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We discuss the thermodynamics of the O(3) nonlinear sigma model in 1þ 1 dimensions at nonzero
chemical potential (equivalent to a magnetic field). In its conventional field theory representation the model
suffers from a sign problem. By dualizing the model, we are able to fully access the nonzero density regime
of an asymptotically free theory with dynamical mass gap at arbitrary chemical potential values. We find a
quantum phase transition at zero temperature where as a function of the chemical potential the density
assumes a nonzero value. Measuring the spin stiffness we present evidence for a corresponding dynamical
critical exponent z close to 2. The low energy O(3) model is conjectured to be described by a massive boson
triplet with repulsive interactions. We confirm the universal square-root behavior expected for such a
system at low density (and temperature) and compare our data to the results of Bethe Ansatz solutions of the
relativistic and nonrelativistic one-dimensional Bose gas. We also comment on a potential Berezinskii-
Kosterlitz-Thouless transition at nonzero density.
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I. INTRODUCTION

Analyzing quantum field theories at nonzero temperature
and chemical potential is of interest not only for studying
their thermodynamical properties, but also for providing
deep insights into the physical structure of the theory under
consideration. A recent such example is given in [1], where
we demonstrated that the grand canonical ensemble at
low temperature and small volumes can be connected to
scattering data.
Before we outline the physics results presented in this

paper, we briefly mention the challenges of thermodynamics
for numerical lattice simulations, one of our best ab initio
tools (since analytic approaches are typically limited).
Monte Carlo simulations are based on importance sampling
and, while finite temperature simulations are routine, simu-
lations at nonzero chemical potentials μ are in many cases
plagued by the complex action/sign problem: at nonzero μ
the action S has a nonvanishing imaginary part and the
Boltzmann factor e−S cannot be used as a probability weight
in a stochastic process. One of themost successfulmethods is
to employ dualization of the lattice path integral to new, so-
called “dual variables,”where the partition sum has only real
and positive contributions (see, e.g., [2,3] for reviews).
Although it is not completely clear for which classes of
models a dual representation is useful for treating the sign
problem, in models where it is successful the dual represen-
tation has allowed the exploration of the finite density phase
diagrams, and the corresponding data also serve as a bench-
mark for other approaches to the complex action problem.
We would like to stress that dual representations not only

enable simulations at nonzero density, but also reveal

physical aspects complementary to those of the standard
representation. In the dual representation the dynamical
degrees of freedom are worldlines and the chemical
potential couples to their temporal component. Via a
discrete version of current conservation on a space-time
lattice one finds that the chemical potential indeed couples
to the temporal winding number of the worldlines. Thus the
net number of particles (charged under the Noether charge
of the corresponding symmetry) can be identified with the
temporal net winding number of the worldlines and the
Noether charge becomes topologically conserved. As such
the worldlines winding around the time direction have a
direct interpretation as quantum states carrying the corre-
sponding quantum number. Since this is an all-scale
statement, the dual worldlines carry direct information
about the infrared physics, generally obscured in the
conventional formulation of asymptotically free theories.
The O(3) nonlinear sigma model, which we are dealing

with in this work, is conjectured to possess a particle triplet
as its infrared excitations, the mass of which is generated
dynamically. The dual wave function method of [1] indeed
utilizes the spatial distance of the worldlines to obtain
information about the particles’ scattering. In the case of
quantum chromodynamics (QCD), which is also asymp-
totically free, the low energy excitations are not the colored
quarks and gluons, but colorless hadrons, with a large
fraction of their masses being dynamically generated. A
related dual lattice representation is that in terms of meson
hoppings plus (anti-)baryon worldlines, to which the baryon
chemical potential couples [4,5] (this dual representation,
however, does not remove the sign problem completely and
does not take into account the gauge action).
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To be more concrete, we introduce a chemical potential
for an O(2) subgroup of the O(3) symmetry of the sigma
model in two dimensions. At low temperatures a nonzero
density is expected to be induced into the system when μ
reaches the threshold of the particle mass. In the condensed
matter context μ can be viewed as a constant magnetic field
inducing a magnetization; see Secs. 11 and 19 of [6]. We
will analyze this transition in detail extending our previous
simulations to large volumes. Beyond the transition the
system explicitly breaks the global internal symmetry from
Oð3Þ to Oð2Þ and in principle allows classical vortex
solutions with half-integer topological charge [7]. Although
at asymptotically large densities vortices are expected to
bind in neutral pairs, it was conjectured in [7] that these
vortices will be liberated at small densities, so that a
Berezinskii-Kosterlitz-Thouless (BKT) transition [8,9]
may happen at some finite value of the density. We remark
that lattice results for the O(2) model at finite density can be
found in [10–12].
Our main findings are twofold: Concerning the O(3)

phase diagram we find a threshold crossover at nonzero
temperatures and a quantum phase transition at zero
temperature, as a function of μ at the mass threshold.
Note that lattice simulations become expensive in this limit,
as both temporal and spatial extensions must be taken to
infinity. Using the concept of spin stiffness we analyze
spatial correlations and present evidence for a dynamical
critical exponent z close to 2, which is consistent with the
nonrelativistic free fermions to which a model at low
density belongs. We do not directly see signatures of a
BKT transition conjectured in [7] in any of the observables
studied in this work.
Secondly, the numerical data for the density near the

transition can be described by a square root. The latter is
universal for one-dimensional repulsive bosons. The sim-
plest example of this is the nonrelativistic quantum particle
gas with repulsive delta-function interactions (the Lieb-
Liniger model [13]) and its limit when the repulsion
strength goes to infinity (the Tonks-Girardeau limit
[14,15]). The latter is equivalent to free fermions. These
systems only differ in the specific form of the phase shifts,
relevant away from the transition. Eigenstates and thermo-
dynamics [16] of these systems can be obtained from Bethe
Ansätze. We show that our data match well with the
corresponding analytical nonrelativistic or relativistic pre-
dictions. Our simulations are performed at a lattice cou-
pling in the continuum scaling regime, and we believe that
the continuum limit to be performed does not reveal new
qualitative features.
Our study demonstrates that dual lattice simulations are

capable of describing a system all the way from the
Lagrangian in terms of ultraviolet fields to the infrared
physics in terms of interacting particles (at nonzero
densities induced by μ). Such a transformation is the
essence of Wilson’s renormalization group, which is

probably very hard to tackle analytically, but specific
questions can be answered by the lattice, now that we
have reliable lattice simulations at hand. To better under-
stand the structure of dual partition functions and observ-
ables should also be of help in this program.
We briefly mention at the end that, although this program

is mostly inspired by the attempts to understand the
nonzero density structure of QCD, the potential benefit
of studying nonlinear sigma models goes beyond this
problem. Firstly, they are interesting in themselves and
appear as effective models of (anti-)ferromagnetic systems.
Secondly, the study of properties of these systems is
interesting in the context of continuum quantum field
theories themselves. On the one hand, we have recently
shown for the example of the O(3) nonlinear sigma model
that lattice dualities may provide a physical connection
with the low energy excitations of the theory. On the other
hand, the nonlinear sigma models play a crucial role in the
development of the continuum definition of quantum field
theories via the resurgence program (see [17] and refer-
ences therein). To date, resurgent constructions were
explicitly shown to work only in analytical tractable
one-dimensional reductions of the O(N) [18] and CP(N)
[19] nonlinear sigma models as well as of the principle
chiral model [20]. However, genuinely 1þ 1-dimensional
nonzero density systems, akin to what we study here, also
show similar resurgence structures [21]. Numerical and
physical understanding of these systems is therefore
important for the fundamentals of quantum field theory
as well.

