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Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-
loop massive expansion in the Landau gauge, deep in the infrared. By analytic continuation, the spectral
functions are studied in Minkowski space, yielding a direct proof of positivity violation and confinement
from first principles. The dynamical breaking of chiral symmetry is described on the same footing of gluon
mass generation, providing a unified picture. While dealing with the exact Lagrangian, the expansion is
based on massive free-particle propagators, is safe in the infrared and is equivalent to the standard
perturbation theory in the UV. By dimensional regularization, all diverging mass terms cancel exactly
without including mass counterterms that would spoil the gauge and chiral symmetry of the Lagrangian.
Universal scaling properties are predicted for the inverse dressing functions and shown to be satisfied by the
lattice data. Complex conjugated poles are found for the gluon propagator, in agreement with the i-particle
scenario.
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I. INTRODUCTION

While we still miss a fully consistent analytical method
for the study of QCD in the infrared (IR), important
progress has been achieved in recent years and a general
consensus has been reached on a decoupling scenario with
a finite gluon propagator and a dynamically generated
gluon mass [1] in the Landau gauge.
Most of the nonperturbative approaches that have been

developed so far rely on numerical calculations in the
Euclidean space, where synergic studies by lattice simu-
lations [2–10], Schwinger-Dyson equations [11–21], and
variational methods [22–32] have drawn a clear picture for
the propagators of QCD deep in the IR.
However, since physics happens in Minkowski space,

much important dynamical information cannot be extracted
by the Euclidean formalism, unless we have an analytic
function that can be continued to the physical space or the
whole numerical analysis is carried out in Minkowski space
[33]. Even the concept of a dynamical mass has no obvious
meaning for confined particles like gluons and quarks.
Thus, it is still unknown if the propagators have poles on
the real axis, while some evidence of positivity violation
has been demonstrated by indirect arguments.
As a matter of fact, the analytic continuation of a limited

set of data points is an ill-defined problem and any
numerical attempt would only give qualitative results at
best. Nevertheless, by a linear regularization strategy, a
Källen-Lehmann spectral function was reconstructed in
Ref. [34] from the lattice data of the gluon propagator,
giving some direct evidence for positivity violation and the
absence of any discrete mass pole on the physical real axis.
Important insights also come from physically motivated

phenomenological models, providing simplified analytical

descriptions that can be easily continued to Minkowski
space [35–42]. For instance, the existence of complex
poles was predicted by the refined version [42–44] of the
Gribov-Zwanziger model [45].
Quite recently, an analytical approach has been proposed

that is based on a different expansion point for the exact
Lagrangian of pure Yang-Mills theory in the Landau gauge
[46,47]. The new expansion is around a massive free-
particle propagator, yielding a massive loop expansion with
massive particles in the internal lines of the Feynman
graphs. From first principles, without adding spurious
counterterms or phenomenological parameters, at one loop
the expansion provides analytical universal functions for
the dressing functions, predicting some scaling properties
that are satisfied by the data of lattice simulations. In the
Euclidean space and Landau gauge, the massive expansion
is in impressive agreement with the lattice data [48] and the
one-loop propagators are analytic functions that can be
easily continued and studied in Minkowski space.
In this paper, the massive expansion is extended to full

QCD by the inclusion of a set of chiral quarks in the
Lagrangian. The dynamical breaking of chiral symmetry is
described on the same footing of gluon mass generation,
providing a unified picture from first principles. Analytic
functions for the one-loop propagators are derived in the
Landau gauge and continued to Minkowski space where
the Källén-Lehmann spectral functions are studied in detail.
Thus, the paper has the twofold aim of providing an
analytical and consistent framework for the study of
QCD in the infrared and of disclosing the analytic proper-
ties of the propagators in Minkowski space.
By including a set of chiral quarks, the massive expan-

sion provides an analytical approach to QCD from first
principles, without any need for mass counterterms or other
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phenomenological parameters for describing the dynamical
generation of mass. All mass divergences cancel exactly,
yielding a finite and consistent picture of the dynamical
breaking of chiral symmetry together with the dynamical
generation of the gluon mass. However, in its present
development, the method does not allow a prediction of the
ratio between the two mass scales and is sensitive to the
choice of the subtraction point. These are the only free
parameters in the calculation and the sensitivity to these
parameters is a measure of the accuracy of the one-loop
approximation. In fact, having used the exact Lagrangian,
any deviation from the exact result can only arise from the
truncation of the expansion. Thus, while based on a
perturbative expansion, the method has a variational nature,
with an accuracy that can be increased by tuning the mass
ratio and the subtraction point to optimal values that
minimize the effect of higher loops. In that sense, the
method can be seen as a special case of the optimized
perturbation theory that has been discussed by many
authors in the past [49–51] and has been recently improved
by RG methods [52–55].
A fully consistent variational estimate of the optimal

parameters would require the calculation of an effective
potential [49,56–58] or some real observable quantity,
which is out of the aim of the present paper. On the other
hand, by a comparison with the data of lattice simulations,
we find that the weight of higher-loop corrections can be
made very small by a judicious choice of masses and
renormalization constants. Thus, with the aim of describing
the analytic structure of the propagators, in the present
paper we adopt the strategy of optimizing the unknown
parameters by a direct comparison with the lattice data in
the Euclidean space. Once optimized, the one-loop propa-
gators are continued to Minkowski space, yielding a
detailed and direct description of the analytic properties
and spectral functions. Of course, we just assume that,
being negligible in the Euclidean space, the neglected
higher-loop corrections are still small in Minkowski space.
The study of the spectral functions gives direct predic-

tions on the dynamics of quarks and gluons. For instance,
no poles are found for the gluon on the physical positive
real axis and the positivity constraints are strongly violated
for quarks and gluons, as expected for confined degrees of
freedom. Moreover, complex conjugated poles are found
for the gluon propagator, confirming the i-particle scenario
[36] predicted by the refined version [42–44] of the Gribov-
Zwanziger model [45].
The paper is organized as follows. In Sec. II the massive

expansion of Ref. [47] is extended to chiral QCD in the
Landau gauge. In Sec. III, the case of pure Yang-Mills
theory is examined, the propagators are continued to
Minkowski space, and their spectral density is studied in
detail. In Sec. IV, the full chiral QCD is discussed; a
dynamical mass is obtained for the quarks and compared
with the lattice data in the Euclidean space; and the spectral

functions are derived for ghosts, gluons, and quarks.
In Sec. V the main results of the paper are discussed.
The explicit analytical expressions of the propagators are
derived in the Appendix.

II. THE MASSIVE EXPANSION IN
THE CHIRAL LIMIT

In this section we include a set of chiral quarks in the
massive expansion that has been recently developed for
pure Yang-Mills theory [32,46,47]. While the inclusion of
bare masses for the quarks would be straightforward, we
prefer to deal with the chiral limit in this paper for several
reasons. First of all, we show that the expansion can
describe the breaking of chiral symmetry on the same
footing as dynamical mass generation for gluons. Even
without bare masses, all diverging mass terms are canceled
exactly at one loop with no need for mass counterterms.
On the other hand, the inclusion of bare masses would give
a phenomenological model, with a set of renormalized
masses to be fixed by the phenomenology, without adding
too much to the quark sector of other models with massive
gluons that have been already studied [39]. Those models
were shown to be in good agreement with the data of
lattice simulations by a proper choice of the parameters.
Moreover, most of the mass of the constituent quarks arises
from the interaction, and it seems to be more challenging to
reproduce the data of the simulations in the chiral limit
without the aid of any parameter, from first principles.
The full Lagrangian of QCD, including Nf massless

chiral quarks, can be written as

LQCD ¼ LYM þ Lfix þ LFP þ Lq; ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

Lfix is a gauge-fixing term, LFP is the ghost Lagrangian
arising from the Faddeev-Popov determinant, and Lq is the
quark Lagrangian

Lq ¼
XNf

i¼1

Ψi½i∂ − gAaT̂a�Ψi: ð3Þ

In terms of the gauge fields, the tensor operator F̂μν is

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð4Þ

where

Âμ ¼
X
a

T̂aA
μ
a ð5Þ

FABIO SIRINGO PHYSICAL REVIEW D 94, 114036 (2016)

114036-2



and the generators of SUðNÞ satisfy the algebra

½T̂a; T̂b� ¼ ifabcT̂c; ð6Þ

with the structure constants normalized according to

fabcfdbc ¼ Nδad: ð7Þ

If a generic covariant gauge-fixing term is chosen,

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð8Þ

then the total action can be written as Stot ¼ S0 þ SI ,
where the free-particle term is

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞddxddy

þ
XNf

i¼1

Z
ΨiðxÞS−10 ðx; yÞΨiðyÞddxddy

þ
Z

ω⋆
aðxÞδabG−1

0 ðx; yÞωbðyÞddxddy; ð9Þ

and the interaction is

SI ¼
Z

ddx½Lqg þ L3g þ L4g þ Lgh�; ð10Þ

with the four local interaction terms that read

Lqg ¼ −g
XNf

i¼1

ΨiAaT̂aΨi

L3g ¼ −gfabcð∂μAaνÞAμ
bA

ν
c

L4g ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð11Þ

In Eq. (9), Δ0, S0, and G0 are the standard free-particle
propagators for gluons, quarks, and ghosts and their Fourier
transforms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�

Δ0ðpÞ ¼
1

−p2
; S0ðpÞ ¼

1

p
;

G0ðpÞ ¼
1

p2
: ð12Þ

Here the transverse and longitudinal projectors are
defined as

tμνðpÞ ¼ ημν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
; ð13Þ

where ημν is the metric tensor.
As shown in Ref. [47], a shift of the pole in the

propagators can be introduced by an unconventional
splitting of the total action. We may add and subtract
the arbitrary terms δSg, δSq in the total action

S0 → S0 þ δSq þ δSg

SI → SI − δSq − δSg ð14Þ

and take

δSg ¼
1

2

Z
AaμðxÞδabδΓμν

g ðx; yÞAbνðyÞddxddy

δSq ¼
XNf

i¼1

Z
ΨiðxÞδΓqðx; yÞΨiðyÞddxddy; ð15Þ

where the vertex functions δΓg, δΓq are given by a shift of
the inverse propagators

