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We compute the electrical conductivity of quark-gluon plasma in a strong magnetic field Bwith quantum
field theory at finite temperature using the lowest Landau level approximation. We provide the one-loop
result arising from 1-to-2 scattering processes of which the kinematics are satisfied by the (1þ 1)-
dimensional fermion dispersion relation. Because of the chirality conservation, the conductivity diverges in
the massless limit and is sensitive to the value of the current quark mass. As a result, we find that the
conductivity along the direction of the magnetic field is quite large compared with the value at B ¼ 0,
mainly because of the small value of the current quark mass. We show that the resummation of the ladder
diagrams for the current-current correlator gives rise to only subleading contributions beyond the leading-
log order and thus verify our one-loop result at the leading-log accuracy. We also discuss possible
implications for the relativistic heavy-ion collisions.
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I. INTRODUCTION

The relativistic heavy-ion collision programs at the
Relativistic Heavy Ion Collider and LHC have been
providing successful results for the creation of quark-gluon
plasma (QGP) at high temperature, and various properties
of QCD at the extreme condition have been investigated. It
was also suggested that an extremely strong magnetic field
(B) is induced in the noncentral collisions by the Ampere’s
circuital law [1,2] (see Ref. [3] for recent reviews). The
magnitude of the magnetic field is estimated to be of the
order of or larger than the QCD scale ΛQCD (Λ2

QCD ≲ eB,
with e being the coupling constant in quantum electrody-
namics). Since such a strong magnetic field has not been
realized in other terrestrial experiments, the heavy-ion
collisions provide us with a unique opportunity to inves-
tigate the properties of QCD matter at the high temperature
and in the strong magnetic field. Understanding the proper-
ties of QCD matter in strong magnetic fields can be also
useful for neutron star and magnetar physics, in which a
strong magnetic field and a high-density state are expected
to be realized.
In recent years, the strong magnetic field induced by

the heavy-ion collisions have attracted a number of
interests. The anomaly-induced transport, the so-called
chiral magnetic effect [1], triggered not only intensive
theoretical studies but also experimental efforts (see
Refs. [3–5] for reviews). While significant progress has
been made, the interpretation of the experimental results

appears to be still controversial due to the uncertainties
such as the lifetime of the magnetic field, the distribution
of the axial charges, the background of the experimental
signal, etc. Therefore, deeper understanding of various
aspects of the QGP in the strong magnetic field has been
becoming important to achieve the consistent dynamical
modelling.
In this perspective, the transport coefficients are impor-

tant quantities. Preceding studies addressed effects of the
magnetic field on, e.g., the electrical conductivity [6–13],
the shear viscosity [12,14–16], the heavy-quark diffusion
constant [16,17], and the jet quenching parameter [18] by
various methods and with different assumptions for the
hierarchy of scales. Since there has been much progress
also in the dynamical modelling of the anomalous charge
separation [19], the magnetohydrodynamics [20–22], and
the Langevin dynamics for open heavy flavors [23], it is an
urgent task to compute the transport coefficients from the
microscopic theories.
In this paper, we focus on one of the most important

transport coefficients in the magnetohydrodynamics, that
is, the electrical conductivity of QGP. This quantity is
interesting from the phenomenological point of view; if the
conductivity is large enough, it is expected that the
magnetic field induced by the heavy-ion collision persists
longer in time [3,24–26].
Also, from the theoretical point of view, we will find a

drastic change of the relaxation dynamics in the strong
magnetic field limit. This change originated from the
Landau-level quantization for the periodic cyclotron
motion; the quark spectrum in the magnetic field (applied
in the z direction) is discretized as
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ϵn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f þ 2njeBj
q

; ð1:1Þ

where mf is the current quark mass and pz is the z
component of the quark momentum. Therefore, the low-
energy fermion dynamics is dominated by the (1þ 1)-
dimensional ground state (n ¼ 0), i.e., the lowest Landau
level (LLL). This is the quantum system realized in the
strong magnetic field limit where the magnitude of the
magnetic field is much greater than the other energy scales
of the system such as temperature. On the other hand, the
electrically neutral gluons are not coupled to the magnetic
field at the leading order in weak-coupling theories, so they
move in the three dimensions. Thus, we need to consider
the transport process with the fermions moving in one
dimension and the bosons moving in three dimensions.
This is an intriguing system which is quite different from
both the usual (3þ 1)-dimensional theory and the (1þ 1)-
dimensional theory where there are no dynamical gluonic
degrees of freedom and the fermions suffer the confine-
ment. In fact, the effect of the strong magnetic field opens
novel 1-to-2 scattering processes (see Refs. [27,28] for the
study at T ¼ 0), which were forbidden by the kinematic
reason when B ¼ 0. In addition, in the massless limit
ðmf ¼ 0Þ, the chirality conservation forbids the scattering
process [29] so that the conductivity, which diverges
without scatterings, is expected to be very sensitive to
mf even when the mass is quite small. It makes a striking
contrast to the computations of the transport coefficients
without a magnetic field [30–34], where we could safely
neglect the current quark mass at the high temperature
T ≫ mf. While the conductivity in weak magnetic fields
has been evaluated by lattice QCD [6], AdS=CFT corre-
spondence [7], and the Boltzmann equation [8–11], this
strong-field regime has not been explored.
We will evaluate the electrical conductivity in strong

magnetic field at finite temperature and vanishing chemical
potential. As discussed shortly, we use the LLL approxi-
mation, and our calculation is performed at the leading-log
accuracy. It is known that the transport coefficients,
including the electrical conductivity, can be consistently
obtained from the kinetic equation [34] and the diagram-
matic method [30–33]. However, in the presence of the
magnetic field, the ordinary kinetic equation will not be
directly applicable due to the quantum nature of the Landau
levels, and one needs to elaborate the construction of the
kinetic equation. In an accompanying paper [35], one can
find the formulation of an effective kinetic equation and the
evaluation of the conductivity beyond leading-log accuracy.
In this paper, starting out from quantum field theory, we
show that a consistent conclusion is drawn by using the
diagrammatic method and briefly discuss an equivalence to
the kinetic equation in Appendix D.
This paper is organized as follows. In the next section,

we introduce how to evaluate the electrical conductivity in

the real-time formalism. By performing one-loop-order
analysis, we obtain the expression of the conductivity
written in terms of the quark damping rate and explicitly
evaluate the damping rate generated by the 1-to-2 scatter-
ings in Sec. III. Section IV is devoted to explaining the
features of the result for the conductivity. In Sec. V, we
discuss the resummation of the ladder diagrams. We briefly
discuss possible implications of our results for the heavy-
ion collision experiments in Sec. VI. In Sec. VII, we
summarize this paper and give a few concluding remarks.
In the four Appendixes, we discuss the gauge-fixing
independence of our result, the integration range with
respect to the energy of the scattering particle in the
1-to-2 scattering process, the consistency of our diagram-
matic scheme to the Ward-Takahashi identity, and the
equivalence of our scheme to the approach with the kinetic
equation, respectively.
Prior to going into explicit computations, we would like

to discuss the characteristic energy scales involved in the
problem and specify our hierarchy assumed throughout this
paper. In the analysis below, a few characteristic energy
scales appear. The largest energy scale,

ffiffiffiffiffiffi
eB

p
, is due to the

magnetic field. Because we work in the strong magnetic
field regime, we assume that it is much larger than the
temperature,

ffiffiffiffiffiffi
eB

p
≫ T. This condition justifies the usage

of the LLL approximation, i.e., neglect of the higher
Landau levels. We also have the current quark mass
(mf). In most calculation at the QGP phase, this quantity
has been neglected because it is of order ∼1 MeV, while
T ∼ 100 MeV. When infrared divergence appears, it is
regulated by thermal masses of quarks and gluons.
However, in the LLL approximation, we cannot neglect
mf because the scattering processes are forbidden if
mf ¼ 0 due to the chirality conservation [29], as we will
discuss later. On the other hand, the gluon also dynamically
gets a screening mass (M), which is of order g

ffiffiffiffiffiffi
eB

p
(g:

QCD coupling constant) [17,36]. Because we are interested
in the case in which the finite-T effect is significant, we
consider the case of mf;M ≪ T, where the quarks and
gluons are thermally well excited. Summarizing, we work
in the regime mf;M ≪ T ≪

ffiffiffiffiffiffi
eB

p
. As for the ordering of

mf and M, we consider both of the cases: mf ≫ M
and mf ≪ M.