II. DEFINITION OF THE MODEL AND ITS
LATTICE DISCRETIZATION

A. Continuum formulation and observables

The O(3) model is conventionally written in terms of
normalized vectors ~rðxÞ¼ðr1ðxÞ;r2ðxÞ;r3ðxÞÞwith ~rðxÞ2 ¼
1 ∀ x [also called “spins” or “O(3) rotors”] and the
continuum action reads [22]

S½~r� ¼ 1

g2

Z
d2x

�
1

2
ð∂νraÞ2 þ iμðr1∂2r2 − r2∂2r1Þ

þ μ2

2
r23 −

μ2

2

�
; ð1Þ

where the coupling constant g is dimensionless in 1þ 1
dimensions. We have already coupled a chemical potential
μ to one of the O(2) subgroups, which excites the three-
component of the angular momentum. Repeated indices are
summed over ((ν ¼ 1, 2) and (a ¼ 1, 2, 3)) and arguments
x have been dropped. At nonzero temperature T the
Euclidean time x2 is periodic with period 1=T. In such a
bosonic theory, μ also enters quadratically, tending to
suppress the perpendicular component r3ðxÞ.
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Our main thermodynamic observables will be the expect-
ation values of the charge Q, its density n and its
susceptibility χn:

Q ¼ T
∂ lnZ
∂μ ; n ¼ Q

L
; χn ¼

∂n
∂μ ; ð2Þ

where Z is the grand canonical partition function [see [23]
or Eq. (12) below]. Eventually, all dimensionful quantities
like μ, T, L, n etc. will be given in units of the massm, e.g.,

n
m

¼ T=m
Lm

∂ lnZ
∂ðμ=mÞ ; ð3Þ

whereas χn is already dimensionless.
We will also explore the spin stiffness for which one

imposes twisted spatial boundary conditions for a finite
spatial length L. To implement these, we first introduce the
O(2) polar angle ϕ by combining the first two components
into a complex number

r1ðxÞ þ ir2ðxÞ ¼ r12ðxÞeiϕðxÞ; ð4Þ

and then replace the periodic boundary conditions in space
by twisted ones,

ϕðx1 þ L; x2Þ ¼ ϕðx1; x2Þ þ φ: ð5Þ

If the twist costs free energy, F ¼ −T lnZ, at leading order
the dependence of F on φ is quadratic in φ, and we define
the spin stiffness (also called superfluid density) by

σ ¼ L
∂2F
∂φ2

����
φ¼0

¼ −LT
1

Z
∂2Z
∂φ2

����
φ¼0

; ð6Þ

where we have used that Z is an even function of φ.
Physically it is clear that σ depends on whether the regions
x1 and x1 þ L are correlated, i.e., whether the system is in a
(spatially) ordered state.
The spin stiffness can be computed and related to

vortices in the lattice O(2) model without chemical
potential1 [24]. For large lattice coupling, the vortices
are arranged in pairs and the spin correlator decays
algebraically, which is the behavior closest to an ordered
state in two dimensions (as the Mermin-Wagner theorem
forbids the spontaneous breaking of the continuous sym-
metry). As a consequence, the spin stiffness σ will be
nonzero. At small lattice coupling, the vortices condense
and make the correlator decay exponentially. In this regime
the spin stiffness σ will vanish if L is larger than the spatial
correlation length ξ. This is why the spin stiffness can be
used to detect BKT transitions characterized by the change

of the correlator decay and to measure the spatial corre-
lation length.
Actually, the dimensionful combination φ=L may be

viewed as an imaginary chemical potential in the spatial
direction, and therefore the stiffness is known to measure
spatial winding numbers [25]. As this is best seen using
dual variables, we give the corresponding formula in the
next section.

B. Lattice formulation and the dual representation

The lattice action discretizing (1) reads

S½~r� ¼ −J
X
x∈Λ
ν¼1;2

�
r3ðxÞr3ðxþ ν̂Þ þ 1

2
r12ðxÞr12ðxþ ν̂Þ

× fe−iðϕðxÞ−ϕðxþν̂ÞÞ−μδν;2 þ c:c:jμ→−μg
�
: ð7Þ

As is common in lattice field theory, the chemical potential
μ introduces exponential factors for the forward and
backward temporal hopping terms. For μ ¼ 0 these terms
are related by complex conjugation c.c., but when μ has a
nonzero real part we face a complex action problem. The
parameter J is the lattice coupling constant (dimensionless
and positive) and the first sum runs over the V ≡ Ns × Nt
sites of a two-dimensional lattice (Λ) with periodic boun-
dary conditions. Again ν ¼ 1, 2 and ν̂ denotes the corre-
sponding unit vector in direction ν. Throughout this
paper we set the lattice spacing a to a ¼ 1, implying that
T ¼ 1=Nt and L ¼ Ns.
The continuum limit for the lattice model is reached via

J → ∞. The mass gap of the system can be expressed in the
bare coupling J and an UV cutoff asm2 ¼ Λ2

UV expð−4πJÞ.
On the lattice the cutoff is proportional to the inverse
lattice spacing, ΛUV ¼ C=a, and to two loops the mass gap
reads [26,27]

am ¼ Cð1þ 2πJÞ expð−2πJÞ for J → ∞: ð8Þ

The partition sum is defined as the lattice path integral
Z ¼ R

D½~r�e−S½~r�, where the measure D½~r� is the product
over the O(3)-invariant measures for ~rðxÞ on all lattice
sites. The particle density and susceptibility are defined
as μ-derivatives of Z as in the continuum,

n ¼ 1

NsNt

∂ lnZ
∂μ ; χn ¼

∂n
∂μ : ð9Þ

As a check we will also use the expectation value of the
action density at μ ¼ 0,2

1The O(2) lattice action is −J
P

x;ν cosðϕðxþ ν̂Þ − ϕðxÞÞ,
which is nothing but (7) with r3 ¼ 0, r12 ¼ 1 at μ ¼ 0.

2This is obtained from e ¼ hEi=NsNt, where E ¼ P
x;νð∇ν~rÞ2

and ð∇νfÞðxÞ ¼ fðxþ ν̂Þ − fðxÞ [28]. From the normalization of
~r it follows that e ¼ 4 − 2h~rðxÞ~rðxþ ν̂Þi=NsNt and thus (10).

TWO-DIMENSIONAL O(3) MODEL AT NONZERO … PHYSICAL REVIEW D 94, 114503 (2016)

114503-3



e ¼ 4 −
2

NsNt

∂ lnZ
∂J ; ð10Þ

whose strong and weak coupling expansions are [28]

e ¼
�
4 − 4y − 8y3 − 48

5
y5 þ…; for small J;

2
J þ 1

4J2 þ 0.156
J3 þ… for large J;

ð11Þ

where y ¼ coth J − 1
J.

In [23] we have introduced the following (exact)
representation of the partition function in terms of integer
dual variables mx;ν ∈ Z and kx;ν, m̄x;ν ∈ N0,

Z ¼
X

fm;m̄;kg

�Y
x;ν

Jkx;ν

kx;ν!
ðJ=2Þjmx;νjþ2m̄x;ν

ðjmx;νj þ m̄x;νÞ!m̄x;ν!