δΓμν
g ðx; yÞ ¼ ½Δ−1

m
μνðx; yÞ − Δ−1

0
μνðx; yÞ�

δΓqðx; yÞ ¼ ½S−1M ðx; yÞ − S−10 ðx; yÞ�; ð16Þ

and Δm
μν, SM are massive free-particle propagators,

Δ−1
m

μνðpÞ ¼ ΔmðpÞ−1tμνðpÞ þ
−p2

ξ
lμνðpÞ

ΔmðpÞ−1 ¼ −p2 þm2; SMðpÞ−1 ¼ p −M: ð17Þ

Here the masses m and M are totally arbitrary. Since δSq

and δSg are added and subtracted again, the total action
cannot depend on the masses, but any expansion in powers
of the new shifted interaction SI → SI − δSq − δSg is
going to depend on them at any finite order because of
the truncation. Thus, while we are not changing the content
of the theory, the emerging perturbative approximation is
going to depend on the masses and can be optimized by a
choice of m and M that minimizes the effects of higher
orders, yielding a variational tool disguised to look like a
perturbative method [47]. The idea is not new and goes
back to the works on the Gaussian effective potential
[49,59–66], where an unknown mass parameter was
inserted in the zeroth-order propagator and subtracted from
the interaction, yielding a pure variational approximation
with the mass that acts as a variational parameter.
The shifts δSq, δSg have two effects on the resulting

perturbative expansion: the free-particle propagators are
replaced by massive propagators and new two-point ver-
tices are added to the interaction, arising from the counter-
terms that read
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δΓμν
g ðpÞ ¼ m2tμνðpÞ; δΓqðpÞ ¼ −M: ð18Þ

The Landau gauge is the optimal choice for the massive
expansion since transverse and longitudinal Lorentz sub-
spaces do not mix. Although other covariant gauges could be
explored, their studywould require the numerical solution of
integral equations [47]. From now on we will take the limit
ξ → 0. In Eq. (17) the gluon propagator becomes transverse
and we can simplify the notation and drop the projectors tμν

everywhere whenever each term is transverse. Moreover we
drop all color indices in the diagonal matrices.
We can use the standard formalism of Feynman graphs

with massive zeroth-order propagators Δm, SM and the
counterterms δΓg ¼ m2, δΓq ¼ −M that must be added to
the standard vertices of QCD in Eq. (11).
Since the resulting total interaction is a mixture of terms

that depend on the coupling strength g and counterterms
that do not vanish in the limit g → 0, a perturbative
expansion in powers of the total interaction would contain
at any order different powers of g but the same number of
vertices (including the counterterms among vertices) and
we may define the order of a term as the number of vertices
in the graph.
Assuming that the effective coupling never reaches

values that are too large [47], we may neglect higher
loops and take a double expansion in powers of the total
interaction and in powers of the coupling, retaining graphs
with n vertices at most and no more than l loops.
The graphs contributing to the quark and ghost self-

energy and to the gluon polarization are shown in Fig. 1 up
to the third order and one loop.
We observe that if a counterterm (a cross in Fig. 1) is

inserted in an n-order l-loop graph, the number of loops
does not change but the order increases by 1, giving an
(nþ 1)-order l-loop crossed graph. At one loop, the
somehow arbitrary truncation of the expansion, at a given
order, can be shown to have no important effects on the
outcome of the calculation. In fact, while higher-order
terms would add very small corrections in the UV because
of the factor ð−p2 þm2Þ−n, they might be relevant in the

limit p → 0, where we find a hierarchy in the significance
of the crossed graphs. The most important effect arises at
tree level since the tree graphs in Fig. 1 cancel the entire
shift of the pole in the propagators. Thus, a finite mass can
only arise from loops and the massive expansion does
not predict any mass for the photon in QED. At one loop, a
first insertion of the counterterms gives diverging crossed
graphs that cancel the mass divergences in the loops
entirely. Inclusion of those terms is crucial for the renorm-
alization of the theory. On the other hand, the insertion of n
counterterms in a loop, with n ≥ 2, gives finite terms that
only add some finite corrections to the graph. Moreover
these corrections are absorbed in part by a change of the
renormalization constants without affecting the final result.
The convergence of the expansion is very slow, so that no
dramatic changes are observed if higher-order graphs are
inserted above the third order. In that sense, the minimal
choice of a third-order expansion has nothing special in
itself and we will limit ourselves to truncating the expan-
sion at that order and at one loop, which is equivalent to the
sum of all the graphs in Fig. 1.
An alternative way to recover the same expansion is by

taking the standard loop expansion of QCD and inserting
the geometric expansions of the massless propagators in
powers of massive propagators, according to

Δ0ðpÞ ¼ ΔmðpÞ
X∞
n¼0

½m2ΔmðpÞ�n

S0ðpÞ ¼ SMðpÞ
X∞
n¼0

½−MSMðpÞ�n; ð19Þ

which is just the Dyson sum of all reducible tree graphs that
cancel the pole shift in the propagators. That shows how
truncating the expansion can lead to nontrivial differences
between the massive and the standard expansion since they
would differ by an infinite set of graphs that may contain
nonperturbative effects. Moreover, Eq. (19) makes it
obvious that the content of the exact theory has not
changed, but the approximation differs because of the
different truncation of the total expansion.
Equation (19) provides a simple way of calculating the

crossed graphs. Using the explicit form of the propagators
in Eq. (17), the geometric expansion in Eq. (19) can be
written as

Δ0ðpÞ ¼
X∞
n¼0

ð−m2Þn
n!

∂n

∂ðm2ÞnΔmðpÞ

¼ lim
m→m

exp

�
−m2

∂
∂m2

�
ΔmðpÞ

S0ðpÞ ¼
X∞
n¼0

ð−MÞn
n!

∂n

∂Mn SMðpÞ

¼ lim
M→M

exp

�
−M

∂
∂M

�
SMðpÞ: ð20Þ

FIG. 1. Two-point graphs with no more than three vertices and
no more than one loop. The crosses are the counterterms
δΓg ¼ m2, δΓq ¼ −M. In this paper, the quark and ghost self-
energy and the gluon polarization are obtained by the sum of all
the graphs in the figure.
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Then, exploiting the formal properties of the exponentials,
in the standard massless expansion of QCD, any l-loop
graph Σl for the self-energy or the polarization (containing
the product of gluon and quark massless propagators)
gives rise to the double expansion with massive crossed
graphs

ΣlðpÞ ¼
X∞
n¼0

1

n!

�
−m2

∂
∂m2

−M
∂
∂M

�
n
Σl
ðm;MÞðpÞ; ð21Þ

where Σl
ðm;MÞðpÞ is the same standard (uncrossed) l-loop

graph but with the massless propagators replaced by the
massive ones, Δ0 → Δm and S0 → SM. The nth term of the
sum in Eq. (21) gives the sum of all graphs with n
counterterm insertions (crossed n times) that arise from
the uncrossed l-loop graph Σl

ðm;MÞðpÞ. Equation (21)

provides a simple way to derive the massive double
expansion from the standard loop expansion of QCD. Of
course, we do not want to sum Eq. (21) exactly, as its
truncation gives a different approximation with respect to
the standard perturbative method.
As discussed in Ref. [47], even if the total Lagrangian

has not been changed, the truncation spoils its exact
symmetries. The quadratic part is not Becchi-Rouet-
Stora-Tuytin (BRST) and chiral invariant so that the
Slavnov-Taylor and Ward identities cannot be satisfied
exactly at any finite order. However, since the total
Lagrangian is still symmetric, the deviations can be made
very small by inclusion of higher-order terms and would be
vanishing if all terms could be summed up. Thus the issue
becomes a question of convergence of the expansion.
Optimization by variation of the regularization scheme
[50,51] has been proven to be a valid tool for achieving a
quick convergence of the expansion, yielding reliable
results even at one loop.
A remarkable example of the role played by BRST and

chiral invariance is provided by the regularization of mass
divergences. In the standard perturbative expansion, the
invariance properties of the Lagrangian do not allow any
diverging mass term to come out from the loops. When the
quadratic part of the Lagrangian is not invariant and
contains bare masses, spurious mass terms arise at any
finite order and their divergence requires the insertion of
new counterterms. However, if the total Lagrangian has not
been changed and is still invariant, the divergences must be
canceled by the new crossed graphs that arise from the
modified interaction. Since the insertion of a counterterm in
a loop lowers the degree of divergence of the graph, all
spurious mass divergences can be canceled at a finite order,
yielding a regularized expansion in the IR.

III. PURE YANG-MILLS THEORY

Without quarks, the dressed propagators of pure SU(N)
Yang-Mills theory can be written as

ΔðpÞ−1 ¼ −p2 þ 5

8
αm2 − ½ΠðpÞ − Πð0Þ�

GðpÞ−1 ¼ p2 − ΣghðpÞ; ð22Þ

where the ghost self-energy Σgh and the gluon polarization
Π were evaluated in Ref. [47] as a sum of the graphs in
Fig. 1 (omitting quark loops), and the coupling α is
defined as

α ¼ 3N
4π

αs; αs ¼
g2

4π
: ð23Þ

The one-loop gluon and ghost propagators are made finite
by standard wave-function renormalization. In the MS
scheme, setting d ¼ 4 − ϵ, the gluon wave-function
renormalization constant ZA and the ghost wave-function
renormalization constant Zω read

ZA ¼ 1þ 13α

9ϵ
¼ 1þ 13

3

g2N
16π2

1

ϵ

Zω ¼ 1þ α

2ϵ
¼ 1þ 3

2

g2N
16π2

1

ϵ
; ð24Þ

and agree with the standard one-loop approximation in
the UV.
It is useful to introduce the adimensional ghost and gluon

dressing functions

χðpÞ ¼ p2GðpÞ; JðpÞ ¼ −p2ΔðpÞ: ð25Þ

Once renormalized by the constants ZA, Zω, they are finite
and read

χðsÞ−1 ¼ 1þ α

�
GðsÞ − 1

4
log

μ2

m2
þ const

�

JðsÞ−1 ¼ 1þ α

�
FðsÞ − 13

18
log

μ2

m2
þ const

�
; ð26Þ

where s ¼ −p2=m2 is the Euclidean momentum, μ is the
renormalization scale and the two adimensional func-
tions FðsÞ, GðsÞ follow from the sum of polarization
and self-energy graphs in Fig. 1, respectively, and are
reported in Appendix A. Their asymptotic behavior is
just what we need for canceling the dependence on m in
the dressing functions. In fact, in the UV, Eq. (26) can
be written as