II. ELECTRICAL CONDUCTIVITY IN
REAL-TIME FORMALISM

In this section, we introduce how to evaluate the
electrical conductivity in the real-time formalism. We begin
with a formal introduction of the electrical conductivity.
Consider the situation in which the system is initially
at equilibrium of which the temperature is T in magnetic
fieldB and then external electric fieldE disturbs the system
and induces electromagnetic current jμ. Because of the
linear response theory, the retarded current correlator
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ΠRμνðxÞ≡ iθðx0Þh½jμðxÞ; jνð0Þ�i ð2:1Þ

determines the induced current in the momentum space,

jμðpÞ ¼ −ΠRμνðpÞAνðpÞ; ð2:2Þ

where Aν is a vector potential that creates E. When E is
homogenous in space, we have p ¼ 0 and E ¼ iωA, and
thus jiðωÞ ¼ ΠRijðωÞEjðωÞ=ðiωÞ. By taking the ω → 0

limit, we have ji ¼ σijEj, where we have introduced the dc
conductivity tensor,

σij ≡ lim
ω→0

ΠRijðωÞ
iω

: ð2:3Þ

Thus, the dc conductivity can be evaluated by calculating
the current correlator in the low-energy limit at zero
momentum, the expression of which is called the Kubo
formula.
This expression can be rewritten as follows in the real-

time formalism: by using nBðωÞ≃ T=ω for ω ≪ T, where
nBðωÞ≡ ½eβω − 1�−1 is the Bose distribution function with
β≡ 1=T, we have

σij ¼ β

2
Πij

12ðω → 0Þ; ð2:4Þ

where Πμν
12ðxÞ ≡ hTCj

μ
1ðxÞjν2ð0Þi ¼ hjνð0ÞjμðxÞi and

ρμνðpÞ≡ 2ImΠRμνðpÞ is the spectral function of the cur-
rent, which satisfiesΠμν

12ðpÞ ¼ nBðωÞρμνðpÞ. Here, we have
introduced the contour in complex time drawn in Fig. 1,
where the limits t0 → −∞ and tf → ∞ are taken. TC is an
ordering operator on this contour, and jμ1=2 is a current
operator of which the time belongs toC1=2. For more details
of the real-time formalism, see Refs. [37,38].
Here, we write the current correlator in terms of quark

field for evaluation. The current operator is defined as

jμðxÞ≡ e
X
f

qfψ̄fðxÞγμψfðxÞ; ð2:5Þ

where f is an index for flavor, qf is an electromagnetic
charge for the quark and ψf is a quark operator. In the LLL
approximation, the quark field reads [39]

ψfðxÞ ¼
Z
pL;p2

e−iðpL·xL−p2x2ÞPf
þχ

f
p2ðpLÞHðx1 − rf

p2Þ;

ð2:6Þ

where we have adopted the Landau gauge considering the
case in which B is along the z axis, in which A2

ext ¼ Bx1

with Aμ
ext the vector potential that yields the magnetic

field. We have also introduced d2pL ≡ dp0dp3, pL ≡
ðp0; 0; 0; p3Þ and

R
p≡

R
dp=ð2πÞ, rfp2 ≡ −p2=Bf, Bf ≡

eqfB, and χf
p2ðpLÞ is the quark operator at the LLL. We

note that p2 here does not mean the square of 4-vector pμ,
ðp0Þ2 − p2, but the y component of pμ. Pf

� ≡ ð1�
sgnðBfÞiγ1γ2Þ=2 is a projection operator into a state
with spin aligning with B. Hðx − rfÞ≡ ½jBfj=π�1=4 ×
exp½−jBfjðx − rfÞ2=2� is the normalized harmonic oscil-
lator function coming from quark wave function in the
transverse plane at the LLL. In this approximation, the
current operator becomes

jμðxÞ ¼ e
X
f

qf

Z
p2;pL;k2;kL

e−ixL·ðkL−pLÞeix2ðk2−p2Þ

×Hðx1 − rf
p2ÞHðx1 − rf

k2
Þχ̄f

p2ðpLÞγμχfk2ðkLÞ:
ð2:7Þ

The current correlator can be written in terms of the four-
point function of the quark:

Πμν
12ðp ¼ 0Þ ¼ e2

X
f;f0

qfqf0
Z
k2;kL;q2;qL;l2;lL;r2;rL

ð2πÞδðk2 − q2Þð2πÞ2δð2ÞðkL − qLÞð2πÞδðl2 − r2Þð2πÞ2δð2ÞðlL − rLÞ

×

�Z
dx1Hð−x1 − rf

0

l2
ÞHð−x1 − rf

0

r2
Þ
�
Hð−rf

k2
ÞHð−rf

q2
ÞhTCχ̄

f
1k2

ðkLÞγμχf1q2ðqLÞχ̄
f0

2l2
ðlLÞγνχf

0

2r2
ðrLÞi

¼ e2
X
f;f0

qfqf0
Z
k2;kL;l2;lL

½Hð−rf
k2
Þ�2hTCχ̄

f
1k2

ðkLÞγμχf1k2ðkLÞχ̄
f0

2l2
ðlLÞγνχf

0

2l2
ðlLÞi; ð2:8Þ

C+

x0

C-

t0 tf

tf-i

t0-i

FIG. 1. The contour in complex time plane. The part Cþ is on
the real axis, and C− is below that axis by ϵ.
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where we have used
R
dx½HðxÞ�2 ¼ 1. When we use

the symmetry in the color space and neglect the flavor-
changing process, which will be justified in the analysis
later since we will consider only the ladder diagrams,
the four-point function above has the structure
hTCχ̄

f
1k2ðkLÞγμχ

f
1k2ðkLÞχ̄

f0

2l2ðlLÞγνχ
f0

2l2ðlLÞi ¼ Ncδff0G
μνf
1122 ×

ðk; k; l; lÞ, with the four-point function Gμνf
1122ðk; k; l; lÞ≡

hTCχ̄
f
1k2ðkLÞγμχ

f
1k2ðkLÞχ̄

f
2l2ðlLÞγνχ

f
2l2ðlLÞi. Here, the color

summation in Gμνf
1122 has been done. We further assume thatR

l2 G
μνf
1122ðk; k; l; lÞ does not depend on k2, which also will

be justified later. Then, Πμν
12 can be written as

Πμν
12ðp ¼ 0Þ ¼ e2

X
f

ðqfÞ2Nc
jBfj
2π

Z
k2;kL;lL

Gμνf
1122ðk; k; l; lÞ;

ð2:9Þ

where we have used
R
p½Hð−rfpÞ�2 ¼ jBfj=2π.

For later convenience, we move to an r/a basis. By
introducing χr ≡ ðχ1 þ χ2Þ=2 and χa ≡ χ1 − χ2, the four-
point function can be written as

G1122 ¼ Grrrr þ
1

2
ðGarrr þ Grarr −Grrar −GrrraÞ

þ 1

4
ðGaarr − Garar −Garra

− Graar −Grara þGrraaÞ

þ 1

8
ð−Gaaar −Gaara þGaraa þGraaaÞ; ð2:10Þ

where we have omitted the Lorentz/flavor indices
for simplicity, introduced Gijkl ≡ hTCχ̄iγ

μχjχ̄kγ
νχli with

i; j; k; l ¼ r or a, and used Gaaaa ¼ 0. By using the
generalized fluctuation-dissipation theorem [30,40,41], this
expression can be rewritten as

G1122 ¼ α1Gaarr þ α2Gaaar þ α3Gaara þ α4Garaa

þ α5Graaa þ α6Garra þ α7Garar

þ β1Ḡ�
aarr þ β2Ḡ�

aaar þ β3Ḡ�
aara þ β4Ḡ�

araa

þ β5Ḡ�
raaa þ β6Ḡ�

arra þ β7Ḡ�
arar; ð2:11Þ

where we have introduced the Fermi distribution function
nFðEÞ≡ ½eE=T þ 1�−1 and α1 ¼ β1 ≡ nFðk0Þ½1 − nFðk0Þ�.
We do not write the other coefficients explicitly because
they will be found to be irrelevant to the leading-
order calculation. The bar above G means the inter-
change between the quark and the antiquark: Ḡμν

ijkl ≡
hTCχ̄jγ

μχiχ̄lγ
νχki. Neglecting the irrelevant terms in

Eq. (2.11) and using Gaarrðk; k; l; lÞ ¼ Ḡaarrðk; k; l; lÞ,
which can be shown by using the definition of Ḡ,
we get

G1122 ¼ 2nFðk0Þ½1 − nFðk0Þ�ReGaarr þ ðother termsÞ:
ð2:12Þ

It makes Eq. (2.4) as

σij ¼ e2β
X
f

ðqfÞ2Nc
jBfj
2π

Z
k2;kL;lL

×nFðk0Þ

× ½1 − nFðk0Þ�ReGijf
aarrðk; k; l; lÞ; ð2:13Þ

by using Eq. (2.9).

III. ONE-LOOP ANALYSIS

In this section, we examine the four-point function in the
LLL approximation, which is necessary for computing the
electrical conductivity. While we work at the one-loop
order, we use the dressed quark propagator in which the
quark damping rate is resummed. We also explicitly
evaluate the quark damping rate, taking into account the
1-to-2 scattering in both of the two cases, mf ≫ M
and mf ≪ M.

