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We evaluate the electromagnetic spectral function and its spectral properties by computing the one-loop
photon polarization tensor involving quarks in the loop, particularly in a strong-field approximation
compared to the thermal scale. When the magnetic scale is higher than the thermal scale the lowest Landau
level (LLL) becomes an effectively (1þ 1)-dimensional strongly correlated system that provides a
kinematical threshold based on the quark mass scale. Beyond this threshold the photon strikes the LLL and
the spectral strength starts with a high value due to the dimensional reduction and then falls off with the
increase of the photon energy due to LLL dynamics in a strong-field approximation. We obtain analytically
the dilepton production rates from the LLL considering the lepton pair remains unaffected by the magnetic
field when produced at the edge of a hot magnetized medium or it is affected by the magnetic field if
produced inside a hot magnetized medium. For the latter case the production rate is of O½jeBj2� along with
an additional kinematical threshold due to the lepton mass. We also investigate the electromagnetic
screening by computing the Debye screening mass and it depends distinctively on three different scales
(mass of the quasiquark, temperature and the magnetic field strength) of a hot magnetized system. The mass
dependence of the Debye screening supports the occurrence of a magnetic catalysis effect in the strong-
field approximation.
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I. INTRODUCTION

Ongoing relativistic heavy-ion collisions provide enough
indications of the formation of the deconfined state of
hadronic matter called quark-gluon plasma (QGP) and the
nuclear matter under extreme conditions has been a subject
of scrutiny. Recent studies [1–5] have revealed a captivat-
ing nature of noncentral heavy-ion collisions (HICs). They
indicated that in such collisions, a very strong anisotropic
magnetic field is generated in the direction perpendicular to
the reaction plane, due to the relative motion of the ions
themselves. The initial magnitude of this magnetic field can
be very high (eB ≈m2

π at RHIC and eB ≈ 10m2
π at LHC) at

the time of the collision and then it decreases very fast,
being inversely proportional to the square of time [6,7].1

The presence of an external anisotropic field in the
medium subsequently requires a modification of the present
theoretical tools that can be applied appropriately to inves-
tigate various properties of QGP. Intense research activity is
underway to study the properties of strongly interacting
matter in the presence of an externalmagnetic field, resulting
in the emergence of several novel phenomena, e.g., the
chiral magnetic effect [11–13], finite-temperature magnetic

catalysis [14–16] and inverse magnetic catalysis [17–23],
chiral- and color-symmetry broken/restoration phases [24–
26], thermodynamic properties [27,28], refractive indices
and decay constants [29,30] of mesons in a hot magnetized
medium, soft photon production from the conformal
anomaly [31,32] in HICs, the modification of dispersion
properties in a magnetized hot QED medium [33], synchro-
tron radiation [8], and dilepton production from a hot
magnetized QCD plasma [8–10,34] and also in a strongly
coupled plasma in a strong magnetic field [35]. Also
experimental evidence of photon anisotropy, provided by
the PHENIX Collaboration [36], has posed a challenge for
existing theoretical models. Subsequently some theoretical
explanations are made by assuming the presence of a large
anisotropic magnetic field in heavy-ion collisions [31]. This
suggests that there is clearly an increasing demand to study
the effects of intense background magnetic fields on various
aspects and observables of noncentral heavy-ion collisions.
We know that the energy levels (orbitals) of a moving

charged particle in the presence of a magnetic field get
discretized, which are known as the Landau levels (LLs).
One fascinating prospect of having a very strong back-
ground magnetic field is that only the lowest Landau level
(LLL), whose energy is independent of the strength of the
magnetic field, remains active in that situation. That is why,
the LLL dynamics becomes solely important in the strong
magnetic field approximation and the higher-order contri-
butions, i.e., the radiative corrections play a significant role
in this context, as it is the only way to get the B dependence
in the LLL energy.
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1However for a different point of view, see Refs. [8–10], where

the time dependence of the magnetic field is shown to be
adiabatic due to the high conductivity of the medium.
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One of the primary ingredients of the theoretical tools for
studying various properties ofQGP is then-point correlation
function, which eventually determines the laws of propa-
gation and the thermodynamic potential. Among them the
electromagnetic correlation function is of particular interest
because it is related to various physical quantities associated
with the deconfined state of matter, such as the production
rate of real and virtual photons (and dilepton pairs there-
from), which leave the fireball with minimum interaction.
These electromagnetic probes are produced in every stage of
the HICs. The dilepton spectra is a space-time integrated
observable which has contributions coming from various
stages of the collisions. Even though the dilepton may carry
almost undistorted information about the stages in which
they are produced, it would be very difficult to disentangle
the contributions from different stages.
Processes like cyclotron emission which are usually

abandoned in vacuum become active in the presence of
an external magnetic field [37]. These processes affect
the photon propagation and thus the spectral function.
The spectral function or the spectral discontinuity of the
electromagnetic correlator is directly related to the pro-
duction rate of dileptons and photons. In vacuum, a full
description of the polarization tensor in the presence of an
external magnetic field has already been studied [38–41]. In
this article we, first, would like to obtain the spectral
representation of the electromagnetic correlation function
in the presence of a strong background magnetic field at
finite temperature. As a spectral property we then calculate
the dilepton rate which is of immense importance especially
in the scenario of noncentral heavy-ion collisions. At this
point we note that the dilepton production rate under
extreme magnetic fields has been addressed earlier by
Tuchin [8–10] in a more phenomenological way. In order to
estimate the dilepton production with logarithmic accuracy
[9,10], a semiclassical Weiszäcker-Williams method [42]
was employed to obtain the dilepton production rate by a
hard quark as a convolution of the real photon decay rate
with the flux of equivalent photons emitted by a fast quark.
In this calculation it was approximated that the virtuality of
photon has a negligible effect on photon emission and on
dilepton production. Recently, Sadooghi and Taghinavaz
[34] have analyzed in details the dilepton production rate
for a magnetized hot and dense medium in a formal field-
theoretic approach using the Ritus eigenfunction method
[43]. In this article we use such a formal field-theoretic
approach along with the Schwinger method [44] to obtain
the electromagnetic spectral function and the dilepton rate
in the strong-field approximation and compare our results
with those of Ref. [34]. In addition we also discuss another
interesting topic, namely the Debye screening, which could
reveal some of the intriguing properties of the medium in
the presence of a strong magnetic field.
The paper is organized as follows. In Sec. II we briefly

review the setup, within the Schwinger formalism [44],

required to compute the photon polarization tensor in the
presence of a very strong background magnetic field along
the z direction. In Sec. III we briefly discuss the vacuum
spectral function and then obtain the in-medium photon
polarization tensor and its spectral representation in the
strong-field approximation. In Sec. IV we discuss how the
dilepton rate for the LLL approximation would be modified
and calculate the analytic expression for the dilepton
production rate for various scenarios [9] in the strong
magnetic field approximation. We take a closer look at the
Debye screening in a strongly magnetized hot medium in
Sec. V before concluding in Sec. VI.

