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We consider the 2þ 1-dimensional massive Thirring model with one flavor at finite density. Two
numerical methods, the fermion bag approach and complex Langevin dynamics, are used to calculate the
chiral condensate and fermion density of this model. The numerical results obtained by the fermion bag
approach are compared with those obtained by complex Langevin dynamics. They are also compared with
those obtained under a phase-quenched approximation. We show that in some range of fermion coupling
strength and chemical potential, the sign problem in the fermion bag approach is mild, while it becomes
severe for the complex Langevin dynamics.
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I. INTRODUCTION

The sign problem remains one of the biggest challenges
in many fields, e.g., polymer field theory in condensed
matter physics [1] and lattice field theory in high-energy
physics. The usual sampling methods, e.g., Langevin
dynamics and the Monte Carlo method, fail for the sign
problem due to the high oscillation of complex action,
where the Boltzmann factor cannot be regarded as the
probability density. Because of the introduction of fields
necessary to decouple repulsive interaction between mono-
mers, the sign problem cannot be avoided for polymer field
theory [2]. For the lattice field theory in high-energy
physics, three reasons will always lead to the complex
action: (1) grand partition function with finite density,
(2) fermion systems, and (3) topological terms in the action.
To overcome the sign problem, the complex Langevin

(CL) dynamics, which is obtained from the complex-
ification of the Langevin dynamics, was used. The CL is
rather successful in the XY model [3]; Bose gas [4]; the
Thirring model [5]; Abelian and non-Abelian lattice gauge
models [6]; the QCD model [7] and its simplified models,
including the one link U(1) model, the one link SU(3)
model, the QCD model in the heavy mass limit [8], the one
link SU(N) model [9], the SU(3) spin model [10], and the
Polyakov chain model [11]. It was also applied to quantum
fields in nonequilibrium [12] and in real time [13,14]. For
some range of chemical potential and large fluctuation, the
complex Langevin may fail (e.g., the XY model at finite
chemical potential for large fluctuation) [15] and in the
Thirring model in 0þ 1 dimension [16]. Unfortunately
from early studies of complex Langevin evolutions [17–19]
until this day, the convergence properties of complex
Langevin equations are not well understood. Recently
Aarts et al. provided a criterion for checking the correctness
of the complex Langevin dynamics [20]. The recent

discussion about complex Langevin dynamics can be found
in Refs. [21–30].
Since the partition function is always real, it is possible to

find suitable variables to represent this partition function
with real action. This is called the dual variable method. It is
successfully applied to many models, including Bose gas
[31]; the SU(3) spin model [32]; U(1) and Z(3) gauge Higgs
lattice theory [33]; the massive lattice Schwinger model [34];
the O(3), O(N), and CP(N-1) models [35–38]; the fermion
bag approach [39]; 4-fermion lattice theory, including the
massless Thirring model [40]; the Gross-Neveu model [41];
the Yukawa model [42]; the non-Abelian Yang-Mills model
[43,44], and its coupling with fermion field [45]; the lattice
chiral model; and the sigma model [46]. For the recent
progress of solving the sign problem for nonrelativistic
fermion systems, see Refs. [47–53].
For fermion systems, the dual method is called the

fermion bag approach [39]. This numerical method over-
comes the sign problem for models with small chemical
potential, and also a high computational efficiency is
achieved for the small or large interactions between
fermions. We study the 2þ 1-dimensional massive
Thirring model at finite density (cf. [54]), which can be
regarded as the effective theories of high-temperature
superconductors and graphene; see, e.g., references given
in [55]. We have studied this model at finite density in
0þ 1 dimension and compared the complex Langevin
dynamics and fermion bag approach [56]. In this paper
we continue to compare the complex Langevin dynamics
and the fermion bag approach for the massive Thirring
model at finite density in 2þ 1 dimensions.
The arrangement of the paper is as follows. In Sec. II, the

fermion bag approach for the Thirring model is presented
and the chiral condensate and fermion density are obtained.
In Sec. III, the complex Langevin dynamics is given for this
model by introducing the bosonic variable. In Sec. IV, the
chiral condensate and fermion density are calculated by
these two methods and are compared with each other.
Conclusions are given in Sec. V.*lidaming@sjtu.edu.cn
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II. THIRRING MODEL

The lattice partition function for the massive Thirring
model at the finite density in d-dimensional lattice Λ¼
fx¼ ðx0;…; xd−1Þ; xi ¼ 0;…;N − 1; i¼ 0;…; d− 1g with
even N reads

Z ¼
Z

dψ̄dψe−S; ð1Þ

where dψ̄dψ ¼ Q
x∈Λdψ̄ðxÞdψðxÞ is the measure of the

Grassmann fields ψ ¼ fψðxÞgx∈Λ and ψ̄ ¼ fψ̄ðxÞgx∈Λ. We
adopt antiperiodic conditions for ψ and ψ̄ in the x0 direction
and periodic conditions in the other directions,

ψðxþkNα̂Þ¼ ð−1Þkδα;0ψðxÞ;
ψ̄ðxþkNα̂Þ¼ ð−1Þkδα;0 ψ̄ðxÞ; x∈Λ; k¼ 0; �1;…;

ð2Þ

where α̂ denotes the unit vector in the α direction. The
action S in (1) is

S ¼
X
x;y∈Λ

ψ̄ðxÞDx;yψðyÞ −U

×
X

x∈Λ;α¼0;…;d−1
ψ̄ðxÞψðxÞψ̄ðxþ α̂Þψðxþ α̂Þ; ð3Þ

with non-negative coupling constant U between fermions.
The fermion matrix D, which depends on the fermion mass
m and chemical potential μ, is given by

