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Within the framework of higher-twist collinear factorization, transverse momentum broadening for the
final hadrons in semi-inclusive deeply inelastic eþ A collisions is studied at the next-to-leading order
(NLO) in perturbative QCD. Through explicit calculations of real and virtual corrections at twist 4, the
transverse-momentum-weighted differential cross section due to double scattering is shown to factorize at
NLO and can be expressed as a convolution of twist-4 nuclear parton correlation functions, the usual twist-
2 fragmentation functions and hard parts which are finite and free of any divergences. A QCD evolution
equation is also derived for the renormalized twist-4 quark-gluon correlation function which can be applied
to future phenomenological studies of transverse momentum broadening and jet quenching at NLO.
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I. INTRODUCTION

Multiple scatterings in deeply inelastic lepton-nucleus
scattering, hadron-nucleus and heavy-ion collisions lead to
many interesting phenomena that in turn can provide useful
tools for diagnosing properties of cold and hot nuclear
media [1–4]. The predicted phenomena such as jet quench-
ing and transverse momentum broadening [5–12] have been
observed in the fixed target experiments at the Deutsches
Elektronen-Synchrotron, Jefferson Lab and Fermilab
[13–20], as well as in the ongoing collider experiments at
Relativistic Heavy Ion Collider and the Large Hadron
Collider [21,22]. These phenomena will continue to be
the focus of future studies in experiments at the proposed
Electron Ion Collider [23,24].
Many theoretical formalisms have been developed in the

study of multiple scatterings which in turn can be used
to extract medium properties from the nontrivial nuclear
dependence observed in the experiments of high-energy
collisions with nuclear targets. Significant progress has been
made in the past fewyears, in particular, in the study of parton
energy loss [25–29], radiative corrections to transverse
momentum broadening [30–33], effects of multiple gluon
emissions [34–36], and phenomenological extraction of the
jet transport parameter from jet quenching in high-energy
heavy-ion collisions [37]. However, so far a complete next-
to-leading-order (NLO) calculation in perturbative QCD

(pQCD) for either jet quenching or transverse momentum
broadening is still lacking,which is essential formore precise
extraction of medium properties from experimental data.
One of the approaches in studying effects of multiple

scatterings is based on a generalized high-twist factoriza-
tion theorem [38–41]. Within such an approach, these
effects manifest themselves as power corrections to the
differential cross sections, whose main contributions often
depend on high-twist matrix elements of the nuclear state
that are enhanced by the nuclear size. So far most studies
have focused on double parton scatterings and their effect on
transverse momentum broadening, which leads to nuclear
enhancement in the dijet transverse momentum imbalance
in photon-nucleus collisions [42], transverse momentum
broadening for single inclusive jet (or hadron) production in
semi-inclusive deep inelastic scattering (SIDIS) [43–45],
as well as Drell-Yan lepton pair [45,46], vector-boson
[47,48] and back-to-back particle productions [49,50] in
pþ A collisions. Phenomenological studies of experimental
data within the high-twist formalism have been quite
successful [42,45,47,49,51], giving us confidence in using
multiple scatterings and the phenomenology as a tool to
probe the fundamental twist-4 nuclear parton correlation
functions and the associated QCD dynamics. All these
calculations, however, are based on the picture of the
leading-order (LO) “bare” twist-4 factorization without
higher-order corrections in pQCD and contribute to most
of the theoretical uncertainties in the phenomenological
studies of jet quenching [52]. More complete NLO calcu-
lations with renormalized twist-4 matrix elements and finite
corrections are very complex and have not been attempted
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so far. They are, however, necessary for more accurate
predictions and more precise extraction of medium proper-
ties from future phenomenological studies of experimen-
tal data.
In this paper, we carry out the calculation of the one-loop

perturbative corrections to the transverse-momentum-
weighted SIDIS cross section at twist 4. Through explicit
calculations, we will illustrate the factorization of the
transverse-momentum-weighted cross section of SIDIS
and derive the evolution equations for the renormalized
twist-4 two-parton correlation functions. Such a calculation
is an important step towards a full NLO pQCD description
of single hadron spectra in SIDIS and transverse momentum
broadening within the high-twist formalism. A brief sum-
mary of our results has been reported earlier in Refs. [53,54].
We now provide detailed derivations and discussions in
this paper. The rest of our paper is organized as follows.
In Sec. II, we introduce our notations and kinematics,
and review the LO derivation for transverse momentum
broadening. In Sec. III, we perform explicit calculations of
NLO contributions at twist 4 to the transverse-momentum-
weighted differential cross section, including quark-gluon
and gluon-gluon double scatterings, as well as the interfer-
ence contributions from single and triple scatterings.
In particular, we show the complete cancellation of soft
divergences in real and virtual corrections. The remaining
collinear divergences can be absorbed into the standard
fragmentation function and/or the twist-4 parton correlation
function of the nuclear state, which give rise to the
factorization scale evolution of these functions. We sum-
marize our paper in Sec. IV.

II. TRANSVERSE MOMENTUM BROADENING
AT LEADING ORDER

A. Notations and kinematics

We start this section by specifying our notations and
kinematics in SIDIS. We consider a lepton l scattering off a
large nucleus A,

lðL1Þ þ AðpÞ → lðL2Þ þ hðlhÞ þ X; ð1Þ
where L1 and L2 are the four-momenta of the incoming
and outgoing leptons, lh is the observed hadron momen-
tum, and p is the momentum per nucleon in the nucleus
with the atomic number A. In the approximation of one-
photon exchange, the virtual photon momentum is given
by q ¼ L1 − L2 with the invariant mass Q2 ¼ −q2. The
usual SIDIS Lorentz-invariant variables are defined as
follows:

xB ¼ Q2

2p · q
; y ¼ p · q

p · L1

; zh ¼
p · lh

p · q
: ð2Þ

For later convenience, we also define Mandelstam
variables at the partonic level,

ŝ ¼ ðxpþ qÞ2; t̂ ¼ ðl − qÞ2; û ¼ ðl − xpÞ2;
ð3Þ

where l is the momentum of the final-state parton which
fragments into the observed hadron h. It is instructive to
realize that the transverse momentum lT of the final-state
parton in the so-called hadron frame [55,56] can be
written in terms of Mandelstam variables as

l2
T ¼ ŝ t̂ û

ðŝþQ2Þ2 : ð4Þ

The transverse momentum broadening,

Δhl2
hTi ¼ hl2

hTieA − hl2
hTiep; ð5Þ

is defined as the difference between the average
squared transverse momentum of the observed hadron
produced on a nuclear target (eþ A collisions) and
that on a proton target (eþ p scattering), with hl2

hTi
given by

hl2
hTi ¼

Z
dl2

hTl
2
hT

dσ
dPSdl2

hT

=
dσ
dPS

; ð6Þ

where the phase space dPS ¼ dxBdydzh. The denomi-
nator gives the so-called single hadron differential cross
section in SIDIS, which can be written as [57,58]

dσ
dPS

¼ α2em
Q2

�
YMð−gμνÞ þ YL 4x

2
B

Q2
pμpν

�
dWμν

dzh
; ð7Þ

where αem stands for the fine-structure constant, and
Wμν is the hadronic tensor for γ� þ A → hþ X. Here
the term proportional to YM is the so-called “metric”
contribution, while the term proportional to YL is the
longitudinal contribution. YM and YL are closely con-
nected to the photon polarizations with the following
expressions:

YM ¼ 1þ ð1 − yÞ2
2y

; YL ¼ 1þ 4ð1 − yÞ þ ð1 − yÞ2
2y

:

ð8Þ

The result for single hadron differential cross section
in SIDIS at leading twist 2 is well known. As a warm-
up exercise, we also calculate this cross section to
NLO. Working in n¼4−2ϵ dimensions with the MS
scheme, our findings are consistent with those in the
literature [59–62]:

KANG, WANG, WANG, and XING PHYSICAL REVIEW D 94, 114024 (2016)

114024-2



dσ
dPS

¼ σ0
X
q

e2q

Z
dx
x
dz
z
fq=Aðx; μ2fÞDh=qðz; μ2fÞδð1 − x̂Þδð1 − ẑÞ

þ σ0
αs
2π

X
q

e2q

Z
dx
x
dz
z
fq=Aðx; μ2fÞDh=qðz; μ2fÞ

�
ln

�
Q2

μ2f

�
½Pqqðx̂Þδð1 − ẑÞ þ PqqðẑÞδð1 − x̂Þ� þHNLO

T2−qq

�

þ σ0
αs
2π

X
q

e2q

Z
dx
x
dz
z
fq=Aðx; μ2fÞDh=gðz; μ2fÞ

�
ln

�
Q2

μ2f

�
PgqðẑÞδð1 − x̂Þ þHNLO

T2−qg

�

þ σ0
αs
2π

X
q

e2q

Z
dx
x
dz
z
fg=Aðx; μ2fÞ½Dh=qðz; μ2fÞ þDh=q̄ðz; μ2fÞ�

�
ln

�
Q2

μ2f

�
Pqgðx̂Þδð1 − ẑÞ þHNLO

T2−gq

�
; ð9Þ

where μf is the factorization scale, fqðgÞ=Aðx; μ2fÞ is the
quark (gluon) distribution function inside the nucleus, and
Dh=qðgÞðz; μ2fÞ is the fragmentation function for a quark
(gluon) into a hadron h. The detailed expressions for the
finite terms HNLO

T2−qq, H
NLO
T2−qg, and HNLO

T2−gq are given in the
Appendix by Eqs. (A1), (A2), and (A3), respectively. Other
variables are defined as x̂ ¼ xB=x, ẑ ¼ zh=z, and σ0 is
given by

σ0 ¼
2πα2em
Q2

1þ ð1 − yÞ2
y

ð1 − ϵÞ: ð10Þ

In Eq. (9), PabðzÞ is the usual Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) splitting kernel for partons b → a

PqqðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
; ð11Þ

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
; ð12Þ

PqgðzÞ ¼ TR½z2 þ ð1 − zÞ2�; ð13Þ

where CF ¼ ðN2
c − 1Þ=2Nc with Nc ¼ 3 being the number

of colors, and TR ¼ 1=2.

B. Transverse momentum broadening: Leading order

In a nuclear medium, the outgoing parton in SIDIS may
experience additional scatterings with other partons from
the nucleus before fragmenting into final observed hadrons.
Taking into account these multiple scatterings, one can
express the differential cross section for single inclusive
hadron production in SIDIS off a nuclear target as a sum
of contributions from single, double, and higher multiple
scatterings [63],

dσ ¼ dσS þ dσD þ � � � ; ð14Þ
where the superscript “S” (“D”) indicates the single
(double) scattering contribution. In the case of a single
scattering as illustrated in Fig. 1(a), the virtual photon
interacts with a single parton (quark or gluon) coming from
the nucleus to produce a parton which will then fragment
into the final observed hadron. Such a single scattering
is localized in space and time, and thus usually does
not lead to a significant modification for the production
rate from eþ p to eþ A collisions, except for a mild A
dependence from nuclear parton distribution functions.
On the other hand, in the case of double scatterings as
shown in Fig. 1(b), the outgoing parton experiences one
additional scattering with another parton (e.g., a gluon in
the figure) from the nucleus. Such a double scattering is
usually power suppressed ∼1=Q2 by the hard scale of the

(a) (b)

FIG. 1. The general diagrams for single inclusive hadron production in SIDIS in a nuclear medium: (a) single scattering contribution
with k ¼ xp; (b) quark-gluon double scattering with the initial parton’s momenta k1 ¼ x1p, k2 ¼ ðx1 þ x3Þpþ k2T − k3T ,
kg ¼ x2pþ k2T and k0g ¼ ðx2 − x3Þpþ k3T , respectively. Here kT is the transverse momentum kick from the nucleus.
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process, though it could be enhanced by the nuclear size
∼A1=3, which happens when two partons come from
different nucleons inside the nucleus. In this situation,
double scatterings will then lead to a nuclear enhancement
in the average squared transverse momentum for the
observed hadron produced in eþ A collisions. Even higher
multiple scattering will be suppressed even more by the
hard scale Q,1 and thus the leading contribution to the
transverse momentum broadening Δhl2

hTi should come
from the double scattering. According to Eqs. (5) and (14),
the leading contribution to the defined nuclear transverse
momentum broadening can thus be written as,

Δhl2
hTi ≈

dhl2
hTσ

Di
dPS

= dσ
dPS

;

dhl2
hTσ

Di
dPS

≡
Z

dl2
hTl

2
hT

dσD

dPSdl2
hT

; ð15Þ

where the superscript “D” indicates the double-scattering
contribution.
It is instructive to emphasize that single scattering

certainly contributes in the calculation of hl2
hTi for both eþ

A and eþ p collisions. Such a contribution∼
R
dl2

hTl
2
hTdσ

S

can even produce a divergent result, because of the high-lhT

perturbative tail of the cross section dσS [65]. However,
such contributions do not affect our analysis, since we are
studying the transverse momentum broadening Δhl2

hTi of
Eq. (5), which is defined as the difference in hl2

hTi between

eþ A and eþ p collisions. Those divergences thus cancel
in the final result and we end up with physically meaningful
results. In other words, the transverse momentum
broadening is closely related to the transverse momentum
l2
hT-weighted differential cross section through double

scattering, i.e., the numerator in the left equation of
Eq. (15), which will be the focus of our paper. It is worth
mentioning that the contributions fromdouble scatterings are
related to the so-called power corrections at the twist-4 level,
for which a justification of a generalized factorization
formalism was given in Refs. [40,66]. Our computations
in the current paper can be regarded as a verification of such a
factorization formalism up to one-loop order.
At leading order, the double-scattering contribution is

given by Fig. 2. The l2
hT-weighted cross section (specifi-

cally the hadronic tensor) can be written as

dhl2
hTW

Di
dzh

ðLOÞ
¼ 2πxB

Q2

X
q

e2q

Z
dx
x
dz
z
Dh=qðzÞ

Z
dn−2lhTl2

hTδ
n−2ðlhT − zkTÞδð1 − x̂Þδð1 − ẑÞ

×
Z

dn−2kTdx1dx2dx3TAðx1; x2; x3; kTÞð−gμνÞHμνðfxig; p; q;l;lh; kTÞδðx1 þ x2 − xÞ; ð16Þ

whereWD ¼ ð−gμνÞWD
μν. In arriving at this,we have used the

fact that the longitudinal contribution vanishes at LO, and
thus the only contribution is the metric term. In Eq. (16),
fxig ¼ fx1; x2; x3g are the independent collinear momen-
tum fractions carried by partons from the nucleus, kT is a
small transverse momentum kick due to the multiple scatter-
ing, and the matrix element TAðx1; x2; x3; kTÞ is defined as

TAðx1;x2;x3;kTÞ

¼
Z

dy−

2π

dy−1
2π

dy−2
2π

d2yT
ð2πÞ2e

ix1pþy−eix2p
þðy−

1
−y−

2
Þeix3pþy−

2 eikT ·yT

×
1

2
hAjψ̄qð0ÞγþAþðy−2 ;0TÞAþðy−1 ;yTÞψqðy−ÞjAi: ð17Þ

As in Refs. [47,49,50], the calculation proceeds by first
taking the Taylor expansion of the hard part function in kT ,