χðpÞ−1 ¼ χðμÞ−1 þ α

4
log

−p2

μ2

JðpÞ−1 ¼ JðμÞ−1 þ 13α

18
log

−p2

μ2
; ð27Þ

which is the standard UV behavior that we expected by
inspection of the renormalization constants Eq. (24).
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In units of m, the arbitrary choice of the mass parameter
is reflected by a slight dependence on the renormalization
scale μ=m, which is the only other energy scale in the
theory. We can put all the constants together and recast the
dressing functions in Eq. (26) as

½α χðsÞ�−1 ¼ GðsÞ þ G0

½α JðsÞ�−1 ¼ FðsÞ þ F0; ð28Þ

where the arbitrary choice of the ratio μ=m is now reflected
by a dependence on the additive renormalization constants
F0 andG0. While the dependence on N and on the coupling
αs is totally absorbed by a multiplicative renormalization
of the dressing functions in Eq. (28), the dependence on the
additive renormalization constants F0, G0 is not totally
compensated by a change of the renormalization. That is a
consequence of the one-loop approximation, since if all
higher-order terms were included, the result would not
depend on m. Actually, at one loop, if the dressing functions
are multiplied by an arbitrary factor Z ¼ 1þ α δZ ≈ 1, that
factor should be compensated by the subtraction of α δZ on
the right-hand sides of Eqs. (26). Thus an only partial degree
of compensation reflects a sensitivity to the choice of the
scale m. On the other hand, the one-loop approximation can
be optimized by taking additive constants that minimize the
effects of higher orders. That would be equivalent to fixing
the best mass ratio m=μ, yielding a sort of variational
approximation. Being equivalent to a variation of the
subtraction point μ, any change of the additive constant
can be seen as a variation of the renormalization scheme,
yielding a special case of optimized perturbation theory that
has been proven to be very effective for the convergence of
the expansion [50,51].
Equation (28) has a strong predictive power. A very

important consequence is that, up to an arbitrary multipli-
cative renormalization constant, the inverse dressing func-
tions are given by the universal functions FðsÞ and GðsÞ up
to an additive renormalization constant. In other words, the
first derivatives of the inverse functions are fixed and do not
depend on any parameter but on the energy units. Actually,
that is a useful property for determining the energy units by
a comparison with the lattice data. Such a scaling property
is satisfied quite well by the lattice data for SU(2) and
SU(3) that collapse on the same universal curves FðsÞ,GðsÞ
in the infrared, as shown in Refs. [46–48]. That scaling
property confirms that higher-order terms can be made
negligible by an optimized choice of the constants F0, G0.
While several strategies can be devised for a variational

estimate of the best additive constants F0, G0, in this paper
we explore a different approach. By an appropriate choice
of the additive constants, the one-loop dressing functions in
Eq. (28) are known to give a very accurate description of
the data of lattice simulations in the Euclidean space
[46,47]. Thus, once the constants have been fixed, the
analytical functions FðsÞ, GðsÞ can be continued to

Minkowski space, providing new important information that
cannot be extracted by the data points of the simulations.
Some attempts at reconstructing an analytic function from
the lattice data have been reported recently [34], reaching a
good qualitative agreement for some sample functions and
showing interesting insights into the spectral functions.
Assuming that the weight of higher-order terms would
remain small even for s < 0, as it is for s > 0, the present
approach would provide a simple way to reach quantitative
predictions in the physical space.
For SUð3Þ and −p2 < 4 GeV2, the lattice data of

Ref. [2] are very well reproduced by setting F0 ¼ −1.05
and m ¼ 0.73 GeV in Eq. (28). Some deviation occurs for
−p2 > 4 GeV2 because of the large logs that require a
resummation by renormalization group (RG) equations in
the UV. While that is hardly a problem in the IR, some
caution must be taken when attempting to compare with
exact asymptotic results in the UV, like Oehme-
Zimmermann superconvergence relations [67]. As shown
in Ref. [38], when RG effects are included the massive
expansion is in perfect agreement with the standard
perturbative expansion in the UV, since the mass terms
become negligible in the high-energy limit. With that
limitation, the gluon propagator can be continued to
Minkowski space by setting s ¼ −p2=m2 − iε, and the
resulting complex function is shown in Fig. 2.
As shown in Fig. 3, the propagator is quite sensitive to

the choice of F0, allowing a quite precise estimate of the
best value F0 ¼ −1.05 that minimizes the higher-order
terms. It is remarkable that the best value occurs very
closely to the point where the real part of the propagator
seems to be symmetric in the infrared. Actually, the
maximum of the real part is stationary and takes its
minimum when the curve (the solid line in Fig. 3) is on
the points of the lattice data. That could be relevant for

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

R
e[

Δ(
p)

/Δ
(0

)]
,

Ιm
[ Δ

(p
)/

Δ(
0)

]

p2 (GeV2)

FIG. 2. The real part (dashed line) and the imaginary part (solid
line) of the gluon propagator are displayed together with the
lattice data of Ref. [2] (N ¼ 3, β ¼ 5.7, L ¼ 96). The propagator
is normalized by its finite value at p2 ¼ 0 and is evaluated by
Eq. (28) with F0 ¼ −1.05 and m ¼ 0.73 GeV.
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devising a variational procedure independently from any
lattice data. In that respect, exploring the timelike range
p2 > 0 seems to be important for identifying stationary
properties that might be hidden in the Euclidean space.
Once the constant F0 has been fixed at its best value, the

real and imaginary parts can be studied in Minkowski
space. The imaginary part of the gluon propagator Δ has a
cut for p2 > 0 and a spectral function ρðp2Þ can be defined,

ρðp2Þ ¼ 1

π
ImΔðp2 þ iεÞ; ð29Þ

which is proportional to the imaginary part above the cut.
According to Källén-Lehmann representation, the spectral
function must be positive if the particle is observed among
the outgoing states of a scattering process. Thus, confine-
ment requires that the spectral function ρðp2Þ violate the
positivity condition. The imaginary part of Δ is shown in
more detail in Fig. 4 for the same value F0 ¼ −1.05 that,
hopefully, minimizes the higher-order corrections even for
a timelike momentum. Among the main features of the
spectral function, we observe the lack of any sharp peak or
pole and the violation of positivity. Figure 4 is in qualitative
agreement with the numerical analytic continuation of
Ref. [34], showing the same pattern of a negative minimum
followed by a positive maximum and a negative large-
energy part that reaches a minimum and then increases
again asymptotically. However, the maximum is more
peaked in Fig. 4 and is shifted at a larger value p2 ≈
0.54 GeV2 ≈m2 compared to p2 ≈ 0.2 GeV2 of Ref. [34].
A very sharp peak at p2 ≈ 0.4 GeV2 was predicted in
Ref. [33] by a numerical calculation based on DSE
formalism in Minkowski space. In that work the violation
of positivity was found to set in only after the peak for
p2 > 0.4 GeV2, while in Fig. 4 a negative range also
appears for small p2, in agreement with Ref. [34].

Out of the real axis, in the complex plane, the
propagator has two conjugated poles at ðRep2; Imp2Þ≈
ð0.16;�0.60Þ GeV2, close to the imaginary axis, as pre-
dicted by the i-particle scenario [36] emerging from the
refined version [42–44] of the Gribov-Zwanziger model
[45]. It is remarkable that, by a fit of the data, in Ref. [68]
a complex mass was extracted from that model,
m2 ¼ð0.1685;�0.4812ÞGeV2, not too far from the present
result. We must mention that no complex poles were found
by the numerical study of Ref. [33].
Another interesting feature of Fig. 4 is the existence

of a cusp at the two-particle threshold p2 ¼ ð2mÞ2≈
ð1.46Þ2 GeV2. That is roughly the point where the real part
turns negative. Overall, the real part of the gluon propagator
in Fig. 2 is in qualitative agreement with the phenomeno-
logical propagator in Fig. 11 of Ref. [35], based on the
existence of a BRST-invariant condensate of dimension 2
[69] that reduces to A2

min in the Landau gauge. In agreement
with Ref. [35], there is not a pole but just a point where
ReΔ ¼ 0. Then the real part turns negative, reaches a
minimum, and increases asymptotically towards zero.
The one-loop ghost propagator by Eq. (28) maintains a

pole at p2 ¼ 0. The analytic continuation s ¼ −p2=m2 − iε
yields

ReGðp2 þ iεÞ ¼ Reχðp2Þ
p2

ImGðp2 þ iεÞ ¼ Imχðp2Þ
p2

− πχð0Þδðp2Þ; ð30Þ

and we can define a spectral function on the cut

ρðp2Þ ¼ −
1

π
ImGðp2 þ iεÞ ¼ χð0Þδðp2Þ − 1

π

Imχðp2Þ
p2

;

ð31Þ
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which has a continuous term given by the imaginary part of
the dressing function divided by −p2. The details of the
continuous term of the spectral function are shown in Fig. 5
by the direct plot of −Imχ, together with the real part Reχ
and the lattice data of Ref. [2] (N ¼ 3, β ¼ 5.7, L ¼ 80).
We observe that the discrete and the continuous terms
have the opposite sign in Eq. (31), violating the positivity
condition. In the Euclidean range p2 < 0, the ghost
dressing function is not very sensitive to a change of the
additive constant G0. In Fig. 5, a change of G0 in the range
0.2 < G0 < 0.3 is compensated by a change of the finite
renormalization constant ZG, so that ZGχðp2Þ stays on the
lattice data points. That is probably a consequence of being
massless. The best agreement is found forG0 ¼ 0.24 and is
shown as a solid line in Fig. 5. The imaginary part has a
wide peak at p2 ≈ ð0.56Þ2 GeV2 and never changes sign.

IV. CHIRAL QCD

The inclusion of a set of chiral quarks requires the
calculation of the quark loops contributing to the gluon
polarization and the quark self-energy Σq. At one loop, we
must add all the graphs of Fig. 1.

