental eigenvalues
equal to �1 respectively. It immediately follows that
(1þ U) is not invertible when ν ≠ ν⋆.
Lemma 3.—Eigenstates of U corresponding to eigen-

values �1 can be taken to be simultaneous eigenstates
of ϵ and ϵ⋆.
From Eq. (A6), if jþ1i satisfies Ujþ1i ¼ jþ1i, then so

does the state ϵjþ1i. Therefore we can take as our basis
vectors the nonvanishing Q�jþ1i vectors. These are eigen-
states of ϵ with eigenvalues �1 respectively. It follows from
the definitionU ¼ ϵϵ⋆ that these states are also simultaneous
eigenstates of ϵ⋆ with eigenvalue �1 respectively.
Similar reasoning for an eigenstate j−1i satisfying

Uj−1i ¼ −j−1i leads to states Q�j−1i which are eigen-
states of ϵ with eigenvalue �1, and of ϵ⋆ with eigenvalue
∓1 respectively.
Lemma 4.—The nonaccidental eigenstates of U with

eigenvalue �1 are simultaneous eigenstates of ϵ with
eigenvalue Sign½ν� ν⋆�.
An index theorem for U can be proven by adapting the

methods of [8]. We note thatΔ� satisfy equations similar to
the GW equation, with ϵ playing the role of γ5:

fΔ�; ϵg ¼ Δ�ϵΔ�; ðA11Þ

from which one can derive the relation

ðz − Δ�Þϵðz − Δ�Þ
¼ zð2 − zÞϵ − ð1 − zÞ½ðz − Δ�Þϵþ ϵðz − Δ�Þ� ðA12Þ

for arbitrary complex variable z. Multiplying this on the
right by ðz − Δ�Þ−1 and taking the trace yields

−TrϵΔ�¼−ð2−zÞTrϵþzð2−zÞTrϵðz−Δ�Þ−1: ðA13Þ

Integrating this equation on a sufficiently small circle about
the origin in the complex z plane yields the index theorem

ðν ∓ ν⋆Þ ¼ TrϵP�
0 ¼ ðn�þ − n�

−Þ; ðA14Þ

where

P�
0 ¼

I
dz
2πi

ðz − Δ�Þ−1 ðA15Þ

serves as a projector onto the space of zeromodes of Δ�.
In Eq. (A14), n�þ is the number of states in the kernel
of ð1� UÞ that are simultaneously eigenstates of ϵ with
eigenvalue þ1, and n�

− is the number of states in the kernel
of ð1� UÞ that are simultaneously eigenstates of ϵ with
eigenvalue −1. Again assuming that there are no accidental
zeromodes, we conclude that

fnþ
þ;nþ

−g ¼

8>><
>>:

fjν − ν⋆j; 0g ν > ν⋆
f0; 0g ν ¼ ν⋆
f0; jν − ν⋆jg ν < ν⋆;

ðA16Þ

and

fn−þ;n−
−g ¼

8>><
>>:

fjνþ ν⋆j; 0g ν > −ν⋆
f0; 0g ν ¼ −ν⋆
f0; jνþ ν⋆jg ν < −ν⋆:

ðA17Þ

Accidental zeromodes will occur when a pair of states with
eigenvalues e�iδ exhibits a level crossing with δ passing
through a multiple of π. For the particular gauge field for
which such a crossing occurs, both n−

� will change by one
if at δ ¼ 0Mod ½2π�, while both nþ

� will change by one if
at δ ¼ πMod ½2π�.

APPENDIX B: MATRIX ELEMENTS OF Êχ FOR
GENERAL GAUGE FIELD TOPOLOGY

Our proposal for D̂χ in Eq. (31) is

D̂χ ¼ 1þ γ5Êχ ;

Êχ ¼ 1 − ð1 − ϵ⋆Þ
1

1þ U
ð1 − ϵÞ; ðB1Þ

whereU ¼ ϵϵ⋆ as in Eq. (A3). In Sec. IV B we showed that
D̂χ obeyed the GW equation whenever the matrix Δþ ¼
ð1þUÞ is invertible. This only occurs when ν ¼ ν⋆, as was
shown in the previous Appendix, Lemma 2. Using the
definition of these quantities in Eq. (A2), we conclude that
1þ U is only invertible when the gradient flow preserves
topology. In order to show that D̂χ generally obeys the GW
equation for any type of gauge-covariant flow equation, one
must generalize Êχ to the case when Δþ ¼ ð1þUÞ is not
invertible, which we do here. This will also allow us to
compute TrÊχ , which is the chiral index of D̂χ and yields
the chiral anomaly.
To better understand Êχ when ν ≠ ν⋆ we can use

eigenstates of U to define the Hilbert space, which is
divided into three distinct subspaces spanned by states jIi,
jmi, jii where

