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This paper is the first attempt to build a color glass condensate/saturation model based on the next-to-
leading-order (NLO) corrections to linear and nonlinear evolution in QCD. We assume that the
renormalization scale is the saturation momentum and find that the scattering amplitude has geometric
scaling behavior deep in the saturation domain with the explicit formula of this behavior at large τ ¼ r2Q2

s .
We build a model that includes this behavior, as well as the known ingredients: (i) the behavior of the
scattering amplitude in the vicinity of the saturation momentum, using the NLO Balitsky-Fadin-Kuraev-
Lipatov kernel, (ii) the pre-asymptotic behavior of ln ðQ2

sðYÞÞ, as a function of Y, and (iii) the impact
parameter behavior of the saturationmomentum, which has exponential behavior∝ exp ð−mbÞ at large b. We
demonstrate that the model is able to describe the experimental data for the deep inelastic structure function.
Despite this, our model has difficulties that are related to the small value of the QCD coupling atQsðY0Þ and
the large values of the saturation momentum, which indicate the theoretical inconsistency of our description.
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I. INTRODUCTION

This paper is the next step (see Ref. [1]) in our attempt
to find an approach, based on color glass condensate
(CGC)/saturation effective theory for high-energy QCD
(see Ref. [2] for a review), which includes the impact
parameter dependence of the scattering amplitude.
Unfortunately, at the moment, our efforts reduce to building
a model which incorporates the main features of the
solution of the CGC/saturation equations, and also contains
a number of phenomenological parameters for the non-
perturbative QCD description of the large impact parameter
dependence of the scattering amplitude.
We are doomed to build models to introduce the main

features of the CGC/saturation approach, since the CGC/
saturation equations do not reproduce the correct behavior
of the scattering amplitude at large impact parameters (see
Refs. [3,4]). Such a failure leads to the conclusion that we
cannot trust the solution of the CGC/saturation equations,
without the long-distance nonperturbative corrections at
large impact parameters.
Indeed, for the scattering of a dipole with size r

with the nucleus, the CGC/saturation equations [5,6]
(see Eq. 2.6 in Ref. [7]) can be rewritten for

Nðr; Y;QT ¼ 0Þ ¼ R d2bNðr; Y; bÞ using the natural
assumption that r ≪ RA, where RA is the size of the
nucleus. Nðr; Y;QT ¼ 0Þ is the infrared-safe observable
in perturbative QCD and, hence, we can expect that
nonperturbative corrections for it will be small. The radius
of the dipole increases with energy growth, but from high-
energy phenomenology we learned that this increase is of
the order α0IPY ≪ RA for Y ≤ 40. Implicitly, we assume that
the nonperturbative corrections change the power-like
increase with energy of the interaction radius (which
follows from perturbative QCD [3,4]) to a logarithmic
one: we believe that this change does not lead to the
violation of the CGC/saturation equations.
However, for the interaction with a proton we do not

even have this rather weak argument, and for a hadron
target we anticipate large corrections to the CGC/saturation
equations. Real progress in the theoretical understanding of
the confinement of quarks and gluons has not yet been
made, and as a result, we do not know how to change the
CGC/saturation equations to incorporate confinement. We
have to build a model which includes both theoretical
knowledge that stems from the CGC/saturation equations,
and the phenomenological large-b behavior, which do not
contradict theoretical restrictions [8,9].
Numerous attempts have been made over the past two

decades (see Refs. [1,10–29]) to build such models.
Therefore, we clarify, in the Introduction, the aspects of
our model which are different.
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The main difference of this paper from others, is that we
use the nonlinear Balitsky-Kovchegov (BK) equation in the
next-to-leading order (NLO) of perturbative QCD, that has
been proven in Refs. [30–32]. The form of the BK equation
in the NLO shows that we can apply the method, suggested
in Ref. [33], for determining the behavior of the solution to
the BK equation deep inside the saturation region. This
behavior in the NLO is given in this paper. It shows
geometric scaling behavior as in the leading order of
perturbative QCD, for the renormalization scale which is
equal to the saturation momentum Qs.
We only introduce the nonperturbative impact parameter

behavior in the saturation momentum, accordingly to the
spirit of the geometric scaling behavior of the scattering
amplitude [34,35], and to the semiclassical solution to
the CGC/saturation equations [12]. Similar assumptions
for the nonperturbative b behavior of the scattering ampli-
tude, are typical for most models on the market
(see Refs. [17–21,24,29]). In the choice of the b behavior
we follow the procedure, suggested in Ref. [1]:

Q2
sðb; YÞ ∝ ðSðb;mÞÞ1γ̄ ð1Þ

where SðbÞ is the Fourier image of SðQTÞ ¼ 1=ð1þ Q2
T

m2Þ2
and the value of γ̄ will be discussed below. Such b
dependence results in the large-b dependence of the scatter-
ing amplitude, in the vicinity of the saturation scale which
is proportional to exp ð−mbÞ at b ≫ 1=m, in accordance
with the Froissart theorem [8]. In addition, we reproduce the
large-QT dependence of this amplitude proportional to Q−4

T
which follows from the perturbative QCD calculation [9].
In building our model we follow the strategy, suggested in

Ref. [14], which consists of matching the behavior of the
scattering dipole amplitude deep in the saturation domain,
that is found using the method of Ref. [33], and the behavior
of the scattering amplitude in the vicinity of the saturation
scale [2,36,37]. In this paper, we follow the procedure of
Refs. [1,38] which allows us to combine the exact form of
the solution inside the saturation domain and in the vicinity
of the saturation scale. InRefs. [10–29] only the characteristic
behavior of the solution but not the exact form for it, was used.
We find the behavior of the amplitude in the vicinity

of the saturation scale, using the NLO corrections to the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron, calcu-
lated in Ref. [39] and the resummation, suggested in
Ref. [40]. Such behavior has been discussed in
Refs. [41,42]. In searching the parameters of the amplitude
we use the procedure,1 suggested in Ref. [42], for the full
NLO kernel [40] as it has been explored in Ref. [41].