II. SETUP

In the presence of a constant magnetic field pointing
towards the z direction (~B ¼ Bẑ), we first describe the
charged fermion propagator. In coordinate space it can be
expressed [44] as

Smðx; x0Þ ¼ eΦðx;x0Þ
Z

d4k
ð2πÞ4 e

−ikðx−x0ÞSmðkÞ; ð1Þ

where Φðx; x0Þ is called the phase factor, which generally
drops out in gauge-invariant correlation functions and the
exact form of Φðx; x0Þ is not important in our problem. In
momentum space the Schwinger propagator SmðkÞ can be
written [44] as an integral over proper time s, i.e.,

iSmðkÞ ¼
Z

∞

0

ds exp

�
is

�
k2∥ −m2

f −
k2⊥
qfBs

tanðqfBsÞ
��

× ½ðk∥ þmfÞð1þ γ1γ2 tanðqfBsÞÞ
− k⊥ð1þ tan2ðqfBsÞÞ�: ð2Þ

Here, mf and qf are the mass2 and absolute charge of the
fermion of flavor f, respectively. The notation we have
used in Eq. (2) and are going to follow throughout is

aμ ¼ aμ∥ þ aμ⊥; aμ∥ ¼ ða0; 0; 0; a3Þ;
aμ⊥ ¼ ð0; a1; a2; 0Þ;
gμν ¼ gμν∥ þ gμν⊥ ; gμν∥ ¼ diagð1; 0; 0;−1Þ;
gμν⊥ ¼ diagð0;−1;−1; 0Þ;

ða · bÞ ¼ ða · bÞ∥ − ða · bÞ⊥; ða · bÞ∥ ¼ a0b0 − a3b3;

ða · bÞ⊥ ¼ ða1b1 þ a2b2Þ;

where ∥ and ⊥ are, respectively, the parallel and
perpendicular components, which are now separated out
in the momentum-space propagator. After performing the

2Even if there is a dynamical mass generation in the system,
one needs to make an appropriate modification. However, the
fermion mass is generically represented bymf in this calculation.
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proper time integration [45], the fermion propagator in
Eq. (2) can be represented as a sum over the discrete energy
spectrum of the fermion

iSmðkÞ ¼ ie
−

k2⊥
qfB

X∞
n¼0

ð−1ÞnDnðqfB; kÞ
k2∥ −m2

f − 2nqfB
; ð3Þ

with Landau levels n ¼ 0; 1; 2; � � � and

DnðqfB; kÞ ¼ ðk∥ þmfÞ
�
ð1 − iγ1γ2ÞLn

�
2k2⊥
qfB

�

− ð1þ iγ1γ2ÞLn−1

�
2k2⊥
qfB

��

− 4k⊥L1
n−1

�
2k2⊥
qfB

�
; ð4Þ

where Lα
nðxÞ is the generalized Laguerre polynomial

written as

ð1 − zÞ−ðαþ1Þ exp
�

xz
z − 1

�
¼

X∞
n¼0

Lα
nðxÞzn: ð5Þ

The energy level of charged fermions in the presence of a
magnetic field follows from the pole of the propagator in
Eq. (3) as

k2∥ −m2
f − 2nqfB ¼ k20 − k23 −m2

f − 2nqfB ¼ 0

⇒ En ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þm2

f þ 2nqfB
q

: ð6Þ

It is seen that the energy along the direction of the magnetic
field ð0; 0; BÞ is continuous but discretized along the
transverse direction of the field. These discretized energy
levels are so-called Landau levels, which are degenerate
for each value of k3. These Landau levels can affect the
quantum fluctuations of the charged fermions in the Dirac
sea at T ¼ 0 and thermal fluctuations at T ≠ 0, both of
which arise as a response to the polarization of the
electromagnetic field. These fluctuations are usually related
to the electromagnetic polarization tensor or the self-energy
of the photon, which at the one-loop level is expressed as

ΠμνðpÞ ¼ −i
X
f

q2f

Z
d4k
ð2πÞ4 Trc½γμSmðkÞγνSmðqÞ�; ð7Þ

wherep is the external momentum, and k and q ¼ k − p are
the loop momenta. Trc represents both color and Dirac
traces whereas the

P
f is over flavor because we have

considered a two-flavor system (Nf ¼ 2) of equal current
quark mass (mf ¼mu¼md ¼ 5MeV if not said otherwise).
The two point current-current correlatorCμνðpÞ is related

to the photon self-energy as

q2fCμνðpÞ ¼ ΠμνðpÞ; ð8Þ

with qf is the electric charge of a given quark flavor f. The
electromagnetic spectral representation is extracted from
the imaginary part of the correlation function Cμ

μðpÞ as

ρðpÞ ¼ 1

π
ImCμ

μðpÞ ¼ 1

π
ImΠμ

μðpÞ=q2f: ð9Þ

III. ELECTROMAGNETIC SPECTRAL FUNCTION
AND ITS PROPERTIES IN THE PRESENCE OF A

STRONG BACKGROUND MAGNETIC FIELD

In this section we will mainly investigate the nature of
the in-medium electromagnetic spectral function in the
presence of a very strong but constant magnetic field
strength (qfB ≫ T2), which could be relevant for initial
stages of noncentral heavy-ion collisions, as a high-inten-
sity magnetic field is believed to be produced there.
When the external magnetic field is very strong [46],

qfB → ∞, it pushes all the Landau levels (n ≥ 1) to infinity
compared to the LLL with n ¼ 0 (see Fig. 1). For the LLL
approximation in the strong-field limit the fermion propa-
gator in Eq. (3) reduces to a simplified form as

iSmsðkÞ ¼ ie−k
2⊥=qfB

k∥ þmf

k2∥ −m2
f

ð1 − iγ1γ2Þ; ð10Þ

where k is the four-momentum and we have used the
properties of the generalized Laguerre polynomial, Ln ≡
L0
n and Lα

−1 ¼ 0. One could also get to Eq. (10) directly
from Eq. (2) by putting qfB → ∞. The appearance of the
projection operator ð1 − iγ1γ2Þ in Eq. (10) indicates that the
spin of the fermions in the LLL are aligned along the field
direction [1,45]. As k2⊥ ≪ qfB, one can see from Eq. (10)
that an effective dimensional reduction from (3þ 1) to
(1þ 1) takes place in the strong-field limit. As a
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FIG. 1. Thresholds corresponding to a few Landau Levels are
displayed as a function of qfB=m2

f. This threshold plot is
obtained by solving ðω2 − 4m2

f − 8nqfBÞ ¼ 0 with zero photon
momentum following energy conservation in a background
magnetic field in general. Also the regime of the LLL in the
strong magnetic field approximation is shown by the shaded area.
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consequence the motion of the charged particle is restricted
in the direction perpendicular to the magnetic field but can
move along the field direction in the LLL. This effective
dimensional reduction also plays an important role in
catalyzing the spontaneous chiral symmetry breaking
[1,45] since the fermion pairing takes place in the LLL,
which enhances the generation of fermionic mass through
the chiral condensate in the strong-field limit at T ¼ 0. The
pairing dynamics is essentially (1þ 1) dimensional where
the fermion pairs fluctuate in the direction of the magnetic
field. It is also interesting to see how these fermionic pairs
respond to the electromagnetic fields. The fluctuation of
fermion pairs in the LLL as shown in Fig. 2 is a response to
the polarization of the electromagnetic field and would
reveal various properties of the system in the presence of a
magnetic field. Also the response to the electromagnetic
field at T ≠ 0 due to the thermal fluctuation of charged
fermion pairs in the LLL would also be very relevant for the
initial stages of noncentral heavy-ion collisions where the
intensity of the generated magnetic field is very high.
Now in the one-loop photon polarization in Fig. 2 the

effective fermionic propagator in the strong-field approxi-
mation is represented by a double line and the electromag-
netic vertex remains unchanged3 and is denoted by a crossed
circle. As mentioned earlier the spin of the fermions in the
LLL are aligned in the direction of the magnetic field
because of the projection operator in Eq. (10). In a QED-
like vertex with two fermions from the LLL the photon spin
is equal to zero in the field direction [45] and there is no
polarization in the transverse direction. Thus the longi-
tudinal components [i.e., (0,3) components] of the QED
vertex would only be relevant.