Dx;y ¼ Dðμ; mÞx;y
¼

X
α¼0;…;d−1

ηx;α
2

ðeμδα;0sþx;αδxþα̂;y − e−μδα;0s−x;αδx;yþα̂Þ

þmδx;y

¼

8>>>>><
>>>>>:

ηx;α
2
eμδα;0sþx;α if y ¼ xþ α̂

− ηx;α
2
e−μδα;0s−x;α if y ¼ x − α̂

m if y ¼ x

0 otherwise

; ð4Þ

with staggered phase factors ηx;0¼1, ηx;α ¼ ð−1Þx0þ���þxα−1 ,
α ¼ 1;…; d − 1, satisfying ηxþα̂;α ¼ ηx;α. The boundary
condition for ψ and ψ̄ are accounted for by the sign
functions sþ and s−,

sþx;α ¼
�−1 if α ¼ 0 and x0 ¼ N − 1

1 otherwise
;

s−x;α ¼
�−1 if α ¼ 0 and x0 ¼ 0

1 otherwise
; ð5Þ

with periodic extensions for sþ and s− with respect to x for
any direction α. These two sign functions satisfy sþx;α ¼
s−xþα̂;α for any lattice x and any direction α.
The fermion matrix has two kind of symmetries with

respect to μ and m, which leads to the symmetry of the
determinant detD (note that N is even),

Dðμ; mÞx;y ¼ −Dð−μ;−mÞy;x ⇒ detDðμ; mÞ
¼ detDð−μ;−mÞ ð6Þ

εxDðμ; mÞx;yεy ¼ −Dðμ;−mÞx;y ⇒ detDðμ; mÞ
¼ detDðμ;−mÞ; ð7Þ

where εx ¼ ð−1Þx0þ���þxd−1 is the parity of site x. Thus it is
sufficient to study the massive Thirring model for μ ≥ 0
and m ≥ 0.
The fermion bag approach for the Thirring model is

based on the high-temperature expansion of the interacting
term:

exp

�
U

X
x∈Λ;α¼0;…;d−1

ψ̄ðxÞψðxÞψ̄ðxþ α̂Þψðxþ α̂Þ
�

¼
Y

x∈Λ;α¼0;…;d−1

X1
kx;α¼0

ðUψ̄ðxÞψðxÞψ̄ðxþ α̂Þψðxþ α̂ÞÞkx;α :

ð8Þ

Inserting this expansion into the partition function in (1),
one has an expansion of Z with respect to U,

Z ¼
X

k¼ðkx;αÞ
UjCðx1;…; x2jÞ; ð9Þ

where the summation is taken over all configurations k
with kx;α ¼ 0, 1 for both neighboring sites ðx; xþ α̂Þ andP

d−1
α¼0 kx;α must be 0 or 1 for all sites x. If kx;α ¼ 1, we say

there is a bond connecting x and xþ α̂; otherwise, there are
no bonds connecting them. For a given configuration k, for
example, there are j bonds ðx1; x2Þ;…; ðx2j−1; x2jÞ con-
necting 2j different sites, and the weight in (9) depending
on these 2j different sites fxig2ji¼1 is

Cðx1;…; x2jÞ ¼
Z

dψ̄dψ exp

�
−
X
x;y

ψ̄ðxÞDx;yψðyÞ
�

× ψ̄ðx1Þψðx1Þ � � � ψ̄ðx2jÞψðx2jÞ
¼ detD detGðfx1;…; x2jgÞ
¼ detDðnfx1;…; x2jgÞ; ð10Þ

where Gðfx1;…; x2jgÞ is a ð2jÞ × ð2jÞ matrix of propa-
gators between 2j sites xi, i ¼ 1;…; 2j, whose matrix
elements are Gðfx1;…; x2jgÞi;l ¼ D−1

xi;xl , i; l ¼ 1;…; 2j.
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The matrix Gðfx1;…; x2jgÞ depends on the order of
fx1;…; x2jg, but its determinant does not.
Dðnfx1;…; x2jgÞ is the ðNd − 2jÞ × ðNd − 2jÞ matrix that
is obtained by deleting rows and columns corresponding to
sites x1;…; x2j. The first equality in (10) holds due to the
basic Gaussian integration for the Grassmann variables
[57]. In the second equality of (10), we expand the
exponential and then integrate the Grassmann variables
fxig2ji¼1. The average number of bonds depends on the
interaction strength U between fermions. If U is small,
there are few bonds between two neighboring sites, and we
use Gðfx1;…; x2jgÞ to calculate Cðx1;…; x2jÞ; otherwise,
U is large and there are many occupied bonds between
neighboring sites, and thus Dðnfx1;…; x2jgÞ is used to
calculate Cðx1;…; x2jÞ. For any number of different sites
fxigni¼1, the function C ¼ Cðx1;…; xn;Dðμ; mÞÞ depends
on the fermion matrix Dðμ; mÞ.
Because of the symmetry (6) and (7) ofD, the functionC

for any different site fxigni¼1 has the symmetry (see
Appendix A)