�
eμ
P

x
mx;2

×
Y
x

I
�X

ν

ðkx;ν þ kx−ν̂;νÞ; 1þ
X
ν

½mx;ν þmx−ν̂

þ 2ðm̄x;ν þ m̄x−ν̂Þ�
�

×
Y
x

δ

�X
ν

½mx;ν −mx−ν̂;ν�
�
E

�X
ν

½kx;ν þ kx−ν̂;ν�
�
;

ð12Þ

where the Kronecker delta, the evenness function E and a
function I related to Euler’s beta function B have been
used:

δðnÞ ¼
�
1 n ¼ 0

0 else
; EðnÞ ¼

�
1 n even

0 n odd
;

Iða; bÞ ¼ B

�
aþ 1

2
;
bþ 1

2

�
¼ Γðaþ1

2
ÞΓðbþ1

2
Þ

Γðaþbþ2
2

Þ : ð13Þ

Note that the current mx;ν is conserved since the Kronecker
delta of

P
ν½mx;ν −mx−ν̂;ν�≡ ð∇mÞx corresponds to the

discrete version of the vanishing divergence condition
(at each site x). The chemical potential couples to the
corresponding sum over the temporal components of mx;ν.
This sum can be rewritten using the conservation asP

xmx;2 ¼ Nt
P

x1mx;2 ¼ 1=T · w½m�, where w½m� is the
total winding number of the m-loops reflected in the net
m-flux through every time slice. Thus, the chemical
potential appears through weights expðμ · integer=TÞ.
This is also the main advantage of dual representations
of systems with respect to chemical potentials: if the dual
partition function has no sign problem at vanishing μ,
which holds for our system, μ does not introduce a sign
problem either.

In the dual representation, the observables take the form

n ¼ 1

NsNt

�X
x

mx;2

	
¼ 1

Ns
hw½m�i; ð14Þ

χn ¼
Nt

Ns
ðhw½m�2i − hw½m�i2Þ; ð15Þ

e ¼ 4 −
2

NsNt

�X
x;ν

½kx;ν þ jmjx;ν þ 2m̄x;ν�
	
; ð16Þ

where here hOi is the expectation value of O in the dual
representation obtained by inserting the expression O into
the sum in Eq. (12) and dividing by Z.
We will also measure the space-time average of the third

dual variable,

K ¼ 1

NsNt

�X
x;ν

kx;ν

	
; ð17Þ

as a measure for the anisotropy of the system. For its
interpretation we sketch how the dual representation
is obtained for the third variable, using that Z ∝R
D½~r�Qx;ν

P∞
kx;ν¼0½Jr3ðxÞr3ðxþ ν̂Þ�kx;ν=kx;ν!. Evaluating

(17) inserts another kx;ν into the dual partition sum and
reduces the argument of the factorial by 1, which can be
compensated by a shift of the summation variable giving a
factor of J and the hopping term. It follows that
hkx;νi ¼ Jhr3ðxÞr3ðxþ ν̂Þi, where the latter expectation
value is in the conventional representation (7). Hence K
measures the amount of hopping in the direction
perpendicular to the x − y plane where we excite O(2)
angular momentum. Thus, we expect K to be small in the
anisotropic phase at large μ.
At vanishing μ the theory enjoys the full O(3) symmetry

and the amount of hopping must be the same for all
components. In the energy density (16) above this can be
seen by virtue of the fact that jmjx;ν þ 2m̄x;ν is the sum of
two dual variables of the same nature as kx;ν; see Eq. (12)
of [23]. Therefore, e ¼ 4 − 6K=J should hold at μ ¼ 0.
In the same way the chemical potential couples to the

integrated temporal component of the conserved O(2)
current, the twist-induced imaginary spatial chemical
potential iφ=L couples to the integrated spatial component.
The partition function in the presence of the twist thus has
an additional factor expðiφ=Ns ·

P
xmx;1Þ¼expðiφws½m�Þ,

where ws½m� is the total spatial winding number of m in
each configuration. In the definition of the spin stiffness σ,
Eq. (6), the second derivative with respect to φ brings down
−ws½m�2 and setting φ to zero afterwards results in the
expectation value

σ ¼ Ns

Nt
hws½m�2i ¼ LThws½m�2i; ð18Þ

FALK BRUCKMANN et al. PHYSICAL REVIEW D 94, 114503 (2016)

114503-4



in the dual representation without twist [similar to χn
in Eq. (15)].

III. NUMERICAL SIMULATION, TESTS
AND BASIC ANALYSIS

In this section we collect several more technical aspects
of this paper. We briefly discuss our simulation strategy for
the dual formulation and evaluate the correctness of its
results by comparing them to perturbative strong and weak
coupling calculations. Furthermore we present numerical
results for the phase diagram at finite volume and temper-
ature as well as a finite volume scaling analysis which
indicates that at nonzero temperature all transitions are
smooth crossovers.

A. Dual simulation and tests

In this subsection we briefly discuss Monte Carlo sim-
ulation strategies for the dual representation Eq. (12) and
present tests for its correctness. Obviously each term in the
partition sum (12) is real and positive and a probability
interpretation of the weights of the dual configurations is
possible. The remaining challenge of a dual Monte Carlo
simulation is to generate only those configurations that obey
all the constraints. For the unconstrained dual variables m̄x;ν

conventional localMetropolis updates are sufficient. For the
constrained variables mx;ν and kx;ν the constraints enforce
closed loops and loops where flux is conserved modulo 2,
respectively. In both cases one can generate new admissible
configurations by changing the variables along an arbitrarily
chosen closed loop which guarantees that the constraints
remain intact. This loop along which one updates the
dual variables can for example be grown in steps using
local random choices and corresponding Metropolis
decisions until it closes, which is the well-known worm
strategy [29]—this is the update used here. After equilibra-
tion, we typically use 105 to 106 measurements on configu-
rations separated byOð20Þ sweeps. The statistical errors we
show are determined with the jackknife method, taking
autocorrelation times into account.
For a first test we computed the energy density at

vanishing chemical potential; cf. Eq. (16). In Fig. 1 we
show the results for e at μ ¼ 0 as a function of the coupling
J and compare to the weak and strong coupling expansions
from Eq. (11). We find excellent agreement in the corre-
sponding domains of J. This demonstrates that the mapping
to the dual variables and the implementation of the dual
Monte Carlo simulation are correct.
Likewise, the lattice mass gap am (at μ ¼ 0) has been

determined in the usual manner from the decay of timelike
correlators and was found to agree well with the critical
chemical potential (see below).
We now switch to the situation where the dual approach

is really essential, i.e., the simulations at nonzero chemical
potential. In the top panel of Fig. 2 we plot the particle

FIG. 1. Energy density versus the coupling at (μ ¼ 0). The
analytical results for the strong and weak coupling expansions
from Eq. (11) agree very well with the numerical results (having
very small error bars) obtained from simulating the dual ensemble
on a (10 × 10) lattice and using Eq. (16).

FIG. 2. Top: Expectation value of the particle number density
versus the chemical potential μ, both in lattice units, at different
couplings J for lattice size 90 × 90. Bottom: Logarithm of the
corresponding critical chemical potentials as a function of the
coupling. We compare our data to the strong coupling result
lnð3=JÞ and the weak coupling expansion of the mass gap and
Eq. (8), having obtained C ¼ 102ð2Þ from a fit of the
J ≥ 1.4 data.