A. Ghost propagator

The ghost sector of QCD provides a stringent test for the
massive expansion. As shown in Fig. 1, there are no one-
loop graphs with quark lines that contribute to the ghost
self-energy Σgh. Thus the one-loop ghost dressing function
of QCD is the same as that of pure Yang-Mills theory and is
given by Eq. (28). The weight of higher-order loops can be
estimated by comparing the data of lattice simulations in
the presence of quenched and unquenched quarks, as the

difference can only arise from terms that are neglected in
the expansion.
Actually, that difference is very small and not very

sensitive to the number of quarks and their mass, so that we
can compare the unquenched data of Ref. [5] for two light
quarks with the quenched data of Ref. [2], as already done
in Ref. [5]. It is not even obvious that there is a change at
all, as the only difference seems to be a scale factor ≈1.12
in the energy units of the two data sets. In Fig. 6 we show
that, by rescaling the units of the quenched set of Ref. [2]
(Nf ¼ 0) and renormalizing the dressing function by the
factor ZG ¼ 0.86 for Nf ¼ 0 and ZG ¼ 0.78 for Nf ¼ 2,
all the data in Fig. 3 of Ref. [5] collapse on the same curve
given by Eq. (28) for m ¼ 0.7 GeV and G0 ¼ 0.195. Once
more, the ghost dressing function seems to be described
by the universal function GðsÞ of Eq. (A1) irrespective of
coupling, renormalization, and even quark number. In other
words, the inverse dressing function is entirely determined
up to an additive constant and a renormalization factor. The
extension to full QCD of the same scaling property that was
first predicted [46,47] for pure Yang-Mills theory is an
indirect proof that higher-order loops are not very relevant
in the ghost sector.
Having compared data sets of different authors, we

cannot exclude that a slight accidental difference has
occurred in the choice of the energy units. However, the
factor 1.12, which is required for rescaling the quenched
data over the unquenched plot in Fig. 6, seems to be too
large for being accidental. Then, we assume that it is a
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FIG. 5. Real part Reχ and imaginary part −Imχ ¼ πp2ρ of the
ghost dressing function according to Eq. (28) for m ¼ 0.73 GeV
and several values of G0 in the range 0.2 < G0 < 0.3. The points
are the lattice data of Ref. [2] (N ¼ 3, β ¼ 5.7, L ¼ 80). The best
agreement with the data points is obtained for G0 ¼ 0.24 (solid
line). The dressing function is scaled by a finite renormalization
constant ZG.
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FIG. 6. The ghost dressing function χðsÞ of Eq. (28) is shown as
a function of the Euclidean momentum p2

E ¼ sm2 for m ¼
0.7 GeV and G0 ¼ 0.195. The points are lattice data extracted
from Fig. 1 of Ref. [5] and renormalized by the factors ZG ¼ 0.86
(Nf ¼ 0, open squares, originally taken from Ref. [2]);
ZG ¼ 0.78 (Nf ¼ 2, two light quarks, circles); and ZG ¼ 0.78
(Nf ¼ 2þ 1þ 1, two light and two heavy quarks, filled squares).
The energy units of the quenched data (Nf ¼ 0) have been
multiplied by a factor of 1.12 with respect to the original data of
Ref. [2] (a point at p ¼ 1 GeV in the figure was at p ¼ 1.12 GeV
in the original figure).
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genuine rescaling produced by the quark loops. In that case,
the same curve in the figure can be seen as the plot of the
one-loop dressing function in Eq. (28) with m ¼ 0.7 GeV
for Nf ¼ 2 (or larger) and with m ¼ 1.12 × 0.7 ¼
0.78 GeV for Nf ¼ 0. If we believe that a judicious choice
of m minimizes the effects of higher loops, then we
conclude that going from the quenched to the unquenched
theory, the optimal value of m decreases a little in order to
take into account the neglected quark loops. Thus, even
without the inclusion of new graphs, the one-loop calcu-
lation can feel the effect of quarks by a very small shift of
the mass parameter.
Having added no new graphs to the self-energy, the

analytic properties of the ghost propagator are the same of
pure Yang-Mills theory, as discussed in the previous
section.

B. Gluon propagator

At one loop, the gluon polarization of the full theory is
obtained from the result for pure Yang-Mills theory by just
adding the quark loops of Fig. 1.
The second-order uncrossed quark loop reads

Πμν
abðpÞ ¼ −δab

g2

2
Tr

Z
id4q
ð2πÞ4 γ

μSMðqÞγνSMðpþ qÞ:

ð32Þ

Dropping the color indices, this term is just g2=ð2e2Þ times
the ordinary electron loop of QED and can be evaluated
by dimensional regularization. Setting d ¼ 4 − ϵ, the result
is transverse and, summing over Nf quarks, it can be
written as

Πμν
abðpÞ ¼ δabtμνðpÞΠðpÞ ¼ δabtμνðpÞ½ΠϵðpÞ þ ΠfðpÞ�;

ð33Þ

where the diverging part reads

ΠϵðpÞ ¼ Nfαs
3π

p2

�
1

ϵ
þ log

μ

M

�
ð34Þ

and the finite part is

ΠfðpÞ ¼ Nfαs
3π

p2f0ð−p2=M2Þ ð35Þ

in terms of the adimensional function

f0ðsÞ ¼
�
s − 2

2s

�
LðsÞ − 2

s
ð36Þ

and of the logarithmic function

LðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4þ s
s

r
log

ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p
−

ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p : ð37Þ

In the definition of f0, Eq. (36), we dropped a scheme-
dependent additive constant that would depend on the
definition of the arbitrary scale μ in Eq. (34) and can be
absorbed by the finite part of the wave-function renorm-
alization constant. In the MS scheme, denoting by
δZ ¼ Z − 1 the one-loop contribution to a renormalization
constant, the divergence in the quark loop Πϵ is canceled
by a term

δZA ¼ −
Nfαs
3πϵ

¼ −
Nfg2

12π2
1

ϵ
ð38Þ

to be added to ZA in Eq. (24). As a check we observe that in
the Landau gauge the ghost-gluon vertex is regular [70] and
the renormalization constant Zg of the coupling can be
extracted from the wave-function renormalization of the
two-point functions, yielding by Eq. (24) and Eq. (38) for
N ¼ 3

δZg ¼
1

2
½δZA þ 2δZω� ¼

g2

16π2
1

ϵ

�
11 −

2Nf

3

�
; ð39Þ

which is the well-known standard result for QCD.
Adding the crossed quark loop in Fig. 1, the sum of all

quark loops follows by Eq. (21) for n ¼ 1:

Πtot ¼
�
1 −M

∂
∂M

�
Π: ð40Þ

As before we can write Πtot ¼ Πϵ
tot þ Πf

tot, where the
diverging part Πϵ

tot ¼ Πϵ does not change and is still given
by Eq. (34) because the term 1=ϵ does not depend on M.
Thus, the divergence is canceled by the same standard
wave-function renormalization constant δZA of Eq. (38).
Then, Eq. (39) still holds and the expansion has the same
behavior as the standard perturbative expansion in the UV.
The finite part follows by a simple derivative and can be

written as

Πf
tot ¼

Nfαs
3π

p2fð−p2=M2Þ ð41Þ

in terms of the adimensional function

fðsÞ ¼ f0ðsÞ þ 2s

�∂f0
∂s

�
ð42Þ

that has the explicit expression

fðsÞ ¼ 4

s
þ
�
s2 þ 2sþ 16

2sð4þ sÞ
�
LðsÞ; ð43Þ
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up to an irrelevant additive constant that is absorbed in the
finite wave-function renormalization.
In the limit s → 0 the function LðsÞ ≈ −2 − s=6 and

Πf
tot ≈ p2ðNfαsÞ=ð18πÞ → 0 so that the quark loop does

not contribute to the gluon mass. On the same footing, we
see that the photon does not acquire any mass term from the
fermions and since there are no photon loops in QED, the
massive expansion does not give any mass to the photon.
As for pure Yang-Mills theory, the gluon dressing

function is still given by Eq. (28) provided that a quark
correction ΔFðsÞ is added to the function FðsÞ,

ΔFðsÞ ¼ 4Nf

9N
fðm2s=M2Þ; ð44Þ

where N ¼ 3 for QCD.
According to our strategy, the expansion has to be

optimized by a comparison with the data of lattice simu-
lations in the Euclidean space. First of all, let us explore
the scaling properties of the inverse dressing function J−1

that arise from Eq. (28) when modified by Eq. (44), now
including the quark loops. The inverse gluon dressing
function is shown in Fig. 7 together with the result found
for pure Yang-Mills theory (ΔF ¼ 0) in Refs. [46,47]. The
pronounced minimum is useful for pinpointing the energy
scale by a comparison with other data.
We expect that, up to an additive constant and an

irrelevant renormalization factor, Eq. (28) should be quite
general and predict a scaling behavior satisfied by all data
of lattice simulations, even in the presence of small bare
masses for the quarks. The effect of small bare masses is
negligible compared with the large dynamical masses in the
infrared, so that no dramatic difference is expected between
chiral and light quarks. On the other hand, the effects of
heavy quarks are going to be suppressed in the quark loops.
Thus, having no lattice data for the gluon propagator in the
chiral limit, we are comparing Eq. (44) with the simulations
of Ref. [5] for the case of two light quarks.
In Fig. 7, the data points are extracted from Fig. 1 of