Now in the strong-field limit the self-energy in Eq. (7)
can be computed as

ΠμνðpÞjsfa ¼ −i
X
f

q2f

Z
d4k
ð2πÞ4 Trc½γμSmsðkÞγνSmsðqÞ�

¼ −iNc

X
f

q2f

Z
d2k⊥
ð2πÞ2 exp

�
−k2⊥ − q2⊥

qfB

�

×
Z

d2k∥
ð2πÞ2 Tr

�
γμ

k∥ þmf

k2∥ −m2
f

ð1 − iγ1γ2Þγν

×
q∥ þmf

q2∥ −m2
f

ð1 − iγ1γ2Þ
�
; ð11Þ

where “sfa” indicates the strong-field approximation and
Tr represents only the Dirac trace. Now one can notice that
the longitudinal and transverse parts are completely sep-
arated and the Gaussian integration over the transverse
momenta can be done trivially, which leads to

ΠμνðpÞjsfa ¼ −iNc

X
f

e−p
2⊥=2qfB

q3fB

π

×
Z

d2k∥
ð2πÞ2

Sμν
ðk2∥ −m2

fÞðq2∥ −m2
fÞ
; ð12Þ

where the tensor structure Sμν that originates from the Dirac
trace is

Sμν ¼ k∥μq
∥
ν þ q∥μk

∥
ν − g∥μνððk · qÞ∥ −m2

fÞ; ð13Þ
where the Lorentz indices μ and ν are restricted to
longitudinal values and are forbidden to take any transverse
values. In vacuum, Eq. (12) can be simplified using the
Feynman parametrization technique [46], after which the
structure of the photon polarization tensor can be written in
compact form as

ΠμνðpÞ ¼
�
p∥
μp

∥
ν

p2
∥

− g∥μν

�
Πðp2Þ;

which directly implies that due to the current conservation,
the two-point function is transverse. The scalar function
Πðp2Þ is given by,

Πðp2Þ¼Nc

X
f

q3fB

8π2m2
f

e−p
2⊥=2qfB

×

2
644m2

fþ
8m4

f

p2
∥

�
1−

4m2
f

p2
∥

�−1=2

ln

�
1−

4m2
f

p2
∥

�
1=2þ1�

1−
4m2

f

p2
∥

�
1=2

−1

3
75:

ð14Þ

We note that the lowest threshold (LT) for a photon to decay
into a fermion and antifermion is provided by the energy

FIG. 2. Photon polarization tensor in the limit of the strong-
field approximation.

3This is not very apparent from the momentum-space effective
propagator in Eq. (10) because of the presence of the projection
operator. In Ref. [47] the Ward-Takahashi identity in the LLL for
a fermion-antifermion-gauge boson in massless QED in the
presence of a constant magnetic field was shown to be satisfied
by considering the effective fermion propagator, the bare vertex
and the free gauge boson propagator in the ladder approximation
through the Dyson-Schwinger approach in a representation where
the fermion mass operator is diagonal in momentum space.
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conservation when the photon momenta p2
∥ð¼ ω2 − p2

3Þ ¼
ðmf þmfÞ2 ¼ 4m2

f. Interestingly Πðp2Þ is singular in the
presence of a magnetic field at this threshold. This is

because of the appearance of the prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=p
2
∥

q
in the denominator of the second term in Eq. (14) due to the
dimensional reduction from (3þ 1) to (1þ 1) in the
presence of the strong magnetic field. This behavior is
in contrast to that in the absence of the magnetic field where
a similar prefactor appears in the numerator [48]. Now, we
explore Πðp2Þ physically in the following two domains
around the LT, p2

∥ ¼ 4m2
f:

(i) Region I, p2
∥ < 4m2

f: In this case with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f=p
2
∥ − 1

q
, let us write the logarithmic

term in the second term of Eq. (14) as

ln

�
aiþ 1

ai − 1

�
¼ ln

�
reiθ1

reiθ2

�
¼ iðθ1 − θ2Þ; ð15Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a2Þ

p
, θ1 ¼ arctanðaÞ and

θ2 ¼ arctanð−aÞ. Thus in Eq. (14) the logarithmic
term is purely imaginary but overall Πðp2Þ is real
because of the prefactor ð1 − 4m2

f=p
2
∥Þ−1=2 being

imaginary. Even if we choose the limit p2
∥ < 0, then

also the whole term is real again, since the denom-

inator of the logarithmic term,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=p
2
∥

q
, is

always greater than unity. So in the region
p2
∥ < 4m2

f, Πðp2Þ is purely real.
(ii) Region II, p2

∥ > 4m2
f: Though in this limit the

prefactor is real definite, but the denominator in
the logarithmic term becomes negative and a com-
plex number arises from it as lnð−xÞ ¼ ln jxj þ iπ.
Thus we get both real and imaginary contributions,
i.e., ReΠðp2Þ and ImΠðp2Þ, in this limit. The
imaginary contribution is relevant for studying the
spectral function and its spectral properties.

We now extract the vacuum spectral function in the
presence of a strong magnetic field following Eq. (9) as

ρ

				vacuum
sfa

¼ 1

π
ImCμ

μðpÞ
				vacuum
sfa

¼ Nc

X
f

qfBm2
f

π2p2
∥

e−p
2⊥=2qfBΘðp2

∥ − 4m2
fÞ

×

�
1 −

4m2
f

p2
∥

�−1=2

: ð16Þ

As can be seen the imaginary part is restricted by the LT,
p2
∥ ¼ 4m2

f. Below this threshold (p2
∥ < 4m2

f), Πðp2Þ is real
and there is no electromagnetic spectral contribution in
vacuum with a strong magnetic field as can be seen from
region I in the left panel of Fig. 3. This implies that there is
also no creation of a particle and antiparticle in vacuum
below the LT because the width of the electromagnetic
spectral function vanishes. Beyond the LT there is also a
continuous contribution (blue solid line in region II) in the
real part of Πðp2Þ. As can be seen the real part of Πðp2Þ is
continuous both below and above the LT but it has a
discontinuity at the LT,p2

∥ ¼ 4m2
f. Thoughwe are interested

in the imaginary part, wewant to note that the real part can be
associated with the dispersion property of a vector boson.4

On the other hand the imaginary part of the electromagnetic
polarization tensor is associated with interesting spectral
properties of the system. So, beyond the LT (p2

∥ > 4m2
f)

there is a nonzero continuous contribution to the electro-
magnetic spectral function as given by Eq. (16) and
represented by a red solid line in region II in the left panel
of Fig. 3. The right panel of Fig. 3 displays the analytic
structure of the vacuum Πðp2Þ in the absence of a magnetic
field [48]. In particular the comparison of the imaginary part
ofΠðp2Þ in the absence of the magnetic field with that in the
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FIG. 3. Plot of the real and imaginary parts of Πðp2Þ as a function of the scaled photon momentum squared with respect to the LT in
the kinematic regions I and II as discussed in the text in the presence of a strong magnetic field (left panel) and in the absence of a
magnetic field (right panel).