TWO-DIMENSIONAL O(3) MODEL AT NONZERO … PHYSICAL REVIEW D 94, 114503 (2016)

114503-5



density n measured via Eq. (14) as a function of μ. As a
general phenomenon at low temperatures a net density is
induced into the system only after μ has reached a thresh-
old, the mass of the lightest particle with charge coupling to
μ. The critical values of μ visible in that plot thus depend on
the coupling J just like the mass. This is shown in the
bottom panel of Fig. 2, again with strong and weak
coupling expansions. For comparison we list the corre-
sponding data in Table I.
The strong coupling behavior, μ ¼ lnð3=JÞ for J → 0, is

worked out in the Appendix, whereas the weak coupling
result follows from the two-loop mass gap formula, Eq. (8),
in which we obtain the constant C related to the UV cutoff
by a one-parameter fit. The agreement is again very good,
which is seen also in a comparison to the literature (Fig. 10
of [27]). Note also that the continuum scaling sets in at
J ≃ 1.4, as for the energy density in Fig. 1: in particular
from J ∼ 1.4 on, the results for the energy density (Fig. 1)
and the mass gap (Fig. 2) agree very well with the
corresponding strong coupling curves (blue) that are valid
in the continuum limit.
Most of our lattice data were taken at J ¼ 1.3, where

am ∼ 0.22. This means a restriction to μ ≪ 5m; otherwise
aμ becomes comparable to 1 and strong discretization
effects set in.

B. Finite lattice phase diagram

Before we come to discussing continuum results, we first
consider nonzero lattice spacing and finite volume; i.e.,
we study the system at fixed lattice size without a final
continuum limit J → ∞. We determine the J–μ phase
diagram at low temperature, using the onset of nonzero
particle density as a function of μ for determining the phase
boundaries. Figure 3 shows this phase diagram for several
critical chemical potentials. Note that the number of
temporal sites is fixed, so the temperature in mass units
T=m ¼ 1=ðNtamÞ varies with the coupling according to
the mass gap formula amðJÞ, e.g., Eq. (8).
In [1] we have shown that close to the continuum limit at

small temperatures and volumes, the particles are induced
into the system one by one, displaying integer plateaus in
the particle number itself (not its density). These transitions
show up for large J and some examples are plotted in
Fig. 3. The locations of these critical μ’s are governed by
the particle interaction phase shifts and thus contain
interesting physics, as explained in detail in [1].

In the strong coupling regime at small J the situation is
different. In the dual representation of the partition func-
tion, Eq. (12), every dual variable is suppressed by the
corresponding power of J. Still, the temporal components
of the flux variable m are promoted by factors of eμ, that
eventually overcome the factors of J=2. This mechanism
acts locally on every spatial site, which means that if it is
preferable to have Q particles at some site (mx;2 ¼ Q), then
this immediately applies to all sites. In fact, the super-
position of Q fluxes does not cost any action at strong
coupling. Therefore, in this regime the particle number
density changes by 1 (in lattice units). The corresponding
critical values of μ depend on J logarithmically, and their
values are computed in the Appendix. Figure 3 shows good
agreement with these curves for small J and illustrates how
intermediate couplings interpolate the transitions between
these regimes. In particular all critical values of μ are on
equal footing towards the continuum (large J), whereas in
the strong coupling regime (small J) multiples ofNs bunch,
such that regimes with fixed lattice density open up.
In Fig. 4 we show the lattice phase diagram with the

quantity J=2 · expðμQÞ on the y-axis. In the strong coupling
limit Ns critical μ’s now meet at half integers 3=2, 5=2 etc.,
which agrees with the derivation in the Appendix again.
The corresponding diagram for the O(2) model is shown in
Fig. 3 of Ref. [12] (for this model the curves meet at integer
values).
Let us conclude this subsection with a quick look at the

third dual variable kx;ν, or more specifically at its sum K as

FIG. 3. Phase transition in the J–μ plane for Ns ¼ 30 and
Nt ¼ 1000. At large J, i.e., towards the continuum limit, the
critical chemical potentials with increasing index (from red to
green to black to blue) induce individual transitions between
integer charges as utilized in [1]. At small J the first Ns of them
join to a single transition, μ1 ¼ … ¼ μNs, increasing the particle
density n in lattice units from 0 to 1 (see text). The next critical
chemical potential μNsþ1 (blue) is separated from those, and
above it a density n ¼ 2 will be induced. At large J, on the other
hand, the change from μNs to μNsþ1 plays no particular role. The
strong coupling predictions for the transitions 0 → 1 and 1 → 2
are included as solid curves.

TABLE I. Results for the critical chemical potential values in
lattice units used for normalizing.

J 0.01 0.05 0.1 0.2 0.4 0.6 0.8

aμc 5.69(3) 4.10(5) 3.35(2) 2.60(2) 1.80(2) 1.27(1) 0.87(2)

J 1.0 1.1 1.2 1.3 1.4 1.5 1.6

aμc 0.55(2) 0.42(1) 0.32(1) 0.22(1) 0.15(1) 0.09(2) 0.05(1)

FALK BRUCKMANN et al. PHYSICAL REVIEW D 94, 114503 (2016)

114503-6



defined in Eq. (17). For μ larger than the threshold the O(3)
symmetry is explicitly broken to O(2) by the presence of
the O(2) charge, which is expected to be manifest in a
decrease of K [see the discussion below Eq. (17)]. In Fig. 5
we show K as a function of μ (normalized by μc) and
indeed find the onset of a drop at the critical chemical
potential, which confirms the picture that the system tends
to become more and more planar as μ increases.

C. Crossover at nonzero temperature

We conclude the first analysis of the lattice model by
studying the nature of the transitions mapped out in the
previous subsection. For this study we still keep the
temperature T fixed and perform the standard scaling
analysis of order parameters with the spatial volume L
to analyze the nature of the transition.
Figure 6 shows the particle number density (top panel)

and its susceptibility (bottom panel) at a fixed low

temperature of 2% of the mass. As a function of chemical
potential μ the particle number n is monotonically increas-
ing, with a strong variation emerging only above μc, while
the susceptibility displays a maximum. Doubling the spatial
size, the data still fall on top of each other for both
observables. Equivalent results were found for two other
nonzero temperatures, T=m ¼ 0.046 and 0.011, and we
conclude that for nonzero temperature the transition is
smooth, i.e., it is a crossover.

IV. QUANTUM PHASE TRANSITION

We now explore the possibility of a quantum phase
transition at zero temperature; i.e., we focus on the
combined limit of zero temperature and infinite volume,
i.e., T ¼ 0, L ¼ ∞, and analyze the transitions of the O(3)
model as a function of the chemical potential. This amounts
to sending the extents of both Euclidean time and space to
infinity. Of course, with finite numerical simulations this
can only be done as a limit, T → 0 and L−1 → 0. However,
in general, the outcome depends on the particular choice
of the trajectory towards that limit which one chooses in
the T–L−1 plane. In particular the spatial and temporal
correlation lengths can be different, as expressed by the

FIG. 5. Expectation value K for the third dual variable [for
its definition and interpretation see Eq. (17) and below]
also displaying a transition at μ ¼ m (J ¼ 1.3, Ns ¼ 200,
Nt ¼ 1000). The value at small μ is the isotropic one related
to the energy density by K ¼ Jð4 − eÞ=6.

FIG. 4. Phase transition as in Fig. 3, but with a modified
quantity on the y-axis (and some more data points for higher J’s);
see text.

FIG. 6. Dependence of the particle number density and its
susceptibility on the chemical potential at a fixed low temperature
T=m ¼ 0.023 for three spatial sizes’ volumes (coupling J ¼ 1.3,
lattices with Nt ¼ 200 and Ns ¼ 80, 120, 160).
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dynamical critical exponent (see Sec. IV B below). Thus
we will discuss the behavior of the system for different
“scaling trajectories,” i.e., different paths leading to the
limit T ¼ 0, L−1 ¼ 0. For these scaling trajectories we will
present and interpret our data for the particle density and
the spin stiffness. For the interpretation we will partly rely
on simple model systems showing characteristic features
observed in our simulations.