Cðx1;…; xn;Dðμ; mÞÞ ¼ ð−1ÞnCðx1;…; xn;Dðμ;−mÞÞ
¼ Cðx1;…; xn;Dð−μ; mÞÞ
¼ ð−1ÞnCðx1;…; xn;Dð−μ;−mÞÞ

ð11Þ

for any real number μ and m. According to the representa-
tion of the partition function in (9), where n ¼ 2j is even,
the weight C becomes nonnegative for any μ and m if
Cðx1;…; xn;Dðμ; mÞÞ is nonnegative for any even number
of sites ðx1;…; xnÞ and for any nonnegative μ and non-
negativem. Unfortunately C is not always positive and thus
the sign problem still exist. But we want to justify that the
sign problem in the representation of (9) is rather mild.
If d ¼ 1, we can prove that for any μ > 0 and m > 0,

Cðx1;…; xn;Dðμ; mÞÞ > 0 for any number of different

sites fxigni¼1 (see Appendix B). If μ ¼ 0 and m ¼ 0, the
fermion matrix D is real and anti-Hermitian and thus its
eigenvalues come in complex conjugate pairs with vanish-
ing real parts. If μ ¼ 0 and m > 0, the determinant of D is
positive. Dðnfx1;…; x2jgÞ (μ ¼ 0 and m ¼ 0) is also real
and anti-Hermitian since the rows and columns correspond-
ing to these sites are deleted. Thus if μ ¼ 0 and m > 0,
Cðx1;…; xn;Dðμ; mÞÞ > 0 for any configuration k and any
dimension d. The numerical test shows that the function C
in (10) for d > 1 is always positive for any configuration k
if μ ≥ 0 is close to zero. When μ is increased, C may be
negative for some configurations. The left panel of
Fig. 1 shows that the frequency of negative C for a two-
dimensional Thirring model is rather small, which is less
than 0.1. For the three-dimensional Thirring model, the
frequency of negativeC becomes larger (close to 0.35 when
μ ¼ 2). Moreover, when μ is increased, the frequency of
negative C also becomes larger. In fact, our simulation
shows that this frequency is zero when μ ≤ 1.3 for both
two- and three-dimensional Thirring models. Thus the
presentation of the partition function (9) avoids the sign
problem at least for small chemical potential.
The chiral condensate is

hψ̄ψi ¼ 1

Nd

∂ lnZ
∂m ¼ 1

Nd

�∂mCðx1;…; x2jÞ
Cðx1;…; x2jÞ

�
; ð12Þ

where the average is taken with respect to the weight of the
partition function (9). Similar to the calculation of C in
(10), the ratio ∂mC=C has two formulas:

∂mCðx1;…; x2jÞ
Cðx1;…; x2jÞ

¼
X

x≠x1;…;x2j

detGðfx; x1;…; x2jgÞ
detGðfx1;…; x2jgÞ

¼
X

x≠x1;…;x2j

detDðnfx; x1;…; x2jgÞ
detDðnfx1;…; x2jgÞ

:

ð13Þ
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FIG. 1. Frequency of negative C where the configurations k ¼ ðkx;αÞ are chosen randomly.
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The ratio between the determinants of submatrix G can be
obtained by

detGðfx; x1;…; x2jgÞ
detGðfx1;…; x2jgÞ
¼ GðfxgÞ −Gðx; occu sitesÞGðfx1;…; x2jgÞ−1
× Gðoccu sites; xÞ; ð14Þ

where occu sites ¼ ðx1;…; x2jÞ denotes 2j occupied sites
and Gðx; occu sitesÞ is a row vector with 2j components,
D−1

x;xi , i ¼ 1;…; 2j. The column vector Gðoccu sites; xÞ is
the transpose of Gðx; occu sitesÞ. The ratio between the
determinant of submatrix D is

detDðnfx; x1;…; x2jgÞ
detDðnfx1;…; x2jgÞ

¼ D Invðx; xÞ; ð15Þ

where D Invðx; xÞ is the diagonal element of Dðnfx1;…;
x2jgÞ−1 corresponding to the site x ≠ x1;…; x2j.
Similarly, the fermion density,

hni ¼ 1

Nd

∂ lnZ
∂μ ¼ 1

Nd

�∂μCðx1;…; x2jÞ
Cðx1;…; x2jÞ

�
; ð16Þ

can also be calculated.
The Monte Carlo algorithm based on the partition

function in (9) can be found in Ref. [40]. We adopt the
following three steps to update the current configuration.
Assume that the current configuration k has nb bonds:

C ¼ ð½x1; x2�;…; ½x2nb−1; x2nb �Þ:

Try to delete a bond, e.g., ½x2nb−1; x2nb �, from the current
configuration C to be

C0 ¼ ð½x1; x2�;…; ½x2nb−3; x2nb−2�Þ:

According to the detailed balance,

WðCÞPtryðC → C0ÞPaccðC → C0Þ
¼ WðC0ÞPtryðC0 → CÞPaccðC0 → CÞ; ð17Þ

where WðCÞ and WðC0Þ are the weights in the partition
function (9) for the configurations C and C0, respectively.
The try probabilities from CðC0Þ to C0ðCÞ are

PtryðC → C0Þ ¼ 1

nb
; PtryðC0 → CÞ ¼ 1

nf
;

respectively. Here nf is the number of bonds that can be
created from the configuration C0. Thus the accept prob-
ability from C to C0 is

PaccðC → C0Þ ¼ nb
nf

WðC0Þ
WðCÞ :

Try to add a bond, e.g., ½x2nbþ1; x2nbþ2�, from the current
configuration C to be