A. Four-point function of the quark

We evaluate the four-point function at the one-loop
approximation. By using Wick’s theorem, the four-point
function becomes

Gμνf
aarrðk; k; l; lÞ ¼ −ð2πÞδðk2 − l2Þð2πÞ2δð2ÞðkL − lLÞ

× Tr½γμSarðkLÞγνSraðkLÞ�; ð3:1Þ

where we have introduced the quark propagators in an r/a
basis, SijðpLÞ≡ hTCχ

i
p2ðpLÞχ̄jp2ðpLÞi, where i; j ¼ r, a,

and omitted flavor indices for simplicity. We note that this
quantity becomes independent of k2 after integrating over
l2, so the assumption we made above Eq. (2.9) is justified.
It also implies that the k2 integral in the right-hand side of
Eq. (2.9) can be trivially performed thanks to δðk2 − l2Þ, so
that there remain only kL and lL integrals. This property
manifests the gauge invariance. The other terms with
different indices in Eq. (2.11) vanish because Saa ¼ 0.
This contribution corresponds to the one-loop diagram
drawn in Fig. 2. As we will see later, SðkLÞ is proportional
to ðkL þmfÞPþ, so Gμν vanishes when μ, ν ¼ ⊥ (1 or 2)

a

a

r

r

k

FIG. 2. The current correlator Gμνf
aarrðk; k; l; lÞ at one-loop level.

The solid line represents the quark propagator.
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because Pþγ⊥Pþ ¼ γ⊥P−Pþ ¼ 0. Therefore, we consider
the case of μ, ν ¼ 0 or 3 from now on.
If we naively use the quark propagator in the free limit in

the expression above, we would have a divergence, which
is called pinch singularity [30–33]. To regulate this singu-
larity, one needs to resum the damping rate of the quark
(ξp). The resummed quark retarded/advanced propagator
(SR=A ¼ iSra=ar) at the LLL approximation reads

SR=AðpÞ ¼ ðpL þmfÞPþΔ
R=A
S ðpÞ; ð3:2Þ

where ΔR=A
S ðpÞ≡ −½p2

L −m2
f � 2iξpp0�−1, with p2

L ≡
ðp0Þ2 − ðp3Þ2 and mf is the current quark mass. The free
part of the expression above is given in Ref. [39], for
example. We note that the modification of the quark mass
mf due to the interaction effect is not necessary at the
leading-order calculation because the modification to mf is
suppressed by the factor of g2mf=T, at most [42]. This
point is quite different from the B ¼ 0 case, where the
quarks move in three dimensions so that the scattering
process is finite even at mf ¼ 0, and thus the thermal mass
is independent from mf (it is of order gT [43]) when T is
large enough. By using this expression, Eq. (3.1) becomes

Gμνf
aarrðk; k; l; lÞ ¼ ð2πÞδðk2 − l2Þð2πÞ2δð2ÞðkL − lLÞ

×
kμLk

ν
L

ξkk0
ρSðkLÞ; ð3:3Þ

where we have evaluated the trace by using Tr½ðkL þ
mfÞPþγμðkL þmfÞPþγν� ¼ 4kμLk

ν
L, which is obtained by

using the on-shell condition k2L ¼ m2
f. We have also

introduced the spectral function of the quark related to
ΔR=A, ρSðpLÞ≡ −i½ΔR

S ðpLÞ − ΔA
SðpLÞ�, which satis-

fies ΔR
S ðpLÞΔA

SðpLÞ ¼ ρSðpLÞ=ð4ξpp0Þ.
Using this resummed propagator, Eq. (2.13) for i¼ j¼ 3

becomes

σ33 ¼ β

2
e2
X
f

ðqfÞ2Nc
jBfj
2π

Z
dk0dk3

π

× nFðk0Þ½1 − nFðk0Þ�
ðk3Þ2
ξkjk0j

δðk2L −m2
fÞ; ð3:4Þ

where we have used the approximation

ρSðkLÞ≃ ð2πÞsgnðk0Þδðk2L −m2
fÞ: ð3:5Þ

We see that Eq. (3.4) is proportional to ξ−1k , so it diverges
when ξk → 0. This is the pinch singularity, and physically it
corresponds to the fact that the conductivity diverges when
the quarks do not scatter with other particles so that the
mean free path becomes infinitely large.

B. Quark damping rate

We need to evaluate the quark damping rate for proceed-
ing the calculation. The contribution from the one-loop
diagram, which is drawn in the left panel of Fig. 3, is

ImΣRðkLÞ ¼
g2CF

2

Z
l
γLμ ðlL þmfÞPþγLν ρ

μν
D ðk − lÞρSðlLÞ

× ½Rfðk⊥ − l⊥Þ�2½nFðl0Þ þ nBðl0 − k0Þ�;
ð3:6Þ

where we have introduced kμ⊥≡ð0;k1;k2;0Þ, CF ≡ðN2
c−1Þ=

ð2NcÞ, the form factor Rfðp⊥Þ≡ exp½−p2⊥=ð4jBfjÞ�, and
the gluon spectral function ρμνD ðkÞ≡ 2ImDRμνðkÞ with
DRμνðkÞ the retarded gluon propagator. We note that we
have used the Ritus basis [39,44], in which the momentum
of the form factor is that of the gluon instead of the quark,
and the Schwinger phases were canceled and thus did not
appear in the expression above. Again, this absence of the
phases is a manifestation of the gauge invariance. It yields
the damping rate

ϵLk ξk ¼ −
1

2
Tr½ðkL þmfÞImΣRðkLÞjk0¼ϵLk

�

¼ −
g2CF

4

Z
l
Tr½ðkL þmfÞγLμ ðlL þmfÞPþγLν �

× ρμνD ðk − lÞρSðlLÞ
× ½Rfðk⊥ − l⊥Þ�2½nFðl0Þ þ nBðl0 − k0Þ�jk0¼ϵLk

;

ð3:7Þ

where we have introduced ϵLk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk3Þ2 þm2

f

q
, which is

the on-shell energy of the quark with longitudinal
momentum k3.
We need to know the gluon propagator for evaluating the

damping rate. In the LLL approximation, the self-energy of
the gluon coming from the quark loop has the tensor
structure [17] ΩμνðkÞ ¼ Ω∥ðkÞPμν

∥ ðkLÞ, where Pμν
∥ ðkLÞ≡

−½gμνL − kμLk
ν
L=k

2
L� with gμνL ≡ diagð1; 0; 0;−1Þ. The self-

energy coming from the gluon/ghost loop is much smaller,
so we neglect it in this work. The resultant gluon retarded
propagator is, in the covariant gauge [17,28],

22Cut

FIG. 3. The quark self-energy at one-loop level (left panel) and
the matrix element of the 1-to-2 scattering (right panel), which
corresponds to the imaginary part of the self-energy. The curly
line represents the gluon propagator.
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DRμνðkÞ ¼ −
Pμν
∥ ðkLÞ

k2 þ iϵk0 −Ω∥ðkÞ
−
Pμν
0 ðkÞ − Pμν

∥ ðkLÞ
k2 þ iϵk0

þ α
kμkν

ðk2 þ iϵk0Þ2 ; ð3:8Þ

where α is a gauge-fixing parameter and Pμν
0 ðkÞ≡ −½gμν −

kμkν=k2�. We note that the denominators in P0 and P∥ also
contain iϵk0. The second and the third terms are shown not
to contribute to the damping rate in Appendix A, so we
omit them from now on. Thus, the gluon spectral function
reduces to

ρμνD ðkÞ ¼ Pμν
∥ ðkLÞρDðkÞ; ð3:9Þ

where ρDðkÞ≡ −2Im½1=ðk2 þ iϵk0 − Ω∥ðkÞÞ�. Then,
Eq. (3.7) becomes

ϵLk ξk ¼ g2CFm2
f

Z
l
ρDðkþ lÞρSðlLÞ

× ½Rfðk⊥ þ l⊥Þ�2½nFðl0Þ þ nBðl0 þ k0Þ�jk0¼ϵLk
;

ð3:10Þ

where we have evaluated the trace by using Tr½ðkLþmfÞ×
γLμ ðlLþmfÞPþγLν �Pμν

∥ ðkL−lLÞ¼−4m2
f, which is obtained

by the on-shell conditions k2L ¼ l2L ¼ m2
f. We also flipped

the sign of l for future convenience.