Ref. [5] and rescaled by different renormalization factors
and additive constants. In more detail, the data for Nf ¼ 2
(two light quarks) have been divided by 0.18, while the
data for Nf ¼ 2þ 1þ 1 (two light quarks and two heavy
quarks) are divided by 0.24 and increased by adding the
constant 0.45, which is equivalent to a different choice for
the constant F0 in Eq. (28). It is remarkable that the data
collapse on the curve predicted by Eqs. (28), (44) with
Nf ¼ 2 (two chiral quarks) and m ¼ 0.8 GeV. The plot is
not very sensitive to the choice of the mass M and a slight
change of M is compensated by a minor change of the
constant F0 in Eq. (28). In Fig. 7 we are using F0 ¼ −0.65
and the mass M ¼ 0.65 GeV that will turn out to be a
reasonable choice for describing the quark propagator in
the next section. More than the massM, it is the number of
light quarks Nf that has an effect on the position of the

minimum in the figure. Compared to pure Yang-Mills
theory (Nf ¼ 0) we observe a 25% shift of the minimum
towards higher energies for Nf ¼ 2. No further shift is
observed for the inclusion of the heavier quarks
(Nf ¼ 2þ 1þ 1). We find that a 14% shift is given by
the extra termΔF in Eq. (44), coming from the quark loops,
while the residual 10% shift in Fig. 7 is obtained by
increasing the mass scale up to m ¼ 0.8 GeV, compared to
the value m ¼ 0.73 GeV that was required for Nf ¼ 0.
Assuming that the agreement with the data means that
higher-loop corrections are negligible, we would extract an
optimal value m ¼ 0.8 GeV, while the best choice for the
other scale M remains almost undetermined because of the
small sensitivity to that mass. The slight increase of m,
going from Nf ¼ 0 to Nf ¼ 2, is in the opposite direction
of the small shift that was required for the best description
of the ghost dressing function in the previous section. That
is not surprising, as there is no reason why the effects of
higher loops should be minimal for all the propagators at
the same value of m. While that would be desirable, those
effects could have a different sign and require a compro-
mise. For future reference, as an average choice, we could
just leave m unchanged and take the value m ¼ 0.73 GeV
that was optimal forNf ¼ 0. As shown by the dotted line in
Fig. 7 the agreement with the data is still acceptable (as it is
for the ghost dressing function).
The real part of the gluon propagator is shown in Fig. 8

for s ¼ −p2=m2 − iε. While rather insensitive to the choice
of M in the Euclidean space, the shape of the propagator
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FIG. 7. The inverse gluon dressing function 1=JðsÞ ¼
FðsÞ þ ΔFðsÞ þ F0, as arising from Eqs. (28), (44), is plotted
as a function of the Euclidean momentum p2

E ¼ sm2 for Nf ¼ 2,
m ¼ 0.8 GeV, M ¼ 0.65 GeV (optimal set, solid line); for
Nf ¼ 2, m ¼ 0.73 GeV, M ¼ 0.65 GeV (suboptimal, dotted
line); and for Nf ¼ 0, m ¼ 0.73 GeV (pure Yang-Mills,
ΔF ¼ 0, dashed line). The constant F0 is −0.65 for Nf ¼ 2

and −1.05 for Nf ¼ 0 [47]. The circles are lattice data extracted
from Fig. 1 of Ref. [5] and scaled as described in the text. The
triangles are lattice data extracted from Fig. 2 of Ref. [2].
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depends on M when plotted as a function of the timelike
momentum p2 > 0. The data points in the figure are the
same lattice data of Ref. [5] for Nf ¼ 2 that were already
used in Fig. 7. We observe the presence of a positive peak at
p2 ≈m2 and a negative peak just before the two-particle
threshold p2 ≈ ð2MÞ2, where the real part of the propagator
changes sign and becomes positive (see also the details in
Fig. 10). When M decreases, the negative peak comes
closer to the positive one and they merge eventually, when
2M ≈m. Below that point, forM < 0.5 GeV they give rise
to a sharp peak. That peak cannot be physical, because its
spectral weight is negative, as shown in Fig. 9 where the

imaginary part of the propagator is displayed. It defines a
spectral density according to Eq. (29) and its positivity
violation is what we expected for a confined degree of
freedom. At variance with pure Yang-Mills theory, we
observe the presence of a two-particle threshold at p2 ≈
ð2MÞ2 where the spectral function turns positive for a while.
Some details of the spectral function are shown in Fig. 10 for
the optimal setm ¼ 0.8 GeV,M ¼ 0.65 GeVofFig. 7, to be
compared to Fig. 4 for pure Yang-Mills theory.
Besides being more rich on the real positive axis p2 > 0,

forNf ¼ 2 the unquenched gluon propagator hasmore poles
in the complex plane. For the optimal set m ¼ 0.8 GeV,
M ¼ 0.65 GeV. We find two pairs of conjugated poles at
p2 ≈ ð1.69;�0.1Þ GeV2 and p2 ≈ ð0.54;�0.52Þ GeV2.
Changing the mass M, the first pair, closer to the real axis,
moves according to Rep2 ≈ ð2MÞ2, while the second pair
stays close to Rep2 ≈m2.

C. Quark propagator

At one loop and third order, the quark self-energy Σq is
given by the tree term δΓq ¼ −M and three one-loop
graphs, as shown in Fig. 1. The sum of the one-loop
graphs follows from Eq. (21),

ΣðpÞ ¼
�
1 −m2

∂
∂m2

−M
∂
∂M

�
Σð1ÞðpÞ; ð45Þ

where Σð1ÞðpÞ is the standard (uncrossed) one-loop graph
and the derivatives give the crossed graphs. On general
grounds, we can write all self-energy graphs in terms of
Lorentz scalar functions

Σð1ÞðpÞ ¼ Σð1Þ
M ðpÞ þ pΣð1Þ

p ðpÞ
ΣðpÞ ¼ ΣMðpÞ þ pΣpðpÞ: ð46Þ
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FIG. 8. The real part of the gluon propagator is evaluated by
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propagator is normalized by its finite value at p2 ¼ 0.
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In the dressed quark propagator SðpÞ, the mass M is
canceled by the tree term δΓq ¼ −M, yielding by Eq. (17)

SðpÞ−1 ¼ SMðpÞ−1 − δΓq − ΣðpÞ ¼ p − ΣðpÞ: ð47Þ

By insertion of Eq. (46), the dressed quark propagator
reads

SðpÞ ¼ Zq

p½1 − ΣpðpÞ� − ΣMðpÞ
; ð48Þ

where Zq is a finite wave-function renormalization
constant. At one loop, we can set

Zq ¼ 1þ δZq ≈
1

1 − δZq
ð49Þ

and defining a subtraction point μ according to

δZq ¼ −ΣpðμÞ; ð50Þ

we can write

SðpÞ−1 ¼ p½1 − ðΣpðpÞ − ΣpðμÞÞ� − ΣMðpÞ: ð51Þ

On the other hand, by the usual parametrization in terms of
the scalar functions ZðpÞ, MðpÞ, the dressed propagator
reads

SðpÞ ¼ ZðpÞ
p −MðpÞ ð52Þ

and by comparison with Eq. (51) we can write

ZðpÞ−1 ¼ 1 − ½ΣpðpÞ − ΣpðμÞ� þOðα2sÞ

MðpÞ ¼ ΣMðpÞ
½1 − ðΣpðpÞ − ΣpðμÞÞ�

þOðα2sÞ: ð53Þ

We observe that, being the ratio of the two scalar functions,
the exact mass function MðpÞ does not depend on the
choice of the renormalization constant. Thus, a slight
dependence on the subtraction point μ would be a natural
consequence of the one-loop approximation. We anticipate
that, at one loop, the function ΣpðpÞ is almost constant in
the UV; then MðpÞ in Eq. (53) does not depend on the
subtraction point provided that we take μ large enough. We
will safely take μ → ∞ so that SðpÞ−1 → p in the UV.
By its definition in Eq. (52), the exact scalar function

ZðpÞ depends on the wave-function renormalization.
According to Eq. (53), the subtraction point μ is defined
by ZðμÞ ¼ 1.
Some details on the calculation of the explicit functions

ΣM, Σp are given in the Appendix. The standard uncrossed
one-loop graph, the first in Fig. 1, can be evaluated

analytically by dimensional regularization and the resulting

scalar functions Σð1Þ
M , Σð1Þ

p are reported in Appendix B. At
variance with the standard perturbative expansion, a mass is
included in the gluon propagator Δm inside the loop,
according to Eq. (17). The results coincide with that
reported by other authors [39].
The function Σð1Þ

p ðpÞ is finite and vanishes in the limit
m → 0. Even form ≠ 0, the standard one-loop contribution
to ZðpÞ is very small and shows a wrong decreasing
behavior as a function of the Euclidean momentum
s ¼ −p2=m2 in comparison with the lattice data. That
behavior was shown to be a consequence of two-loop
corrections [39] that are not negligible because of the very
tiny one-loop contribution.
Including all the crossed graphs in Fig. 1, the full scalar

function ΣpðpÞ is given by Eq. (45):

ΣpðpÞ ¼
�
1 −m2

∂
∂m2

−M
∂
∂M

�
Σð1Þ
p ðpÞ: ð54Þ

The result is not very illuminating and the explicit
analytical expression is derived in Appendix C.
As shown in Eq. (B33), the other scalar (uncrossed)

one-loop function Σð1Þ
M has a diverging part,

Σð1Þ
M ∼

αs
π
M

�
2

ϵ
þ log

μ2

m2

�
; ð55Þ

that usually requires a mass counterterm for its cancella-
tion. In the chiral limit, we have no mass counterterm for
the quarks. However, the divergence is canceled by the
crossed loops in the total self-energy according to Eq. (45):

ΣMðpÞ ¼
�
1 −m2

∂
∂m2

−M
∂
∂M

�
Σð1Þ
M ðpÞ: ð56Þ

Inserting Eq. (55) into Eq. (56) we see that the diverging
part cancels exactly, yielding a finite function ΣMðpÞ
without the need for any mass counterterm that would
spoil the chiral symmetry of the original Lagrangian. The
explicit analytical result is derived in Appendix C and can
be written in terms of functions of the Euclidean momen-
tum s ¼ −p2=m2 and the squared mass x ¼ M2=m2,

ΣMðpÞ ¼
�
αs
π

�
MσMðx; sÞ

ΣpðpÞ ¼
�
αs
3π

�
σpðx; sÞ; ð57Þ

where the adimensional functions σp, σM include all the
loops in Fig. 1, are finite, and do not depend on any
parameter. Their explicit expressions are given in
Eqs. (C10), where the zero of σp is set by σpðx;∞Þ ¼ 0.
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Their plot is shown in Figs. 11 and 12 for a few values of
the mass ratio x.
In terms of these functions, taking μ → ∞, Eq. (53) can

be recast as

ZðpÞ ¼ σ0
σ0 − σpðx; sÞ

MðpÞ ¼ 3M

�
σMðx; sÞ

σ0 − σpðx; sÞ
�
; ð58Þ

where the inverse coupling σ0 ¼ 3π=αs is the only param-
eter besides the mass scalesm,M. Even if the functions σp,
σM are of the same order, the effect of σp on the function
ZðpÞ is very small, giving a flat, almost constant decreas-
ing function, as shown in Fig. 13. Thus the mass function