C0 ¼ ð½x1; x2�;…; ½x2nb−1; x2nb �; ½x2nbþ1; x2nbþ2�Þ:

The detailed balance is Eq. (17), where

PtryðC → C0Þ ¼ 1

nf
; PtryðC0 → CÞ ¼ 1

nb þ 1
:

Here nf is the number of bonds that can be created from the
configurationC. Thus the accept probability from C to C0 is

PaccðC → C0Þ ¼ nf
nb þ 1

WðC0Þ
WðCÞ :

Try to delete a bond, e.g., ½x2nb−1; x2nb �, from the current
configuration C and then add a bond, e.g., ½y2nb−1; y2nb �,

C0 ¼ ð½x1; x2�;…; ½x2nb−3; x2nb−2�; ½y2nb−1; y2nb �Þ:

In the detailed balance (17),

PtryðC → C0Þ ¼ PtryðC0 → CÞ ¼ 1

nbnf
:

Here nf is the number of bonds that can be created from the
configuration C, where ½x2nb−1; x2nb � is deleted. Thus the
accept probability to move a bond is

PaccðC → C0Þ ¼ WðC0Þ
WðCÞ :

III. COMPLEX LANGEVIN DYNAMICS

The expansion of (8) can also be written as an integral of
bosonic variables AαðxÞ by Hubbard-Stratonovich trans-
formation,

exp

�
U

X
x;α¼0;…;d−1

ψ̄ðxÞψðxÞψ̄ðxþ α̂Þψðxþ α̂Þ
�

¼
Y
x;α

�
1

2πU

�
1=2

Z Y
x;α

dAαðxÞ exp
�
−

1

8U

X
x;α

A2
αðxÞ

�

× exp

�
−
X
x;y

ψ̄ðxÞ
X
α

i
1

2
ðBx;αAαðxÞδxþα̂;y

þ Cx−α̂;αAαðyÞδx;yþα̂ÞψðyÞ
�
; ð18Þ
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for any two bosonic fields Bx;α and Cx;α, satisfying
Bx;αCx;α ¼ 1.
Choosing

Bx;α ¼ eμδα;0ηx;α; Cx;α ¼ e−μδα;0ηx;α; ð19Þ

inserting (18) into the partition function Z in (1), and
integrating the Grassmann fields ψ , ψ̄ , we have

Z ¼
Z Y

x;α

dAαðxÞ exp
�
−

1

8U

X
x;α

A2
αðxÞ

�
detK

¼
Z Y

x;α

dAαðxÞe−Seff ; ð20Þ

where we omitted the factor
Q

x;αð 1
2πUÞ1=2. The matrix K

depends on A,

Kx;y ¼
X

α¼0;…;d−1

ηx;α
2

ððsþx;α þ iAαðxÞÞeμδα;0δxþα̂;y

− ðs−x;α − iAαðyÞÞe−μδα;0δx;yþα̂Þ þmδx;y; ð21Þ

which is complex, although the field A is real. The matrix
K is reduced to be D in (4) if Aα vanishes. The effective
action in (20) is

Seff ¼
1

8U

X
x;α

A2
αðxÞ − ln detK: ð22Þ

The complex Langevin dynamics reads

Aαðx;Θþ ΔΘÞ ¼ Aαðx;ΘÞ − Δt
∂Seff

∂Aαðx;ΘÞ
þ

ffiffiffiffiffiffiffiffi
2Δt

p
ηαðx;ΘÞ; ð23Þ

where Θ denotes the discrete complex Langevin time and
ΔΘ is the time step. The real white noise ηx;Θ satisfies

hηαðx;ΘÞηα0 ðx0;Θ0Þi ¼ δα;α0δx;x0δΘ;Θ0 :

The drift force can be written as

−
∂Seff
∂AαðxÞ

¼ −
1

4U
AαðxÞ þ Tr

�
K−1 ∂K

∂AαðxÞ
�

¼ −
1

4U
AαðxÞ þ

i
2
ðηx;αeμδα;0K−1

xþα̂;x

þ ηxþα̂;αe−μδα;0K−1
x;xþα̂Þ: ð24Þ

The chiral condensate in (12) is written as

hψ̄ψi ¼ 1

Nd hTrðK−1Þi ð25Þ

and the fermion density in (16) reads

hni ¼ 1

Nd

�
Tr

�
K−1 ∂K

∂μ
��

; ð26Þ

where the average is taken with respect to weight e−Seff .
Note that

Tr

�
K−1 ∂K

∂μ
�

¼
X
x;y

K−1
y;x

�
eμ

2
ðsþx;0 þ iA0ðxÞÞδxþ0̂;y

þ e−μ

2
ðs−x;0 − iA0ðyÞÞδx;yþ0̂

�
:

If we can choose instead of (19)

Bx;α ¼ eμδα;0ηx;αsþx;α; Cx;α ¼ e−μδα;0ηx;αs−xþα̂;α;

satisfying Bx;αCx;α ¼ 1, the partition function Z can also be
written as Eq. (20), where the matrix K is replaced by