4This has been discussed in Refs. [49,50] without a magnetic
field and in Ref. [45] with a magnetic field.
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presence of the strong magnetic field reveals an opposite
trend around the LT. This is due to the effect of dimensional
reduction in the presence of the strong magnetic field. As a
consequence the imaginary part ofΠðp2Þ in the presence of a
strong magnetic field would provide a very strong width to
the photon that decays into a particle and antiparticle, vis-à-
vis an enhancement of the dilepton production from the hot
and dense medium produced in heavy-ion collisions. So far
we have discussed some aspects of the electromagnetic
polarization tensor with a strong background magnetic field
in vacuum. Now we extend this to explore the spectral
properties of amediumcreated in heavy-ion collisionswith a
strong background magnetic field.
In the present situation without any loss of information

we can contract the indices μ and ν in Eq. (12), thus
resulting in a further simplification as

Πμ
μðpÞjsfa ¼ −iNc

X
f

e−p
2⊥=2qfB

q3fB

π

×
Z

d2k∥
ð2πÞ2

2m2
f

ðk2∥ −m2
fÞðq2∥ −m2

fÞ
: ð17Þ

At finite temperature this can be written by replacing the p0

integral by a Matsubara sum as

Πμ
μðω;pÞjsfa ¼ −iNc

X
f

e−p
2⊥=2qfB

2q3fBm
2
f

π

�
iT
X
k0

�

×
Z

dk3
2π

1

ðk2∥ −m2
fÞðq2∥ −m2

fÞ
: ð18Þ

We now perform the Matsubara sum using the mixed
representation prescribed by Pisarski [51], where the trick
is to dress the propagator in a way, such that it is spatial in
the momentum representation, but temporal in the coor-
dinate representation:

1

k2∥ −m2
f

≡ 1

k20 − E2
k

¼
Z

β

0

dτek0τΔMðτ; kÞ; ð19Þ

and

ΔMðτ; kÞ ¼
1

2Ek
½ð1 − nFðEkÞÞe−Ekτ − nFðEkÞeEkτ�; ð20Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þm2

f

q
and nFðxÞ ¼ ðexpðβxÞ þ 1Þ−1 is

the Fermi-Dirac distribution function with β ¼ 1=T. Using
these, Eq. (18) can be simplified as

Πμ
μðω;pÞjsfa ¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π
T
X
k0

Z
dk3
2π

Z
β

0

dτ1

×
Z

β

0

dτ2ek0τ1eðk0−p0Þτ2ΔMðτ1; kÞΔMðτ2; qÞ

¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2π

×
Z

β

0

dτep0τΔMðτ; kÞΔMðτ; qÞ: ð21Þ

Now the τ integral is trivially performed as

Πμ
μðω;pÞjsfa ¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2π

×
X

l;r¼�1

ð1 − nFðrEkÞÞð1 − nFðlEqÞÞ
4ðrlÞEkEqðp0 − rEk − lEqÞ

× ½e−βðrEkþlEqÞ − 1�: ð22Þ
One can now easily read off the discontinuity using

Disc

�
1

ωþP
iEi

�
ω

¼ −πδ
�
ωþ

X
i

Ei

�
; ð23Þ

which leads to

ImΠμ
μðω;pÞjsfa ¼ −Ncπ

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2π

×
X

l;r¼�1

ð1 − nFðrEkÞÞð1 − nFðlEqÞÞ
4ðrlÞEkEq

× ½e−βðrEkþlEqÞ − 1�δðω − rEk − lEqÞ:
ð24Þ

The general form of the delta function in Eq. (24)
corresponds to four processes5 for the choices of r ¼ �1
and l ¼ �1 as discussed below:
(1) r ¼ −1 and l ¼ −1 corresponds to a process with

ω < 0, which violates energy conservation as all the
quasiparticles have positive energies.

(2) (a) r ¼ þ1 and l ¼ −1 corresponds to a process,
q → qγ, where a quark with energy Ek makes a
transition to an energy Eq after emitting a timelike
photon of energy ω. (b) r ¼ −1 and l ¼ 1 corre-
sponds to a case similar to (a). It is explicitly shown
in the Appendix that both processes are not allowed
by the phase space and the energy conservation. In
other words, the production of a timelike photon
from the one-loop photon polarization tensor is

5For the LLL we have explicitly checked that these four
processes can also be seen from Eq. (4.19) in Ref. [34] where the
Ritus method was used.
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forbidden by the phase space and the energy conservation. However, we note here that these processes were
somehow found to be nonzero for the LLL in Ref. [34].

(3) r ¼ 1 and s ¼ 1 corresponds to a process where a quark and an antiquark annihilate to a virtual photon, which is the
only allowed process.

So, for the last case, one can write from Eq. (24)

ImΠμ
μðω;pÞjsfa ¼ Ncπ

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2π

δðω − Ek − EqÞ
½1 − nFðEkÞ − nFðEqÞ�

4EkEq
: ð25Þ

After performing the k3 integral using Eq. (A3) the spectral function in the strong-field approximation is finally obtained
following Eq. (9) as

ρ

				
sfa

¼ 1

π
ImCμ

μðpÞ
				
sfa

¼ Nc

X
f

qfBm2
f

π2p2
∥

e−p
2⊥=2qfBΘðp2

∥ − 4m2
fÞ
�
1 −

4m2
f

p2
∥

�−1=2

½1 − nFðpsþÞ − nFðps
−Þ�; ð26Þ

where

ps
� ¼ ω

2
� p3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

4m2
f

p2
∥

�s
: ð27Þ

We note that the electromagnetic spectral function in the
strong-field approximation obtained here in Eq. (26) using
the Schwinger method has a factor ½1 − nFðpsþÞ − nFðps

−Þ�.
This thermal factor appears when a quark and antiquark
annihilate to a virtual photon in a thermal medium, which is
the only process allowed by the phase space as shown in
our calculation. In Ref. [34] besides this, there also
appeared additional thermal factors due to the presence
of the transition processes (q → qγ) as discussed above in
items 2(a) and 2(b) and in the Appendix.
The vacuum part in the presence of the strong magnetic

field can be easily separated out from Eq. (26) as

ρjvacuumsfa ¼ Nc

X
f

qfBm2
f

π2p2
∥

e−p
2⊥=2qfBΘðp2

∥ − 4m2
fÞ

×

�
1 −

4m2
f

p2
∥

�−1=2

; ð28Þ

which agrees with that obtained in Eq. (16).
We outline some of the important features of the spectral

functions:
(i) In general the electromagnetic spectral function in

Eq. (26) vanishes in the massless limit of quarks.
This particular feature arises because of the presence
of the magnetic field which reduces the system to
(1þ 1) dimensions. This can be further understood
from the symmetry argument and is attributed to the
CPT invariance of the theory [52]. Physically this
observation further signifies that in (1þ 1) dimen-
sions an on-shell massless thermal fermion cannot
scatter in the forward direction.

(ii) The threshold, p2
∥ ¼ 4m2

f, for the LLL is indepen-
dent of the magnetic field strength. It is also
independent of T as qfB ≫ T2 in the strong-field

approximation. Like the vacuum case here also the
spectral function vanishes below the threshold and
there is no pair creation of a particle and antiparticle.
This is because the polarization tensor is purely real
below the threshold. This implies that the momentum
of the external photon supplies energy and the virtual
pair in the LLL becomes real via photon decay.

(iii) When the photon longitudinal momentum squared is
equal to the LT, p2

∥ ¼ 4m2
f, it strikes the LLL and the

spectral strength diverges because of the factor
ð1 − 4m2

f=p
2
∥Þ−1=2 that appears due to the dimen-

sional reduction. Since the LLL dynamics is (1þ 1)
dimensional, there is a dynamical mass generation
[45,47] of the fermions through the mass operator
(e.g. chiral condensate), which causes the magnetic-
field-induced chiral symmetry breaking in the sys-
tem. This suggests that the strong fermion pairing
takes place in the LLL [45] even at the weakest
attractive interaction between fermions in (3þ 1)
dimensions. A (3þ 1)-dimensional weakly interact-
ing system in the presence of a strong magnetic field
can be considered as a strongly correlated system in
the LLL dynamics which is (1þ 1) dimensional. In
that casemf should be related to the dynamical mass
provided by the condensates [45,47]. One can
incorporate it based on nonperturbative model cal-
culations, and then LT will change accordingly.