II. THEORETICAL INPUT

A. General formula

The general formula for deep inelastic processes takes
the form (see Fig. 1 and Ref. [2] for the review and
references therein)

NðQ; Y; bÞ ¼
Z

d2r
4π

Z
1

0

dzjΨγ� ðQ; r; zÞj2Nðr; Y; bÞ ð2Þ

where Y ¼ ln ð1=xBjÞ and xBj is the Bjorken x. z is the
fraction of energy carried by the quark. Q is the photon
virtuality. b denotes the impact parameter of the scattering
amplitude.
Equation (2) splits the calculation of the scattering

amplitude into two stages: the calculation of the wave
functions, and estimates of the dipole scattering amplitude.

B. Saturation momentum in the NLO

It is well known that the energy dependence of the
saturation momentum can be found from the solution of the
linear BFKL equation [34,36,37,43,44]. In the leading-
order BFKL equation the saturation momentum Qs at large
values of rapidity has the following form:

Q2
s ∝ eλY where λ ¼ ᾱS

χðγcrÞ
1 − γcr

and

χLOðγÞ ¼ 2ψð1Þ − ψðγÞ − ψð1 − γÞ ð3Þ
where ψðzÞ is the digamma function. γcr is the solution of
the equation

χðγcrÞ
1 − γcr

¼
���� dχðγcrÞdγcr

����: ð4Þ

In the NLO, the spectrum of the BFKL equation has been
found in Ref. [39] and it has the following form:

ωðγÞ ¼ ᾱSχ
LOðγÞ þ ᾱ2Sχ

NLOðγÞ: ð5Þ
The explicit form of χNLOðγÞ is given in Ref. [39] (see
Appendix A). However, χNLOðγÞ turns out to be singular at

N(r,Y; b)

)notorp( p)notorp( p

FIG. 1. The graphic representation of Eq. (2) for the scattering
amplitude. Y ¼ ln ð1=xBjÞ and r is the size of the interacting
dipole. z denotes the fraction of energy that is carried by one quark.
b denotes the impact parameter of the scattering amplitude.

1We note that this procedure is quite different from the one,
used in Ref. [41]. It is worth mentioning that we do not reproduce
the result of Ref. [41] for the energy dependence of the saturation
scale, but we are in agreement with the estimates of Ref. [42] if
we apply our calculation to their simplified NLO kernel.
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γ → 1, χNLOðγÞ ∝ 1=ð1 − γÞ3. Such singularities indicate
that we have to calculate higher-order corrections to obtain
a reliable result. The procedure to resum high-order
corrections was suggested in Ref. [40]. The resulting
spectrum of the BFKL equation in the NLO, can be found
from the solution of the following equation [40,41]:

ω ¼ ᾱS

�
χ0ðω; γÞ þ ω

χ1ðω; γÞ
χ0ðω; γÞ

�
ð6Þ

where

χ0ðω; γÞ ¼ χLOðγÞ − 1

1 − γ
þ 1

1 − γ þ ω
ð7Þ

and

χ1ðω; γÞ ¼ χNLOðγÞ þ F

�
1

1 − γ
−

1

1 − γ þ ω

�

þ ATðωÞ − ATð0Þ
γ2

þ ATðωÞ − b
ð1 − γ þ ωÞ2 −

ATð0Þ − b
ð1 − γÞ2 :

ð8Þ

The functions χNLOðγÞ and ATðωÞ as well as the constants
(F and b) are presented in Appendix A.
Denoting the solution of Eq. (6) as ωNLOðγÞ we see that

Eq. (4) for γcr takes the form

ωNLOðγcrÞ
1 − γcr

¼
���� dωNLOðγcrÞ

dγcr

����: ð9Þ

This equation was first derived in Ref. [43] in the semi-
classical approximation for the dipole scattering amplitude.
In this approximation the amplitude appears as the wave
packet and Eq. (9) is the condition that the phase velocity
of this wave packet is equal to the group velocity. This
condition determines the special line (critical line) which
gives the saturation scale. In Refs. [34,42] Eq. (9) was
derived beyond the semiclassical approximation.
To findωNLOðγcrÞ and γcr we do not need to solve Eq. (5)

explicitly. We can solve the system of two equations:

ωcr ¼ ᾱS

�
χ0ðωcr; γcrÞ þ ω

χ1ðωcr; γcrÞ
χ0ðωcr; γcrÞ

�
;

ωcr

1 − γcr
¼ ᾱS

�
χ0ðωcr; γcrÞ þ ω

χ1ðωcr; γcrÞ
χ0ðωcr; γcrÞ

�0

γ

,�
1 − ᾱS

�
χ0ðωcr; γcrÞ þ ω

χ1ðωcr; γcrÞ
χ0ðωcr; γcrÞ

�0

ω

�
ð10Þ

where ωcr ≡ ωNLOðγcrÞ. In Fig. 2 we plot the solution to
this set of equations. One can see that both γcr and λ differ
from the leading-order estimates.
Figure 3 shows the solution of Eq. (6) in the form

γ ¼ γðωÞ. One can see that γ ¼ γðωÞ → 0 at ω → 1. This
property means that we have energy conservation in the

NLO, while in the LO γ ∝ ᾱS ≠ 0 at ω → 0, indicating the
energy violation of the order of ᾱS.
The simple energy (rapidity) dependence of Eq. (3) only

holds at large values of Y. The first two corrections lead to
the following expression:

FIG. 2. λðγcrÞ and γcr versus αS. FIG. 3. γ versus ω for ᾱS ¼ 0.15.

CGC/SATURATION APPROACH: A NEW IMPACT- … PHYSICAL REVIEW D 94, 114028 (2016)

114028-3



ln ðQ2
sðYÞ=Q2

sðY0; bÞÞ ¼ λeffðᾱS; Y; Y0ÞðY − Y0Þ

¼ λðγcrÞðY − Y0Þ −
3

2ð1 − γcrÞ
lnðY=Y0Þ −

3

ð1 − γcrÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

ω00ðγcrÞ

s �
1ffiffiffiffi
Y

p −
1ffiffiffiffiffi
Y0

p
�
þO

�
1

Y

�
ð11Þ

where ω00ðγcrÞ ¼ d2ωðγÞ=ðdγÞ2 at γ ¼ γcr, and the values
of λðγcrÞ and γcr have been discussed above. Y0 is the value
of the rapidity from which we start the evolution. The first
term was found in Ref. [43], the second in Ref. [37] and the
third in Ref. [44]. In Fig. 4 ln ðQsðb; YÞ=Qsðb; Y ¼ Y0ÞÞ is
plotted at different values of ᾱS in the region of Y ≤ 12
where the most experimental data are available. In this plot
we take into account that the running QCD coupling has to
be taken at the scale QsðYÞ as we will argue in the next
section, or in other words we use