Hμνðfxig; p; q;l;lh; kTÞ
¼ Hμνðfxig; p; q;l;lh; kT ¼ 0Þ þOμνðk2TÞ: ð18Þ

Note that the term linear in kT in the above expansion does
not contribute to unpolarized SIDIS. Using δn−2ðlhT − zkTÞ
in Eq. (16) to set lhT ¼ zkT , one can convert k2TA

þAþ to the
gauge-covariant gluon field strength Fþ

σ Fσþ in the matrix
element through partial integrations in yT . We further
integrate over the momentum fractions x1, x2, x3 through
contour integrations around poles in the hard part Hμν,

1

ðqþ x1pÞ2 þ iϵ
¼ xB

Q2

1

x1 − xB þ iϵ
; ð19Þ

1

½qþ ðx1 þ x3Þp�2 − iϵ
¼ xB

Q2

1

x1 þ x3 − xB − iϵ
: ð20Þ

FIG. 2. Feynman diagram for the double-scattering contribu-
tion to transverse momentum broadening at leading order. The
parton momenta follow the same notation as in Fig. 1(b). The
short bars indicate the propagators where the soft poles arise.

1This statement might not be necessarily true for the small
Bjorken-x limit, where gluon density in the target is extremely
high and thus all the multiple scatterings are equally important
and have to be resummed. In such a kinematic region, we have to
rely on a different theoretical framework; see e.g. Ref. [64].

KANG, WANG, WANG, and XING PHYSICAL REVIEW D 94, 114024 (2016)

114024-4



Together with the phase space δ function δðx1 þ x2 − xBÞ in
Eq. (16), we fix x1¼ xB, x2¼ 0, and x3 ¼ 0. Finally we have

dhl2
hTW

Di
dzh

ðLOÞ
¼ 2αs

Nc
z2hð2πÞ3ð1− ϵÞ

X
q

e2q

Z
dx
x
Tqgðx;0;0Þ

×
Z

dz
z
Dh=qðzÞδð1− x̂Þδð1− ẑÞ; ð21Þ

where the twist-4 quark-gluon correlation function
Tqgðx1; x2; x3Þ is given by [9,10,47],2

Tqgðx1; x2; x3Þ

¼
Z

dy−

2π
eix1p

þy−

×
Z

dy−1 dy
−
2

4π
eix2p

þðy−
1
−y−

2
Þeix3pþy−

2 θðy−2 Þθðy−1 − y−Þ

× hAjψ̄qð0ÞγþFþ
σ ðy−2 ÞFσþðy−1 Þψqðy−ÞjAi: ð22Þ

We thus obtain the double-scattering contribution to the l2
hT-

weighed differential cross section at LO,

dhl2
hTσ

DiðLOÞ
dPS

¼ σh
X
q

e2q

Z
dx
x
Tqgðx; 0; 0Þ

×
Z

dz
z
Dh=qðzÞδð1 − x̂Þδð1 − ẑÞ; ð23Þ

where σh ¼ ð4π2αsz2h=NcÞσ0, with σ0 defined in Eq. (10).
The LO transverse momentum broadening is then

Δhl2
hTi ¼

�
4π2αsz2h

Nc

�P
qe

2
qTqgðxB; 0; 0ÞDh=qðzhÞP
qe

2
qfq=AðxBÞDh=qðzhÞ

; ð24Þ

as obtained in previous calculations [43,45].

III. TRANSVERSE MOMENTUM BROADENING
AT NEXT-TO-LEADING ORDER

In this section, we present our calculations of NLO
contributions to transverse momentum broadening in
SIDIS. We first study the virtual-photon-quark (γ� þ q)
interaction channel, which involves the quark-gluon corre-
lation function Tqg as defined in Eq. (22). We then derive
the result for the virtual-photon-gluon (γ� þ g) channel,
which involves the gluon-gluon correlation function Tgg

defined in Eq. (83) below. The final result will be presented
at the end of this section.
The double-scattering contributions in the nuclearmedium

manifest themselves as power corrections to the differential
cross section. A high-twist factorization formalism was
established [38–40] to systematically extract these contribu-
tions.This formalism stemsdirectly from thewell-established
collinear factorization theorem [38–41] and has recently been
extended to include transverse-momentum-dependent parton
distributions [67–69]. Within such an approach, one carries
out a collinear expansion of hard parts and reorganizes the
final results in terms of power corrections, where the second-
order expansion gives rise to the twist-4 contribution. In the
presence of a large nucleus (A ≫ 1), the dominant contri-
bution comes from the terms associated with the high-twist
matrix elements of the nuclear state that are enhanced by the
nuclear size. The general formalism for the double-scattering
contribution can be written as

dWD
μν

dzh
¼

X
q

e2q

Z
dz
z
Dh=qðzÞ

Z
dy−

2π

dy−1
2π

dy−2
2π

1

2
hAjψ̄qð0ÞγþFþ

σ ðy−2 ÞFσþðy−1 Þψqðy−ÞjAi

×

�
−

1

2ð1 − ϵÞ g
αβ

�� ∂2

∂kα2T∂kβ3T
H̄μνðp; q;l;lh; k2T; k3T; fyigÞ

�
k2T¼k3T¼0

; ð25Þ

where fyig¼fy;y1;y2g, and H̄μνðp; q;l;lh; k2T; k3T;
fyigÞ is the Fourier transform of the hard partonic function
Hμνðfxig; p; q;l;lh; k2T; k3T; fyigÞ,

H̄μνðp; q;l;lh; k2T; k3T; fyigÞ

¼
Z

dx1dx2dx3eix1p
þy−eix2p

þðy−
1
−y−

2
Þeix3pþy−

2

×Hμνðfxig; p; q;l;lh; k2T; k3T; fyigÞ: ð26Þ

A. Quark-gluon double scattering

In this subsection we calculate the double-scattering
contribution for the virtual-photon-quark (γ� þ q) interaction
channel, as illustrated inFig. 1(b),which involves a quark and
a gluon in the initial state. They will be referred to as quark-
gluon double scattering, in which there is first a hard photon-
quark scattering, and then the produced parton undergoes a
second scatteringwith another initial gluon from the nucleus.
To simplify our discussion, we classify the secondary
scattering as “soft” or “hard” [9,10,70–73], depending on
whether the exchanged gluon momentum [either kg or k0g in
Fig. 1(b)] becomes zero or remains finite, respectively, when
kT → 0. The final amplitudes of the cut diagrams contain

2Our notation here follows Refs. [38,39], which differs by
1=2π as compared to Refs. [9,10].

TRANSVERSE MOMENTUM BROADENING IN SEMI- … PHYSICAL REVIEW D 94, 114024 (2016)

114024-5



“soft” or “hard” contributions and their interferences, often
referred to as soft-soft, hard-hard, soft-hard and hard-soft
contributions. We will first study the central-cut diagrams,
which represent the classical double-scattering picture; then
we compute the virtual contributions, and finally we come
back to the asymmetric-cut diagrams, which represent the
interference between single- and triple-scattering processes.
As wewill show below, both central-cut diagrams and virtual
contributions contain divergences, while the sum of all the
asymmetric-cut diagrams is free of any divergence, and only
contributes to the NLO finite terms.