MðpÞ is not sensitive to the subtraction point and is
basically determined by the function σM. As discussed
in Ref. [39], the wrong decreasing behavior of ZðpÞ ≈ 1,
when compared with the outcome of lattice simulations [8],
means that the effect of two-loop corrections might over-
come the tiny effect of one-loop terms on the normalization
of the propagator.
At variance with gluon and ghost propagators, that have

no explicit dependence on the coupling because of their
multiplicative renormalization, the mass function MðpÞ
does not depend on the normalization of the quark
propagator and has an explicit dependence on the strong
coupling αs in Eq. (58). Here is where the limits of a fixed-
coupling expansion emerge, since a running of the coupling
is mandatory for connecting the low-energy phenomenol-
ogy with the high-energy values of the coupling. Thus it is
remarkable that, by using reasonable values for the cou-
pling below 1 GeV, αs ≈ 0.5–1.0 [2,3], the chiral
Lagrangian develops a dynamical mass for the quarks,
with the correct qualitative behavior and magnitude of the
constituent-quark masses. We stress once more that the
quark mass does not arise trivially by the insertion of a
mass in the undressed propagator, since that mass is
canceled at tree level in Eq. (47). Thus the mass arises
from the loops. While an overall energy scale can only be
fixed by the phenomenology, the ratio M=m can be
regarded as a variational parameter: something the exact
theory should not depend on, to be fixed by some
optimization strategy. In this paper we pursue the strategy
of optimizing the mass scales by a comparison with the
lattice data, in order to predict the behavior of the
propagators in Minkowski space by analytic continuation.
The data of lattice simulations seems to favor a ratio M=m
not too far from one, which suggests a link between the
dynamical generation of the gluon mass and the dynamical
breaking of the chiral symmetry.
Themass functionMðpÞ of Eq. (58) is displayed in Fig. 14

as a function of the Euclidean momentum for several values
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of the coupling. For each coupling, the mass parameter M
has been fixed by requiring that Mð0Þ ≈ 0.32 GeV, which
is the extrapolated value of the data of lattice simulations for
unquenched chiral quarks [8]. The same lattice data of
Ref. [8] are shown in the figure for comparison. The energy
scale is fixed by taking m ¼ 0.7 GeV as suggested by the
study of ghost and gluon propagators. We could force the
curve on the data by pushing the coupling towards unrea-
sonable large values since the agreement increases in Fig. 14,
going from αs ¼ 0.6 (M ¼ 0.94) to αs ¼ 1.8 (M ¼ 0.318).
That is probably a consequence of the decreasing of themass
parameter M. Actually, in the curves of Fig. 14 the mass
function rises at an energy scale that is too large compared

with the lattice data. In fact, a better agreement canbe reached
by a change of the overall scale, as suggested by Fig. 15,
where the mass function MðpÞ is plotted for decreasing
values of m while keeping αs fixed at a reasonable value
αs ¼ 0.9 (M ¼ 0.57–0.65). However, a scalem smaller than
0.2 GeV would be in strong disagreement with the scale that
emerges from the study of gluon and ghost propagators. The
inverse dressing function of the gluon, with its minimum,
pinpoints the scale m at the value m ¼ 0.73 GeV for pure
Yang-Mills SU(3) [47]. Including quarks, a slight increase at
m ≈ 0.8 was found in Sec. IV B while a slight decrease
towards m ≈ 0.6 was suggested by the ghost dressing
function in Sec. IVA. Thus an average m ≈ 0.7 GeV seems
to be a reasonable choice.On the other hand, a 25% reduction
of the effective coupling was reported going from the
quenched to the unquenched quark simulation [3], so that
a reasonable choice for the coupling seems to be αs ≈ 0.9 in
the IR and we are left with the solid line in Figs. 14 and 15
(m ¼ 0.7 GeV, M ¼ 0.65 GeV, αs ¼ 0.9).
Quite interestingly, there is an other way to move the

curve towards the data without forcing the parameters. In
Fig. 16 the mass function MðpÞ is reported without
changing the mass scales that are fixed at m ¼ 0.7 GeV,
M ¼ 0.65 GeV, but reducing the coupling αs when the
energy increases, thus simulating the effect of a running
coupling. The piecewise constant running coupling in
Fig. 16 goes from a large value αs ¼ 0.9 in the IR, down
to αs ¼ 0.3 at pE ≈ 2 GeV, in good agreement with the
behavior of the effective coupling of lattice simulations
[2,3]. While it is quite obvious that a change of the coupling
is not justified in the present fixed-coupling expansion, the
qualitative picture of Fig. 16 enforces the idea that a
consistent RG improvement of the massive expansion
would be mandatory for a quantitative agreement with
the lattice data at energies larger then the mass scalesm,M.
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A full RG running of masses and couplings was discussed
in Ref. [39] for a massive phenomenological model, with
bare quark and gluon masses that were added to the
Lagrangian. The results are in qualitative agreement with
the present work in the IR, but no quantitative comparison
can be made because of the different Lagrangians. In the
framework of optimized perturbation theory a RG
improved expansion has been discussed in Ref. [55] for
the chiral quark condensate. That work could provide the
natural framework for an extension of the present method.
The analytic functions σp, σm in Eq. (C10) can be easily

continued to Minkowski space. The quark propagator can
be written as

SðpÞ ¼ Spðp2Þpþ SMðp2Þ; ð59Þ

where the scalar functions Sp, SM follow from Eqs. (52),
(58),

SMðp2Þ ¼ ZðpÞMðpÞ
p2 −MðpÞ2 ¼

3Mσ0σM
p2ðσ0 − σpÞ2 − 9M2σ2M

Spðp2Þ ¼ ZðpÞ
p2 −MðpÞ2 ¼

σ0ðσ0 − σpÞ
p2ðσ0 − σpÞ2 − 9M2σ2M

; ð60Þ

and here the functions σpðx; sÞ, σMðx; sÞ are evaluated at
s ¼ −p2=m2 − iε. The imaginary parts have a cut on the
real positive axis p2 > 0, where we can define two spectral
densities,

ρMðp2Þ ¼ −
1

π
ImSMðp2Þ

ρpðp2Þ ¼ −
1

π
ImSpðp2Þ; ð61Þ

so that the propagator reads

SðpÞ ¼
Z

∞

0

dq2
ρpðq2Þpþ ρMðq2Þ

p2 − q2 þ iε
: ð62Þ

For a physical state, the Källén-Lehmann spectral densities
contain important physical information on the masses
and on the thresholds of the multiparticle spectrum.
Any observable fermion must satisfy the positivity
conditions [71]

ρpðp2Þ ≥ 0 ð63Þ

p ρpðp2Þ − ρMðp2Þ ≥ 0 ð64Þ

and the normalization condition

1 ¼ Z0 þ
Z

∞

q2
0

dq2ρpðq2Þ; ð65Þ

where q20 is the continuum threshold and Z0 is the weight of
the discrete one-particle state, with 0 ≤ Z0 ≤ 1. Moreover
the function pρp − ρM must have a support only on the
continuum states and the discrete one-particle term must
cancel in the difference.
The real parts of the functions Sp, SM and the spectral

functions ρp, ρM are displayed in Figs. 17, 18, 19 for m ¼
0.7 GeV and αs ¼ 1.2, 0.9, 0.6, respectively. The spectral
functions are shown in more detail in Fig. 20 for αs ¼ 0.9,
M ¼ 0.65 GeV. We recognize a discrete term in the
spectral functions at p ¼ Mð0Þ ≈ 0.32 GeV, which arises
from the pole of the propagator. The finite width of the peak
is just a measure of the finite value of ε in the numerical
plot. Thus, a genuine discrete one-particle term ρp; ρM ∼
Z0δðp2 −Mð0Þ2Þ is predicted by the exact calculation
[Mð0Þ2 ≈ ð0.32Þ2 ≈ 0.1 GeV2 in Fig. 20]. By a comparison
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of the plots we can identify two different thresholds. A first
threshold q21 ≈M2 at the onset of a negative continuum
spectral density [q21 ≈ ð0.65Þ2 ≈ 0.42 GeV2 in Fig. 20]. A
second threshold q22 ≈ ðM þmÞ2, where the spectral den-
sity turns positive [q22 ≈ ð1.35Þ2 ≈ 1.82 GeV2 in Fig. 20].
While this second threshold can be identified with the usual
two-particle threshold and the high-energy states have a
positive spectral density above q2 ≈ ðmþMÞ, the negative
spectral density above q1 ≈M has no obvious physical
meaning. It violates the positivity condition (63) and cannot
be related to any kind of free-particle behavior. Thus the
quark propagator can only describe confined particles.
Moreover, if we look at the plot of the spectral function

½p ρpðp2Þ − ρMðp2Þ� in Fig. 21, we observe that the
discrete term cancels in the difference and the spectral

function has a support only on the continuum states, above
q1 ≈M, as predicted by general arguments [71]. But the
positivity condition of Eq. (64) is strongly violated for
q21 < p2 < q22. No complex poles are observed for the
quark propagator and the analytic properties seem to be in
agreement with the qualitative predictions of Ref. [72].