ᾱSðQsÞ
ᾱS0

1þ ᾱS0bλcrðY − Y0Þ
ð12Þ

where ᾱS0 ¼ ᾱSðQ0Þ is the QCD coupling at the scale
Q0 ¼ QsðY ¼ Y0Þ [see Eq. (26)].
One can see that the corrections to ln ðQsðb; YÞ=

Qsðb; Y ¼ Y0ÞÞ ¼ λcrðY − Y0Þ are essential and they lead
to λeff ≈ 0.7λcr. However, they turn out to be smaller than
what was estimated in Ref. [41], perhaps because the last
term in Eq. (11) was not taken into account.
Equation (11) shows that while we know the energy

dependence theoretically, the value of Q2
sðY0; bÞ is our

phenomenological input which we will discuss below.

C. Scattering amplitude in the vicinity
of the saturation scale

In the region where r2Q2
sðY; bÞ ≈ 1 (in the vicinity of the

saturation scale) the scattering amplitude has a well-known
behavior [2,36,37]

Nðr; Y; bÞ ¼ N0ðr2Q2
sðbÞÞ1−γcr ð13Þ

where γcr is the solution to Eq. (10).
The amplitude of Eq. (13) shows a geometric scaling

behavior as a function of one variable τ ¼ r2Q2
sðbÞ. Such

behavior arises inside the saturation region [33,34] where
τ ≥ 1. However, it actually holds outside of the saturation
region for τ ≤ 1 [36]. In Ref. [36] it is shown that the first
corrections due to a violation of the geometric scaling
behavior, can be taken into account by replacing 1 − γcr in
Eq. (13) by the following expression:

1 − γcr → 1 − γcr −
1

2κλY
ln ðr2Q2

sðbÞÞ ð14Þ

where λ ¼ ᾱSχðγcrÞ=ð1 − γcrÞ and κ ¼ χ00ðγcrÞ=χ0ðγcrÞ.

D. The scattering amplitude deep inside the
saturation region [r2Q2ðb;YÞ ≫ 1]

The nonlinear Balitsky-Kovchegov equation has been
derived in the NLO, and it takes the form [30,31]

dS12
dY

¼ ᾱS
2π

Z
d2x3

x212
x213x

2
23

�
1þ ᾱSb

�
ln x212μ

2 −
x213 − x223

x212
ln
x213
x223

�
þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc
−
1

2
ln
x213
x212

ln
x223
x212

��
ðS13S32 − S12Þ

þ ᾱ2S
8π2

Z
d2x3d2x4

x434

�
−2þ x213x

2
24 þ x214x

2
23 − 4x212x

2
34

x213x
2
24 − x214x

2
23

ln
x213x

2
24

x214x
2
23

þ x212x
2
34

x213x
2
24

�
1þ x212x

2
34

x213x
2
24 − x214x

2
23

�
ln
x213x

2
24

x214x
2
23

�
× ðS13S34S42 − S13S32Þ: ð15Þ

In Eq. (15) xik ¼ xi − xj, μ is the renormalization scale for the running QCD coupling and all other constants are defined in
Appendix A. Sij is the S matrix for scattering of a dipole of size xij, with the target.
One can see that in the region where Sij → 0, all terms except the first one, which is proportional to S12, are small and can

be neglected. In other words, in the region where S12 ≫ S13S32 ≫ S13S34S42 we can reduce Eq. (15) to the following linear
equation [33]:

dS12
dY

¼ −
ᾱS
2π

Z
d2x3

x212
x213x

2
23

�
1þ ᾱSb

�
ln x212μ

2 −
x213 − x223

x212
ln
x213
x223

�
þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc
−
1

2
ln
x213
x212

ln
x223
x212

��
S12 ð16Þ

where S12 ≡ 1 − Nðx12; b; YÞ.
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The integral over x3 is taken in Appendix B and Eq. (16) can be written in the form

d ln S12
dY

¼ −ᾱS
�
1þ ᾱSb lnðμ2x212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
lnðQ2

sx212Þ þ
ᾱ2Sb
2

ln2Q2
sx212 þ ᾱSζð3Þ: ð17Þ

In Eq. (17) almost all terms are functions of z ¼ ln ðx212Q2
sÞ, except the term ᾱSb lnðμ2x212Þ lnðQ2

sx212Þ. Introducing the new
renormalization point Q2

s instead of μ2 the equations reduce to the following one:

d ln S12
dY

¼ −ᾱSðQsÞ
�
1þ 1

2
ᾱSðQsÞb lnðQ2

sx212Þ þ ᾱSðQsÞ
�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
lnðQ2

sx212Þ þ ᾱSðQsÞζð3Þ: ð18Þ

Introducing a new variable

z ¼ ln ðQ2
sx212Þ ¼ ᾱSðQsÞϱðY − Y0Þ þ ln ðx212Q2

0Þ ⟶
Y−Y0≫1

ᾱSðQsÞλðγcrÞðY − Y0Þ þ ln ðx212Q2
0Þ ð19Þ

and replacing ∂=∂Y by ð1=ρÞd=dz, Eq. (18) takes the form

d ln S12
dz

¼ −
1

ϱ

��
1þ 1

2
ᾱSðQsÞbzþ ᾱSðQsÞ

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
zþ ζð3Þ

�
: ð20Þ

Integration over z leads to

ln S12 ¼ −
1

2ϱ

��
zþ 1

3
ᾱSðQsÞbz2 þ ᾱSðQsÞz

�
67

36
−
π2

12
− 5

Nf

Nc

�	
zþ 2ζð3Þz

�
: ð21Þ

Finally,

1 − NðzÞ ¼ e−Zðz;QsÞ with Zðz;QsÞ ¼
1

2ϱ

��
zþ 1

3
ᾱSðQsÞbz2 þ ᾱSðQsÞz

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
zþ 2ζð3Þz

�
: ð22Þ

The main term in Eq. (22) has the form z2=ð2λðγcrÞÞ, and
displays geometric scaling behavior. We would like to
stress, that such behavior occurs only, if we assume that the
renormalization scale μ ¼ Qs. Generally, Eq. (22) leads to

the violations of the geometric scale in the NLO, which are
proportional to ᾱSðQsÞz. Equation (22) shows, for the first
time, that the intuitive expectation, that the only scale inside
of the saturation region is the saturation momentum, holds
at least in the NLO. On the other hand, we can interpret
Eq. (22), as a new geometric scaling behavior for the
amplitude, which turns out to be dependent on the variable
Zðz;QsÞ.