1. Central cut (real corrections)

For real corrections, there are in total 16 diagrams
corresponding to four different kinds of subprocesses
mentioned above: soft-soft double scattering, hard-hard
double scattering and the interferences between them, as
shown in Fig. 3. Let us take the soft-soft double scattering

in Fig. 3(a) as an example to outline the essential steps
for calculating the NLO contributions to the transverse
momentum broadening, and all the other subprocesses
could be evaluated in the same manner.
To perform the collinear expansion in Eq. (25), we first

integrate out the parton momentum fractions x1, x2, and x3
with the help of either the contour integration or the
kinematic δ function in the final-state phase space, and then
perform the kT expansion directly. Starting from the high-
twist general formalism as shown in Eq. (25), and following
the original setup of high-twist expansion as developed by
Qiu and Sterman [38,39], we set k2T ¼ k3T ¼ kT . This is
the most convenient way to perform a twist-4 calculation
for soft-soft double scattering. A detailed explanation on
how to choose the correct setup of kT flow to ensure gauge
invariance was provided in Ref. [74]. Within this setup, the
l2
hT-weighted hadronic tensor for soft-soft double scattering

can then be written as,

dhl2
hTW

D
μνi

dzh
¼
X
q

e2q

Z
dz
z
Dh=qðzÞl2

hT

�
−

gαβ

2ð1−ϵÞ
�
1

2

∂2

∂kαT∂kβT

�Z
dx1dx2dx3TqgðfxigÞHμνðfxig;p;q;l;lh;kTÞ

�
kT¼0

: ð27Þ

The two propagators which will be used to perform the contour integrals are marked by short bars in Fig. 3(a) and can be
expressed as follows:

1

ðl − x2p − kTÞ2 þ iϵ
¼ x

û
1

x2 − xD − iϵ
; ð28Þ

1

½l − ðx2 − x3Þp − kT �2 − iϵ
¼ x

û
1

x2 − x3 − xD þ iϵ
: ð29Þ

On the other hand, the two-body final-state phase space integral at central-cut is given by

dPSðCÞ ¼ 1

8π

�
4π

Q2

�
ϵ 1

Γð1 − ϵÞ
Z

dxδðx1 þ x2 − x − xCÞẑ−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ; ð30Þ

where the δ function δðx1 þ x2 − x − xCÞ comes from the on-shell condition for the unobserved final-state gluon. Here the
momentum fractions x, xC, and xD in Eqs. (28), (29) and (30) are given by

x ¼ Q2 þ 2q · l
2p · ðq − lÞ ; xC ¼ x

k2T − 2l · kT
t̂

; xD ¼ x
2l · kT − k2T

û
: ð31Þ

Now we are able to integrate over fxig,Z
dx1dx2dx3eix1p

þy−eix2p
þðy−

1
−y−

2
Þeix3pþy−

2
1

x2 − xD − iϵ
1

x2 − x3 − xD þ iϵ
δðx1 þ x2 − x − xCÞ

¼ eiðxþxC−xDÞpþy−eixDp
þðy−

1
−y−

2
Þð2πÞ2θðy−2 Þθðy−1 − y−Þ: ð32Þ

H H

(a)

H

(b)

H H H

(c)

H H

(d)

FIG. 3. The central-cut diagrams for (a) soft-soft, (b) hard-hard, (c) soft-hard, and (d) hard-soft double scatterings in SIDIS. The short
bars indicate the propagators where the soft poles arise, while the crosses indicate the propagators where the hard poles arise. The “H”
blobs represent the hard 2 → 2 processes as shown in Fig. 4.
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In the above equation, two of the integrations over fxig are
carried out by contour integrations, which lead to the θ
functions, indicating the order of the two scatterings. The
third integration over fxig is fixed by the δ function from
the final-state phase space. After the integration, the parton
momentum fractions fxig are fixed as follows:

x1 ¼ xþ xC − xD; x2 ¼ xD; x3 ¼ 0: ð33Þ

As we can see here, in the collinear limit kT → 0,
xC ¼ xD ¼ 0 according to Eq. (31). Thus the momentum
fraction for the initial quark is finite x1 ¼ x, while the
momentum fractions for the initial gluons on both sides
of the cut line become zero (kg → 0 and k0g → 0). This is
why we refer to this process as soft-soft double scattering.

The next critical step, which is the key point in the high-
twist calculation, is to perform the collinear expansion.
With the help of the identity [75],

∂2½TðfxigÞHμνðfxig; kTÞ�
∂kαT∂kβT

¼ ∂2T
∂xi∂xj

�∂xi
∂kαT

∂xj
∂kβT

Hμν

�
þ ∂T
∂xi

� ∂2xi
∂kαT∂kβT

Hμν

þ ∂xi
∂kαT

∂Hμν

∂kβT
þ ∂xi
∂kβT

∂Hμν

∂kαT
�
þ T

∂2Hμν

∂kαT∂kβT
; ð34Þ

where repeated indices imply summations, we substitute
the parton momentum fractions fxig in Eq. (33), and then
carry out the collinear expansion of the hard part. At the end
of the day, we have

dhl2
hTW

DissC
dzh

¼ 2αs
Nc

z2hð2πÞ3ð1 − ϵÞ αs
2π

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ ẑ
−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ

×

�
x2

d2

dx2
Tqgðx; 0; 0ÞDss

2 þ x
d
dx

Tqgðx; 0; 0ÞDss
1 þ Tqgðx; 0; 0ÞDss

0

�
: ð35Þ

Here and throughout the later part of this paper, WD (H)
stands for the combination of metric and longitudinal
contributions by contracting WD

μν (Hμν) with −gμν and
pμpν separately. In Eq. (35), μ is the mass scale introduced
to keep the coupling constant dimensionless g → gμϵ, and
the superscript “ss” represents the soft-soft contributions.
There are three terms in Eq. (35): the first two are the
derivative terms, and the third one is the nonderivative term,
and they are related to the hard part coefficient function
Hðfxig; kTÞ as

Dss
2 ¼ 1

2ẑ2

�
1

t̂
þ 1

û

�
2 l4

T

ð1 − ϵÞ2H; ð36Þ

Dss
1 ¼ −

1

2ẑ2

�
H þ l2

T

1 − ϵ

∂H
∂y1

�
l2
T

1 − ϵ
; ð37Þ

Dss
0 ¼ 1

2ẑ2

�
1

4

l2
T

1 − ϵ

∂2H
∂y21 −

∂H
∂y2

�
l2
T

1 − ϵ
; ð38Þ

where y1 ¼ l · kT , y2 ¼ k2T and the arguments in H are
suppressed. In arriving at Eq. (35) fromEq. (34), one realizes
that only derivatives with respect to x1 contribute to the final
result; thus we change the partial derivativewith respect to x1
into the formof full derivativewith respect to x (recall x1 → x
at kT → 0). The first derivative with respect to x2 will
generate (y−1 − y−2 ), and thus when combined with thematrix
element, it vanishes due to the fact that the gluon field
strengths commute on the light cone, as explained clearly in
Refs. [38,39]. The second derivative with respect to x2 gives
rise to a “contact” termwhen combined with the correspond-
ing asymmetric-cut diagrams. The “contact” terms generally
do not have nuclear size enhancement and thus we neglect
them in our study; see the explanation in Ref. [75] and also
discussions in Sec. III A 3 below. Finally since x3 ¼ 0 is
independent of kT , no expansion over x3 is needed.
In the above equations, the hard part coefficientsDss

i ði ¼
2; 1; 0Þ are functions of parton Mandelstam variables ŝ, t̂
and û, which can be expressed in terms of Q2, x̂ and ẑ as

H

H(a)

(b)

FIG. 4. The representations of hard 2 → 2 processes for (a) photon-quark interaction, and (b) quark-gluon interaction.
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ŝ ¼ 1 − x̂
x̂