UjIi ¼ jIi; I ¼ 1;…; jνþ ν⋆j
Ujii ¼ −jii; i ¼ 1;…; jν − ν⋆j
Ujmi ¼ ηmjmi; m ¼ 1;…; 2N − jνþ ν⋆j − jν − ν⋆j;

ðB2Þ

with jηmj ¼ 1 and ηm ≠ �1; the complex eigenvalues come
in complex conjugate pairs. The action of ϵ and ϵ⋆ on these
states is
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ϵjIi ¼ þϵ⋆jIi ¼ sign½νþ ν⋆�jIi
ϵjii ¼ −ϵ⋆jii ¼ sign½ν − ν⋆�jii; ðB3Þ

while

ϵjmi≡ jm̄i; ϵ⋆jmi≡ ηmjm̄i; ðB4Þ

where jm̄i is the state with U eigenvalue η�m, and we have
made a particular phase choice in its definition.
It is evident that in this basis the matrix Êχ is diagonal in

the jIi, jii sectors, and is block diagonal in the remaining
space, in 2 × 2 blocks acting on each fjmi; jm̄ig pair of
states. Using the results in the above equations, the nonzero
matrix elements of Êχ are given by

hIjÊχ jIi ¼ sign½νþ ν⋆�;
hijÊχ jii ¼ ξi;� hmj

hm̄j

�
Êχ

�
jmi jm̄i

	
¼ 1

1þ ηm

�
ηm − 1 2

2ηm 1 − ηm

�
:

ðB5Þ

In order for D̂χ to satisfy the GW equation, Ê2
χ ¼ 1 and,

given that

ðsign½νþ ν⋆�Þ2 ¼ 1;

1

ð1þ ηmÞ2
�
ηm − 1 2

2ηm 1 − ηm

�
2

¼
�
1 0

0 1

�
; ðB6Þ

it follows that ξ2i ¼ 1 for every index i.
If we naively try to compute the ξi ¼ hijÊχ jii matrix

elements from Eqs. (B2) and (B3) we will find the ratio of
two vanishing quantities. Nevertheless, as was shown in

Sec. IV the eigenvalues of Êχ are bounded between�1, and
as the ξi are such eigenvalues, it follows that

−1 ≤ ξi ≤ 1: ðB7Þ

Furthermore, we argued that except at exceptional gauge
fields that relate the spectrum ofH to that ofH⋆ in a special
way, the ξi must saturate the bounds with ξi ¼ �1.
What this argument does not tell us is how many of the ξi

equal þ1 and how many equal −1; it is not possible to
determine this knowing ν and ν⋆ alone. To see this,
consider rescaling H and H⋆ by number c and c⋆
respectively. These rescalings do not affect ϵ or ϵ⋆. If
c → 0 while c⋆ ¼ 1 then we can ignore T in Eq. (28) and
Êχ → ϵ; if we do the reverse, then we get Êχ → ϵ⋆. Thus by
changingH andH⋆ relative to each other without changing
the signs of their eigenvalues, we can change the trace of
Êχ , presumably by jumps of 2 as successive ξi change sign.

We conclude that, except for exceptional gauge fields, Êχ

obeys the GW equation, and that it is precisely when one
passes through those special gauge fields that it is possible
for the trace of Êχ to jump by �2.

For the anomaly we need to compute the trace of Êχ .
Using the above analysis, we find

TrÊχ ¼ ðνþ ν⋆Þ þ
Xjν−ν⋆j
i¼1

ξi; ðB8Þ

where the first term comes from the jIi space where
ϵϵ� ¼ þ1, and the second term arises from the jii space
where ϵϵ� ¼ −1. Note that the complex eigenvalue sectors
do not contribute as the corresponding 2 × 2 matrix
elements in Eq. (B5) are traceless.
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