1. mf ≫ M case

We start with the case in which the current quark mass is
much larger than the gluon screening mass, mf ≫ M. In
this case, the current quark mass regulates all the infrared
singularities as will be found later, so we can safely neglect
the gluon self-energy:

ρDðkÞ ¼ ð2πÞsgnðk0Þδðk2Þ: ð3:11Þ

By using this equation and the spectral function of the free
quark, Eq. (3.5), Eq. (3.10) becomes

ϵLk ξk ¼ g2CFm2
f

Z
d4l
ð2πÞ4 ð2πÞ

2sgnðl0Þsgnðk0 þ l0Þ

× δð½kþ l�2Þδðl2L −m2
fÞ

× ½Rfðk⊥ þ l⊥Þ�2½nFðl0Þ þ nBðl0 þ k0Þ�jk0¼ϵLk

≃ g2CFm2
f

8π

Z
dl0sgnðl0ÞsgnðϵLk þ l0Þ

X
s¼�1

×
θððl0Þ2 −m2

fÞθ
�
m2

f þ ϵLk l
0 − sk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q

× ½nFðl0Þ þ nBðl0 þ ϵLk Þ�; ð3:12Þ

where we have performed the integrations for l2⊥ and l3 by
using the two delta functions. Because the distribution
functions give the ultraviolet cutoff at the scale T in l0

integration, jk⊥þ l⊥j2 ¼ 2½m2
fþ ϵLk l

0− sk3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2−m2

f

q
�≲

T2 ≪ eB as long as jk3j is of the order of or much smaller
than T. Therefore, we have approximated the form factor as
unity. We note that s ¼ sgnðl3Þ, so s shows the direction of
the movement of the antiquark of which the momentum
is l3. The integration range is shown to be l0 > mf in
Appendix B, so we arrive at the expression.1

ϵLk ξk ¼
g2CFm2

f

4π

Z
∞

mf

dl0
nFðl0Þ þ nBðl0 þ ϵLk Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0Þ2 −m2
f

q : ð3:13Þ

The distribution function factor can be rewritten as
nFð1þ nBÞ þ nBð1 − nFÞ, which shows that the physical
process that yields the damping rate above is the pair
annihilation of the quark and the antiquark and its
inverse process, which is drawn in the right panel
of Fig. 3.
As we will see later, the dominant contribution to the

electrical conductivity comes from the quark of which the
momentum is of order T. Thus, we focus on the case in
which jk3j ∼ T. In this case, Eq. (3.13) can be evaluated at
the leading-log order2 as

ϵLk ξk ≃
g2CFm2

f

4π

�
1

2
þ nBðϵLk Þ

� Z
T

mf

dl0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0Þ2 −m2
f

q

≃ g2CFm2
f

4π

�
1

2
þ nBðϵLk Þ

�
ln

�
T
mf

�
; ð3:14Þ

where we have used
R
dl0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q
¼ ln ðl0 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0Þ2 −m2
f

q
Þ and the fact that the dominant contribu-

tion comes from the energy region l0 ≪ T. We see that
the energy of the quark is ϵLk ∼ T and that of the
antiquark is l0 ≪ T, which makes the gluon energy
ϵLk þ l0 ∼ T.

2. mf ≪ M case

Next, we consider the opposite case, mf ≪ M. In this
case, we need to take into account the gluon screening
mass,

ρDðkÞ ¼ ð2πÞsgnðk0Þδðk2 −M2Þ; ð3:15Þ

1The term containing nF was already given in Ref. [42].
2Leading-log approximation means that we regard lnðϵ−1Þ,

where ϵ is a small quantity, as a large number and approximate
lnðϵ−1Þ þOð1Þ≃ lnðϵ−1Þ. In the current case, ϵ is mf=T.
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where

M2 ≡ 1

2
·
g2

π

X
f

jBfj
2π

: ð3:16Þ

Here, we note that the dispersion relation above has a
non-negligible correction when k≲mf [17]. Nevertheless,
such a low-momentum region is found to be irrelevant in
the current calculation because the gluon energy is
ϵLk þ l0 ≳ T, where we have used ϵLk ∼ T. By using this
gluon spectral function, Eq. (3.10) becomes

ϵLk ξk ¼ g2CFm2
f

Z
d4l
ð2πÞ4 ð2πÞsgnðl

0Þδðl2L −m2
fÞ

× ð2πÞsgnðk0 þ l0Þδð½kþ l�2 −M2Þ
× ½Rfðk⊥ þ l⊥Þ�2½nFðl0Þ þ nBðl0 þ k0Þ�jk0¼ϵLk

≃ g2CFm2
f

4

Z
dl0

ð2πÞ sgnðl
0ÞsgnðϵLk þ l0Þ

×
X
s¼�1

θ

�
m2

f þ l0ϵLk − sk3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q
−
M2

2

�

×
θððl0Þ2 −m2

fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q ½nFðl0Þ þ nBðl0 þ ϵLk Þ�; ð3:17Þ

where we have approximated Rfðk⊥ þ l⊥Þ≃ 1.
Let us consider the case jk3j < kc first, where kc ≡

M2
ffiffiffiffi
A

p
=ð2mfÞ ∼M2=mf with A≡ 1 − 4m2

f=M
2. The inte-

gration range is shown to be l� < l0 for s ¼ �sgnðk3Þ in
Appendix B, where l� is defined in Eq. (B4). Because
lþ ∼M2T=m2

f ≫ T, the contribution from s ¼ sgnðk3Þ to
Eq. (3.17) is exponentially suppressed due to the Fermi/
Bose distribution functions. Thus, Eq. (3.17) becomes

ϵLk ξk ≃
g2CFm2

f

4

Z
∞

l−

dl0

ð2πÞ
nFðl0Þ þ nBðl0 þ ϵLk Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0Þ2 −m2
f

q

≃ g2CFm2
f

8π

�
1

2
þ nBðϵLk Þ

�
ln

T

l− þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−Þ2 −m2

f

q

≃ g2CFm2
f

4π

�
1

2
þ nBðϵLk Þ

�
ln

T
M

; ð3:18Þ

where we have used l− ≃M2½1þ ðk3=kcÞ2�=ð4jk3jÞ ≪ T
for jk3j ∼ T ≫ mf and performed the leading-log approxi-
mation in the middle line. This expression is the same as
Eq. (3.14) except for the infrared cutoff in the log; when
mf ≪ M, the screening mass of the gluon gives the cutoff
instead of the current quark mass.
Next, we consider the case of jk3j > kc. Appendix B

shows that the integration range ismf < l0 < l− and lþ < l0

for s ¼ −sgnðk3Þ and mf < l0 for s ¼ sgnðk3Þ. Again, the
contribution from lþ < l0 can be neglected, and Eq. (3.17)
becomes

ϵLk ξk ≃
g2CFm2

f

8π

�Z
l−

mf

þ
Z

∞

mf

�
dl0

nFðl0Þ þ nBðl0 þ ϵLk Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q

≃ g2CFm2
f

8π

�
1

2
þ nBðϵLk Þ

�
ln

T
m2

f

�
l− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−Þ2 −m2

f

q �

≃ g2CFm2
f

4π

�
1

2
þ nBðϵLk Þ

�
ln

T
M

; ð3:19Þ

at the leading-log accuracy. Unexpectedly, the expression is
the same as the other case, Eq. (3.18).

IV. RESULTS

Let us evaluate the conductivity by using the expression
of the quark damping rate. First, we work in the mf ≫ M
case. By using Eq. (3.14), Eq. (3.4) yields

σ33 ¼ e2
X
f

ðqfÞ2Nc
jBfj
2π

β

π

×
Z

∞

mf

dk0nFðk0Þ½1 − nFðk0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k0�2 −m2

f

q
ξkjk0j

¼ e2
X
f

ðqfÞ2Nc
jBfj
2π

8β

g2CFm2
f ln ðT=mfÞ

×
Z

∞

mf

dk0n2Fðk0Þ½1 − nFðk0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k0�2 −m2

f

q
nBðϵLk Þ

≃ e2
X
f

ðqfÞ2Nc
jBfj
2π

4T
g2CFm2

f ln ðT=mfÞ
; ð4:1Þ

where we have used the fact that the integrand quickly
becomes small at k0 ≪ T so that we can safely change the
lower bound of the integral to zero in the last line. The
integrand is suppressed exponentially also in the k0 ≫ T
region. Therefore, the dominant contribution of the integral
above comes from the energy region k0 ∼ T. We also used
the formula

R
dkkn2FðkÞ½1 − nFðkÞ�=nBðkÞ ¼ −T2n2FðkÞ×

½ek=Tðk=T þ 1Þ þ 1� in the last line.
Equation (4.1) is one of the central results of this paper.

Several remarks on this expression are in order:
(1) The conductivity is proportional to jBfj ∼ eB, which

is larger than any other scales that have dimension of
ðenergyÞ2. It is because of large Landau degeneracy
of the quark at LLL in the transverse plane.

(2) The g dependence of the conductivity is ∝ g−2, in
contrast to the B ¼ 0 case (∝ g−4 [32,34]). It is
due to the fact that the 1-to-2 scattering process
instead of the 2-to-2 process, which is the leading
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contribution in the B ¼ 0 case, is responsible for the
determination of the conductivity.
We can understand how this process is allowed

when B is strong as follows. Let us consider the 1-to-
2 process in which a gluon becomes a quark with
momentum k and an antiquark with momentum l.
When B ¼ 0, these particles have dispersion rela-
tions in three dimensions, k2 ¼ l2 ¼ m2

f and
ðlþ kÞ2 ¼ 0. By using the first equation, we see
that the last equation cannot be satisfied3 Physically,
it is clear because a massless particle cannot become
two massive particles. By contrast, when we have
strong B, the quarks have a one-dimensional
dispersion relation while the gluon’s dispersion
relation is still three dimensional: k2L ¼ l2L ¼ m2

f

and ðkþ lÞ2L ¼ ðkþ lÞ2⊥. We note that these equa-
tions are similar to those at B ¼ 0, except for the
right-hand side of the last equation. These equations
can be satisfied, as was seen from the calculation we
have done. It is because the transverse momentum of
the gluon, k⊥ þ l⊥, plays a role of gluon mass in the
last equation so that the gluon can decay into two
massive particles.