Q2; t̂ ¼ −
1 − ẑ
x̂

Q2; û ¼ −
ẑ
x̂
Q2: ð39Þ

Thus we see that the integrals over x̂ and ẑ will contain
divergences when x̂ → 1 and ẑ → 1. Note that we do not
have to worry about the divergences when x̂ → 0 and ẑ → 0
since they are outside the physical regions (x̂ > xB and
ẑ > zh). The main task now is to isolate all the divergences,
and combine them accordingly. Let us define the common
factor

I ¼ ẑ−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ; ð40Þ
which will be used repeatedly below. To perform the ϵ
expansion for the hard part coefficients I ×Dss

i , we use the
following formulas [59]:

ẑ−ϵð1 − ẑÞ−ϵ−1 ¼ −
1

ϵ
δð1 − ẑÞ þ 1

ð1 − ẑÞþ
− ϵ

�
lnð1 − ẑ
1 − ẑ

�
þ

− ϵ
ln ẑ
1 − ẑ

þOðϵ2Þ; ð41Þ

x̂ϵð1 − x̂Þ−ϵ−1 ¼ −
1

ϵ
δð1 − x̂Þ þ 1

ð1 − x̂Þþ
− ϵ

�
lnð1 − x̂
1 − x̂

�
þ

þ ϵ
ln x̂
1 − x̂

þOðϵ2Þ; ð42Þ

ẑ−ϵð1 − ẑÞ−ϵ ¼ 1 − ϵ ln ẑ − ϵ lnð1 − ẑÞ þOðϵ2Þ; ð43Þ
x̂ϵð1 − x̂Þ−ϵ ¼ 1þ ϵ ln x̂ − ϵ lnð1 − x̂Þ þOðϵ2Þ; ð44Þ

where the usual “plus” function is defined as
Z

1

0

dz
fðzÞ

ð1 − zÞþ
≡

Z
1

0

dz
fðzÞ − fð1Þ

1 − z
: ð45Þ

Finally we have

I ×Dss
2 ¼ −

1

ϵ
CFδð1 − ẑÞð1 − x̂Þð1þ x̂2Þ þ � � � ; ð46Þ

I ×Dss
1 ¼ −

1

ϵ
CFδð1 − ẑÞð4x̂3 − 5x̂2 − 1Þ þ � � � ; ð47Þ

I×Dss
0 ¼CF

�
2

ϵ2
δð1− ẑÞδð1− x̂Þþ4

ϵ
δð1− ẑÞδð1− x̂Þ

−
1

ϵ
δð1− x̂Þ 1þ ẑ2

ẑ2ð1− ẑÞþ
−
1

ϵ
δð1− ẑÞ1þ x̂2ð6x̂2−14x̂þ9Þ

ð1− x̂Þþ

�
þ�� � ; ð48Þ

where the ellipses denote finite contributions. It is instruc-
tive to point out that all the divergent terms above come
from the metric contribution, not from the longitudinal
contribution. However, the longitudinal part does contrib-
ute to finite terms. This feature holds true in all the other
processes as well. For the divergent pieces associated with

derivative terms in the above expression, we further
perform integration by parts to convert them into the form
of nonderivative terms [60,61]. We have the final divergent
piece in soft-soft double scattering as

CF

Z
1

xB

dx
x
Tqgðx; 0; 0Þ

�
2

ϵ2
δð1 − x̂Þδð1 − ẑÞ

−
1

ϵ
δð1 − x̂Þ 1þ ẑ2

ẑ2ð1 − ẑÞþ
−
1

ϵ
δð1 − ẑÞ 1þ x̂2

ð1 − x̂Þþ

�
; ð49Þ

where we have used the boundary condition Tqgðx;0;0Þ¼ 0

when x → 1 in preforming the integration by parts, which is
valid under the approximation of neglecting the Fermi
motion of a nucleon inside a nucleus. From the divergent
piece, we can see that soft-soft double scattering contains
both soft-collinear and collinear divergences, which are
identified as double-pole 1=ϵ2 and single-pole 1=ϵ, respec-
tively. On the other hand, the finite terms associated with
derivative and nonderivative terms [as denoted by the
ellipses in Eqs. (46), (47), and (48)] are combined into a
single term denoted as Hss

qg−C ⊗ Tqg, with the expression
given by Eq. (A4) in the Appendix.
Likewise, we can also compute the diagrams of hard-

hard double scattering as shown in Fig. 3(b), where the
radiated gluon is induced by the secondary quark-nucleus
scattering, following the first quark-photon interaction. In
this process, one can either use the original Qiu-Sterman
setup (k2T ¼ k3T ¼ kT), or apply the one shown in Fig. 1(b),
which is more clear to demonstrate gauge invariance.
We have checked that these two setups lead to exactly the
same result. To simplify our presentation, we use the same
scenario as that in soft-soft double scattering (Qiu-Sterman
setup). In this process, it is straightforward to show that the
exchanged gluon momenta (kg and k0g ) remain finite in the
collinear limit kT → 0, and thus it is referred to as a hard
scattering. Specifically the two propagators marked by the
crosses have the following expressions:

1

ðx1pþ qÞ2 þ iϵ
¼ xB

Q2

1

x1 − xB þ iϵ
; ð50Þ

1

½ðx1 þ x3Þpþ q�2 þ iϵ
¼ xB

Q2

1

x1 þ x3 − xB þ iϵ
: ð51Þ

At the same time, the on-shell condition for the unobserved
gluon leads to

δ½ððx1 þ x2Þpþ kT þ q − lÞ2� → δðx1 þ x2 − x − xCÞ:
ð52Þ

Thus the contour integrals and the above kinematic δ
function fix fxig as

x1 ¼ xB; x2 ¼ xþ xC − xB; x3 ¼ 0; ð53Þ
from which we find that the gluon momenta associated with
the second scattering remain finite when kT → 0 as
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kg → ðx − xBÞp; k0g → ðx − xBÞp; ð54Þ

hence the name hard-hard double scattering.

Following the same steps as we have outlined in soft-soft
double scattering, we can write down the contributions
from hard-hard double scattering, where only nonderivative
term contributes to the final result:

dhl2
hTW

DihhC
dzh

¼ α2s
Nc

z2hð2πÞ3ð1 − ϵÞ
Z

dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ ẑ
−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ

× TqgðxB; x − xB; 0ÞDhh
0 ; ð55Þ

where the superscript “hh” represents the hard-hard scattering contribution. Perform the ϵ expansion, we have

I ×Dhh
0 ¼ CA

�
2

ϵ2
δð1 − ẑÞδð1 − x̂Þ − 2

ϵ
δð1 − x̂Þ 1þ ẑ2

ð1 − ẑÞþ
CF=CAð1 − ẑÞ2 þ ẑ

ẑ2
−
2

ϵ
δð1 − ẑÞ 1

ð1 − x̂Þþ
þ � � �

�
: ð56Þ

The finite term denoted by the ellipsis comes from the
metric part only, with the explicit expression Hhh

qg−C ⊗ Tqg
given in Eq. (A5) in the Appendix.
Finally let us turn to the interference diagrams between

soft and hard scatterings. The calculation is similar, but one
has to bevery carefulwhen choosing the correct setup for the

kT flow to ensure the gauge invariance of the final result; a
detailed discussion of this point can be found in Ref. [74].
For the soft-hard scattering contributions as shown in
Fig. 3(c), we choose the setup as shown in Fig. 1(b), and
perform the collinear expansion as in Eq. (25). The result
for soft-hard double scattering can be written as

dhl2
hTW

DishC
dzh

¼ 2αs
Nc

z2hð2πÞ3ð1 − ϵÞ αs
2π

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ ẑ
−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ

×

�
x
d
dx

Tqgðx; 0; xB − xÞDsh
1 þ x

d
dx2

Tqgðx; x2; xB − xÞj
x2→0

Dsh
12 þ Tqgðx; 0; xB − xÞDsh

0

�
: ð57Þ

Again, the divergences in each term of the above equation
can be identified as follows:

I ×Dsh
1 ¼ −

1

ϵ

CA

2
δð1 − ẑÞð1þ x̂Þ � � � ; ð58Þ

I ×Dsh
12 ¼ � � � ; ð59Þ

I ×Dsh
0 ¼ CA

2

�
−

2

ϵ2
δð1 − ẑÞδð1 − x̂Þ − 4

ϵ
δð1 − ẑÞδð1 − x̂Þ

þ 1

ϵ
δð1 − x̂Þ 1þ ẑ2

ẑ2ð1 − ẑÞþ
½ẑþ 2CF=CAð1 − ẑÞ�

þ 1

ϵ
δð1 − ẑÞ 1þ 2x̂ − x̂2

ð1 − x̂Þþ
þ � � �

�
: ð60Þ

Similarly to the soft-soft double scattering, performing
partial integration to convert the derivative of the quark-
gluon correlation function Tqg to Tqg itself leads to the
divergent part

CA

Z
1

xB

dx
x
Tqgðx; 0; xB − xÞ

�
−

1

ϵ2
δð1 − x̂Þδð1 − ẑÞ

þ 1

ϵ
δð1 − x̂Þ 1þ ẑ2

ẑ2ð1 − ẑÞþ

�
ẑ
2
þ CF

CA
ð1 − ẑÞ

�

þ 1

ϵ
δð1 − ẑÞ 1þ x̂

2ð1 − x̂Þþ
−
1

ϵ
δð1 − x̂Þδð1 − ẑÞ

�
; ð61Þ

while the finite contribution denoted as Hsh
qg−C ⊗ Tqg is

given by Eq. (A6) in the Appendix. Like in hard-hard
double scattering, the finite contribution in soft-hard double
scattering comes from the metric contribution only, and the
longitudinal part does not contribute. This also holds true
for the hard-soft double-scattering process.
The process of hard-soft double scattering as shown in

Fig. 3(d) is simply the complex conjugate of the soft-hard
double scattering, its contribution can be easily obtained
by replacing the matrix element in soft-hard process as
follows

Tqgðx; 0; xB − xÞ → TqgðxB; x − xB; x − xBÞ: ð62Þ

Therefore, the divergent part in this process is
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CA

Z
1

xB

dx
x
TqgðxB; x − xB; x − xBÞ

�
−

1

ϵ2
δð1 − x̂Þδð1 − ẑÞ þ 1

ϵ
δð1 − x̂Þ 1þ ẑ2

ẑ2ð1 − ẑÞþ

�
ẑ
2
þ CF

CA
ð1 − ẑÞ

�

þ 1

ϵ
δð1 − ẑÞ 1þ x̂

2ð1 − x̂Þþ
−
1

ϵ
δð1 − x̂Þδð1 − ẑÞ

�
; ð63Þ

and the finite part denoted as Hhs
qg−C ⊗ Tqg can be found in Eq. (A7) in the Appendix.

Combining all the results from soft-soft, hard-hard, soft-hard and hard-soft contributions, we obtain the result for real
corrections from central-cut diagrams,

dhl2
hTσ

DiðCÞ
dPS

¼ σh
αs
2π

X
q

e2q

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ
�
2

ϵ2
CFδð1 − x̂Þδð1 − ẑÞTqgðx; 0; 0Þ −

1

ϵ
δð1 − x̂Þ

× CF
1þ ẑ2

ð1 − ẑÞþ
Tqgðx; 0; 0Þ −

1

ϵ
δð1 − ẑÞ

�
CF

1þ x̂2

ð1 − x̂Þþ
Tqgðx; 0; 0Þ þ CA

2

ð1 − x̂Þþ
TqgðxB; x − xB; 0Þ

−
CA

2

1þ x̂
ð1 − x̂Þþ

ðTqgðx; 0; xB − xÞ þ TqgðxB; x − xB; x − xBÞÞ
�

−
2

ϵ
δð1 − x̂Þδð1 − ẑÞTqgðx; 0; 0Þ þHC−R

qg ⊗ Tqg

�
; ð64Þ

where the finite contributionHC−R
qg ⊗ Tqg has the following

form:

HC−R
qg ⊗ Tqg ¼ Hss

qg−C ⊗ Tqg þHhh
qg−C ⊗ Tqg

þHsh
qg−C ⊗ Tqg þHhs

qg−C ⊗ Tqg; ð65Þ
with all the terms on the right-hand side given in Eqs. (A4),
(A5), (A6), and (A7), respectively. It is instructive to point

out that even though hard-hard double scattering, and soft-
hard and hard-soft scattering all have double-pole 1=ϵ2

terms ∝ CA, they cancel between them, and thus the
remaining 1=ϵ2 terms entirely come from the soft-soft
double-scattering contribution, which has a color factor CF,
and is exactly opposite to those in the virtual corrections as
we will show in the next subsection.

2. Virtual corrections

In this subsection, we calculate the virtual corrections in
quark-gluon double scattering, which have to be included to
ensure unitarity and infrared safety of the final result. The
relevant generic Feynman diagrams are shown in Fig. 5, in
which the blob is given by Fig. 6. The incoming parton
momenta involved in the double scatterings follow the same
convention as those in Fig. 1(b), or the LO diagram shown in
Fig. 2. In this case, it is important to realize that all the
asymmetric-cut diagrams give no contribution to the l2

hT-
weighted differential cross section. This is because the
kinematic δ function δn−2ðlhTÞ from the final-state phase

FIG. 6. One-loop corrections to the quark-photon-quark vertex with gluon attachment, corresponding to the blob in Fig. 5.

(a) (b)

FIG. 5. The virtual diagrams in the calculation of transverse
momentum broadening at NLO in SIDIS. The incoming parton
momenta involved in the double scatterings follow the same
convention as in Fig. 1(b), or the LO diagram shown in Fig. 2.
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space leads to
R
dn−2lhTl2

hTδ
n−2ðlhTÞ ¼ 0. Thus we only

have to consider the central-cut diagrams.
The two diagrams in Fig. 5 are simply complex conjugates

of each other, so they should have the same result. The actual
calculation is quite involved and tedious, and it contains a
significant amount of tensor reductions and integrations.

Nevertheless, the calculation is straightforward. The results
can be decomposed into two types of color factors, CF and
CA, and it turns out that terms associated with CA cancel out
and only terms with the colorCF remain. The final result for
the virtual correction is quite simple and has exactly the same
structure as the virtual correction at leading twist,

dhl2
hTσ

Di
dPS

ðVÞ
¼ σh

αs
2π

Z
dx
x
Tqgðx; 0; 0Þ

Z
dz
z
Dh=qðzÞδð1 − x̂Þδð1 − ẑÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞCF

�
−

2

ϵ2
−
3

ϵ
− 8

�
: ð66Þ

A similar structure also appears in the virtual correction to
the transverse-momentum-weighted spin-dependent cross
section at twist 3 [60,61,76]. It is important to note that the
soft-collinear divergence (1=ϵ2 term) in the above virtual
corrections should cancel that in the real diagrams in order
to establish the NLO collinear factorization at twist 4. We
will check this cancellation when we combine the results of
all the diagrams together. For later convenience, we write
out the finite term in the virtual contribution:

HC−V
qg ⊗ Tqg ¼ −8CFδð1 − x̂Þδð1 − ẑÞTqgðx; 0; 0Þ: ð67Þ

3. Asymmetric cut

We now turn to the asymmetric-cut diagrams, which
represent the interferences between single and triple scat-
terings. They include both left-cut and right-cut diagrams as
shown in Figs. 7 and 8, respectively. Since two additional
scattered gluons are always on the same side, there will be
no hard-hard scattering contributions. Thus there are only

three different kinds of subprocesses for asymmetric-cut
diagrams: soft-soft, soft-hard and hard-soft rescatterings.
The soft-soft rescatterings of single-triple interference

are shown in Figs. 7(a) and 8(a). Let us take Fig. 7(a) as an
example, in which the relevant propagators (marked by the
short bars) are,

1

ðlþ x2pþ kTÞ2 − iϵ
¼ −

x
û

1

x2 − xE − iϵ
; ð68Þ

1

ðlþ x3pÞ2 − iϵ
¼ −

x
û

1

x3 − iϵ
: ð69Þ

Together with the on-shell condition for the unobserved
gluon, which gives δðx1 − xÞ, we have

x1 ¼ x; x2 ¼ xE; x3 ¼ 0; ð70Þ

where xE is given by

xE ¼ x
û
ð2l · kT þ k2TÞ: ð71Þ

H H

(a)

H H

(b)

H H

(c)

FIG. 7. The left-cut diagrams for (a) soft-soft, (b) soft-hard, and (c) hard-soft rescattering processes in SIDIS. The short bars (crosses)
indicate the propagators where the soft (hard) poles arise.

H H

(a)

H H

(c)

H H

(b)

FIG. 8. The right-cut diagrams for (a) soft-soft, (b) soft-hard, and (c) hard-soft rescattering processes in SIDIS. The short bars (crosses)
indicate the propagators where the soft (hard) poles arise.
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Only x2 which is set to xE by the pole in the first propagator
depends on kT and vanishes when kT → 0. We further find
that the hardpart coefficientHðfxig; kTÞ is independent of kT ,
and therefore according to Eq. (34), all the terms associated
with the derivative of the hard part coefficient vanish and
only the derivative terms with respect to x2 survive. As we
have pointed out already when discussing soft-soft double

scattering in central-cut diagrams, the single-derivative term
with respect to x2 vanishes due to the commutation of gluon
field strengths on the light cone. We further find that the
double-derivative termwith respect tox2 leads to the“contact”
contribution to the final result. For example, when we
combine the soft-soft contributions in central-cut, left-cut
and right-cut diagrams, the result is proportional to

∝
Z

∞

−∞
dy−

Z
∞

−∞
dy−1

Z
∞

−∞
dy−2 e

ixpþy−ðy−1 − y−2 Þ2hAjψ̄qð0ÞγþFþ
σ ðy−2 ÞFþσðy−1 Þψqðy−ÞjAi

× ½HCðfxig; kTÞθðy−1 − y−Þθðy−2 Þ −HLðfxig; kTÞθðy−1 − y−2 Þθðy−2 Þ
−HRðfxig; kTÞθðy−1 − y−Þθðy−2 − y−1 Þ�kT→0: ð72Þ

Given that

HCðfxig; kT ¼ 0Þ ¼ HLðfxig; kT ¼ 0Þ
¼ HRðfxig; kT ¼ 0Þ≡Hðx; 0Þ; ð73Þ

we have a combination of θ functions as

½θðy−1 − y−Þθðy−2 Þ − θðy−1 − y−2 Þθðy−2 Þ
− θðy−1 − y−Þθðy−2 − y−1 Þ�; ð74Þ

which converts Eq. (72) to

−
Z

∞

−∞
dy−eixp

þy−
Z

y−

0

dy−1

Z
y−
1

0

dy−2 ðy−1 − y−2 Þ2

× hAjψ̄qð0ÞγþFþ
σ ðy−2 ÞFþσðy−1 Þψqðy−ÞjAiHðx; 0Þ: ð75Þ

In other words, the integration
R
dy−1

R
dy−2 becomes an

ordered integral limited by the value of y−, which is in turn
effectively restricted by the rapidly oscillating exponential
phase factor eixp

þy−, i.e., y−∼1=xpþ→0 (if x is not small),
and thus also restricts y−1;2→0. Physically, this means that
all the position integrations in such a term are localized, and
therefore, will not have nuclear size enhancement to the
double-scattering contribution. These terms (commonly
called “contact” terms) can thus be safely neglected when
one considers a large nucleus. Therefore, the contributions
from soft-soft rescatterings for asymmetric-cut diagrams
can be neglected in our calculation for transverse momen-
tum broadening.
For soft-hard rescattering contributions in left-cut

diagrams as shown in Fig. 7(b), we follow the same
steps in the calculation of soft-soft double scattering in
central-cut diagrams, and obtain the following result:

dhl2
hTW

DishL
dzh

¼ −
2αs
Nc

z2hð2πÞ3ð1 − ϵÞ αs
2π

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ ẑ
−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ

×

�
x
d
dx2

TL
qgðx; x2; xB − xÞ

����
x2→0

Dsh
12 þ TL

qgðx; 0; xB − xÞDsh
0

�
; ð76Þ

where the matrix element TL
qg is given by

TL
qgðx1; x2; x3Þ

¼
Z

dy−

2π
eix1p

þy−

×
Z

dy−1 dy
−
2

4π
eix2p

þðy−
1
−y−

2
Þeix3pþy−

2 θðy−2 Þθðy−1 − y−2 Þ

× hAjψ̄qð0ÞγþFþ
σ ðy−2 ÞFσþðy−1 Þψqðy−ÞjAi; ð77Þ

with the θ functions representing the order of rescatterings.
The contribution from soft-hard rescatterings in left-cut
diagrams is free of any divergence: the final result denoted

as Hsh
qg−L ⊗ TL

qg is given in Eq. (A8) in the Appendix. On
the other hand, the contribution from hard-soft rescatterings
in the left-cut diagrams in Fig. 7(c) is zero.
The soft-hard and hard-soft rescatterings in the right-cut

diagrams as shown in Fig. 8 are complex conjugates of the
ones in the left-cut diagrams, and thus can be obtained
directly from the results for diagrams in Fig. 7. By
replacing the matrix element in Eq. (A8)

TL
qgðx; 0; xB − xÞ → TR

qgðxB; x − xB; x − xBÞ; ð78Þ

with TR
qg given by
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TR
qgðx1; x2; x3Þ ¼

Z
dy−

2π
eix1p

þy−
Z

dy−1 dy
−
2

4π
eix2p

þðy−
1
−y−

2
Þeix3pþy−

2 θðy−2 − y−1 Þθðy−1 − y−Þ

× hAjψ̄qð0ÞγþFþ
σ ðy−2 ÞFσþðy−1 Þψqðy−ÞjAi; ð79Þ

we obtain the finite contribution from hard-soft rescatter-
ings at right cut, denoted by Hhs

qg−R ⊗ TR
qg, as given in

Eq. (A9). Similarly, the finite contribution in soft-hard
rescatterings at right cut is zero.
Combining all contributions from asymmetric-cut dia-

grams, the final result is free of any divergence,

dhl2
hTσ

DiðAÞ
dPS

¼ −σh
αs
2π

X
q

e2q

Z
dx
x

Z
dz
z
Dh=qðzÞHA

qg ⊗ TA
qg; ð80Þ

where HA
qg ⊗ TA

qg is given by

HA
qg ⊗ TA

qg ¼ Hsh
qg−L ⊗ TL

qg þHhs
qg−R ⊗ TR

qg: ð81Þ

with the two terms on the right-hand side given
by Eqs. (A8) and (A9), respectively. Note again that

longitudinal contributions for asymmetric-cut diagrams
vanish.