A. Scaling trajectories towards zero temperature
and infinite volume and particle number results

As already outlined, when considering the limits T → 0

and L−1 → 0, the behavior of the system will depend on the
particular scaling trajectory one follows in the T–L−1 plane
towards the origin. These limits can be taken in different
ways, and a possible choice is to take the L−1 → 0 limit
first, keeping temperature fixed, and then take T → 0. We
can also keep L fixed and take T → 0 first, and then
L−1 → 0. More generally we can take the limit T, L−1 → 0,
keeping

TLα ¼ const: ð19Þ

fixed, where α is a non-negative real number. Generically,
the constant has a noninteger mass dimension; for the
practical implementation (e.g., for α ¼ 2 below) one can fix
ðT=mÞðLmÞα to a dimensionless constant. Notice that the
consecutive limits mentioned above correspond to the
limiting cases α ¼ 0 and α ¼ ∞. Here we will consider
these two scaling trajectories plus α ¼ 1, 2 as we illustrate
in Fig. 7. In this subsection we briefly discuss these
different scaling trajectories and partly describe the result-
ing physics using model calculations for the behavior at
the emerging phase transitions.
In the limiting trajectories α ¼ 0 and α ¼ ∞ one has to

perform the two limits consecutively. This is difficult to

implement on the lattice but reveals interesting physics.
Therefore, we will use simple model calculations to
illustrate characteristic features of the consecutive limits.
We will compare our numerical data to results for free
one-dimensional fermions: At low densities the behavior is
governed by the small momentum exchange between the
particles, which for the O(3) model at hand are one-
dimensional repulsive bosons. At low momentum their
behavior is universal and given by free (spinless) fermions;
see Sec. V.
For the other two scaling trajectories, α ¼ 1 and α ¼ 2,

the results will not differ much concerning the particle
density, but are characterized by a different behavior of the
spin stiffness, which we will discuss in detail in Sec. IV B.
The scaling trajectory α ¼ 0: The α ¼ 0 trajectory

corresponds to the consecutive limits

L−1 → 0 at fixed T; then T → 0:

The first limit of this sequence corresponds to the finite
volume scaling at fixed nonzero temperature studied in
Sec. III C. This analysis has revealed a crossover as seen
from Fig. 6. Actually every fixed temperature possesses a
specific crossover curve nðμÞT , which upon lowering the
temperature T to zero in the second limit might become
steeper near some μc and turn into a genuine phase
transition. To some extent this feature is seen in our data
shown in Fig. 9 below, where it is, however, overlaid
by the formation of “condensation steps” (see the discus-
sion below).
The emergence of such a quantum phase transition as T

approaches 0 is of course a well-known feature which
already appears in the simple model of free fermions in one
spatial dimension: the density n is given by the Fermi-Dirac
integral (L−1 ¼ 0),

FIG. 7. Illustration of the four scaling trajectories in the T–L−1

plane towards the zero temperature and infinite volume limit
(black dot) which we use in this study [see discussion
around (19)].

FIG. 8. Emergence of a phase transition in the limit T → 0 for
free one-dimensional fermions in an infinite volume. We show
that the smooth curves for T=m ¼ 1=10 (green) and T=m ¼ 1=50
(blue) approach the T ¼ 0 square-root behavior from Eq. (21).
This is a model calculation for the scaling trajectory α ¼ 0,
especially its second limit T → 0 at L−1 ¼ 0.
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nf ¼
Z

∞

−∞

dk
2π

1

1þ expððmþ k2=2m − μÞ=TÞ ; ð20Þ

where we use a nonrelativistic dispersion which is suffi-
cient for a first illustration. The density can be expressed by
a polylogarithm Li1=2, from which one obtains a square root
in the T → 0 limit,

nf
m

→

ffiffiffi
2

p

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=m − 1

p
· ΘHeavisideðμ=m − 1Þ

for L−1 ¼ 0; T → 0: ð21Þ

The square-root behavior, which is nonanalytic at
μ=m ¼ 1, is indeed reached only for T ¼ 0 via a sequence
of analytic crossover-type curves as shown in Fig. 8.
The scaling trajectory α ¼ ∞: We have already pointed

out that our results for the density as a function of μ start to
show “condensation steps” when the temperature T is
lowered at fixed L. Thus it is interesting to study also the
scaling trajectory α ¼ ∞, which is defined by the con-
secutive limits

T → 0 at fixed L; then L−1 → 0:

Our numerical results for the first of these two limits are
shown in Fig. 9. When lowering the temperature T at fixed
L we observe the emergence of plateaus in the density
where the particle numbers are integers. The plateaus
correspond to sectors with fixed particle number, and are
smoothed out by the finite temperature (the width of the
transition region being proportional to the temperature).
Therefore, sharp steps emerge in the T → 0 limit at any
fixed L.
After considering T ¼ 0 at finite L, i.e., following the

α ¼ ∞ trajectory, we need to perform the second limit

L−1 → 0. Also the behavior of this second limit can be
illustrated in a one-dimensional fermion model, the
Tonks-Girardeau limit of the Lieb-Liniger system, which
we discuss in detail in Sec. V. One finds that the minimal
energy in each particle number sector Q is

EðQÞ
min ¼ π2=ð6L2mÞ · ðQ2 − 1ÞQ. Steps occur whenever

EðQÞ
min −Qμ ¼ EðQ−1Þ

min − ðQ − 1Þμ and thus are located at
μQ ¼ mþ π2=2 ·QðQ − 1Þ=ðL2mÞ. The corresponding
density n=m ¼ 1=Lm ·

P∞
Q¼1ΘHeavisideðμ − μQÞ is shown

in the top panel of Fig. 10. It “oscillates” around its square-
root limit, reaching it by ever smaller oscillations. The
square root can also be seen analytically, since for large Q
the steps are at μQ=m ¼ 1þ π2=2 · ðn=mÞ2.
The same behavior is seen in our numerical O(3) data

shown in the bottom panel of Fig. 10, where, in the same
fashion, “oscillations” around a limiting curve diminish
with increasing L. However, this can only be done at low
but nonzero temperatures and, as discussed above, this
gives rise to a crossover instead of a phase transition.

FIG. 9. Particle density n in units of the mass as a function of μ
for different temperatures at a fixed volume of L ¼ 22=m
(J ¼ 1.3, Ns ¼ 100, Nt ¼ 200, 400, 1000, 2000). When low-
ering the temperature one observes [1] the emergence of plateaus
at integer values of the particle number, which for the normalized
density n=m used here corresponds to integer multiples of 0.046.