V. DISCUSSION

Let us summarize the main findings of the paper. The
massive expansion that was developed for pure Yang-Mills
theory in Refs. [46,47] has been extended to full QCD.
While based on a perturbative expansion, the method has a
variational nature, with mass ratios and subtraction points
that can be optimized in order to minimize the effects of
higher loops. The method allows a unified description of
the dynamical breaking of chiral symmetry together with
the dynamical gluon mass generation, from first principles
and without adding any spurious terms to the original
Lagrangian. All mass divergences cancel exactly without
the need for including other mass counterterms that would
spoil the gauge and chiral symmetry of the theory. A finite
result is achieved by the same wave-function renormaliza-
tion constants of the standard perturbation theory, thus
ensuring that the correct behavior is predicted in the UV.
It is important to observe that the mass does not arise as a

trivial and direct consequence of using the massive propa-
gators as an expansion point. In fact, that mass cancels at
tree level because of the counterterms that leave the
Lagrangian unmodified. The mass emerges from the loops
and is a genuine effect of the interactions. For instance, it
has been shown that no mass would emerge by the same
method for the photon in QED.
The expansion is optimized by a comparison with the

data of lattice simulations in the Euclidean space, where
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an impressive agreement is reached for the ghost and
gluon sectors at one loop [48]. Some general universal
scaling properties that where predicted for the dressing
functions of pure Yang-Mills theory [46–48] are extended
to full QCD, where they are shown to be satisfied by the
lattice data.
The limits of a fixed-coupling expansion emerge above

2 GeV and even below in the quark sector. The problem
could be cured by RG methods that become mandatory for
a direct link between the IR and the known phenomenology
in the UV [39,55]. Nevertheless, at a fixed coupling, a
quark mass function emerges that is in good qualitative
agreement with the chiral limit of the lattice simulations.
At one loop, explicit analytical functions are derived for

the propagators. By a direct comparison with the lattice
data, the expansion is optimized in the Euclidean space
yielding accurate analytic propagators that can be easily
continued to Minkowski space. Thus the method provides a
powerful tool for the study of dynamical properties and
spectral functions that can be hardly extracted from any
numerical data set. From this point of view, the massive
expansion is very predictive and gives a direct proof of
positivity violation and confinement for all the particles
involved.
In the gluon sector, the spectral function has no discrete

terms or real poles, in general agreement with previous
numerical approaches [34]. Moreover, complex conjugated
poles are found, in quantitative agreement with a fit [68] by
the refined version [42–44] of the Gribov-Zwanziger model
[45]. The i-particle scenario [36] is confirmed and extended
to full QCD, where two pairs of conjugated complex poles
are found in the gluon propagator. That prediction is quite
relevant since no complex poles were found by the
numerical calculation of Ref. [33].
A discrete one-particle term is found in the spectral

function of the quark propagator at p ≈Mð0Þ ≈ 0.32 GeV.
The propagator has no complex poles but positivity is
badly violated below the two-particle threshold. While no
direct dynamical content can be given to the gluon mass
and to the mass parameters, the discrete one-particle term
can be identified as the (confined) physical mass of the
constituent quarks. On the other hand, the mass param-
eters m, M are strongly related to the thresholds of the
spectral functions and determine their rich behavior that
is observed in Minkowski space. Thus, more than free-
particle masses they have the physical meaning of thresh-
old parameters.
Overall, while providing a powerful analytical tool and

shading some light on the analytic properties of the
propagators, the method can be improved in many ways.
Among the many aspects that have not been addressed so
far we mention a consistent use of RG equations [39,55], a
variational estimate of the mass ratios by the effective
potential (or by minimal sensitivity of physical observables
[49–51]), and a formal extension to higher loops. The study

of other covariant gauges [73] would not be straightforward
or entirely analytical, but it would be very useful for
addressing problems like the gauge dependence of the
propagators or the role played by the Abelian dominance in
the maximally Abelian gauge [74]. Finally, while predict-
ing complex poles for the gluon propagator, the present
approach ignores the problem of Gribov copies. Thus, it
would be of some interest to explore effective models, like
the Gribov-Zwanziger action, by the same optimized
expansion.

APPENDIX A: EXPLICIT FUNCTIONS F AND G

The functions FðxÞ and GðxÞ in Eq. (26) were derived in
Refs. [46,47] by the sum of polarization and self-energy
graphs for pure Yang-Mills theory up to one loop and third
order. The result is

FðxÞ ¼ 1

x
þ 1

72
½La þ Lb þ Lc þ Ra þ Rb þ Rc�

GðxÞ ¼ 1

12
½Lg þ Rg�; ðA1Þ

where the logarithmic functions Lx are

LaðxÞ ¼
�
3x3 − 34x2 − 28x − 24

x

�

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
log

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ logð1þ xÞ

LcðxÞ ¼ ð2 − 3x2Þ logðxÞ

LgðxÞ ¼
ð1þ xÞ2ð2x − 1Þ

x2
logð1þ xÞ − 2x logðxÞ ðA2Þ

and the rational parts Rx are

RaðxÞ ¼ −
4þ x
x

ðx2 − 20xþ 12Þ

RbðxÞ ¼
2ð1þ xÞ2

x2
ðx2 − 10xþ 1Þ

RcðxÞ ¼
2

x2
þ 2 − x2

RgðxÞ ¼
1

x
þ 2: ðA3Þ

APPENDIX B: STANDARD ONE-LOOP
SELF-ENERGY

The standard (uncrossed) one-loop quark self-energy
arises from the first self-energy graph in Fig. 1. It is the
usual fermionic self-energy in Landau gauge, but a mass is
included in the gluon propagator Δm inside the loop,
according to Eq. (17):
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Σð1ÞðpÞ ¼ Cfg2
Z

id4k
ð2πÞ4

�
γμtμνðkÞðpþ kþMÞγν

½−k2 þm2�½ðpþ kÞ2 −M2�
�
:

ðB1Þ
By some algebra of gamma matrices and switching to
Euclidean space, using p ¼ ipE and fγμE; γνEg ¼ 2δμν,

Σð1ÞðpÞ ¼ Cfg2
Z

d4kE
ð2πÞ4

� ipE − 3M þ ikE½3þ 2ðpE·kEÞ
k2E

�
½k2E þm2�½−ðpE þ kEÞ2 −M2�

�
;

ðB2Þ
and the self-energy can be written as

Σð1ÞðpÞ ¼ Cfg2

16π2

�
ð3M − ipEÞI1ðpÞ − 3iγμEI

μ
2ðpÞ

þ 2iγμEp
ν
E

m2
½Iμν3 ðp;mÞ − Iμν3 ðp; 0Þ�

�
; ðB3Þ

where the integrals I1, I
μ
2, I

μν
3 can be written in terms of

Passarino-Veltman functions,

I1ðpÞ ¼ B0ðp;m;MÞ

¼ ð16π2Þ
Z

ddkE
ð2πÞd

1

½k2E þm2�½ðpE þ kEÞ2 þM2�
ðB4Þ

Iμ2ðpÞ ¼ pμ
EB1ðp;m;MÞ

¼ ð16π2Þ
Z

ddkE
ð2πÞd

kμE
½k2E þm2�½ðpE þ kEÞ2 þM2�

ðB5Þ

Iμν3 ðp;mÞ ¼ pμ
Ep

ν
EB21ðp;m;MÞ þ δμνB22ðp;m;MÞ

¼ ð16π2Þ
Z

ddkE
ð2πÞd

kμEk
ν
E

½k2E þm2�½ðpE þ kEÞ2 þM2� ;

ðB6Þ

and can be evaluated by dimensional regularization, setting
d ¼ 4 − ϵ. In units of m, denoting by s ¼ p2

E=m
2 the

Euclidean momentum and by x ¼ M2=m2 the squared
quark mass, the finite parts read

Bf
0ðx; sÞ ¼ 2þ t

s
logR −

tþ s − xþ 1

2s
log x ðB7Þ

Bf
1ðx; sÞ ¼ −1þ 1 − y2−

2
log x −

x − 1

2s
−
t w
2s2

logR ðB8Þ

Bf
21ðx; sÞ ¼

7

18
þ y3− − 1

3
log xþ x − 1

6s
þ w2 þ 2s

3s2

þ tðw2 þ sÞ
3s3

logR ðB9Þ

Bf
22ðx; sÞ ¼ −

m2

2
½Bf

0ðx; sÞ − ðsþ x − 1ÞBf
1ðx; sÞ

− sBf
21ðx; sÞ�; ðB10Þ

where

w ¼ sþ x − 1;

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 4s

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ xÞ2 þ 2ðs − xÞ þ 1

q
; ðB11Þ

and

y� ¼ w� t
2s

¼ �tþ sþ x − 1

2s
ðB12Þ

are the positive and negative solutions of the equation

−sy2 þ wyþ 1 ¼ sðy − y−Þðyþ − yÞ ¼ 0: ðB13Þ

By setting y ¼ 1, they are easily shown to satisfy the
identities

ð1 − y−Þðyþ − 1Þ ¼ x
s
; y−yþ ¼ −

1

s
; ðB14Þ

so that the positive ratio R can be defined as

R ¼ ðyþ − 1Þ
yþ

¼ −xy−
1 − y−

ðB15Þ

and we can write it explicitly as

R ¼ t − sþ x − 1

tþ sþ x − 1
¼ x

t − s − xþ 1

tþ s − xþ 1
; ðB16Þ

yielding

log

�
Rffiffiffi
x

p
�
¼ 1

2
log

�ðt − sÞ2 − ðx − 1Þ2
ðtþ sÞ2 − ðx − 1Þ2

�
: ðB17Þ

The diverging parts are

Bϵ
0ðx; sÞ ¼

2

ϵ
þ log

μ2

m2
ðB18Þ

Bϵ
1ðx; sÞ ¼ −

1

2

�
2

ϵ
þ log

μ2

m2

�
ðB19Þ

Bϵ
21ðx; sÞ ¼

1

3

�
2

ϵ
þ log

μ2

m2

�
ðB20Þ

Bϵ
22ðx; sÞ ¼ −

m2

4

�
s
3
þ xþ 1

��
2

ϵ
þ log

μ2

m2
þ 1

�
: ðB21Þ

In Eq. (B3) we also need the subtracted functions
ΔBXðp;m;MÞ ¼ BXðp;m;MÞ − BXðp; 0;MÞ. In the limit

FABIO SIRINGO PHYSICAL REVIEW D 94, 114036 (2016)

114036-18



m → 0 the products m2t, m2w are finite and Eqs. (B11),
(B12), (B16) give

lim
m→0

ðm2tÞ ¼ lim
m→0

ðm2wÞ ¼ M2 þ p2
E

lim
m→0

R ¼ M2

M2 þ p2
E
¼ x

sþ x

lim
m→0

y− ¼ 0; ðB22Þ

so that, inserting an IR cutoffm0 → 0, the finite parts of the
subtracted functions read