E. Matching at r2Q2ðb;YÞ= 1
In Sec. II C we saw that the amplitude in the vicinity

of the saturation scale has a geometric scaling behavior
[see Eq. (13)] as well as the amplitude at r2Q2

s ≫ 1, as has
been shown in the previous section. The first observation is
that we can match these two amplitudes, only if we assume
that the renormalization scale μ ¼ Qs. Practically, it means
that we have to replace ᾱS in Sec. II C with ᾱSðQsÞ. This
generates an additional Y dependence, diminishing the
value of λcr at large values of Y.
The general matching conditions (see Fig. 5) have the

form of the two following equations at z ¼ zm: we match
these two solution at z ¼ zm where

FIG. 4. ln ðQsðb; YÞ=Qsðb; Y ¼ Y0ÞÞ versus Y at different
values of ᾱS. Y0 ¼ 4.6. For the linear approximation we plot
0.7λcrðY − Y0Þ at ᾱS ¼ 0.1.
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N0<z≪1ðz ¼ zmÞ ¼ Nz≫1ðz ¼ zmÞ;
dN0<z≪1ðz ¼ zmÞ

dzm
¼ dNz≫1ðz ¼ zmÞ

dzm
: ð23Þ

These two equations determine the value of the ampli-
tude and the point of matching. The additional restriction is
that zm ≪ 1, or, in other words zm should be in the vicinity
of the saturation scale. A problem is that it is impossible to
satisfy Eq. (23) without modifying the solution of Eq. (22).
Most models in the past followed the suggestion of
Ref. [14] and instead of Eq. (22), the modified solution

1 − NðzÞ ¼ e−CZðzÞ ð24Þ

was introduced, in which the value of the constant C was
determined by the matching conditions of Eq. (23). In
Ref. [38] the correction to the asymptotic solution of
Eq. (22) was found, which allows us to use the solution
of Eq. (22) without an arbitrary unjustified constant C. This
solution takes the form

Nz≫1ðzÞ ¼ 1 − 2Ae−Z − A2
1

Z
e−2Z þOðe−3ZÞ

Z ¼ Z
�
Eq: ð22Þ; z → z −

1

2
A

ffiffiffiffiffiffiffiffiffiffi
ϱπ=2

p
− 2ψð1Þ

�
ð25Þ

where ψðxÞ is the digamma function (see Ref. [45]
Eqs. 8.360–8.367).
The second term in Eq. (25) is the solution given in

Ref. [33], in which the theoretically unknown constant A
was introduced, both as the coefficient in front, and as the
correction to the argument. The third term is the next-order
correction at large z. In Refs. [1,38] it has been demon-
strated that using Eq. (25), we can solve Eq. (23) and find
zm (see Fig. 5).

F. Impact parameter dependence of the
saturation scale

So far we have introduced only one phenomenological
parameter N0, the value of the scattering amplitude at
r2Q2

s ¼ 1. However, we need to specify the value of the
saturation scale at Y ¼ Y0. It includes the value of the
saturation scale and its dependence on the impact parameter
b. Both can only be estimated in nonperturbative QCD.
Due to the embryonic stage of our understanding of the
nonperturbative QCD contribution, we can only suggest a
phenomenological parametrization.

For QsðY ¼ Y0; bÞ we use the following expression:

Q2
sðY ¼ Y0; bÞ ¼ Q2

0SðbÞ ¼ Q2
0ðmbK1ðmbÞÞ1=ð1−γcrÞ:

ð26Þ

The value of m has to be found from the fitting of the
experimental data. We expect that m ≈ 0.5 ÷ 0.85 GeV
since m ¼ 0.72 GeV is the scale for the electromagnetic
form factor of the proton, while m ≈ 0.5 GeV is the scale
for the so-called gluon mass [46].
We differ from other models in that Eq. (26) leads to

Q2
sðY ¼ Y0; bÞ !mb≫1

exp ð−mb=ð1 − γcrÞÞ, providing the
correct large-b behavior of the scattering amplitude. It
should be stressed that the exponential decrease at large b,
follows from a general theoretical approach, based on
analyticity and unitarity of the scattering amplitude (see
Ref. [8]). Therefore, Q2

sðY ¼ Y0; bÞ ∝ exp ð−b2=BÞ that
was used in other models (see Refs. [17–21,24,29]) are in
direct contradiction with theory. The behavior of the
amplitude at large b determines the energy dependence
of the interaction radius, leading to R ∝ ð1=mÞY for the
exponential decrease, and R ∝ ð1=mÞ ffiffiffiffi

Y
p

for the Gaussian
b dependence. Such a difference, leads to a fast increase of
the scattering amplitude for our parametrization and it will
affect the predictions at high energy.
Equation (26) gives the amplitude in the vicinity of the

saturation scale, which is proportional to SðbÞ and gen-

erates the behavior 1=ð1þ Q2
T

m2Þ2, where QT is the momen-
tum transfer. At large QT the amplitude in our
parametrization is proportional (A ∝ 1=Q4

T) as it follows
from the perturbative QCD calculation [9], but cannot be
reproduced with the Gaussian distribution.