~Kx;y ¼
X

α¼0;…;d−1

ηx;α
2

ðsþx;αð1þ iAαðxÞÞeμδα;0δxþα̂;y

− s−x;αð1 − iAαðyÞÞe−μδα;0δx;yþα̂Þ þmδx;y: ð27Þ

IV. SIMULATION RESULTS

The implementation of the fermion bag approach and
complex Langevin dynamics can be found in [56]. We use
the Γ method to estimate the error for the samples in each
Monte Carlo simulation or complex Langevin dynamics
[58]. The following simulation results are given for one-
and three-dimensional Thirring model with fixed N ¼ 8,
m ¼ 1 but with different coupling strength U and different
chemical potential 0 ≤ μ ≤ 2.
Figures 2 and 3 show the comparison of the chiral

condensate and fermion density obtained by the fermion
bag approach (FB) and by complex Langevin dynamics for
different chemical potential μ and coupling strength U.
Both these averages agree with each other very well by
these two numerical methods. The statistic errors are almost
invisible in Figs. 2 and 3. When the coupling strength U is
increasing, e.g., U ¼ 0.25, the chiral condensate and
fermion density obtained by FB and by CL are quite
different for the intermediate values of chemical potential μ,
as shown in Fig. 4. One reason for this difference is related
to the severeness of the sign problem, which can be
measured by the phase heiφipq ¼ Z=Zpq. The sign problem
is rather severe for CL, while it is still mild for FB if
1 ≤ μ ≤ 2. We thus compare the results obtained by these
two numerical methods under the phase-quenched approxi-
mation (see Appendix D). The chiral condensate and
fermion density agree with each other for FB and this
method under phase-quenched approximation [FB(pq)].
However, these agreements cannot be achieved for CL
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and the complex Langevin dynamics under phase-
quenched approximation [CL(pq)]. The severity of the
sign problem by both approaches is shown in Fig. 5.
Because the determinant detðKÞ of K becomes too large if
μ > 1.6, we just calculate the phase heiφipq by CL for
0 ≤ μ ≤ 1.6. We also calculate this phase by FB for
different U values and different chemical potential
0 ≤ μ ≤ 2. For U ¼ 0.25, the phase heiφipq is almost very
close to 1 for FB in 0 ≤ μ ≤ 2. Thus the sign problem is
almost overcome and this can explain why the results
obtained by FB agree with those obtained under the
quenched approximation [FB(pq); see Fig. 4]. The sign
problem for FB becomes severe during the intermediate
range of the chemical potential, as shown for U ¼ 0.25,
1.0, 2.0. Moreover this range shifts to larger chemical
potential if U is increased. For CL with U ¼ 0.25, the
phase drops very fast to zero if μ > 0.6 and is very close to

zero for μ ≥ 1. This also explains the difference between
those obtained by CL and by CL(pq) in Fig. 4.
As shown in Fig. 5, the (real part of) the phase drops

rapidly in the intermediate value of μ (0.6 ≤ μ ≤ 1.2) for
CL [U ¼ 0.25ðCLÞ]. Although the statistical error of the
chiral condensate and fermion density in this range of
μ is larger than those for μ < 0.6 or μ > 1.2, the statistical
error in the whole range of μ (0 ≤ μ ≤ 2) is almost
invisible in Fig. 4. In Fig. 6, we compared the chiral
condensate obtained by FB and by CL with the exact
result for a one-dimensional Thirring model with the same
parameters [56]. The chiral condensate obtained by FB
agrees with the exact result in the whole range of μ, while
the chiral condensate by CL is slightly smaller than the
exact result in the intermediate value of μ, where the phase
Z=Zpq drops rapidly from 1 to 0 for CL. These results are
quite similar to those in the left panel of Fig. 4, where the
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FIG. 3. Parameters are the same as those in Fig. 2, except U.
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chiral condensate obtained by CL is smaller than those
obtained by FB for the intermediate value of μ. The
statistical error for CL in the left panel of Fig. 4 is smaller
than those in Fig. 6.
Our calculation for the chiral condensate and fermion

density in one- and three-dimensional Thirring models
at finite density by CL quantitatively agrees with those
obtained by Pawlowski and Zielinski [5,16]. Compared
with the lower panel of Fig. 3 in Ref. [5], where
β ¼ 1 ¼ 1=ð4UÞ, i.e., U ¼ 0.25, our result by CL is closer
to those obtained by FB in the left panel of Fig. 4. When
μ ¼ 1, the chiral condensates are 0.305� 0.0027 by CL
and 0.356� 0.00011 by FB, respectively, in the left panel
of Fig. 4 while it is 0.25 in the lower panel of Fig. 3 in
Ref. [5]. The statistical error is also almost invisible in
Fig. 3 of Ref. [5] in the intermediate value of μ, where the
phase drops rapidly in this range as shown in Fig. 4 of
Ref. [5]. We can also compare the chiral condensate of the

one-dimensional Thirring model in Fig. 6 with Fig. 5(b) in
Ref. [16]. Our result in Fig. 6 by CL is better than those in
Fig. 5(b) of [16]. For example, at μ ¼ 1, the chiral
condensate obtained by CL is 0.27� 0.03 and the exact
value is 0.293 in Fig. 6, while it is 0.14� 0.023 in Fig. 5
(b) in Ref. [16]. Moreover, the statistical errors in Fig. 5(b)
of Ref. [16] are larger than those (e.g., Fig. 3 in Ref. [5])
in the three-dimensional Thirring model at finite density,
which are quite similar to the statistical error in our
calculation by CL for one- and three-dimensional Thirring
model.
The discussion above shows that the difference in

chiral condensates obtained by CL and by FB in
the intermediate value of μ is definitely related to the
fast decay of the real part of phase heiφipq, i.e., the
severity of the sign problem, although the statistical error
is small as shown in Fig. 4. According to Refs. [16,20],
the quantity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2

ch
ir
a
l c

o
n
d
e
n
sa

te

Chemical potential µ

U=0.25, m=1, N=8

FB
FB(pq)

CL
CL(pq)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

fe
rm

io
n
 d

e
n
si

ty

Chemical potential µ

U=0.25, m=1, N=8

FB
FB(pq)

CL
CL(pq)

FIG. 4. Parameters are the same as those in Fig. 2, except U, for FB and CL, with phase-quenched approximations (pq).