(3) The conductivity is proportional to m−2
f , so it

diverges in the massless limit. Physically, it is
because that the scattering process is forbidden
when mf ¼ 0 [29]; in the 1-to-2 scattering process
drawn in Fig. 3, the quark and the antiquark moving
in the opposite direction along B in the initial state
have the same chirality. On the other hand, the gluon
in the final state has no chirality, so the chirality
conservation law forbids such a process in the
massless limit. Since mf is much smaller than other
energy scales, this dependence makes the conduc-
tivity quite large.

(4) The component of the conductivity other than σ33

vanishes as was discussed after Eq. (3.1). Physically,
it is because that the quarks in the LLL can only
move along the direction of the magnetic field, so

that the electric charge cannot move in the trans-
verse plane.

(5) lnðT=mfÞ can be understood from the fact that the
ultraviolet cutoff of the energy of the antiquark
coming from the medium is of order T, while the
infrared cutoff is given by mf, as can be seen
from Eq. (3.14).

Next, we proceed to the case mf ≪ M. Because the
quark damping rate is the same as that in the mf ≫ M case
except for the argument of the log, the conductivity is
obtained by changing the infrared cutoff of the log in
Eq. (4.1), from mf to M:

σ33 ≃ e2
X
f

ðqfÞ2Nc
jBfj
2π

4T
g2CFm2

f ln ðT=MÞ : ð4:2Þ

V. LADDER DIAGRAM SUMMATION

In the calculation of the electrical conductivity without
magnetic field, all the ladder diagrams were found to
contribute at the leading order [30–33]; the suppression
of the ladder diagrams by the positive power of g from the
kernel is cancelled by the negative power of g from the
pinch singularity. The maximum cancellation happens
when the ladder diagram with n kernels contains (nþ 1)
pinch singularities. Because of this cancellation, the order
of the magnitude of the ladder diagram does not depend on
n. This situation persists also in the presence of strong
magnetic field, so we need to sum all the ladder diagrams
for completing the leading-order calculation.
We start by showing that the terms with α2 ∼ α7 and

β2 ∼ β7 in Eq. (2.11) do not contribute at the leading order.
Let us consider Gaaar as an example. As was shown in the
previous subsection, this quantity vanishes at one-loop
order. Switching to the ladder diagram, we consider the one
with one kernel (Kijkl) shown in the left panel of Fig. 4. The
properties Saa ¼ 0 and Krrrr ¼ 0 determine all the indices
in this diagram as in the figure. The two propagators at the
left of the kernel have a pinch singularity because there
appear Sra and Sar with the same momentum, but the ones
at the right do not have the singularity since a pair of Sra
appears. Therefore, the number of the pinch singularity and
that of the collision kernel are equal (1 in this case).

a

a

a

r

r

r

r( )a
r

( )a
a

a

a

a

r

r

r

r

a r

r r

r a

FIG. 4. The ladder diagrams with one kernel (left panel) and more kernels (right panel) for Gaaar. The (blue) square is the kernel Kijkl
introduced later. The two brackets in the right panel represent the two cases indicated in the text.

3Strictly speaking, this equation is satisfied when k and l are
parallel. However, such configuration would be impossible if the
screening effect were taken into account [45].
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It is the case also in the diagram with more kernels. We
consider the diagram shown in the right panel of Fig. 4. As
in the previous diagram, both of the indices in the left part
of the leftmost kernel are r. There are two patterns of the
configuration of the indices in the right part of the leftmost
kernel. One is the case in which both the indices are a
(Krraa), which makes the left part of the indices of the next
kernel r. The other case is that one of the indices is r and the
other is a. Also in this case, both the indices of the left part
in the next kernel are r, in order to have pinch singularity.
From the expression

SrrðkLÞ ¼
�
1

2
− nFðk0Þ

�
½SraðkLÞ − SarðkLÞ�; ð5:1Þ

we see that Srr contains both Sra and Sar. Since the pinch
singularity appears from the pair of Sra and Sar, the pair of
the propagator we are considering should be Srr and Sar

because we cannot have Sra and Sar. Therefore, the two
indices in the left part of the kernel are r in each case. In the
same way, we can apply this argument to the next kernel
and find that the indices of the left part in the rightmost
kernel are r. Then, one can see that the number of the pinch
singularity and that of the collision kernel are equal, by
using the argument used in the case of one kernel. The
situation is the same also for terms other than Gaaar.
Now, let us discuss for Gaarr, by taking a look at the

diagram drawn in Fig. 5. In the same way as in Gaaar, the
leftmost kernel is Krraa or Krrar, and to have pinch
singularity, the indices of the left part of the next kernel
are ðrrÞ. By repeating the same argument, we can list all the
configurations of the indices as in the figure. In any of these
configurations, we see that there are (nþ 1) pinch singu-
larities for the ladder diagram with n kernels. Thus, we see
that Gaarr is much larger than Gaaar and the other terms
in Eq. (2.11).
Now, we can proceed the calculation. For the conven-

ience to check the Ward-Takahashi identity, we introduce
the quark-photon vertex function ΓμðkÞ, which is related to
the four-point function as

Z
l2;lL

Gμνf
aarrðk; k; l; lÞ ¼ Tr½γμSAðkLÞΓνðkÞSRðkLÞ�; ð5:2Þ

which is represented diagrammatically in Fig. 6. From
this figure, one sees that this vertex function has the
indices ðrraÞ in an r/a basis. The integral equation
(Bethe-Salpeter equation) that is used to sum all the
ladder diagrams, the diagrammatic expression of which is
in Fig. 7, reads

ΓμðkÞ ¼ γμ þ
Z
l

X
α;β¼r;a

½Krrαβðk; lÞSαrðlLÞΓμðlÞSrβðlLÞ�:

ð5:3Þ

We note that the kernel Krrαβ generally has a spinor
structure. Also, notice that only the vertex with the
indices ðrraÞ appears. One may think that the other
nonzero vertex, which has the indices ðaaaÞ, can appear
in the second term in the right-hand side. Nevertheless, in
that case, the property Saa ¼ 0 forces us to set the indices
of the kernel as Krrrr, which vanishes identically, so only
the vertex with the indices ðrraÞ appears in the equation
above. By using Eq. (5.1), we pick up only the pairs of
SarðlLÞ and SraðlLÞ, which generate pinch singularity, in
the summation of α, β above:

ΓμðkÞ ¼ γμ þ
Z
l

�	
Krraaðk; lÞ

þ
�
1

2
− nFðl0Þ

�
ðKrrarðk; lÞ − Krrraðk; lÞÞ




× SarðlLÞΓμðlÞSraðlLÞ
�
: ð5:4Þ

The kernel is given by the one-gluon exchange process at
the leading order (lower panel of Fig. 7). With this kernel,
Eq. (5.4) becomes

a

a

r

r

r

r

a
a

a
r

r

r

r

r

a
a

a
r

FIG. 5. One of the ladder diagram for Gaarr. The four brackets
represent the two cases indicated in the text.

=

a

a

r

r

r

r
aa

a

FIG. 6. The relation between Gaarr and Γ. The (red) square
represents Gaarr. The black blob represents a vertex function Γμ.

= +

=

r

r

a
r

r

a
r

r

FIG. 7. Bethe-Salpeter equation (upper panel) and the explicit
form of the kernel for the one-gluon exchange (lower panel).
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ΓμðkÞ ¼ γμ − g2CF

Z
l
½Rfðk⊥ − l⊥Þ�2

	
Dαβ

rr ðk − lÞ

þ
�
1

2
− nFðl0Þ

�
ðDαβ

raðk − lÞ −Dαβ
arðk − lÞÞ




× γαSarðlLÞΓμðlÞSraðlLÞγβ
¼ γμ þ g2CF

Z
l
γαSAðlLÞΓμðlÞSRðlLÞγβραβD ðk − lÞ

× ðnFð−l0Þ þ nBðk0 − l0ÞÞ½Rfðk⊥ − l⊥Þ�2; ð5:5Þ

where we have used Dμν
rr ðkÞ ¼ −i½1=2þ nBðk0Þ�½Dμν

R ðkÞ −
Dμν

A ðkÞ� andDμν
ra=ar ¼ −iDμν

R=A in the last line. This equation
is shown to be consistent with the Ward-Takahashi (WT)
identity in Appendix C. We note that only the on-shell
gluon appears at the integral above. We decompose the
spinor structure as SAðkLÞΓμðkÞSRðkLÞ ¼ ðkL þmfÞ×
PþρSðkLÞAμðkÞ=2, where Aμ does not have a spinor
structure. Then, the integral equation for Aμ becomes

ξkk0AμðkÞ ¼ kμ − g2CFm2
f

Z
l
ρSðlLÞρDðk − lÞAμðlÞ

× ðnFð−l0Þ þ nBðk0 − l0ÞÞ½Rfðk⊥ − l⊥Þ�2;
ð5:6Þ

where we have used Eqs. (3.2), (3.9), ðkLþmfÞγμðkL þ
mfÞ¼2kμðkLþmfÞ, and γαðlL þmfÞγβPαβ