(iv) The spectral strength starts with a high value for the
photon longitudinal momentump∥ > 2mf due to the
dimensional reduction or LLL dynamics and then
falls off with the increase of ω as there is nothing
beyond theLLL in the strong-field approximation. To
improve the high-energy behavior of the spectral
function one requires the weak-field approxima-
tion (T2 ≫ qfB).

In Fig. 4 the variation of the spectral function with
photon energy ω is shown for different values of T in the
left panel and for different values of magnetic field in the
right panel. With the increase in T the spectral strength in
the left panel gets depleted because of the presence of the
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thermal weight factor ½1 − nFðpsþÞ − nFðps
−Þ� as the dis-

tribution functions nFðps
�Þ increase with T which restricts

the available phase space. Nevertheless the effect of
temperature is small in the strong-field approximation as
qfB ≫ T2. On the other hand the spectral strength in the
right panel increases with the increase of the magnetic field
B as the spectral function is proportional to B.
In Fig. 5 the variation of the spectral function with

photon energy ω is shown for three different values of the
transverse momentum p⊥. The spectral function is found to
get exponentially suppressed with the gradually increasing
value of p⊥.

We also consider a special case where the external
three-momentum (p) of the photon is taken to be zero
and the simplified expression for the spectral function
comes out to be,

ρðωÞ
				
sfa

¼ 1

π
ImCμ

μðω;p ¼ 0Þ
				
sfa

¼ Nc

X
f

qfBm2
f

π2ω2
Θðω2 − 4m2

fÞ
�
1 −

4m2
f

ω2

�−1=2

×

�
1 − 2nF

�
ω

2

��
: ð29Þ

In Fig. 6 the same things are plotted as in Fig. 4 but for a
simplified case of zero external three-momentum of the
photon. As can be seen from Eq. (29), here the value of
the threshold is shifted to photon energy asω ¼ 2mf and the
shapes of the plots are slightly modified. In the following
section as a spectral property we discuss the leading-order
thermal dilepton rate for a magnetized medium.

IV. DILEPTON RATE

A. Dilepton rate in the absence of an external
magnetic field

The dilepton multiplicity per unit space-time volume is
given [53] as
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FIG. 4. Left panel: Variation of the spectral function with photon energy for different values of T at fixed B, p⊥ and p3. Right panel:
Same as left panel but for different values of magnetic field at fixed T, p⊥ and p3. The value of the magnetic field is chosen in terms of
the pion mass mπ .
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FIG. 5. Variation of the spectral function with photon energy ω
for different values of transverse momentum at fixed B, T and p3.
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FIG. 6. Same as Fig. 4 but for zero external three-momentum (p) of the photon.
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dN
d4x

¼ 2πe2e−βp0Lμνρ
μν d3q1

ð2πÞ3E1

d3q2

ð2πÞ3E2

; ð30Þ

where qi and Ei with i ¼ 1, 2 are three-momentum and
energy lepton pairs. The photonic tensor or the electro-
magnetic spectral function can be written as

ρμνðp0;pÞ ¼ −
1

π

eβp0

eβp0 − 1
Im½Dμν

R ðp0;pÞ�

≡ −
1

π

eβp0

eβp0 − 1

e2e
p4

Im½Cμνðp0;pÞ�; ð31Þ

where ee is the relevant electric charge, and Cμν is the
two-point current-current correlation function, whereas
Dμν

R represents the photon propagator. Here we used the
relation [53]

e2eCμν ¼ p4Dμν
R ; ð32Þ

where ee is the effective coupling.
Also the leptonic tensor in terms of Dirac spinors is

given by

Lμν ¼
1

4

X
spins

tr½ūðq2Þγμvðq1Þv̄ðq1Þγνuðq2Þ�

¼ q1μq2ν þ q1νq2μ − ðq1 · q2 þm2
l Þgμν; ð33Þ

where qi ≡ ðq0;qiÞ is the four-momentum of the ith lepton.
Now inserting

R
d4pδ4ðq1 þ q2 − pÞ ¼ 1, one can write

the dilepton multiplicity as

dN
d4x

¼ 2πe2e−βp0

Z
d4pδ4ðq1 þ q2 − pÞLμνρ

μν

×
d3q1

ð2πÞ3E1

d3q2
ð2πÞ3E2

: ð34Þ

Using the identityZ
d3q1
E1

d3q2
E2

δ4ðq1 þ q2 − pÞLμν

¼ 2π

3

�
1þ 2m2

l

p2

��
1 −

4m2
l

p2

�
1=2

ðpμpν − p2gμνÞ

¼ 2π

3
F1ðml; p2Þðpμpν − p2gμνÞ; ð35Þ

the dilepton production rate comes out to be,

dN
d4xd4p

¼ αeme2e
12π3

nBðp0Þ
p2

F1ðml; p2Þ
�
1

π
Im½Cμ

μðp0;pÞ�
�
;

ð36Þ
where nBðp0Þ ¼ ðep0=T − 1Þ−1. Now if we consider a two-
flavor case, Nf ¼ 2,

e2e ¼
X
f

q2f ¼
5

9
e2 ¼ 5 × 4παem

9
; ð37Þ

and the dilepton rate can be written as

dN
d4xd4p

¼ 5α2em
27π2

nBðp0Þ
p2

F1ðml; p2Þ
�
1

π
Im½Cμ

μðp0;pÞ�
�
;

ð38Þ
where the invariant mass of the lepton pair M2 ≡
p2ð¼ p2

0 − jpj2 ¼ ω2 − jpj2Þ. We note that for a massless
lepton (ml ¼ 0) F1ðml; p2Þ ¼ 1.

B. Dilepton rate in the presence of a strong external
constant magnetic field

We first would like to note that the dileptons are produced
in all stages of the hot and dense fireball created in heavy-ion
collisions. They are produced at the leading order from
the decay of a virtual photon through the annihilation of
quark-antiquark pairs. In noncentral heavy-ion collisions an
anisotropic magnetic field is expected to be generated in the
direction perpendicular to the reaction plane, due to the
relative motion of the heavy ions themselves (spectators). It
is believed that the initial magnitude of this magnetic field
can be very high at the time of the collision and then it
decreases very fast [6,7]. The dilepton production from a
magnetized hot and dense matter can generally be dealt with
in three different scenarios [9,34]: 1) only the quarksmove in
a magnetized medium but not the final lepton pairs, 2) both
quarks and leptons move in a magnetized medium and 3)
only the final lepton pairs move in the magnetic field.

1. Quarks move in a strong magnetized medium
but not the final lepton pairs

We emphasize that the case we consider here is interest-
ing and very relevant to noncentral heavy-ion collisions,
especially for the scenario of a fast decaying magnetic field
[6,7] and also for lepton pairs produced late or at the edges
of a hot and dense magnetized medium so that they are
unaffected by the magnetic field. In this scenario only the
electromagnetic spectral function ρμν in Eq. (30) will be
modified by the background constant magnetic field
whereas the leptonic tensor Lμν and the phase-space factors
will remain unaffected. The dilepton rate for massless
(ml ¼ 0) leptons can then be written from Eq. (38) as

dN
d4xd4p

¼ 5α2em
27π2

nBðp0Þ
p2

�
1

π
Im½Cμ

μðp∥; p⊥Þ�
�

m

¼ 5α2em
27π2

nBðp0Þ
p2

½ρðp∥; p⊥Þ�m

¼ 5Ncα
2
em

27π4
nBðωÞ

X
f

jqfBjm2
f

p2p2
∥

× e−p
2⊥=2jqfBjΘðp2

∥ − 4m2
fÞ
�
1 −

4m2
f

p2
∥

�−1=2

× ½1 − nFðpsþÞ − nFðps
−Þ�; ð39Þ
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where the electromagnetic spectral function ½ρðp∥; p⊥Þ�m in
a hot magnetized medium comes from Eq. (26). The
invariant mass of the lepton pair is M2 ≡ p2ðω2 − jpj2Þ ¼
ω2 − p2

3 − p2⊥ ¼ p2
∥ − p2⊥.