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

p
h
a
se

Chemical potential µ

m=1, N=8

U=0.25
U=1.0
U=2.0
U=5.0

U=0.25(CL)

FIG. 5. The real part of phase heiφipq obtained by the fermion
bag approach for U ¼ 0.25, 1.0, 2.0, 5.0 and by complex
Langevin dynamics for U ¼ 0.25 [U ¼ 0.25ðCLÞ].

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

ch
ir
a
l c

o
n
d
e
n
sa

te

Chemical potential µ

U=1/4, m=1, N=8

exact
Fermion bag

Complex Langevin

FIG. 6. Comparison among the fermion bag approach,
complex Langevin dynamics, and the exact solution for the
one-dimensional Thirring model (see Ref. [56]).

FERMION BAG APPROACH FOR THE MASSIVE THIRRING … PHYSICAL REVIEW D 94, 114501 (2016)

114501-7



hLOi≡
�X

x;μ

�
d

dAμðxÞ
−

dSeff
dAμðxÞ

�
d

dAμðxÞ
OðAÞ

�
ð28Þ

should vanish for any holomorphic function OðAÞ if CL
works. We choose the observable (the chiral condensate)
OðAÞ ¼ 1

Nd TrðK−1Þ for μ ¼ 1, m ¼ 1, and N ¼ 8. In
the one-dimensional case, hLOi is 0.0137� 0.00708 if
U ¼ 0.0025 and becomes −5.88� 7.33 if U ¼ 0.16. In
the three-dimensional case, hLOi is −1.207� 0.0025 if
U ¼ 0.0025, 61.6� 64.02 if U ¼ 0.1, and −206.3�
420.7 if U ¼ 0.25. Thus hLOi becomes large if U is
increased and the chiral condensate by CL for μ ¼ 1 in
the left panel of Fig. 4 is not reliable.
Finally we also compare the chiral condensate obtained

by FB and by CL for the one-dimensional Thirring model
with parameters U ¼ 10, m ¼ 1, and N ¼ 8 (Fig. 5 in
[56]). FB recovers the exact result for large coupling
strength U ¼ 10 for the chemical potential 0 ≤ μ ≤ 2,
while the result obtained by CL is totally wrong. This is
because there is no sign problem in FB in the one-
dimensional Thirring model, while the sign problem is
very severe in CL.
In the heavy fermion limit

m → ∞; μ → ∞; ζ≡ ð2mÞ−1eμ fixed;

the exact solution is known [5], which does not depend
on U (see Appendix C). Figure 7 shows the comparison
between the condensate calculated by FB and by CL with
the exact solution for different coupling strengths U in this
limit. The results obtained by FB agree with the exact result
for the different coupling strengths U. The results obtained
by CL agree with the exact result only when U is small,
e.g., U ¼ 1=12. When U is increased, e.g., U ¼ 0.25, the
chiral condensate obtained by CL is less than the exact

result in the intermediate range of chemical potential
4.8 ≤ μ ≤ 5.6, which was also found in Ref. [5].

V. CONCLUSIONS

The three-dimensional massive Thirring model at finite
density is solved by two numerical methods: the fermion
bag approach and complex Langevin dynamics. Two
average quantities, chiral condensate and fermion den-
sity, are calculated and compared by these numerical
methods. If the fermion coupling strength U is small,
these averages obtained by the fermion bag approach
agree with those obtained by complex Langevin dynam-
ics. When U and the chemical potential are increasing,
the sign problem for complex Langevin becomes severe;
the results obtained by complex Langevin dynamics are
quite different from those obtained under the phase-
quenched approximation. For the parameters, the sign
problem becomes severe for complex Langevin dynam-
ics, but the sign problem for the fermion bag approach is
still mild, and thus the results obtained by the fermion bag
approach are reliable for these model parameters.
Moreover, in the heavy quark limit, the fermion bag
approach can recover the exact result for large coupling
strength U, while the complex Langevin dynamics just
recover the exact result for small coupling strength U.
I believe that these advantages of the fermion bag
approach over complex Langevin dynamics can be
checked for the other interacting fermion systems with
finite density, e.g., the Gross-Neveu model, Yukawa
model, etc.
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APPENDIX A: PROOF OF (11)