∥ ðk − lÞ ¼
−ðkL þmfÞ, which are valid for the on-shell kL and lL.
From the expression above, we see that

A3ðk0; k3;k⊥Þ ¼ −A3ðk0;−k3;k⊥Þ ¼ −A3ð−k0; k3;k⊥Þ
ð5:7Þ

by looking at the integral kernel. By changing the sign of l
and using this property and the expression of the damping
rate (3.10), Eq. (5.6) for μ ¼ 3 becomes

k3 ¼ g2CFm2
f

Z
l
ρSðlLÞρDðkþ lÞ½A3ðkÞ − A3ðlÞ�

× ðnFðl0Þ þ nBðk0 þ l0ÞÞ½Rfðk⊥ þ l⊥Þ�2: ð5:8Þ

This is the integral equation that is necessary for the
complete leading-order analysis. From the definition of
the AμðkÞ below Eq. (5.5), the relation to the four-point
function is

Z
l2;lL

Gμνf
aarrðk; k; l; lÞ ¼ ρSðkLÞkμAνðkÞ: ð5:9Þ

One can see that these equations are equivalent to the
linearized Boltzmann equation in Appendix D.
Now, we perform iteration in Eq. (5.8) to see the

effect of the ladder diagram summation. In the

mf ≫ M case, from Eq. (3.14), the zeroth-order solution
reads

A3
ð0ÞðkÞ ¼

k3

ξkk0

¼ 8πk3nFðk0Þ
g2CFm2

fnBðk0Þ ln ðT=mfÞ
: ð5:10Þ

By iterating it into Eq. (5.8), we have

g2CFm2
f

Z
l
ρSðlLÞρDðkþ lÞA3

ð0ÞðlÞ

× ðnFðl0Þ þ nBðk0 þ l0ÞÞ½Rfðk⊥ þ l⊥Þ�2

¼ 1

ln ðT=mfÞ
X
s¼�1

s

×
Z

∞

mf

dl0ðnFðl0Þ þ nBðk0 þ l0ÞÞ nFðl
0Þ

nBðl0Þ
; ð5:11Þ

which is found to be zero after summing over s,
corresponding to the cancellation of the contributions
coming from positive and negative l3. Therefore, the
ladder summation is not necessary at the leading-order
calculation.
On the other hand, in the mf ≪ M case, the zeroth-

order solution is A3
ð0ÞðkÞ¼8πk3nFðϵLk Þ=½g2CFm2

fnBðϵLk Þ×
lnðT=MÞ�, and the first iteration reads

g2CFm2
f

Z
l
ρSðlLÞρDðkþ lÞA3

ð0ÞðlÞ

× ðnFðl0Þ þ nBðk0 þ l0ÞÞ½Rfðk⊥ þ l⊥Þ�2

¼ 1

ln ðT=MÞ
Z

∞

l−

dl0
nFðl0Þ
nBðl0Þ

ðnFðl0Þ þ nBðk0 þ l0ÞÞ;

ð5:12Þ

where we have considered the case jk3j < kc and retained
only the s ¼ sgnðk3Þ term. The integral above does not
contain any infrared singularity, so this quantity is of order
T= lnðT=MÞ. This is smaller than the left-hand side of
Eq. (5.8), k3 ∼ T, by the factor of ½lnðT=MÞ�−1, so taking
only the zeroth-order solution (5.10) is enough at the
leading-log accuracy. One can show that the ladder sum-
mation is unnecessary also in the jk3j > kc case in the
same way.
Finally, we verify the assumption made above Eq. (2.8);

that is, the integral
R
l2 G

μνf
1122ðk; k; l; lÞ does not depend on

k2. According to Eq. (5.9), this verification would be
accomplished if one could show that AνðkÞ does not depend
on k2. In both of the mf ≫ M and mf ≪ M cases, the
zeroth-order solution A3

ð0ÞðkÞ does not depend on k2. In the

former case, this completes the confirmation because
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A3
ð0ÞðkÞ is already the full solution at the leading order. In

the latter case, we see that iteration does not yield k2

dependence by looking at Eq. (5.12), so the assumption is
valid also in this case.

VI. IMPLICATION IN HEAVY-ION COLLISION

In this section, we briefly discuss possible implications
for the heavy-ion collisions from our results obtained in the
previous section. We evaluate the value of the conductivity
by using typical values of T, B, g, and mf realized in the
heavy-ion collision and make a comparison with the
preceding results at B ¼ 0. We also discuss the back-
reaction from the induced current to the electromagnetic
field. Furthermore, we discuss the effect of magnetic field
on the production rate of soft dileptons.

A. Evaluation of conductivity

Having the heavy-ion collisions in mind, we use the
values for the parameters,

αs ≡ g2

4π
¼ 0.3;

mf ¼ 3 MeVðuÞ; 5 MeVðdÞ; 100 MeVðsÞ
eB ¼ 10m2

π ¼ ð443 MeVÞ2; ð6:1Þ

where mπ ¼ 140 MeV is the pion mass. To highlight the
effect of the magnetic field, we have taken the very large
value for eB. With these parameters, the gluon screening
mass (3.16) is approximately M ≃ 140 ð160Þ MeV in the
Nf ¼ 2 (3) case. Because it satisfies mf < M, we use our
results (4.2) in the case mf ≪ M from now on.
First, let us compare the parametric behaviors of our

result at finite B and of the result at B ¼ 0. From Eq. (4.2),
the conductivity along the magnetic field is parametrically
evaluated as σ33=e2 ∼ eBT=½g2m2

f lnðT=MÞ�. On the other
hand, the parametric estimate for B ¼ 0 is σB¼0=e2 ∼
g−4Tðln g−1Þ−1 [32,34]. Thus, their ratio is given by

σ33=σB¼0 ∼ g2
eB
m2

f

≃ 8.2 × 104; ð6:2Þ

where we have neglected the log factor and used the
parameters given in Eq. (6.1). We see that the conductivity
in the strong magnetic field is much larger than that without
the magnetic field, mainly because of the small value of the
current quark mass.
To show our results in a more useful form for the

phenomenology and to explicitly indicate the region of
validity of our calculation, we show a plot of σ33 as a
function of T for two- and three-flavor cases (Nf ¼ 2 and 3)
in Fig. 8. In Eq. (4.2), we take Nc ¼ 3 and e2 ¼ 0.092 from
α≡ e2=ð4πÞ ¼ 1=137. The values for g, mf, and

ffiffiffiffiffiffi
eB

p
are

given in Eq. (6.1). The red and purple areas are shown
to exclude the temperature ranges in T <

ffiffiffiffiffiffiffiffiffiffi
αseB

p
andffiffiffiffiffiffi

eB
p

< T, respectively, where our assumption M ≪ T ≪ffiffiffiffiffiffi
eB

p
is not valid. Therefore, our result is expected to be

reliable only in the window in between, and there are
crossover transitions to the regions of other hierarchies near
the boundaries. The reference results at B ¼ 0 are taken
from the numerical solution of the Boltzmann equation4

(BAMPS) [46] for massless three-flavor quarks with
2-to-2 collision effects and from the two-flavor lattice
QCD simulation [47] as an example of nonperturbative
calculations. Though there is a deviation between these two
reference results by a factor of ∼10, both of them are almost
constant in all the temperature range, which is consistent
with the parametric behavior informed from the perturba-
tive calculations discussed above. Compared with the result
of BAMPS (lattice) at B ¼ 0, our result is larger by a factor
∼104 (∼105) in all the temperature range. Thus again, we
see that the strong magnetic field significantly increases the
conductivity. Nevertheless, when T is as large as or much
larger than

ffiffiffiffiffiffi
eB

p
(the purple area in the figure), the higher

Landau level, the scattering process of which is not sup-
pressed bym2

f, is expected to contribute to the conductivity.
Therefore, σ33 in such a temperature region is likely to be
much smaller than our result, so that the smooth crossover
from our result to the perturbative result at B ¼ 0 (BAMPS)
is realized.

FIG. 8. The orange and blue curves show our results (4.2) for
two- and three-flavor cases, respectively. The parameters, g, mf,
and eB, are set to the values given in Eq. (6.1). The red (purple)
area in the left (right) part shows the temperature range that does
not satisfy

ffiffiffiffiffiffiffiffiffiffi
αseB

p
< T (T <

ffiffiffiffiffiffi
eB

p
). The red points are the result

of BAMPS at B ¼ 0 for the massless three-flavor case [46], in
which αs is fixed with the value in Eq. (6.1). The green points
with statistical error bars are the result of two-flavor lattice QCD
at B ¼ 0 with pion mass ∼270 MeV [47].

4We could not find the numerical prefactor of the conductivity
at B ¼ 0 in perturbative QCD, so instead we plot the value
obtained with this model.
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We also comment on the contribution from the s quark.
Our result (4.2) is proportional to m−2

f , which is therefore
quite sensitive to the current quark mass when it is small.
Because of this enhancement, the contributions of the u and
d quarks dominate over the s-quark contribution. In Fig. 8,
we confirm that the two-flavor result is barely changed by
adding the s-quark contribution.