In Fig. 7 the ratio of the dilepton rate in the present
scenario with the strong-field approximation to that of the
perturbative leading-order (Born) dilepton rate is displayed
as a function of the invariant mass. The left panel is for
finite external photon momentum whereas the right panel is
for zero external photon momentum. The features of the
spectral function as discussed above are reflected in these
dilepton rates. The LLL dynamics in the strong-field
approximation enhances the dilepton rate as compared to
the Born rate for a very low invariant mass (≤ 100 MeV),
whereas at high mass it falls off very fast similar to that of
the spectral function since there is no higher LL in the
strong-field approximation as noted in point (iv). One
requires the weak-field approximation (qfB ≪ T2) to
improve the high-mass behavior of the dilepton rate. We
note that the enhancement found in the strong-field
approximation in the rate will contribute to the dilepton
spectra at low invariant mass, which is however beyond the
scope of the present detectors involved in heavy-ion
collisions experiments.

2. Both quark and lepton move in a magnetized medium
in the strong-field approximation

This scenario is expected to be the most general one. To
consider such a scenario the usual dilepton production rate
given in Eq. (38) has to be supplemented with the
appropriate modification of the electromagnetic and lep-
tonic tensor along with the phase-space factors in a
magnetized medium. Since we are interested in only the
LLL, we briefly outline below the required modification6 in
the dilepton production rate only for the LLL:
(1) The phase-space factor in the presence of a mag-

netized medium gets modified [54] as

d3q
ð2πÞ3E →

jeBj
ð2πÞ2

X∞
n¼0

dqz
E

ð40Þ

where d2q⊥ ¼ 2πjeBj, e is the electric charge of the
lepton and

P∞
n¼0 is over the LL. For a strong

magnetic field one is confined in the LLL and n¼0

only. The factor jeBj=ð2πÞ2 is the density of states in
the transverse direction and is true for the LLL [45].

(2) The electromagnetic spectral function gets modified
for the LLL as already discussed in Sec. III.

(3) In the presence of a constant magnetic field the spin
of fermions is aligned along the field direction and
the usual Dirac spinors uðqÞ and vðqÞ in Eq. (33) get
modified [44,45] by Pnuð ~qÞ and Pnvð ~qÞ with ~qμ ¼
ðq0; 0; 0; q3Þ and Pn is the projection operator at the
nth LL. For the LLL it takes a simple form

P0 ¼
1 − iγ1γ2

2
: ð41Þ

Now, the modification in the leptonic part in the
presence of a strong magnetic field can be carried
out as

Lm
μν ¼

1

4

X
spins

tr½ūð ~q2ÞP0γμP0vð ~q1Þv̄ð ~q1ÞP0γνP0uð ~q2Þ�

¼ 1

4
tr

�
ð ~q1þmlÞ

�
1− iγ1γ2

2

�
γμ

�
1− iγ1γ2

2

�

× ð ~q2−mlÞ
�
1− iγ1γ2

2

�
γν

�
1− iγ1γ2

2

��

¼ 1

2
½q∥1μq∥2νþq∥1νq

∥
2μ

− ððq1 ·q2Þ∥þm2
l Þðg∥μν−g⊥μν−g1μg1ν−g2μg2νÞ�:

ð42Þ
(4) The insertion

R
d2p∥δ2ðq∥1þq∥2−p∥Þ¼1 is required.

(5) The replacements7 d2p⊥ ¼ 2πjeBj and d4p ¼
d2p⊥d2p∥ are made.

10 5

10 4

B 15m 2T 0.2 GeV , p⊥ 0.05GeV

p3 0.5 GeV

5

4

B 15m 2
T 0.2 GeV

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
10

10

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

d
R

d
R

B
o

rn

M GeV M GeV

d
R

d
R

B
o

rn

FIG. 7. Plot of the ratio of the dilepton rate in the strong magnetic field approximation to the Born rate (perturbative leading order) for
both finite (left panel) and zero (right panel) external three-momentum of the photon.

6A detailed calculation for a more general case is in progress.

7The authors of Ref. [34] replaced d2p⊥ ¼V2=3ðeB
2πÞ2, where V

is the volume. This led to a different normalization factor in
the dilepton rate in Ref. [34].
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(6) The following identity is used:

2πjeBj
Z

dqz1
E1

Z
dqz2
E2

δ2ðq∥1 þ q∥2 − p∥ÞLm
μν

¼ 4π
jeBjm2

l

ðp2
∥Þ2

�
1 −

4m2
l

p2
∥

�−1=2
ðp∥

μp
∥
ν − p2

∥g
∥
μνÞ

¼ 4π

ðp2
∥Þ2

F2ðml; p2
∥Þðp∥

μp
∥
ν − p2

∥g
∥
μνÞ: ð43Þ

Putting all these together, we finally obtain the dilepton
production rate from Eq. (30) for the LLL as

dNm

d4xd4p
¼ αeme2e

2π3
nBðp0Þ
p2
∥p

4
F2ðml;p2

∥Þ
�
1

π
Im½Cμ

μðp∥;p⊥Þ�
�

m
;

ð44Þ

and for two-flavor case (Nf ¼ 2) it becomes

dNm

d4xd4p
¼ 10α2em

9π2
nBðp0Þ
p2
∥p

4
jeBjm2

l

�
1−

4m2
l

p2
∥

�−1=2
½ρðp∥;p⊥Þ�m

¼ 10Ncα
2
em

9π4
nBðωÞ

X
f

jeBjjqfBjm2
fm

2
l

p4
∥p

4
Θðp2

∥−4m2
l Þ

×

�
1−

4m2
l

p2
∥

�−1=2
Θðp2

∥−4m2
fÞ
�
1−

4m2
f

p2
∥

�−1=2

×e−p
2⊥=2jqfBj½1−nFðpsþÞ−nFðps

−Þ�: ð45Þ

We now note that the dilepton production rate in Eq. (45)
is of O½jeBj2� in the presence of a magnetic field B due
to the effective dimensional reduction.8 This dimensional

reduction also renders a factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l =p
2
∥

q
in the

leptonic part Lm
μν that provides another threshold p2

∥ ≥ 4m2
l

in addition to that coming from the electromagnetic part
p2
∥ ≥ 4m2

f. In general the mass of fermions in a magnetized
hot medium will be affected by both temperature and
magnetic field. The thermal effects [55,56] can be consid-
ered through thermal QCD and QED, respectively, for a
quark (∼g2T2; g is the QCD coupling) and lepton (∼e2T2)
whereas the magnetic effect comes through the quantized
LL (2njqfBj). However, in the LLL (n ¼ 0), the magnetic
effect on the mass correction vanishes in the strong-field
approximation. Also in the strong-field approximation
(jqfBj ≫ T), there could be dynamical mass generation
through chiral condensates [45] of a quark and antiquark
leading to magnetic-field-induced chiral symmetry break-
ing, which could play a dominant role. Nevertheless, the
threshold will, finally, be determined by the effective mass

~m ¼ maxðml;mfÞ as Θðp2
∥ − 4 ~m2Þ and the dilepton rate in

the LLL reads as

dNm

d4xd4p
¼ 10Ncα

2
em

9π4
X
f

jeBjjqfBjm2
fm

2
l

p4
∥p

4
Θðp2

∥ − 4 ~m2Þ

×

�
1 −

4m2
l

p2
∥

�−1=2�
1 −

4m2
f

p2
∥

�−1=2

× e−p
2⊥=2jqfBjnBðωÞ½1 − nFðpsþÞ − nFðps

−Þ�;
ð46Þ

where the kinematical factors agree but the prefactor
ð10=π4Þ and the thermal factor nBðωÞ½1 − nFðpsþÞ −
nFðps

−Þ� differ from those of Ref. [34] (the reasons for
this were discussed in detail earlier). This restricts one to
making a quantitative comparison of the dilepton rate with
that obtained in Ref. [34]. We further note that a compari-
son with the experimental results or the results (dilepton
spectra) obtained by Tuchin [9] needs a space-time evo-
lution of the dilepton rate in a hot magnetized medium
produced in heavy-ion collisions. A proper space-time
evolution requires a hydrodynamic prescription in the
presence of a magnetic field, which is indeed a difficult
task and beyond the scope of this article.
We also note that the production rate for case 3) requires

a modification of the leptonic tensor in a magnetized
medium but the electromagnetic one remains unmagne-
tized. Since this is a rare possibility, we skip the discussion
here but it can easily be obtained.