FIG. 10. Illustration of how the low temperature density with its
steps at any finite volume approaches its infinite volume limit.
Top: The Tonks-Girardeau gas similar to free fermions at zero
temperature (see text) for Lm ¼ 4.4, 6.6, 19.8 (red, green, blue)
being a model calculation for the scaling trajectory α ¼ ∞
(second limit). Bottom: Our results for the O(3) model at
T=m ¼ 0.0023. For the different scales recall that free fermions
approximate the O(3) model only at low densities.
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The scaling trajectories α ¼ 1 and α ¼ 2: In the scaling
trajectories α ¼ 1 and α ¼ 2 we consider approaches to the
limit T ¼ 0, L−1 ¼ 0 by sending T and L−1 to zero
simultaneously. The trajectories differ in their functional
relation between T and L:

α ¼ 1∶ T → 0 and L−1 → 0 with T ¼ L−1

α ¼ 2∶ T → 0 and L−1 → 0 with T ∝ ðL−1Þ2:

Obviously α ¼ 1 corresponds to square lattices Nt ¼ Ns,
while α ¼ 2 corresponds to time elongated lattices with
Nt ∝ ðNsÞ2. To be specific, in our numerical simulations
for α ¼ 2 we have used Nt ¼ ðNs=2Þ2 at J ¼ 1.3
(am ∼ 0.22), which amounts to T=m ¼ 0.88=ðLmÞ2 or
Lm ¼ 0.94=

ffiffiffiffiffiffiffiffiffiffi
T=m

p
. We summarize the parameters of

the simulations used for the analysis of the α ¼ 1 and
α ¼ 2 trajectories in Table II.
Figure 11 shows our simulation results for these two

scaling trajectories. We show the particle density n as a
function of μ for T → 0 and L → ∞ simultaneously. One
can see in both trajectories that n vanishes for values of μ
smaller than the threshold m, while it approaches certain
nonzero values for μ > m. This is an indication for a
nonanalyticity developing at μ ¼ m in the limit T → 0, and
thus for a quantum phase transition. Whether it emerges in
the form of a jump in n (first order transition) or an infinite
slope (second order) cannot be decided with our current
data (and the common infinite volume limit L → ∞ to
distinguish the orders is part of the scaling to zero temper-
ature). The agreement with analytic predictions for repul-
sive bosons presented in Sec. V indicates a square-root
dependence on μ and thus a second order transition.
Moreover, the data at lowest T=highest L do not differ

much between α ¼ 1 and α ¼ 2. This bulk quantity there-
fore does not seem too sensitive to the particular scaling
trajectory in the limit T → 0 and L → ∞.

B. Spin stiffness and dynamical critical exponent

Figure 12 shows our spin stiffness data for the two scaling
trajectories α ¼ 1 and α ¼ 2. Qualitatively, the stiffness
behaves like the density: it vanishes for μ < m and is
nonzero for μ > m. In contrast to the density, however,

the stiffness shows a clear dependence on α: for α ¼ 1 it is
significantly smaller in the μ > m phase than for α ¼ 2. In
addition, the stiffness agrees with the density (divided by
mass) for α ¼ 2 at small densities, as Fig. 13 shows. Our
stiffness data do not display the signature of aBKT transition
for μ > m in the spatial correlations suggested in [7].
Let us now come to the interpretation of these data.

It is known that the stiffness depends on the order of the
limits T → 0 and L → ∞ [30]: when L → ∞ is taken first
(i.e. α ¼ 0 scaling) the stiffness vanishes, whereas when
T → 0 is taken first (i.e. α ¼ ∞ scaling) it approaches the
susceptibility of the ground state with respect to the
same twist.
For α ¼ 0 one keeps the temperature fixed (and thus the

transition is a crossover), and then increases the spatial size
to infinity. It is clear that in this way one loses all spatial
correlations, the twist at the spatial boundary has no effect
on the free energy for L → ∞ and the stiffness vanishes
(the successive limit of zero temperature cannot change this
any more). Our data for α ¼ 1 suggest that this scaling
trajectory is similar to α ¼ 0 since the system size is

FIG. 11. Particle number density for the α ¼ 1 (top) and α ¼ 2
(bottom) scaling trajectories, both at J ¼ 1.3. For α ¼ 1 we
approach T ¼ 0 using L ¼ 1=T, whereas for α ¼ 2 L ∼ T−1=2

increases less rapidly. In the α ¼ 2 panel we also include the
lowest T data from α ¼ 1 for comparison. For the lattice
parameters see Table II.

TABLE II. Lattice extensions, temperature and spatial extent
for the two scaling trajectories α ¼ 1 and α ¼ 2 (at J ¼ 1.3 for
which am ¼ 0.22).

Scaling trajectory Nt Ns T=m Lm

α ¼ 1 80 80 0.057 18
[T ¼ L−1] 160 160 0.029 35

320 320 0.014 70
α ¼ 2 400 40 0.011 9
½T=m ¼ 0.88=ðLmÞ2� 1600 80 0.0028 18
½Lm ¼ 0.94=

ffiffiffiffiffiffiffiffiffiffi
T=m

p � 6400 160 0.0007 36
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growing too fast in comparison to T → 0, such that spatial
correlations are lost, leading to a small stiffness.
For α ¼ ∞ one considers the zero temperature system at

fixed volume and only afterwards the size is increased. At

zero temperature one expects the ground state to determine
the thermodynamic properties. In fact, the system at finite L
is gapped proportional to 1=L2. Therefore, the partition
function in the T → 0 limit is dominated by the ground
state, and the free energy becomes the ground state energy
(noting that the latter is T-independent; this is nothing but
the third law of thermodynamics). As a consequence, the
stiffness is the susceptibility of the ground state with respect
to the spatial twist, as mentioned above.
On top of that, we now invoke an argument from the

Bethe Ansätze of Sec. V. One can easily convince oneself3

that the (nonrelativistic) pseudomomenta ki in the presence
of a spatial twist φ are shifted by φ=L. The ground state
energy

PQ
i¼1 k

2
i =ð2mÞ receives no linear term in φ since

the total momentum
P

ki vanishes. The quadratic term
is the constant Q · ðφ=LÞ2=ð2mÞ, and we immediately
obtain the stiffness as σ ¼ Q=ðLmÞ ¼ n=m. This explains
that the stiffness equals the density for α ¼ ∞, for small
densities. Our data for α ¼ 2 suggest that this scaling
trajectory is similar to α ¼ ∞ since the stiffness still equals
the density, as seen in Fig. 13.
Finally, let us discuss the dynamical critical exponent

[31] z that results from our findings. The correlation
length near a second order phase transition is known to
diverge. To achieve T ¼ 0 in the study of the quantum
phase transition one has to send the extent Nt of the
Euclidean time to infinity. We remark that for the
discussion of the continuum scaling formulas below
we use the continuum notation with β ¼ 1=T for the
inverse temperature and identify (in lattice units) β≡ Nt.
Only at Nt ¼ β ¼ ∞ does the phase transition occur and
the spatial correlation length ξ is infinite. However, the
system also has a typical correlation length ξτ in the
Euclidean time direction. If nothing in the system dis-
tinguishes between space and Euclidean time, the two
correlation lengths have to agree (which corresponds to
z ¼ 1 below). However, in general—and in particular in
the presence of μ which breaks the Euclidean symmetry
by coupling to temporal components/winding numbers—
the two correlation lengths are related by ξτ ∼ ξz with z
the dynamical critical exponent [31]. Note the similarity
to our scaling trajectories β ∼ Lα and indeed our stiffness
data can be used to determine z and the correlation length
critical exponent ν. For that we use finite size scaling of
the free energy density [32],

f ∼
1

Lβ
g

�
ξ

L
;
ξz

β
;φ

�
; ð22Þ

FIG. 12. Spin stiffness for the α ¼ 1 (top) and α ¼ 2 (bottom)
scaling trajectories. As in Fig. 11 we include the lowest T data
from α ¼ 1 in the α ¼ 2 panel. For the lattice parameters see
Table II.

FIG. 13. Agreement of stiffness and density (in mass units)
close to zero temperature in a large volume L ∼ 1=

ffiffiffiffi
T

p
(α ¼ 2,

time elongated lattice): T=m ¼ 0.0007, Lm ¼ 36.