B. Backreaction from induced current to
electromagnetic field

We briefly discuss the effect of the induced current on
the dynamics of the electromagnetic field. The Maxwell
equations read

∇ ×E ¼ −∂tB; ð6:3Þ

∂tEi ¼ ð∇ × BÞi − σijEj: ð6:4Þ

When σij ¼ σδij, which is the case when E and B are weak,
these equations lead to ∇2B ¼ ð∂2

t þ σ∂tÞB. If σ is large
enough, it reduces to

∇2B ¼ σ∂tB: ð6:5Þ

This expression indicates that the lifetime of the magnetic
field is parametrically τ ∼ σL2, where L is the characteristic
length of the system [24–26].
On the other hand, when σij ¼ σ33δi3δj3, which is

realized when B is quite strong, we get the following
equation for B3 from the Maxwell equations:

∇2B3 ¼ ∂2
t B3: ð6:6Þ

This equation does not contain σ33, so the backreaction to
the 3-component of the magnetic field is found to be absent
in the LLL approximation. For the current to have the
transverse components, the transitions between the Landau
levels need to be activated. Therefore, more quantitatively,
the other components of σij are suppressed by the
Boltzmann factor e−

ffiffiffiffi
eB

p
=T, so also the backreaction from

the induced current to B3 should be suppressed by the same
factor. This suppression persists until the magnetic field
becomes weaker and becomes of order

ffiffiffiffiffiffi
eB

p
∼ T in the

time evolution of the heavy-ion collision.

C. Soft dilepton production rate

It was discussed that the conductivity and the production
rate of the soft dilepton are related in the case of B ¼ 0
[48]. We apply the same argument to our case, B ≠ 0. The
production rate of the dilepton with momenta p1 and p2

reads

dΓ
d4p

¼ −
α

24π4p2
gμνΠ

μν
12ðpÞ; ð6:7Þ

where p≡ p1 þ p2 is a momentum of the virtual photon
that decays into the dilepton. When p is large enough so
that the effect of B on the virtual photon is negligible, we
expect that this expression is reliable. This condition is
parametrically, p ≫ e

ffiffiffiffiffiffi
eB

p
, whose right-hand side is the

energy scale of the photon self-energy due to the magnetic
field [36].
The current correlator has a form Πμν

12ðpÞ ¼ Π∥
12ðpÞ ×

Pμν
∥ ðpÞ for general p at the LLL approximation [28,36].

Because we have Eq. (2.4) in the jpj ¼ 0 limit, we have

Πjj
12ðω;p ¼ 0Þ ¼ 2Tσ33: ð6:8Þ

We also need to assume p ≪ ξk ∼ g2m2
f=T lnðT=MÞ to

apply this result, in which the collision effect is essentially
important.
Summarizing these expressions, we obtain the result for

the dilepton production rate at p ¼ 0 as

dΓ
d4p

¼ α

12π4ω2
Tσ33; ð6:9Þ

for ω satisfying e
ffiffiffiffiffiffi
eB

p
≪ ω ≪ g2m2

f=T lnðT=MÞ. Here,
we have used gμνP

μν
∥ ðpÞ ¼ −1. This expression shows that

the production rate is proportional to the conductivity,
which is a large value, so it suggests that the production of
the soft dilepton may be significantly enhanced by the
magnetic field.
We note that there are difference of factor 3 compared

with the expression for the B ¼ 0 case [48]. It is because
the conductivity tensor is isotropic when B ¼ 0 so that
there are three nonzero components (x, y, and z), while it
has only one nonzero component (z), the direction of which
is along the magnetic field, in the presence of strong
magnetic field.

VII. SUMMARY AND CONCLUDING REMARKS

We computed the electrical conductivity of QGP in
magnetic field by using LLL approximation, starting from
quantum field theory by taking into account the 1-to-2
scattering process for the mf ≫ M and mf ≪ M cases. We
showed that the one-loop approximation suffices at the full
leading order for the mf ≫ M case and at the leading-log
approximation for the mf ≪ M case. We found that the
conductivity tensor is nonzero only in the (33) component,
and it is quite a large value mainly due to the small current
quark mass. We also discussed possible implications to the
heavy-ion collision experiment, such as the backreaction of
the induced current to the electromagnetic field and the soft
dilepton production rate.
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Our result suggests that σ33 is also enhanced by the
large degeneracy factor of eB=ð2πÞ, when B is strong
enough. This behavior is in contrast with the results from
the lattice QCD [6] and the Boltzmann equation [10,11] for
weak B, which suggest that the conductivity is independent
of B.
Here, a few remarks on the implications of our result

are in order. As was mentioned in the Introduction, the
electrical conductivity is an important quantity in the
magnetohydrodynamics. Implementation of theoretical
prediction of this quantity, including ours, needs to be
done in the numerical simulation. Also, it was suggested
that the anisotropy of the conductivity tensor yields the
elliptic flow (v2) of the photon [49]. Our result shows very
strong anisotropy, so it may have a large effect on the
photon v2. Another application is directed to the Dirac
semimetal realized in the condensed matter experiment
[50]. The quasiparticles appearing in this material have
properties of a chiral fermion with the relativistic dispersion
relation. The energy scale of the magnetic fields applied in
the experiments is much larger than the temperature: T ¼
20 K and B ¼ 2 ∼ 9 T are realized in Ref. [50], so the
energy scales for the temperature and the magnetic field are
kBT ¼ 1.7 × 10−3 eV and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eBℏc2

p
¼ 11 ∼ 23 eV, respec-

tively. Thus, our assumption (kBT ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eBℏc2

p
) is expected

to be satisfied, and our formalism may be applicable to this
system, though the explicit expression for the quark
damping rate may need to be modified depending on the
specific form of interactions.
We have not gone beyond the leading-log approxima-

tion, for which one needs to fully evaluate the quark
damping rate and solve the integral equation (5.8) for
the mf ≪ M case. We also need to consider the 2-to-2
scattering effect at this order.5 Also, to explore the
intermediate regime

ffiffiffiffiffiffi
eB

p
∼ T, one needs to go beyond

the LLL approximation. Finally, analyzing the backreaction
from the induced current to the electric field and the
transverse components of the magnetic field (B1, B2)
would be an interesting task. We leave these interesting
tasks to a future work.
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APPENDIX A: GAUGE-FIXING PAREMETER
INVARIANCE

The gluon spectral function generated from Eq. (3.8) is

ρμνD ðkÞ ¼ 2πsgnðk0Þkμkν
�
δðk2LÞ

	
1

k2⊥
þ Re

1

k2 −Ω∥ðkÞ



−
δðk2Þ
k2⊥

þ ðα − 1Þδ0ðk2Þ
�
þ ½Eq: ð3.9Þ�; ðA1Þ

where we have used Im½ðk0þiϵÞ2−k2�−2¼πsgnðk0Þδ0ðk2Þ.
We note that they are generated from the gauge-fixing term
and the denominator of the projection operators in
Eq. (3.8). We see that all the terms are proportional to
kμkν as long as μ, ν ¼ 0, 3, which is the case in the
calculation of the quark damping rate in the LLL
approximation. Therefore, the trace in Eq. (3.7) becomes
proportional to

Tr½ðkL þmfÞγLμ ðlL þmfÞPþγLν �ðk − lÞμðk − lÞν

¼ 1

2
Tr½kLγLμ lLγLν þm2

fγ
L
μ γ

L
ν �ðk − lÞμðk − lÞν

¼ 2f2½kL · ðk − lÞL�½lL · ðk − lÞL�
− ðk − lÞ2L½kL · lL −m2

f�g; ðA2Þ

which vanishes by using the on-shell conditions for kL and
lL. Therefore, only Eq. (3.9) contributes to the quark
damping rate, and the other terms in the gluon spectral
function do not.
The contribution to the ladder summation [Eq. (5.5)] is

also found to be zero in the same way.

APPENDIX B: INTEGRATION RANGE IN 1-TO-2
SCATTERING PROCESS

We evaluate the range of the l0 integral in the collision
kernel of the 1-to-2 scattering process in this Appendix.

1. mf ≫ M case

We start with the mf ≫ M case. The two step functions
in Eq. (3.12) determine the integration range. The first one
gives

l0 < mf; mf < l0: ðB1Þ

The second one leads to

fðl0Þ≡m2
f þ ϵLk l

0 − sk3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q
> 0; ðB2Þ

where s is the sign of l3. The solution of f ¼ 0 is l0 ¼ −ϵLk
when s ¼ −sgnðk3Þ and does not exist when s ¼ sgnðk3Þ.
It shows that fðl0Þ does not cross the y axis at positive l0, so
the properties fðmfÞ ¼ mfðmf þ ϵLk Þ > 0 and fð∞Þ ¼ ∞5We thank Ho-Ung Yee for pointing out this fact.