G. Wave functions

The wave function in the master equation [see Eq. (2)] is
the main source of theoretical uncertainties: even in the
case of deep inelastic processes, we can trust the wave
function of perturbative QCD only, at rather large values of
Q2 ≥ Q2

0 with Q2
0 ≈ 0.7 GeV2 (see Ref. [47]). The expres-

sion for ðΨ�ΨÞγ� ≡Ψγ�ðQ; r; zÞΨγ� ðQ; r; zÞ is well known
(see Ref. [2] and references therein)

ðΨ�ΨÞγ�T ¼ 2Nc

π
αem
X
f

e2ff½z2 þ ð1 − zÞ2�ϵ2K2
1ðϵrÞ

þm2
fK

2
0ðϵrÞg; ð27Þ

ðΨ�ΨÞγ�L ¼ 8Nc

π
αem
X
f

e2fQ
2z2ð1 − zÞ2K2

0ðϵrÞ; ð28Þ

where T (L) denotes the polarization of the photon and f
represents the flavors of the quarks. ϵ2 ¼ m2

f þQ2zð1 − zÞ.
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III. FITTING F2 AND VALUES
OF THE PARAMETERS

The most accurate experimental data available are for the
deep inelastic structure function F2 [48], which we will
attempt to fit using the model. As has been mentioned, we
can trust our model in the restricted kinematic region,
which we choose in the following way: 0.85 GeV2 ≤ Q2 ≤
60 GeV2 and x ≤ 0.01. The lower limit of Q2 stems from
the nonperturbative correction to the wave function of the
virtual photon, while the upper limit originates from the
restriction x ≤ 0.01. This restriction can be translated to
the value of Y0 in our theoretical formulas leading to
Y0 ¼ 4.6. Actually we view Y0 as the parameter of the fit
(see Table I).
The energy dependence of the saturation scale Qs and

the τ ¼ r2Q2
sðb; YÞ dependence of the scattering amplitude

are determined by Eq. (11) and Eq. (23). One can see that
both depend on ᾱSðQsÞ for which we use Eq. (12). From
this equation one can see that we have two fitting
parameters: ᾱS0 and Q2

0. In principle, ᾱS0 is the running
QCD coupling at Q2 ¼ Q2

0, but we consider both ᾱS0 and
Q2

0 as independent fitting parameters, since we do not want
to fix the value of ΛQCD. We have two dimensional
parameters: Q0, which determines the value of Q2

s , and
mwhich determines its dependence on impact parameters b
(see Sec. II F). N0 is the value of the scattering amplitude at
τ ¼ 1. In principle, the value of N0 can be calculated using
the linear evolution equation with the initial conditions.

However, it depends on the phenomenological parameters
of this initial condition. So we choose N0 as a fitting
parameter.
It is worth mentioning that λcr; γcr are not the fitting

parameters as they are in the leading-order models. We
recall that

ln ðQ2
sðb; YÞ=Q2

sðb; Y ¼ Y0ÞÞ

¼ d0ðᾱSÞY þ d1ðᾱSÞ ln ðY=Y0Þ − d2ðᾱSÞ
�

1ffiffiffiffi
Y

p −
1ffiffiffiffiffi
Y0

p
�

ð29Þ

where the functions di are shown in Fig. 6. In Eq. (29)
Y ¼ ln ð1=xÞ, where x is the Bjorken x ¼ Q2=s for the
deep inelastic scattering with the light quarks (Q is the
photon virtuality and s is the energy squared of collision).
For the charm quark we consider Yc ¼ ln ð1=xcÞ with
xc ¼ ð1þ 4m2

c=Q2Þx.
We do not regard the masses of the quarks as fitting

parameters and consider two sets of these masses. In the
first set we take the current masses (see the first row of
Table I), and we consider this as the most reliable fit, based
on the consistent theoretical approach. It should be men-
tioned that for the description of the interaction with the c
quark we use Y ¼ ln ð1=xcÞwith xc ¼ x=ð1þ 4m2

c=Q2Þ. In
Table I we take two values of the mc mass: mc ¼ 1.4 GeV
and mc ¼ 1.27 GeV. We see that two sets of parameters
differ comparatively little with a small preference for

(a) (b) (c)

FIG. 5. Matching procedure: the function zmðN0; ᾱSÞ (a), the function AðN0; ᾱSÞ (b) and the example of the resulting function for
N0 ¼ 0.1 and ᾱS ¼ 0.15 (c).

TABLE I. Parameters of the model. ᾱS0, N0, m and Q2
0 are fitted parameters. The masses of quarks are chosen as

they are shown in the table. Two sets are related to two choices of the quark masses: the current masses and the
masses of light quarks are equal to 140 MeV which is the typical infrared cutoff in our approach.

ᾱS0 N0 Y0 mðGeVÞ Q2
0ðGeV2Þ muðMeVÞ mdðMeVÞ msðMeVÞ mcðGeVÞ χ2=d:o:f:

0.133 0.1075 3.77 0.83 3.0 2.3 4.8 95 1.4 183=153 ¼ 1.2
0.143 0.0915 3.73 0.67 2.6 140 140 140 1.4 242=153 ¼ 1.58
0.133 0.107 3.77 0.828 2.93 2.3 4.8 95 1.27 193.31=153 ¼ 1.26
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mc ¼ 1.4 GeV which leads to χ2=d:o:f: ¼ 1.2 while
χ2=d:o:f: ¼ 1.26 for mc ¼ 1.27 GeV.
We also make a fit putting all masses of light quarks

(second row of Table I) to be equal to 140 MeV. We view
this mass as a typical infrared cutoff that we introduce to
take into account the unknown mechanism of confinement.
Table I gives the values of the fitting parameters, and

Fig. 7 demonstrates the quality of the fit. One can see that
we describe the data quite well but we have to admit that
the quality of the fit is worse than in our model based on
leading-order QCD estimates [1], in which we fitted the

value of λcr. χ2=d:o:f: ¼ 1.3 in this fit against χ2=d:o:f: ¼
1.15 in the fit of Ref. [1]. However, the main complication
of this model is that it gives a rather large value of Q2

0 (see
Fig. 8) which is in sharp contradiction to the value of the
saturation momentum, from all other model descriptions
of the experimental data [1,10–29]. The large value ofQ2

0 is
in agreement with small values of ᾱS0, and we note that
ᾱS0 ¼ 0.28 for ΛQCD ¼ 158 MeV instead of ᾱS0 ¼ 0.13
from our fit.
The value of m is larger than the typical mass in the

electromagnetic form factor of the proton, but we do
not expect it to be the same. Note that the decrease
of Q2

s at large b is proportional to exp ð− m
1−γcr

bÞ ¼
exp ð−1.6ðGeV−1ÞbÞ. On the other hand the behavior of
the amplitude with respect to b differs from the saturation
scale. In Fig. 9 one can see that both the saturation, and the
violation of the geometric scaling behavior influence the
resulting b dependence of the scattering amplitude.
Saturation flattens the b dependence at small values of
b, while the large-b behavior shows a more rapid decrease
than the b dependence of the saturation scale (see Fig. 9).
It should be stressed that in the framework of our

parametrization of the b dependence of the saturation
momentum, the scattering amplitude decreases as

FIG. 6. The functions diðᾱSÞ of Eq. (29) versus ᾱS.