ΔBf
0ðx; sÞ ¼

�
t
s
logR −

t − s − xþ 1

2s
log x

−
sþ x
s

log
x

xþ s

�
þ log

m2

m2
0

ðB23Þ

ΔBf
1ðx; sÞ ¼

�
1

2s
−
t w
2s2

logR −
y2−
2
log x

þ ðsþ xÞ2
2s2

log
x

xþ s

�
−
1

2
log

m2

m2
0

ðB24Þ

ΔBf
21ðx; sÞ ¼

�
y3−
3
log x −

1

6s
þ 1 − 2x

3s2
þ tðw2 þ sÞ

3s3
logR

−
ðsþ xÞ3
3s3

log
x

xþ s

�
þ 1

3
log

m2

m2
0

: ðB25Þ

When subtracted, the diverging part of the dimensionless
function B21 in Eq. (B20) is finite in the UVand cancels the
IR divergence of the finite part in Eq. (B25),

ΔBϵ
21ðx; sÞ ¼ −

1

3
log

m2

m2
0

; ðB26Þ

while the diverging part Bϵ
22 in Eq. (B21), which is of mass

dimension 2, gives the diverging term

ΔBϵ
22ðx; sÞ ¼ −

m2

4

��
2

ϵ
þ log

μ2

m2
þ 1

�

−
�
s
3
þ x

�
log

m2

m2
0

�
: ðB27Þ

The finite part in Eq. (B10), when subtracted, gives

ΔBf
22ðx; sÞ ¼ −

m2

2
½Bf

0ðx; sÞ þ Bf
1ðx; sÞ

− ðsþ xÞΔBf
1ðx; sÞ − sΔBf

21ðx; sÞ�: ðB28Þ

Inserting Eqs. (B24)–(B25), we observe that the IR
diverging terms in ΔBf

22 cancel the IR diverging term of

ΔBϵ
22 in Eq. (B27), so that no term depending on m0

survives and we can safely drop them everywhere.
Inserting these results into Eq. (B3), taking Cf ¼ 4=3,

and restoring p ¼ ipE, the one-loop self-energy can be
written as

Σð1ÞðpÞ ¼ Σð1Þ
M ðpÞ þ pΣð1Þ

p ðpÞ; ðB29Þ

where

Σð1Þ
M ðpÞ ¼

�
αs
π

�
MσMðx; sÞ; Σð1Þ

p ðpÞ ¼
�
αs
3π

�
σpðx; sÞ;

ðB30Þ

and the adimensional functions σM, σp read

σMðx; sÞ ¼ Bf
0ðx; sÞ þ Bϵ

0ðx; sÞ

σpðx; sÞ ¼ −Bf
0ðx; sÞ − 3Bf

1ðx; sÞ þ
2ΔBf

22ðx; sÞ
m2

þ 2sΔBf
21ðx; sÞ þ σϵp; ðB31Þ

where the constant term σϵp arises from the UV diverging
parts

σϵp ¼ −Bϵ
0 − 3Bϵ

1 þ
2

m2
ΔBϵ

22 ¼ −
1

2
ðB32Þ

and is finite so that the divergences cancel entirely in the

function Σð1Þ
p , which is finite. Summing up all terms we find

σMðx; sÞ ¼
�
t
s
logR −

tþ s − xþ 1

2s
log x

�

þ
�
2

ϵ
þ log

μ2

m2

�

σpðx; sÞ ¼ CR logRþ Cx log xþ Cxs log
x

xþ s
þ C0;

ðB33Þ

where the functions CR, Cx, Cxs, C0 read

CR ¼ t
2s2

½ðxþ sÞ2 þ ðx − sÞ − 2�

Cx ¼ −
1

2
CR þ 1

4s2
½ðxþ sÞ3 − 3ðx − sÞ þ 2�

Cxs ¼ −
ðxþ sÞ3
2s2

C0 ¼
x − 2

2s
−
1

2
: ðB34Þ

The explicit result coincides with that reported by other
authors [39] up to a scheme-dependent irrelevant additive
constant in the last term, which is usually absorbed by a
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finite wave-function renormalization. It can be checked
that σp becomes a constant in the limit m2 → 0, which is a
well-known result of the standard perturbative expansion.

APPENDIX C: CROSSED SELF-ENERGY
GRAPHS

The crossed one-loop graphs in Fig. 1 are obtained by
insertion of a counterterm in the gluon and quark lines.
The explicit expressions can be easily recovered by a
derivative according to the general Eq. (21).
The insertion of the gluon mass counterterm δΓg ¼ m2 in

the standard one-loop self-energy gives the first crossed
self-energy graph in Fig. 1:

ΣgðpÞ ¼ −m2
∂

∂m2
Σð1ÞðpÞ: ðC1Þ

The second crossed self-energy graph in Fig. 1 is obtained
by insertion of the quark mass counterterm δΓq ¼ −M:

ΣqðpÞ ¼ −M
∂
∂M Σð1ÞðpÞ: ðC2Þ

With the notation of Appendix B, the sum of all three one-
loop graphs in Fig. 1 gives

ΣðpÞ ¼ Σð1ÞðpÞ þ ΣgðpÞ þ ΣqðpÞ

¼
�
αs
π

�
MσMðx; sÞ þ p

�
αs
3π

�
σpðx; sÞ; ðC3Þ

where

σMðx; sÞ ¼ σ1Mðx; sÞ þ σgMðx; sÞ þ σqMðx; sÞ
σpðx; sÞ ¼ σ1pðx; sÞ þ σgpðx; sÞ þ σqpðx; sÞ ðC4Þ

and σ1M, σ1p are the adimensional functions that were
recovered for the standard (uncrossed) one-loop graph in
Eq. (B33) of Appendix B. The insertion of the gluon
counterterm δΓg gives the crossed functions σgM, σ

g
p that by

Eq. (C1) can be written

σgMðx; sÞ ¼ 1þ
�
s
∂
∂sþ x

∂
∂x

�
σ1Mðx; sÞ

σgpðx; sÞ ¼
�
s
∂
∂sþ x

∂
∂x

�
σ1pðx; sÞ: ðC5Þ

The insertion of the quark counterterm δΓq gives the
crossed functions σqM, σ

q
p that by Eq. (C2) can be written

σqMðx; sÞ ¼
�
−1 − 2x

∂
∂x

�
σ1Mðx; sÞ

σqpðx; sÞ ¼ −2x
∂
∂x σ

1
pðx; sÞ: ðC6Þ

For future reference, let us first evaluate the sum of the
first two terms that would be useful for a theory without
quark counterterms (for instance, when the chiral symmetry
is broken by explicit bare mass terms in the Lagrangian).
Inserting Eq. (B33) into Eq. (C5), we find

σ1Mðx; sÞ þ σgMðx; sÞ

¼
�ðsþ xÞ2 þ ðs − xÞ

st
log

Rffiffiffi
x

p −
s − x
2s

log x

�

þ
�
2

ϵ
þ log

μ2

m2

�

σ1pðx; sÞ þ σgpðx; sÞ
¼ Cg

R logRþ Cg
x log xþ Cg

xs log
x

xþ s
þ Cg

0; ðC7Þ

where the new functions Cg
R, C

g
x, C

g
xs, C

g
0 read

Cg
R ¼ 1

s2t
½ðxþ sÞ4þ ðs− xÞðsþ xÞ2 þ 2sxþ ðs − xÞ þ 1�

Cg
x ¼ −

1

2
Cg
R þ 1

2s2
½ðxþ sÞ3 − 1�

Cg
xs ¼ −

ðxþ sÞ3
s2

Cg
0 ¼

1þ x
s

: ðC8Þ

The sum σ1M þ σgM is still divergent but the divergence can
be canceled by the bare mass of the quark, while only a
constant would be added to the last term by a finite wave-
function renormalization.
In the chiral limit there is no bare mass for the quark.

However, the divergence is canceled by the third crossed
graph. Adding up all three graphs, by Eqs. (C4), (C5), (C6),
we can write

σMðx; sÞ ¼ 1þ
�
s
∂
∂s − x

∂
∂x

�
σ1Mðx; sÞ

σgpðx; sÞ ¼
�
1þ s

∂
∂s − x

∂
∂x

�
σ1pðx; sÞ; ðC9Þ

and inserting Eq. (B33) we find the following explicit
expressions,

σMðx; sÞ ¼
�
1 − 2x
2s

log x −
sð2xþ 1Þ þ ð2x − 1Þðx − 1Þ

st

× log
Rffiffiffi
x

p
�

σpðx; sÞ ¼ Cgq
R logRþ Cgq

x log xþ Cgq
xs log

x
xþ s

þ Cgq
0 ;

ðC10Þ
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where the complete functions Cgq
R , Cgq

x , Cgq
xs , C

gq
0 read

Cgq
R ¼ 1

s2t
fðs − 2xÞ½ðxþ sÞ3 þ ðs2 − x2Þ�

þ ðs − xþ 1Þð1 − 3xÞ þ 2sxg

Cgq
x ¼ −

1

2
Cgq
R þ 1

2s2
½ðxþ sÞ2ðs − 2xÞ þ 3x − 1�

Cgq
xs ¼ ð2x − sÞðxþ sÞ2

s2

Cgq
0 ¼ 1 − 2x

s
þ 1: ðC11Þ

Here the additive constant in the last term has been set by
requiring that σp → 0 in the limit s → ∞. That is equivalent
to taking δZq ¼ 0 at the special subtraction point μ → ∞ in
Eq. (50). The total finite functions σM, σp in Eq. (C10) are

used in Eqs. (57), (58) of Sec. IV B. In the UV, for s → ∞,
the function σM tends to zero as log s=s according to the
asymptotic behavior

σMðx; sÞ ≈
1

s
½ð1þ 2xÞ log s − 2x log x�: ðC12Þ

In the IR, σM is a finite analytic function of s and its first-
order expansion is

σMðx; sÞ ≈
�ð2x − 1Þðx − 1Þ − x log x

ðx − 1Þ2
�

− s

�ð2x2 þ 5x − 1Þðx − 1Þ − 6x2 log x
2ðx − 1Þ4

�
:

ðC13Þ

It reaches a finite value at s ¼ 0 and decreases for
s > 0.
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