ELECTRICAL CONDUCTIVITY OF QUARK-GLUON PLASMA … PHYSICAL REVIEW D 94, 114032 (2016)

114032-13



lead us to the result that fðl0Þ is larger than zero for positive
l0. For negative l0, we have the properties fð−mfÞ ¼
−mfðϵLk −mfÞ < 0 and fð−∞Þ ¼ −∞. At most, only one
solution of f ¼ 0 exists in the negative l0 region, so the
properties above show that fðl0Þ < 0 for negative l0.
Summarizing these observation and considering
Eq. (B1), we see that the integration range is l0 > mf.

2. mf ≪ M case

Next, we evaluate the integration range in the case of
mf ≪ M. In this case, the function f is modified by the
effect of M as

fðl0Þ≡m2
f þ ϵLk l

0 − sk3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0Þ2 −m2

f

q
−
M2

2
: ðB3Þ

Its value at a few specific points is fð�∞Þ ¼ �∞ and
fð�mfÞ ¼ m2

f �mfϵ
L
k −M2=2. fð−mfÞ is always nega-

tive because of M ≫ mf, and fðmfÞ is negative (positive)
when jk3j < kc (jk3j > kc), where kc ≡M2

ffiffiffiffi
A

p
=ð2mfÞ

with A≡ 1 − 4m2
f=M

2.

a. jk3j < kc case

When jk3j < kc, the solution of fðl0Þ ¼ 0 is l0 ¼ l� for
s ¼ �sgnðk3Þ, where

l� ≡ M2

2m2
f

�
ϵLk

�
1 −

2m2
f

M2

�
� jk3j

ffiffiffiffi
A

p �
: ðB4Þ

Combining this property and the behaviors above, we see
that the range where fðl0Þ > 0 is satisfied is

l� < l0; ðB5Þ

for s ¼ �sgnðk3Þ.

b. jk3j > kc case

When jk3j > kc, the solution of fðl0Þ ¼ 0 is l0 ¼ lþ and
l0 ¼ l− for s ¼ sgnðk3Þ, and there is no solution for
s ¼ −sgnðk3Þ. Combining this property and the behaviors
above, we see that the range where fðl0Þ > 0 is satisfied is

mf < l0 < l−; lþ < l0 ðfor s ¼ −sgnðk3ÞÞ;
mf < l0 ðfor s ¼ −sgnðk3ÞÞ: ðB6Þ

APPENDIX C: WARD-TAKAHASHI IDENTITY

We show that Bethe-Salpeter equation (5.5) that is
used to sum all the ladder diagrams is consistent with
the WT identity. The identity for the vertex function
reads [51]

pμΓμðkþ p; kÞ ¼ ½SAðkLÞ�−1 − ½SRðkL þ pLÞ�−1; ðC1Þ

where Γμðkþ p; kÞ is a vertex function where the two
quarks have momenta pþ k and k and p is the
momentum of the photon. This equation reduces to

pμΓμðkÞ ¼ −2iImΣRðkLÞ ðC2Þ
at p → 0.
By multiplying Eq. (5.5) with pμ, we get

pμΓμðkÞ ¼ pþ g2CF

Z
l
γα½SRðlLÞ − SAðlLÞ�γβραβD ðk − lÞ

× ðnFð−l0Þ þ nBðk0 − l0ÞÞ½Rfðk⊥ − l⊥Þ�2;
ðC3Þ

where we have used the WT identity (C1) in the right-hand
side. By taking the limit p → 0, the right-hand side
becomes

ig2CF

Z
l
γαðlL þmfÞPþρSðlLÞγβραβD ðk − lÞ

×ðnFð−l0Þ þ nBðk0 − l0ÞÞ½Rfðk⊥ − l⊥Þ�2; ðC4Þ

which is found to be equal to −2iImΣRðkLÞ by using
Eq. (3.6). This equation is none other than the WT identity
in the small p limit, Eq. (C2), so we see that the Bethe-
Salpeter equation is consistent with the WT identity.

APPENDIX D: EQUIVALENCE TO LINEARIZED
BOLTZMANN EQUATION

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in the
one spatial dimension [35],

½∂T þ v3∂Z þ eqfE3ðT; ZÞ∂k3 �nfðk3; T; ZÞ ¼ C½n�; ðD1Þ

where nfðk3; T; ZÞ is the distribution function for the quark
with flavor index f of which the momentum is k3 and
space-time position is ðT; ZÞ, v3 ≡ ∂ϵLk =ð∂k3Þ ¼ k3=ϵLk ,
and C½n� is the collision integral, the expression of which
will be given later.
We linearize the distribution function in terms of E as

nfðk3; T; ZÞ ¼ nFðϵLk Þ þ δnfðk3; T; ZÞ. Then, the linear-
ized version of Eq. (D1) reads

eqfE3ðT; ZÞβv3nFðϵLk Þ½1 − nFðϵLk Þ� ¼ C½δnfðk3; T; ZÞ�:
ðD2Þ

Here, we consider the case in which the electric field is
constant and homogeneous so that δnf does not depend on

KOICHI HATTORI and DAISUKE SATOW PHYSICAL REVIEW D 94, 114032 (2016)

114032-14



T and Z. The induced current is given by the distribution
function as

j3ðT; ZÞ ¼ 2e
X
f

qfNc
jBfj
2π

Z
dk3

2π
v3δnfðk3; T; ZÞ; ðD3Þ

where we have taken into account the color, Landau, and
quark/antiquark degeneracies.
First, we examine the relaxation time approximation,

C½δnf�≃ −τ−1k δnf, with τk being the relaxation time. Then,
the current reads

j3 ¼ e2
X
f

q2fNc
jBfj
2π

4βE3

Z
∞

0

dk3

2π
ðv3Þ2τk

× nFðϵLk Þ½1 − nFðϵLk Þ�

¼ e2
X
f

q2fNc
jBfj
2π

2

π
βE3

Z
∞

mf

dk0v3τk

× nFðk0Þ½1 − nFðk0Þ�: ðD4Þ

By using j3 ¼ σ33E3, we get

σ33 ¼ e2
X
f

q2fNc
jBfj
2π

2

π
β

Z
∞

mf

dk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 −m2

f

q
k0

τk

× nFðk0Þ½1 − nFðk0Þ�: ðD5Þ

By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ξk ¼ τ−1k =2.
Let us go beyond the relaxation time approximation and

evaluate the collision integral. For the 1-to-2 scattering, the
collision integral is given by

C½n� ¼ 1

2ϵLk

Z
l
ρDðkþ lÞρSðlLÞjMj2½Rfðk⊥ þ l⊥Þ�2

× fnBðϵLk þ l0Þ½1 − nfðk3Þ�½1 − nfðl3Þ�
− ½1þ nBðϵLk þ lÞ�nfðk3Þnfðl3Þg; ðD6Þ

where the matrix element is given by

jMj2 ¼ g2CFP
∥
μνðkþ lÞTr½ðlL −mfÞγμPþðkL þmfÞγν�

¼ 4g2CFm2
f: ðD7Þ

The linearized version of Eq. (D6) is

C½δnf� ¼ −
2g2CFm2

f

ϵLk

Z
l
ρDðkþ lÞρSðlLÞ½Rfðk⊥ þ l⊥Þ�2

× fδnfðk3Þ½nBðϵLk þ l0Þ þ nFðl0Þ�
− δnfðl3Þ½nBðϵLk þ l0Þ þ nFðϵLk Þ�; ðD8Þ

where we note that δnfðl3Þ has a minus sign because the
deviation of the antiquark distribution function from the
equilibrium value has an opposite sign compared with that
of the quark. The first term becomes −τ−1k δnfðk3Þ in the
relaxation time approximation. By comparing this expres-
sion with Eq. (3.10), we see that it reproduces the result of
ξk in the diagrammatic calculation.
By introducing Wk that satisfies δnfðk3Þ ¼

eqfβnFðϵLk Þ½1 − nFðϵLk Þ�WkE3=2, Eq. (D2), the left-hand
side of which is replaced with Eq. (D8), becomes

g2CFm2
f

Z
l
ρDðkþ lÞρSðlLÞ½Rfðk⊥ þ l⊥Þ�2

× ½Wk −Wl�½nBðϵLk þ l0Þ þ nFðl0Þ� ¼ k3; ðD9Þ

where we have used nFðl0Þ½1 − nFðl0Þ�½nBðϵLk þ l0Þ þ
nFðϵLk Þ� ¼ nFðϵLk Þ½1 − nFðϵLk Þ�½nBðϵLk þ l0Þ þ nFðl0Þ�. The
relation to the current is, by using Eq. (D3),

j3 ¼ e2
X
f

q2fNc
jBfj
2π

E3β

Z
∞

mf

dk0

π
nFðk0Þ½1 − nFðk0Þ�Wk:

ðD10Þ

By comparing this expression with Eqs. (2.13) and (5.9)
and Eq. (D9) with Eq. (5.8), we see that solving the
linearized Boltzmann equation taking into account the full
collision integral corresponds to the summation of the
ladder diagram in diagrammatic analysis, by identify-
ing Wk ¼ A3ðkÞ.
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