V. DEBYE SCREENING IN THE STRONG
MAGNETIC FIELD APPROXIMATION

In this section we further explore the Debye screening
mass in a strongly magnetized hot medium. In the static
limit the Debye screening mass is obtained as

m2
D ¼ Π00ðω ¼ 0; j~pj → 0Þ: ð47Þ

Using Eq. (12) we get

Π00jsfaj~pj¼0;ω→0

¼ Nc

X
f

q3fB

π

Z
∞

0

dk3
2π

T
X
k0

S00
ðk2∥ −m2

fÞ2

¼ Nc

X
f

q3fB

π

Z
∞

0

dk3
2π

�
1

4πi

I
dk0

S00½1 − 2nFðk0Þ�
ðk20 − E2

kÞ2
�
;

ð48Þ

where, E2
k ¼ k23 þm2

f and at the limit of zero external
three-momentum and vanishing external energy S00 comes
out to be

8A factor jeBj comes from the leptonic part whereasP
fjqfBj ∝ jeBj from the electromagnetic spectral function

involving quarks.
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S00 ¼ k0q0 þ k3q3 þm2
fjj~pj¼0;ω→0

¼ k20 þ k23 þm2
f;

¼ ðk20 − E2
kÞ þ 2E2

k: ð49Þ
Now, the k0 integration can be divided into two parts as

I1 ¼
1

4πi

I
dk0

½1 − 2nFðk0Þ�
ðk20 − E2

kÞ
¼ 1 − 2nFðEkÞ

2Ek
; ð50Þ

and I2¼
1

4πi

I
dk0

2E2
k½1−2nFðk0Þ�
ðk20−E2

kÞ2

¼ 2E2
k
d
dk0

�
1−2nFðk0Þ
ðk0þEkÞ2

�				
k0¼Ek

¼−
1−2nFðEkÞ

2Ek
þβnFðEkÞ½1−nFðEkÞ�; ð51Þ

∴ I1 þ I2 ¼ βnFðEkÞ½1 − nFðEkÞ�: ð52Þ

From Eq. (48) the temporal part of the polarization tensor in
the limit of zero external three-momentum (the long-
wavelength limit) and vanishing external energy comes
out to be

Π00jsfaj~pj¼0;ω→0
¼ Nc

X
f

q3fB

πT

Z
∞

0

dk3
2π

nFðEkÞ½1 − nFðEkÞ�:

ð53Þ
For the massive case (mf ≠ 0) this expression cannot be
reduced further, analytically, by performing the k3 integra-
tion. We evaluate it numerically to extract the essence of the
Debye screening. On the other hand, for the massless case
(mf ¼ 0) a simple analytical expression is obtained as

Π00jsfaj~pj;mf¼0;ω→0
¼ Nc

X
f

q3fB

πT

Z
∞

0

dk3
2π

nFðk3Þ½1 − nFðk3Þ�;

¼ Nc

X
f

q3fB

πT
T
4π

¼ Nc

X
f

q3fB

4π2
: ð54Þ

Before discussing the Debye screening we, first, note
that the effective dimensional reduction in the presence of a
strong magnetic field also plays an important role in
catalyzing the spontaneous chiral symmetry breaking since
the fermion pairing takes place in the LLL that strengthens
the formation of spin-zero fermion-antifermion conden-
sates. This enhances the generation of dynamical fermionic
mass through the chiral condensate in the strong-field limit
even at the weakest attractive interaction between fermions
[1,45] at T ¼ 0. The pairing dynamics is essentially (1þ 1)
dimensional where the fermion pairs fluctuate in the
direction of the magnetic field. So, the zero-temperature
magnetized medium is associated with two scales—the
dynamical mass9 mf and the magnetic field B—whereas a
hot magnetized medium is associated with three scales: the
dynamical mass mf, temperature T and the magnetic
field B.
In the left panel of Fig. 8 the temperature variation of the

Debye screening mass for quasiquarks in a strongly
magnetized medium withB ¼ 15m2

π and for different quark
masses is shown. When the quark mass,mf ¼ 0, it is found
to have a finite amount of Debye screening. This screening
is independent of T because the only scale in the system is
the magnetic field (qfB ≫ T2), and the thermal scale gets
canceled out exactly as found analytically in Eq. (54) in
contrast to Ref. [57] where one needed to explicitly set the
T → 0 limit. We would like to note that when T drops
below the phase transition temperature (Tc) the screening
mass should, in principle, drop out. However, it is found to
remain constant in the region 0 ≤ T ≤ Tc, because of the
absence of any mass scale in the system.
For massive quarks, the three scales became very distinct

and an interesting behavior of the Debye screening mass is
observed in the presence of a strong magnetic field. For a
givenmf, as the temperature is gradually lowered below the
value of the fermion mass ðT < mfÞ, the quasiquark mass
brings the Debye screening down as shown in the left panel

mf 100 MeV
mf 50 MeV
mf 5 MeV
mf 0

B 15 m 2

B 20 m 2

B 15 m 2

mf 25 MeV
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FIG. 8. Left panel: Variation of the Debye screening mass with temperature for different quark masses at a fixed value of B. Right
panel: Comparison of the temperature variation of the Debye screening mass for two values of Bð¼ 15m2

π and 20m2
πÞ.

9As discussed before we still represent the dynamical mass
scale by mf.
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of Fig. 8. Eventually the screening mass vanishes com-
pletely when T ¼ 0. When T ∼mf, there is a shoulder in
the Debye screening and as soon as the temperature
becomes higher than the value ofmf the screening becomes
independent of other two scales (m2

f ≤ T2 ≤ qfB). So, in
the presence of a strong magnetic field the Debye screening
mass changes with temperature as long as T < mf and then
saturates to a value determined by the strength of the
magnetic field. Further as the quasiquark mass is increased
the shoulder and the saturation point are pushed towards a
higher T. The point at which the saturation takes place
depends, particularly, on the strength of two scales, viz.,mf

and T associated with the hot magnetized system. In other
words the dynamical mass generation catalyzes the sponta-
neous chiral symmetry breaking indicating magnetic cataly-
sis [1,45,57] and in that case Tc will be enhanced as a
reflection of the dimensionally reduced system in the
presence of a strong magnetic field. Now we also note that
if the thermal scale is higher than the magnetic scale
(T2 ≫ qfB), then the Debye screening will increase with
T like the usual hot but unmagnetized medium. For this,
however, one needs to employ a weak-field approximation
where higher LL contributions will lead to an almost
continuous system. This is because in a weak-field approxi-
mation (qfB ≪ T2), the energy spacingbetween consecutive
Landau levels, ½2ðnþ1Þþ1�qfB− ½2nþ1�qfB¼ 2qfB,
gradually reduces with higher levels as shown in Fig. 1.
In the right panel a comparison of the Debye screening mass
is shown for massive quarks for two values of the magnetic
field strength (B ¼ 15m2

π and 20m2
π) and the screening is

enhanced as it is proportional to B.