For any different sites fxigni¼1,

Cðx1;…; xn;Dðμ; mÞÞ ¼
Z

dψ̄dψ exp

�
−
X
x;y

ψ̄ðxÞDðμ; mÞx;yψðyÞ
�
ψ̄ðx1Þψðx1Þ � � � ψ̄ðxnÞψðxnÞ

¼
Z

dχ̄dχ exp

�
−
X
x;y

χðxÞDðμ; mÞx;yχ̄ðyÞ
�
χðx1Þχ̄ðx1Þ � � � χðxnÞχ̄ðxnÞ; ψ̄ → χ; ψ → χ̄

¼
Z

dχ̄dχ exp

�X
x;y

χðxÞDð−μ;−mÞy;xχ̄ðyÞ
�
χðx1Þχ̄ðx1Þ � � � χðxnÞχ̄ðxnÞ by ð6Þ

¼ ð−1Þn
Z

dχ̄dχ exp

�
−
X
x;y

χ̄ðxÞDð−μ;−mÞx;yχðyÞ
�
χ̄ðx1Þχðx1Þ � � � χ̄ðxnÞχðxnÞ

¼ ð−1ÞnCðx1;…; xn;Dð−μ;−mÞÞ: ðA1Þ

In the second equality we used dψ̄dψ ¼ dχdχ̄ ¼ dχ̄dχ, since there is an even number of sites. By the symmetry (7) of D,

Cðx1;…; xn;Dðμ; mÞÞ ¼
Z

dψ̄dψ exp

�X
x;y

ψ̄ðxÞεxDðμ;−mÞx;yεyψðyÞ
�
ψ̄ðx1Þψðx1Þ � � � ψ̄ðxnÞψðxnÞ

¼ ð−1Þn
Z

dχ̄dχ exp

�
−
X
x;y

χ̄ðxÞDðμ;−mÞx;yχðyÞ
�
χ̄ðx1Þχðx1Þ � � � χ̄ðxnÞχðxnÞ

¼ ð−1ÞnCðx1;…; xn;Dðμ;−mÞÞ; ðA2Þ

where in the second equality we used ψ̄ðxÞ ¼ −εxχ̄ðxÞ, ψðxÞ ¼ εxχðxÞ, and thus dψ̄dψ ¼ dχ̄dχ due to an even number of
sites. Combing (A1) and (A2), we obtain (11).

APPENDIX B: THERE IS NO SIGN
PROBLEM FOR d = 1

If d ¼ 1, the N × N (even N) fermion matrix is

D ¼ Dðμ; mÞ ¼

0
BBBBBBBBBBBB@

m eμ
2

e−μ
2

− e−μ
2

m eμ
2

− e−μ
2

m eμ
2

. .
.

m eμ
2

− eμ
2

− e−μ
2

m

1
CCCCCCCCCCCCA

N×N

:

According to a formula of the determinant [59], the
determinant of D is

detD ¼ eNμ

2N
þ e−Nμ

2N
þ TrðTÞ;

where the 2 × 2 transfer matrix T is T ¼
�

m 1
4

1 0

	N
.

Obviously, detD > 0 for any μ > 0 and m > 0. Choose

n different indices, 1 ≤ i1 < � � � < in ≤ N, and delete n
rows and columns corresponding to these n indices
from D to obtain ~D. We want to prove that the ðN − nÞ ×
ðN − nÞ matrix ~D satisfies det ~D > 0. This holds
because the structure of ~D is the same as that of D and
thus the determinant of ~D can be calculated [59], which
must be positive. For example, N ¼ 10, n ¼ 2, i1 ¼ 4,
i2 ¼ 7,

~D ¼

0
BBBBBBBBBBBBBBBBBB@

� � j j �
� � � j j

� � j j
− − − − − − − − − −

j � � j
j � � j

− − − − − − − − − −
j j � �
j j � � �

� j j � �

1
CCCCCCCCCCCCCCCCCCA

:
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Since Cðx1;…; x2jÞ can be presented by the determinant of the submatrix of D, which is non-negative, the sign problem is
avoided for d ¼ 1.

APPENDIX C: HEAVY QUARK LIMIT

We introduce notations X ¼ ðx1;…; xd−1Þ, Y ¼ ðy1;…; yd−1Þ. The matrix element of ~K in (27) can be written as

~Kðt;XÞ;ðt;YÞ ≡ ðBtÞX;Y ¼
X

α¼1;…;d−1

ηx;α
2

ðð1þ iAαðxÞÞδxþα̂;y − ð1 − iAαðyÞÞδx;yþα̂Þ þmδx;y; t ¼ 0;…; N − 1;

~Kðt;XÞ;ðtþ1;YÞ ¼ sþx;0
eμ

2
ðCtÞX;Y; ðCtÞX;Y ≡ ð1þ iA0ðxÞÞδX;Y; t ¼ 0;…; N − 1;

~Kðt;XÞ;ðt−1;YÞ ¼ −s−x;0
e−μ

2
ðC�

t−1ÞX;Y; t ¼ 0;…; N − 1:

The matrix ~K is an Nd × Nd matrix

~K ¼

0
BBBBBBBBBBBB@

B0
eμ
2
C0

e−μ
2
C�
N−1

− e−μ
2
C�
0 B1

eμ
2
C1

− e−μ
2
C�
1 B2

eμ
2
C2

. .
.

− e−μ
2
C�
N−3 BN−2

eμ
2
CN−2

− eμ
2
CN−1 − e−μ

2
C�
N−2 BN−1

1
CCCCCCCCCCCCA

Nd×Nd

:

In the heavy quark limit,

m → ∞; μ → ∞; ζ ≡ ð2mÞ−1eμ fixed:

The matrix ~K becomes

ð2mÞ−1 ~Kx;y ¼ ζðsþx;0 þ iA0ðxÞÞδxþ0̂;y þ δx;y ¼

0
BBBBBBBBBBBB@

I ζC0 0

0 I ζC1

0 I ζC2

. .
.