3The Ii in Eq. (26) comes from closing the boundary and thus
need to be shifted by φ=ð2πLÞ. Moreover, it is sufficient to
consider the nonrelativistic Bethe Ansatz and thus replace
θ ≈ k=m ≈ sinhðθÞ. Then the Ii-shift can be transferred to a
uniform shift in the ki, because the Δ-term contains differences of
k’s only and thus is unchanged.
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where the prefactor is the inverse volume (in 1þ 1
dimensions), making f ¼ F=L an intensive quantity,
and g is a universal function of the spatial correlation
length, the box sizes and the twist angle. Again, non-
integer dimensions can be compensated by the corre-
sponding powers of the mass. Using the scaling ξ ∼ δ−ν

with the normalized distance to the critical value δ ¼
μ=m − 1 and the definition (6), we get for the stiffness

σ ∼ L1−zhðL1=νδ; TLzÞ ð23Þ
where h is another universal function.
For practical purposes one can derive two criteria [33]:
(a) the curves μ vs Lz−1σ intersect at μ ¼ m, if TLz is

kept constant,
simply because at δ ¼ 0 the length L does not enter as

the argument of h anymore and
(b) the curves L1=νδ vs Lz−1σ collapse to a single curve,

again if TLz is kept constant.
Our data are collected at constant TLα with α ¼ 1, 2 and

thus we can ask whether z ¼ 1 or z ¼ 2 obeys these
statements, at least approximately. We will rescale all
dimensionful quantities by the corresponding power ofmass.
For statement (a) with z ¼ 1 we thus plot σðμÞ, keeping

TL constant, i.e., on the scaling trajectory α ¼ 1, while for

z ¼ 2 we plot L1σðμÞ, keeping TL2 constant, i.e., on the
scaling trajectory α ¼ 2, and see whether the data for
different L’s intersect. As Fig. 14 shows, the data certainly
do not intersect for z ¼ 1. For z ¼ 2 the curves intersect
pairwise (albeit at a value of μ slightly smaller than m)
when naively interpolated linearly. To completely resolve
this regime, more accurate data (at more chemical potential
values and in the continuum limit) and a better interpolation
are needed. Note the inverted order of the data points
when crossing the critical chemical potential, which is the
reason for the intersections we see and which is absent
for z ¼ 1. We expect that this feature will remain also for
more accurate data and that, therefore, an exponent z ¼ 2
describes the scaling better than z ¼ 1.
For statement (b) one has to deal with the appearance

of another critical exponent ν. In Fig. 15 we plot the
observables of this statement assuming the value ν ¼ 1=2
for free fermions. Again a collapse to a single curve
describes the situation much better for z ¼ 2. This is
consistent with the finding that σ equal to n=m (for the
α ¼ 2 data, see Fig. 13) follows the square-root behavior of
Eq. (21) (see also Sec. V below). As a consequence of the
square-root behavior, the α ¼ 2 data collapse for any ðz; νÞ

FIG. 14. Numerical checks of statement (a) for exponents z ¼ 1
(top) and z ¼ 2 (bottom). For the lattice parameters see Table II.

FIG. 15. Numerical checks of statement (b) for z ¼ 1 (top) and
z ¼ 2 (bottom) assuming ν ¼ 1=2. In the bottom panel we also
include the square-root behavior in these variables. For the lattice
parameters see Table II.
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with 1=ν ¼ 2ðz − 1Þ. Finally, we can assume z ¼ 2 and
check the value of ν away from 1=2. Figure 16 shows data
proposing ν ¼ 1=3 and ν ¼ 3=4, for which the curves
certainly do not collapse.
From this analysis we conclude that the critical expo-

nents of the O(3) quantum phase transition at μ ¼ m are
consistent with z ¼ 2 and ν ¼ 1=2, the values of free 1d
fermions.

V. COMPARISON TO ANALYTIC RESULTS
ON REPULSIVE BOSONS

In this section we will compare our density data to the
density for systems of repulsive bosons in one spatial
dimension. One of the best-known examples is the one
introduced by Lieb and Liniger (LL), where boson pairs
interact via a Dirac delta function [13]. The system can be
solved in terms of plane waves picking up phase shifts δ
when two bosons are interchanged. Such a Bethe Ansatz
[34] works for nonrelativistic or relativistic bosons, without
antibosons though.
The phase shifts of the O(3) model are also known [35]

and those of “isospin 2,”

δ ¼ − arctan
π

2θ
; ð24Þ

with the relative rapidity,

θ ¼ arsinhðk=mÞ; ð25Þ
govern the low density regime [1,22]. We will thus use the
Bethe Ansatz equations with those phase shifts. Note that
the O(3) wave functions are not plane waves anymore, but
the Bethe Ansatz is believed to give an exact result at low
densities [36].
At very low momenta the O(3) phase shifts agree

with those of the LL model; actually all repulsive one-
dimensional bosons are universal in the deep IR, where the
precise UV shape of the interaction is not relevant and
where δð0Þ ¼ −π=2 by Levinson’s theorem [37]. Using
only this value one arrives at the Tonks-Girardeau (TG) gas,
which is the infinite coupling limit of the LL model [14,15].
Its eigenvalues are known to be those of free fermions with
the modification that the numbers Ii in Eq. (26) below are
not always half-integers as is the case for antiperiodic
fermions (which is not relevant for large L) and that the
eigenfunctions of the TG gas are still symmetric under the
exchange of bosons. We have already shown that this
results in the square-root behavior (21) of the particle
density for μ ≈m at zero temperature and infinite volume
[see also Eq. (31) below].
To be more precise, the relativistic Bethe Ansatz reads

Lm sinhðθiÞ − 2
XQ
j¼1
j≠i

Δðθj − θiÞ ¼ 2πIi; ð26Þ

where the Ii are distinct, and half-integer/integer for
even/odd total charge Q. In our conventions the dynamics
enters via the phase shifts in

Δ ¼ δþ π=2 ð27Þ
with limk→0Δ ¼ 0. This Ansatz works for ground states
[with the choice fIig ¼ f−ðQ − 1Þ=2;…; ðQ − 1Þ=2g] and
excited states at fixed particle number Q in any finite
volume L. The nonrelativistic Bethe Ansatz can be obtained
by approximating the rapidities as θ ≈ k=m. Both are not
too hard to solve numerically.
Furthermore, Yang and Yang have derived a thermody-

namic Bethe Ansatz for the density ρðkÞ and energy density
ϵðkÞ at nonzero temperatures and chemical potentials [16]
in infinite volumes. The nonrelativistic Yang-Yang equa-
tions give rise to

2πρðkÞ½1þ eϵðkÞ=T � ¼ 1þ
Z

∞

−∞
d~kρð~kÞΔ0ðk − ~kÞ; ð28aÞ

ϵðkÞ ¼ k2

2m
þ ðm − μÞ

−
T
π

Z
∞

−∞
d~k logð1þ e−ϵðkÞ=TÞΔ0ðk − ~kÞ; ð28bÞ

FIG. 16. Numerical checks of statement (b) assuming z ¼ 2 for
ν ¼ 1=3 (top) and ν ¼ 3=4 (bottom). For the lattice parameters
see Table II.
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while, following similar arguments of [16], and ignoring
thermal pair production,4 the relativistic Yang-Yang equa-
tions read

2πρðθÞð1þ eϵðθÞ=TÞ ¼ m cosh θ þ 2

Z
Θ

−Θ
d~θρðθÞΔ0ðθ − ~θÞ;

ð29aÞ

ϵðθÞ ¼ m cosh θ − μ −
T
π

Z
Θ

−Θ
d~θ logð1þ e−ϵ=TÞΔ0ð~θÞ:

ð29bÞ

In both relativistic and nonrelativistic equations,

Δ0ðxÞ ¼ dΔðxÞ
dx , where Δ is defined by (27). Having solved

this system one can extract the particle density
as n ¼ R

∞
−∞ d~kρð~kÞ.