VI. CONCLUSION AND OUTLOOK

In this paper we have evaluated the in-medium electro-
magnetic spectral function by computing the imaginary
part of the photon polarization tensor, in the presence of a
magnetic field. We particularly dealt with the limiting case,
where the magnetic field is very strong with respect to the
thermal scale (qfB ≫ T2) of the system. In this strong-field
limit we have exploited the LLL dynamics that decouples
the transverse and the longitudinal directions as a conse-
quence of an effective dimensional reduction from (3þ 1)
dimensions to (1þ 1) dimensions. The electromagnetic
spectral function vanishes in the massless limit of quarks
which implies that in (1þ 1) dimensions an on-shell
massless thermal fermion cannot scatter in the forward
direction. Since the LLL dynamics is (1þ 1) dimensional,
the fermions are virtually paired up in the LLL providing a
strongly correlated system, which could possibly enhance
the generation of fermionic mass through the chiral con-
densate. So, these massive quarks could provide a kin-
ematical threshold to the electromagnetic spectral function
at longitudinal photon momentum, p2

∥ ¼ 4m2
f. Below the

threshold the photon polarization tensor is purely real and

the electromagnetic spectral function does not exist result-
ing in no pair creation of a particle and antiparticle. This
implies that the momentum of the external photon supplies
energy to virtual fermionic pairs in the LLL, which become
real via photon decay. At threshold the photon strikes the
LLL and the spectral strength diverges due to the dimen-
sional reduction, since a factor of ð1 − 4m2

f=p
2
∥Þ−1=2

appears in the spectral function, in the strong-field approxi-
mation. The spectral strength starts with a high value for
the photon longitudinal momentum p∥ > 2mf due to the
dimensional reduction or LLL dynamics and then falls off
with the increase of ω as there is nothing beyond the LLL in
the strong-field approximation.
This strong-field approximation could possibly be very

appropriate for the initial stages of the noncentral heavy-ion
collisions where the intensity of the produced magnetic
field is expected to be very high. As a spectral property we
then obtained analytically the dilepton production rate for
two scenarios: (i) when the quarks and antiquarks are
affected by the hot magnetized medium but not the final
lepton pairs and (ii) when both the quark and lepton are
affected by the magnetized medium. In the former case the
dilepton rate is O½jqfBj� and follows the properties of the
electromagnetic spectral function along with a kinematical
threshold provided by the quark mass. For the latter case
the rate was found to be O½jeBj2 with two kinematical
thresholds provided by the quark (mf) and lepton (ml)
masses. Since the dynamics in the LLL in the strong-field
approximation is strongly correlated, the threshold will
finally be determined by ~m ¼ maxðmf;mlÞ.
We have also analyzed the electromagnetic screening

effect through the Debye screening mass of the hot mag-
netized medium. This shows that there are three distinct
scales in a hot magnetizedmedium, associated with themass
of the quasiquarks, the temperature of the medium and the
background magnetic field strength. When the mass of the
quasiquarks aremuchhigher than the temperature, theDebye
screening is negligible. As the temperature increases, the
screening mass starts increasing, a shoulder-like structure
appears when T ∼mf, and then it saturates to a fixed value
when qfB ≫ T2 ≫ m2

f. In a strongly magnetized hot
medium the Debye screening mass shows some interesting
characteristics with temperature as long as T ≤ mf and then
saturates to a value determined by the strength of the
magnetic field. The point at which the saturation takes place
depends, especially, on the strength of the mass and temper-
ature scales associated with a hot magnetized system. In the
strong-field approximation the fermion pairing takes place in
the LLL which could enhance the formation of quark-
antiquark condensates, leading to a larger dynamical mass
generationwhich catalyzes the spontaneous chiral symmetry
breaking. Thismass effect is reflected in theDebye screening
as the shoulder and the saturation point are pushed towards a
higher T when the quasiquark mass increases. The effective
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dimensional reduction seems to plays an important role in
catalyzing the spontaneous chiral symmetry breaking, which
indicates an occurrence of themagnetic catalysis effect in the
presence of a strong magnetic field.

ACKNOWLEDGMENTS

This work is supported by the Department of Atomic
Energy (DAE), India through the project TPAES. The

authors acknowledge fruitful discussion with A. Ayala and
M. Strickland. A. B. gratefully acknowledges useful dis-
cussions with P. Chakraborty.

APPENDIX: PROCESSES WITH (A) r= 1, l = − 1
AND (B) r= − 1, l = 1

So, choosing first r ¼ 1, l ¼ −1 we obtain from Eq. (24)

ImΠμ
μðω;pÞj r¼1

s¼−1 ¼ Ncπ
X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2π

ð1 − nFðEkÞÞð1 − nFð−EqÞÞ
4EkEq

× ½e−βðEk−EqÞ − 1�δðp0 − Ek þ EqÞ: ðA1Þ

Now, using 1 − nFð−EqÞ ¼ nFðEqÞ, one obtains

ImΠμ
μðω;pÞj r¼1

s¼−1 ¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

Z
dk3
2

δðω − Ek þ EqÞ
½nFðEkÞ − nFðEqÞ�

4EkEq
: ðA2Þ

The k3 integral can now be performed using the following property of the delta function:Z
∞

−∞
dp3fðp3Þδ½gðp3Þ� ¼

X
r

fðpzrÞ
jg0ðpzrÞj

; ðA3Þ

where the zeroes of the argument inside the delta function are called pzr.
Now ω − Ek þ Eq ¼ 0 yields,

kz3 ¼
p3

2
� ω

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

ðω2 − p2
3Þ

s
;¼ p3

2
� ωR

2
; ðA4Þ

jg0ðpzÞj ¼
				Ekðk3 − p3Þ − Eqk3

EkEq

				
k3¼kz1

3
;kz2

3

; ðA5Þ

Ekjk3¼kz1
3
¼ ω

2
þ p3R

2
; Ekjk3¼kz2

3
¼ ω

2
−
p3R
2

; ðA6Þ

Eqjk3¼kz1
3
¼ ω

2
−
p3R
2

; Eqjk3¼kz2
3
¼ ω

2
þ p3R

2
; ðA7Þ

and jEkðk3 − p3Þ − Eqk3jk3¼kz1
3
;k3¼kz2

3
¼ ωp3

2
ðR2 − 1Þ; ðA8Þ

ImΠμ
μðω;pÞj r¼1

s¼−1 ¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

X
r

½nFðEkÞ − nFðEqÞ�
8EkEq

×

				 EkEq

Ekðk3 − p3Þ − Eqk3

				
				
k3¼kzr

3

¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

π

X
r

½nFðEkÞ − nFðEqÞ�
8jEkðk3 − p3Þ − Eqk3j

				
k3¼kzr

3

¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

4πωp3ðR2 − 1Þ × ½nFðEkjk3¼kz1
3
Þ − nFðEqjk3¼kz1

3
Þ þ nFðEkjk3¼kz2

3
Þ − nFðEqjk3¼kz2

3
Þ�

¼ Nc

X
f

e
−p2⊥
2qfB

2q3fBm
2
f

4πωp3ðR2 − 1Þ ×
�
nF

�
ω

2
þ p3R

2

�
− nF

�
ω

2
−
p3R
2

�
þ nF

�
ω

2
−
p3R
2

�
− nF

�
ω

2
þ p3R

2

��

¼ 0: ðA9Þ
Similarly, for the case (b) r ¼ −1, l ¼ 1, the phase space also does not allow the corresponding process.
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