0

1

0

1

0

1

Q2=0.85 GeV2 Q2=2.7 GeV2 Q2=6.5 GeV2

Q2=8.5 GeV2 Q2=18 GeV2
Q2=27 GeV2

10-3 1

F2

HERA

Q2=45 GeV2

10-3 1

Q2=60 GeV2

10-3 1
x

FIG. 7. Our fit of F2 with the values of the parameters given in
Table I. The first set of parameters is shown as solid red curves
while the second is shown as blue dotted lines. The data are taken
from Ref. [48].

FIG. 8. The value of the saturation momentum Q2
sðx; bÞ versus

x at fixed b for the parameters given by Table I.

FIG. 9. The b-dependence of the scattering amplitude for the
parameters given by Table I. SðbÞ is given by Eq. (1).
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exp ð−mbÞ while in all other models on the market it has a
Gaussian behavior: exp ð−m2b2Þ.
In. Fig. 10 we present the comparison between our fit of

F2 with two sets of parameters at low values of Q. The set
with large masses of quarks leads to a much better
description illustrating that the nonperturbative corrections
to the wave function of the virtual photon are essential at
Q2 < 0.85 GeV2. To illustrate the influence of the bad
description of the data at Q2 < 0.85 GeV2 we include in
the fit the data at Q2 ¼ 0.5 GeV2 and at Q2 ¼ 0.4 GeV2.
The set of fitting parameters remains the same but χ2=d:o:f:
increases more than 3 times.

Fcc̄
2 : The contribution of the cc̄ pair to the deep inelastic

structure function can be calculated with the same theo-
retical accuracy as the inclusive F2. In Fig. 11 we compare
the HERA data on Fcc

2 [51] with the theoretical predictions.
One can see that the agreement is reasonable. The differ-
ence in mass of the c quark does not affect the comparison
with the experimental data (see solid sand dashed lines
in Fig. 11).
FL: FL can be calculated to the same accuracy as Fcc̄

2 ,
and the comparison with the scant data available [49,50]
is plotted in Fig. 12. The two sets produce the same
quality of the descriptions since the values of Q are
rather large.
In Ref. [1] we compared the model with data on

exclusive production in deep inelastic scattering (DIS).
The most interesting information, from these processes,
concerns the momentum transfer (t) dependence of the
differential cross sections, which could check the novel
ingredient of our model: the exponential dependence of
the scattering amplitude on the impact parameter. In
Ref. [1] it was shown that, this dependence agrees with
the experimental data. In the present approach the b
dependence is taken the same as in Ref. [1]. Hence we can
only check the slight difference in the values of the
typical mass (see Table II). This difference leads to the
slight (≤10%) change of the t slope for the differential
cross section. Unfortunately, the experimental accuracy
of the slope measurement is larger than this expected
change (see Figs. 11 and 12 of Ref. [1]). Therefore, we
are of the opinion, that the comparison with the exclusive
cross section, cannot teach us anything, and we decided
not to make a comparison with these measurements at
present.

Q2=0.4 GeV2

10-5 10-3

F
2

Q2=0.5 GeV2

10-5 10-3

x

Q2=0.65 GeV2

10-5 10-3
0

0.5

FIG. 10. The x dependence of Fcc̄
2 at small values of Q2 <

0.85 GeV2 for the parameters given in Table I. The red (upper)
line corresponds to set 1 (upper row of Table I) while the blue
(lower) one is the description with set 2. The data are taken from
Refs. [49,50].

Q2=2.5 GeV2 Q2=5 GeV2 Q2=7 GeV2

Q2=12 GeV2 Q2=18 GeV2

10-4 10-2

Q2=32 GeV2

10-4 10-2

Fcc
_

2

HERAQ2=60 GeV2

10-4 10-2

x

0.25

0.5

0.25

0.5

0.25

0.5

FIG. 11. The x dependence of Fcc̄
2 at fixed values ofQ2: 0.85 ≤

Q2 ≤ 60 GeV2 for the parameters given in Table I: the solid lines
correspond mc ¼ 1.4 GeV while the dashed ones describe the
data for mc ¼ 1.27 GeV. The data are taken from Ref. [51].

0

1

0

1

Q2=3.5 GeV2 Q2=12 GeV2 Q2=20 GeV2

10-3

FL

H1

ZEUS

Q2=45 GeV2

10-3

Q2=60 GeV2

10-3

x

FIG. 12. The x dependence of FL at fixed values ofQ2: 0.85 ≤
Q2 ≤ 60 GeV2 for the parameters given in Table I. The red
(blue) lines correspond to set 1 (set 2) fits. The data are taken
from Ref. [50].
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IV. CONCLUSIONS

In this paper we made the first attempt to include every-
thing, that we have learned about the next-to-leading
corrections of perturbative QCD, in the CGC/saturation
model. In this paperwe obtained two new theoretical results:
using the approach suggested in Ref. [33], we obtained
(i) the asymptotic behavior of the solution to the Balitsky-
Kovchegov equation in the NLO of perturbative QCD
[30–32] deep inside the saturation domain, and (ii) the
approximate geometric scaling behavior of the scattering
amplitude, which holds in the leading term at large z (∝ z2)
only if τ ¼ r2Q2

sðY; bÞ is determined in perturbative QCD
with the renormalization scale QsðY; bÞ and which is
violated by ᾱSðQsÞz terms. As far as we can establish, this
is the first theoretical justification, for the intuitive sugges-
tion from LO estimates, that the entire behavior of the
scattering amplitude in the saturation domain, is determined
by the only dimensional observable: the saturation scale.We
can also interpret our result, given by Eq. (22), as the new
scaling behavior for the scattering amplitude, which turns
out to be dependent on the variable Zðz;QsÞ.
In the model we included several known ingredients:

(i) the behavior of the scattering amplitude in the vicinity of
the saturation momentum, using the NLO BFKL kernel,
(ii) the pre-asymptotic behavior of ln ðQ2

sðYÞÞ as a function
of Y and (iii) the impact parameter behavior of the
saturation momentum which has exponential behavior ∝
exp ð−mbÞ at large b.
In comparisonwith themodels on themarket [10–29], we

added the NLO corrections both deep in the saturation
domain and in the vicinity of the saturation scale, as well as
two crucial ingredients following Ref. [1]: the correct
solution to the nonlinear (BK) equation [6] in the saturation
region, and the impact parameter distribution that leads to an
exponential decrease of the saturation momentum at large
impact parameters and to a power-like decrease at large
transfer momentum that follows from perturbative QCD [9].
In spite of the fact that we described the experimental

data fairly we are aware that our description is worse than
in the CGC/saturation models based on the leading-order
QCD approach. The main difficulties are related to the
small value of the QCD coupling at QsðY0Þ, and the large
values of the saturation momentum, which show the
theoretical inconsistency of our description. To see our
difficulties more distinctly, we compare the results of the
fits with our LO model [1] shown in Table II. One can see

that in spite of a good description of the experimental data,
with reasonable χ2d:o:f:, the energy behavior [the values of
λðλeftÞ] and the value of Q0 turn out to be different. These
two parameters lead to the large values of the saturation
scale which is in a qualitative agreement with the small
values of ᾱS (see Table I). However, we need to assume a
very small ΛQCD ∼ 10 MeV to obtain ᾱS0 ≈ 0.13 − 0.16
which results from the fit (see Table I).
Nevertheless, we could view the result of our fit differ-

ently, stating that the DIS data demands large values of the
saturation momentum. In this case, we need to change the
strategy of fitting using the reduced cross sections (σr)
instead of F2

2 which have been used. Indeed, σr is not
influenced by any theoretical assumption on the extraction
of the structure functions. As we have a sceptical view of
the result of our fit, we prefer to use F2, which we used in
our previous attempt to fit DIS data [1,52], to compare the
results of different approaches.
Appreciating the difficulties of our approach, we need to

improve our theoretical input. We cannot avoid the main
assumption that the nonperturbative b dependence is
absorbed in the impact parameter behavior of the saturation
scale. However we are planning to improve the matching
procedure given byEq. (23), assuming the geometric scaling
behavior of the scattering amplitude as it stems from the
form of the z dependence at large z of the scattering
amplitude found in this paper. We are also investigating
the possibility to go beyond the NLO approximation. As we
have discussed, for the scattering amplitude in the vicinity of
the saturation scalewe used Salam resummation [40], which
is the technique to take the particular corrections beyond
NLO.We need to find a method to expand this resummation
to the entire saturation region.
In future attempts to improve our model, we believe that

another approach based on the BK equation beyond the LO
[53], will be very instructive. In Ref. [53] the generalization
of the BK equation which sums part of the NLO effects,
which are enhanced by large transverse logs, that have been
summed to all orders, was proposed. The advantage of this
approach provides a possibility to treat large z on a
theoretical basis, without matching. However, there are
two problems, which make this approach dubious: (i) the
double log approximation and its modification cannot
contribute to the scattering amplitude deep in the saturation

TABLE II. Fitted parameters of the model.

λðλeffÞ N0 mðGeVÞ Q2
0ðGeV2Þ muðMeVÞ mdðMeVÞ msðMeVÞ mcðGeVÞ χ2=d:o:f: Model

0.197 0.34 0.75 0.145 2.3 4.8 95 1.4 1.15 LO
0.5(0.35) 0.1075 0.83 3.0 2.3 4.8 95 1.4 1.2 NLO
0.184 0.46 0.75 0.118 140 140 140 1.4 1.14 LO
0.53(0.37) 0.09 0.67 2.6 140 140 140 1.4 1.58 NLO

2We thank our referee for drawing our attention to this strategy.
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region,3 and the Salam resuming [40] of all order correc-
tions in the vicinity of the saturation momentum leads to
quite different values for λ (see Table II) than has been
estimated in Ref. [53]. Note, that this approach describes
DIS data quite well, and no worse than our approach, or the
approaches of the models of Refs. [10–29] demonstrating
the fact, that the experimental data alone, cannot differ-
entiate between theoretically correct and theoretically
insufficient, (or even wrong) approaches.
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APPENDIX A: RESUMED KERNEL OF THE
NLO BFKL EQUATION

For completeness of presentation we collect in this
appendix all formulas for the NLO kernel of the BFKL
equation, [39] resumed according to the procedure, sug-
gested in Ref. [40].

χNLOðfÞ ¼ −
1

4

�
2bðχ0ðfÞ þ χðfÞ2Þ þ χ00ðfÞ

−
�
67

9
−
π2

3
−
10

9

�
χðfÞ ðA1Þ

þ
π2 cosðπfÞ

 
ð3fð1−fÞþ2Þ



Nf

N3
c
þ1

�
ð3−2fÞð2fþ1Þ þ 3

!
ð1 − 2fÞsin2ðπfÞ þ 4ϕðfÞ

−
π3

sinðπfÞ − 6ζð3Þ
�
−
1

2
χðfÞχ0ðfÞ þ χðfÞ

ð1 − fÞ2 ; ðA2Þ

ϕðfÞ ¼
X∞
n¼1

ð−1Þn
�
ψð−f þ nþ 2Þ − ψð1Þ

ð−f þ nþ 1Þ2

þ ψðf þ nþ 1Þ − ψð1Þ
ðf þ nÞ2

�
; ðA3Þ

AGGðωÞ ¼ b −
1

ωþ 1
þ 1

ωþ 2
−

1

ωþ 3

− ðψðωþ 2Þ − ψð1ÞÞ;

AQGðωÞ ¼
Nf

Nc þ 2

�
−

2

ωþ 2
þ 2

ωþ 3
þ 1

ωþ 1

�
;

AAðωÞ ¼ AGGðωÞ þ
Cf

Nc
AQGðωÞ; ðA4Þ

b ¼ 11Nc − 2Nf

12Nc
; CF ¼ N2

c − 1

2Nc
;

F ¼ Nf

6Nc

�
5

3
þ 13

6N2
c

�
;

ᾱSðp2Þ ¼ 1

b ln ðp2=Λ2
QCDÞ

¼ ᾱSðμÞ
1þ bᾱSðμÞ ln ðp2=μ2Þ : ðA5Þ

In Ref. [42] a very elegant form of χ1ðω; γÞ was
suggested which coincides with Eq. (6) to within 7%.
The equation for ω takes the form

ω ¼ ᾱSð1 − ωÞ
 
1

f
þ 1

1 − f þ ω

þ ð2ψð1Þ − ψð2 − fÞ − ψð1þ fÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
high twist contributions

!
: ðA6Þ

One can see that γðωÞ → 0 when ω → 1 as follows from
energy conservation.
In Fig. 13 we plot the values of λcr and γcr for the full

kernel of Eq. (6) and for the simplified kernel of Eq. (A6)
suggested in Ref. [42]. One can see that in spite of the fact
that the simplified kernel coincides with the full one to
within 7%, the differences in λcr and in γcr are much larger.