0 I ζCN−2

−ζCN−1 0 I

1
CCCCCCCCCCCCA

Nd×Nd

:

The determinant of ~K satisfies

1

ð2mÞNd det ~K ¼ detðI þ ξCN−1C0 � � �CN−2Þ ¼
Y
X

ð1þ ξPXÞ;

where ξ ¼ ζN and PX ¼ Q
tð1þ A0ðt; XÞÞ is the Polyakov loop starting and ending at the space point X. The partition

function Z in (20) reads
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Z ¼ ð2mÞNd

Z Y
x;α

dAαðxÞ exp
�
−

1

8U

X
x;α

A2
αðxÞ

�Y
X

ð1þ ξPXÞ

¼ ð2mÞNd

�
1

2πU

�ðd−1ÞNd

2

Z Y
x

dA0ðxÞ exp
�
−

1

8U

X
x

A2
0ðxÞ

�Y
X

ð1þ ξPXÞ

¼ ð2mÞNd

�
1

2πU

�ðd−1ÞNd

2 Y
X

Z Y
t

dA0ðt; XÞ exp
�
−

1

8U

X
t

A2
0ðt; XÞ

�
ð1þ ξPXÞ

¼ ð2mÞNd

�
1

2πU

�dNd
2 ð1þ ξÞNd−1

;

where in the last equality we used

Z Y
t

dA0ðt; XÞ exp
�
−

1

8U

X
t

A2
0ðt; XÞ

�
ð1þ ξPXÞ ¼

�
1

2πU

�N
2 þ ξ

Z Y
t

dA0ðt; XÞ exp
�
−

1

8U

X
t

A2
0ðt; XÞ

�
PX

¼
�

1

2πU

�N
2 þ ξ

Y
t

Z
dA0ðt; XÞ exp

�
−

1

8U
A2
0ðt; XÞ

�
ð1þ A0ðt; XÞÞ

¼
�

1

2πU

�N
2 þ ξ

�
1

2πU

�N
2

:

In the heavy quantum limit, the chiral condensate and
fermion density are

hψ̄ψi ¼ 1

mð1þ ξÞ ; hni ¼ 1

1þ 1
ξ

;

respectively, which do not depend on U [5].

APPENDIX D: PHASE-QUENCHED
APPROXIMATION

The phase-quenched approximation to (20) is to replace
detK by its module j detKj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðKK†Þ

p
,

Zpq ¼
Z Y

x;α

dAαðxÞ exp
�
−

1

8U

X
x;α

A2
αðxÞ

�
j detKj

¼
Z Y

x;α

dAαðxÞe−Spq;eff ; ðD1Þ

where the effective action is

Spq;eff ¼
1

8U

X
x;α

A2
αðxÞ −

1

2
ln detðKK†Þ: ðD2Þ

Since

∂
∂AαðxÞ

1

2
ln detðKK†Þ

¼ 1

2

∂
∂AαðxÞ

Tr lnðKK†Þ

¼ 1

2
Tr

�
ðKK†Þ−1 ∂ðKK

†Þ
∂AαðxÞ

�

¼ 1

2
Tr

�
ðKK†Þ−1


 ∂K
∂AαðxÞ

K† þ K
∂K†

∂AαðxÞ
��

¼ 1

2
Tr

�
K−1 ∂K

∂AαðxÞ
þ K†−1 ∂K†

∂AαðxÞ
�

¼ Re



Tr

�
K−1 ∂K

∂AαðxÞ
��

;

the drift force is

−
∂Spq;eff
∂AαðxÞ

¼ −
1

4U
AαðxÞ þ Re



Tr

�
K−1 ∂K

∂AαðxÞ
��

;

which is just the real part of the complex drift force in (24).
This is because the effective action (D2) in the quenched
approximation is taken to be the real part of the complex
effective action in (22):

e−Seff ¼ e−Spq;effeiφ;

eiφ ¼ detK
j detKj⇔Reðln detKÞ ¼ 1

2
ln detðKK†Þ:
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Here the logarithm ln is understood to be the principal value
of the logarithm.
The chiral condensate in (25) and fermion density in (26)

are replaced by

hψ̄ψi ¼ 1

Nd

∂ lnZpq

∂m ¼ 1

Nd hReTrðK−1Þipq;

hni ¼ 1

Nd

∂ lnZpq

∂μ ¼ 1

Nd

�
ReTr

�
K−1 ∂K

∂μ
��

pq
;

where the average is taken with respect to the weight of
the partition function in (D1). The average phase factor in
the phase-quenched theory heiφipq ¼ Z=Zpq indicates the
severeness of the sign problem in the thermodynamic limit.
Since the real function C may be negative, the phase-

quenched approximation of (9) is

Zpq ¼
X

k¼ðkx;αÞ
UjjCðx1;…; x2jÞj: ðD3Þ

The chiral condensate and fermion density under this
phase-quenched approximation are

hψ̄ψi ¼ 1

Nd

∂ lnZpq

∂m ¼ 1

Nd

�∂mC
C

�
pq
;

hni ¼ 1

Nd

∂ lnZpq

∂μ ¼ 1

Nd

�∂μC

C

�
pq
;

respectively. The average phase factor is

heiφipq ¼
�

C
jCj

�
pq

¼
P

k¼ðkx;αÞU
jCðx1;…; x2jÞP

k¼ðkx;αÞU
jjCðx1;…; x2jÞj

:

Here the average hipq is taken with respect to the partition
function Zpq in (D3).
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