Finally, the zero temperature limit for the density is

2πρðkÞ ¼ 1þ
Z

K

−K
d~kρð~kÞΔ0ðk − ~kÞ;

ρðjkj > KÞ ¼ 0; ð30Þ

where K is the analogue of the Fermi momentum related to
μ by K ¼ ffiffiffi

2
p

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=m − 1

p
. Low densities amount to μ ≈m

and thus K → 0, for which the integration range shrinks,
ρð0Þ ¼ 1=ð2πÞ and n ¼ ρð0Þ2K, such that

n
m

¼
ffiffiffi
2

p

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=m − 1

p
ðT ¼ 0; small n=mÞ; ð31Þ

confirming once more the square-root behavior for low
densities.
We solve these integral equations numerically and

compare to the lattice data in Fig. 17. The agreement is
fairly good. Note that these are parameter-free Ansätze,
so no fit is involved in the comparison. Let us repeat that
the agreement is expected for low temperatures only,
since Bethe Ansätze do not contain antibosons and pair
production.

VI. SUMMARY

In this paper we have presented thermodynamic lattice
simulations of the asymptotically free two-dimensional
O(3) model. The complex action problem of the conven-
tional representation at finite chemical potential is over-
come by using a representation in terms of dual variables;
i.e., we simulated worldlines. In the O(3) model the mass of
the particle triplet is generated dynamically, and in our
simulations we have confirmed the expectation that at low

FIG. 17. The density n=m vs chemical potential μ=m at
temperatures T=m ¼ 0.228, 0.091, 0.046, 0.005 from top to
bottom. We compare the numerical evaluation of the relativistic
Bethe Ansatz equation (29) (green curve) and the nonrelativistic
Bethe Ansatz equation of (28) (blue curve), with the lattice data
(red symbols, J ¼ 1.3, Ns ¼ 100 and Nt ¼ 20, 50, 100, 1000).
The black line in the bottom plot is the universal square-root
behavior given in (31).

4Because of this, the equations are only exact at zero temper-
ature. Nevertheless we will use them at finite, but small temper-
ature to compare to lattice data.
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temperatures a nonzero particle number (or charge) density
occurs only when μ reaches the threshold given by the
mass. Furthermore, in small volumes several critical values
of μ occur which correspond to integer particle numbers
induced by μ [1] (for finite lattice couplings see the lattice
phase diagram in Sec. III B).
A finite volume scaling analysis has revealed that at

nonzero temperatures the particle density as a function of μ
is regular; i.e., the transition is a crossover. The possibility
of a phase transition at zero temperature has been analyzed
through a simultaneous scaling of Euclidean time and
space. Indeed, the data indicate a quantum phase transition
at μ ¼ m, which, using the agreement with Bethe Ansätze
for one-dimensional repulsive bosons, should be of second
order because the particle density follows the universal
square-root behavior. Further comparisons to these Ansätze
have shown that the O(3) model can indeed be described by
these bosons, including the crossover behavior at nonzero
temperature.
We stress that for a more complete analysis of the

physical picture presented here a systematic continuum
limit has to be performed by increasing J and the lattice
volume accordingly. So far this has been done only in some
exploratory runs and the results confirm the physical
picture presented here, although a systematic continuum
limit has to be postponed to future work. Also the fact that
in [1] it was found that the J ¼ 1.3, 1.4 and 1.5 results
agree supports the claim that the physical picture presented
here is already the continuum one.
We have also measured the spin stiffness which in the

conventional representation is defined via twisted spatial
boundary conditions and in the dual representation mea-
sures spatial winding numbers of the worldlines. Based on
the boson description at zero temperatures with only
ground states, the stiffness is expected to be equal to the
particle density. This is consistent with our low temperature
data, when scaling L such that TL2 is constant, i.e., α ¼ 2.
However, when L is larger in the zero temperature limit,
e.g., when TL is kept constant, i.e., α ¼ 1, then this
equality does not hold and the spin stiffness is significantly
lower, which indicates a lost correlation between the spatial
boundaries. From these findings we conclude that the
dynamical critical exponent z is close to 2, in agreement
with free fermions.
Although originally introduced for studying a potential

BKT transition, our stiffness data have not indicated such a
transition in the O(3) system at chemical potentials larger
than the mass where it tends to be planar (as we have also
confirmed). In [7] it was suggested that the O(3) model may
enter an effective O(2) model in two phases: the vortex
percolating or the vortex pairing regime, which are sepa-
rated by a BKT-like transition affecting the mass of the
underlying condensing particles. Unlike the case of the zero
density O(2) model, the measurements of stiffness which
we performed here cannot distinguish between these two

phases, because as we saw in one-dimensional finite
density systems the stiffness is very sensitive to the way
zero temperature and infinite volumes are taken, and is not
simply an indicator of the mass of the underlying particles
(i.e., whether or not vortices percolate).
Besides higher precision, further studies in various

directions would be useful: First of all, perturbation theory
should match our lattice data at high μ’s (keeping aμ small
to avoid discretization effects). Secondly, measuring the
vortex correlation functions or the topological susceptibil-
ity should shed light on the possibility of a BKT-like
transition. Extensions to higher O(N) or CP(N-1) models as
well as to 2þ 1 dimensions could be done straightfor-
wardly with the dual representation.
The physically very interesting regimes of complex

chemical potentials, where fractional instantons should
occur (which in turn underly the resurgence program
mentioned in the Introduction), and at large theta angle,
with the Haldane conjecture of a phase transition at
theta angle equal to π, remain a challenge, as the dual
variables used here do not solve the sign problem in these
situations.
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APPENDIX: CRITICAL μ’S AT
STRONG COUPLING

In this appendix we derive the critical values of the
chemical potential in the strong coupling limit which we
use for comparing to our numerical data in Figs. 2 and 3.
For small values of J, the configurations that dominate

the partition function Z of Eq. (12) have minimal values of
all dual variables,

kx;ν ¼ m̄x;ν ¼ 0 ∀ x; ν and mx;1 ¼ 0 ∀ x; ðA1Þ

except the temporal component of the flux variable, which
assumes a constant value

mx;2 ¼ r ∀ x; ðA2Þ

which amounts to r static particle worldlines on each
temporal bond. From Eq. (14) it is clear that the resulting
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particle density is n ¼ r (in lattice units). We restrict
ourselves to positive μ and thus positive r for simplicity.
These configurations obey the constraints in Eq. (12) and
result in the partition functions

ZrðJ; μÞ ¼
��

Jeμ

2

�
r Γð1=2Þ
Γðrþ 3=2Þ

�
NsNt

; ðA3Þ

(where the factorials have canceled against Γ-factors from
the beta function) or grand potential densities

ΩrðJ; μÞ ¼ −r ln
�
Jeμ

2

�
þ lnΓðrþ 3=2Þ; ðA4Þ

up to an irrelevant additive constant. Certain values of r
yield the smallest grand potential Ωr depending on the

values of μ and J. The neighboring values of r take over,
when the corresponding Ωr’s become equal,

ΩrðJ; μÞ ¼ Ωr−1ðJ; μÞ for some μ ¼ μr; ðA5Þ
which gives the following critical chemical potentials μr
(in units of a),

eμr ¼ 2

J
Γðrþ 3=2Þ
Γðrþ 1=2Þ ; μr ¼ lnðð2rþ 1Þ=JÞ: ðA6Þ

Note further that critical μ’s inducing a density n ¼ r
induce a charge Q ¼ rNs, and thus

μQ¼rNs
¼ lnðð2rþ 1Þ=JÞ; ðA7Þ

as used in Sec. III B.
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