FIG. 13. λðγcrÞ and γcr versus αS for the full NLO kernel of
Eq. (6) and for the kernel of Eq. (A6).

3See the thorough analysis of this statement in Ref. [42] and
the small contribution of the double log term in our solution for
the scattering amplitude deep in the saturation region. Comparing
the I3 term in Eq. (B3) and Eq. (B5) we see that the double log
terms lead to the corrections of the order of z in Z of Eq. (22). We
also recall that it has been shown in Ref. [33] that inside the
saturation region the most important term in the BFKL kernel is
not the double log term.
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APPENDIX B: CALCULATION OF INTEGRALS FOR THE SOLUTION
IN THE SATURATION REGION

In this appendix we take the integral of Eq. (16), which has the form

dS12
dY

¼ −
ᾱS
2π

KðQs;x12ÞS12 ðB1Þ

where

KðQs; x12Þ ¼
Z

d2x3
x212

x213x
2
23

�
1þ ᾱSb

�
lnðμ2x212Þ −

x213 − x223
x212

ln
x213
x223

�
þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc
−
1

2
ln
x213
x212

ln
x223
x212

�	
: ðB2Þ

Introducing the notations

I1 ¼
Z

d2x3
x212

x213x
2
23

�
1þ ᾱSb lnðμ2x212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
;

I2 ¼ ᾱSb
Z

d2x3
x212

x213x
2
23

�
x223 − x213

x212
ln

�
x13
x23

�	
;

I3 ¼ −
ᾱS
2

Z
d2x3

x212
x213x

2
23

ln
x213
x212

ln
x223
x212

; ðB3Þ

we have

KðQsz12Þ ¼ I1 þ I2 þ I3:

Using the symmetry of the integrand with respect to x13 ↔ x32 we obtain

I2 ¼ αβ

Z
d2x3

1

x213
ln

�
x13
x23

�
− ᾱSb

Z
d2x3

1

x223
ln

�
x13
x23

�
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Z
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1

x213
ln
�
x13
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�
þ ᾱSb

Z
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1
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ln
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�

¼ αβ
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1
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�
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�
þ ᾱSb

Z
d2x23

1

x223
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x13

�
¼ 2αβ

Z
d2x13

1

x213
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�
x13
x23

�
: ðB4Þ

Ii in polar coordinates take the forms

I1 ¼
1

2

Z
r2
1

r2
0

dr2

r2

Z
2π

0

1

1þ r2 − 2r cos θ
dθ

�
1þ ᾱSb lnðμ2x212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
;

I2 ¼ ᾱSb
Z

r2
1

r2
0

dr2

r2

Z
2π

0

ln

�
r2

1þ r2 − 2r cos θ

�
dθ;

I3 ¼ −
ᾱS
4

Z
r2
1

r2
0

dr2

r2

Z
2π

0

1

1þ r2 − 2r cos θ
lnðr2Þ lnð1þ r2 − 2r cos θÞdθ ðB5Þ

where r2 ¼ x213=x
2
12, r

2
0 ¼ 1=Q2

sx212 and r
2
1 ¼ 1 − 1=Q2

sx212. We use the following representations to take the integral over the
angle (see Ref. [45] Eqs. 1.448 and 1.511,3.613):Z

2π

0

cosðnθÞ
1þ r2 − 2r cos θ

dθ ¼ Γðnþ 1Þ2π
Γð1Þn! rn2F1ð1; nþ 1; nþ 1; r2Þ ¼ 2π

rn

1 − r2
;

lnð1þ r2 − 2r cos θÞ ¼ −2
X∞
n¼1

cosðnθÞ
n

rn; lnð1 − r2Þ ¼ −
X∞
n¼1

r2n

n
: ðB6Þ
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Using Eq. (B6) for Q2
sx212 ≫ 1 we obtain

I1 ¼ π

Z
r2
1

r2
0

dr2
1

r2ð1 − r2Þ
�
1þ ᾱSb lnðμ2x212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	

¼ 2π

�
1þ ᾱSb lnðμ2x212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
lnðQ2

sx212Þ;

I2 ¼ 2πᾱSb
Z

r2
1

r2
0

dr2
ln r2

r2
dθ ¼ −πᾱSbln2Q2

sx212;

I3 ¼ −
ᾱS
4

Z
r2
1

r2
0

dr2
lnðr2Þ
r2

Z
2π

0

1

1þ r2 − 2r cos θ
lnð1þ r2 − 2r cos θÞdθ

¼ −
ᾱS
4

Z
r2
1

r2
0

dr2
lnðr2Þ
r2

ð−2Þ
X∞
n¼1

rn

n

Z
2π

0

cos θ
1þ r2 − 2r cos θ

dθ

¼ −
ᾱS
4

Z
r2
1

r2
0

dr2
lnðr2Þ
r2

ð−2Þ
X∞
n¼1

rn

n

�
2πrn

1 − r2

�
dθ

¼ −
2πᾱS
2

Z
r2
1

r2
0

dr2
lnðr2Þ lnð1 − r2Þ

r2ð1 − r2Þ dθ ¼ −2πζð3Þ: ðB7Þ

Hence, we obtain the expression

−
ᾱS
2π

KðQsz12Þ ¼ −ᾱS
�
1þ ᾱSb lnðμ2z212Þ þ ᾱS

�
67

36
−
π2

12
−

5

18

Nf

Nc

�	
lnðQ2

sz212Þ þ
ᾱ2Sb
2

ln2Q2
sz212 þ ᾱSζð3Þ ðB8Þ

which we have used in Sec. II D.
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