B. Gluon-gluon double scattering

In this subsection, we consider the gluon-gluon double-
scattering process in SIDIS, as shown in Fig. 9, where two
initial gluons in the nucleus participate in the process and
the first hard gluon plays the same role as the hard quark in
the quark-gluon double scattering. Here, for simplicity, we
only consider the situation where a quark fragments into the
final-state observed hadron. The inclusion of the antiquark
fragmentation is made straightforward, by simply replacing
the fragmentation function Dh=qðzÞ → Dh=q̄ðzÞ.
In gluon-gluon double scattering, we only have soft-soft

double scattering as illustrated in central-cut diagrams in
Fig. 9. The kinematics and pole structures are exactly the
same as those in soft-soft process of quark-gluon double
scattering. The calculation is straightforward and the final
result turns out to be

dhl2
hTW

Dissgg
dzh

¼ 2αs
Nc

z2hð2πÞ3ð1 − ϵÞ αs
2π

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ ẑ
−ϵð1 − ẑÞ−ϵx̂ϵð1 − x̂Þ−ϵ

×

�
x2

d2

dx2
Tggðx; 0; 0ÞDss

2 þ x
d
dx

Tggðx; 0; 0ÞDss
1 þ Tggðx; 0; 0ÞDss

0

�
; ð82Þ

where the gluon-gluon matrix element Tggðx; 0; 0Þ is given by [49]

Tggðx; 0; 0Þ ¼
1

xpþ

Z
dy−

2π
eixp

þy−
Z

dy−1 dy
−
2

2π
θðy−2 Þθðy−1 − y−ÞhAjFþ

α ð0ÞFσþðy−2 ÞFþ
σ ðy−1 ÞFþαðy−ÞjAi: ð83Þ

The ϵ expansion in Eq. (82) gives

I ×Dss
2 ¼ −

1

ϵ
TRδð1 − ẑÞð1 − x̂Þ2ð2x̂2 − 2x̂þ 1Þ þ � � � ; ð84Þ

I×Dss
1 ¼ 1

ϵ
TRδð1− ẑÞð1− x̂Þð1−2x̂Þð6x̂2−6x̂þ1Þþ �� � ; ð85Þ

I ×Dss
0 ¼ −

1

ϵ
TRδð1 − ẑÞð1 − x̂Þð1 − 4x̂Þð6x̂2 − 6x̂þ 1Þ þ � � � ; ð86Þ

which leads to the following divergent piece:

TR

Z
1

xB

dx
x
Tggðx; 0; 0Þ

�
−
1

ϵ
δð1 − ẑÞð2x̂2 − 2x̂þ 1Þ

�
¼

�
−
1

ϵ

�
δð1 − ẑÞ

Z
1

xB

dx
x
Tggðx; 0; 0ÞPqgðx̂Þ: ð87Þ
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The remaining finite contribution from gluon-gluon double
scattering, denoted as HC

gg ⊗ Tgg, is given in Eq. (A10).
One should in principle also include the asymmetric-cut

diagrams in gluon-gluon double scattering. However, these
diagrams can be neglected due to the lack of nuclear
enhancement as they lead to a contact contribution. Thus
the gluon-gluon double-scattering contribution can be
written as

dhl2
hTσ

Digg
dPS

¼ σh
αs
2π

X
q

e2q

Z
dx
x

Z
dz
z
Dh=qðzÞ

�
4πμ2

Q2

�
ϵ

×
1

Γð1 − ϵÞ
�
−
1

ϵ
δð1 − ẑÞPqgðx̂ÞTqgðx; 0; 0Þ

þHC
gg ⊗ Tgg

�
ð88Þ

which comes from the central-cut diagrams only, and
HC

gg ⊗ Tgg is expressed in Eq. (A10).

C. Final result and QCD evolution equation
for quark-gluon correlation function

With all the real and virtual corrections given in the
previous subsections, we can combine them and present the
final result of transverse momentum broadening in SIDIS at
NLO. Here the real corrections include both central-cut and
asymmetric-cut diagrams for the quark-gluon correlation
function, and the central-cut diagrams for the gluon-gluon
correlation function. We show that all the soft divergences
cancel out between real and virtual diagrams. This is an
important check for any calculation within the collinear
factorization formalism [77]. The remaining collinear
divergences can be absorbed by the redefinition of either
the quark fragmentation function or the quark-gluon
correlation function.
First, let us concentrate on the double-pole 1=ϵ2 terms,

which represent soft-collinear divergences. We find that
they cancel out between real and virtual contributions
[see in particular, the real contribution from the quark-
gluon correlation function in Eq. (64) and the virtual
correction in Eq. (66)]. Thus we are left with only the 1=ϵ
divergences and the finite terms, and they can be
written as

dhl2
hTσ

Di
dPS

¼ σh
αs
2π

X
q

e2q

Z
dz
z
Dh=qðzÞ

Z
dx
x

��
−
1

ϵ̂
þ ln

Q2

μ2

�
½δð1 − x̂ÞPqqðẑÞTqgðx; 0; 0Þ þ δð1 − ẑÞðPqg→qg ⊗ Tqg

þ Pqgðx̂ÞTggðx; 0; 0ÞÞ� þHC−R
qg ⊗ Tqg þHC−V

qg ⊗ Tqg −HA
qg ⊗ TA

qg þHC
gg ⊗ Tgg

�
; ð89Þ

where the finite corrections in the second line are given by Eqs. (65), (67), (81), and (A10), respectively, 1=ϵ̂ ¼ 1=ϵ−
γE þ lnð4πÞ, and PqqðẑÞ and Pqgðx̂Þ are the usual quark-to-quark and gluon-to-quark splitting kernels as given in Eqs. (11)
and (13), respectively. There is a new term Pqg→qg ⊗ Tqg defined as,

Pqg→qg⊗Tqg≡Pqqðx̂ÞTqgðx;0;0Þþ
CA

2

�
4

ð1− x̂Þþ
TqgðxB;x−xB;0Þ−

1þ x̂
ð1− x̂Þþ

½Tqgðx;0;xB−xÞþTqgðxB;x−xB;x−xBÞ�
�

þ2CAδð1− x̂ÞTqgðx;0;0Þ: ð90Þ
It is thus obvious that the first term that is proportional to δð1 − x̂Þ in Eq. (89) amounts to just the leading-twist collinear
QCD correction to the leading-order quark-to-hadron fragmentation function Dh=qðzhÞ:

Dh=qðzh; μ2fÞ ¼ Dh=qðzhÞ −
αs
2π

�
1

ϵ̂
þ ln

μ2

μ2f

�Z
1

zh

dz
z
PqqðẑÞDh=qðzÞ; ð91Þ

where we have adopted the MS scheme, and μf is the factorization scale for the fragmentation function. The factorization
scale μf dependence leads to the same DGLAP evolution equation for the fragmentation function Dh=qðzh; μ2fÞ as in the
single-scattering (leading-twist) case.

H H

FIG. 9. The central-cut diagram for soft-soft gluon-gluon
double scatterings in SIDIS. The short bars indicate the propa-
gators where the soft poles arise. The blob with an “H” inside
represents the hard 2 → 2 processes as shown in Fig. 10.

H

FIG. 10. The representation of hard 2 → 2 processes for
photon-gluon interaction.
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Following the same procedure of collinear factorization,
one can absorb the second collinear divergence which
is proportional δð1 − ẑÞ) in Eq. (89) into the redefinition
of the corresponding quark-gluon correlation function
TqgðxB; 0; 0Þ,
TqgðxB; 0; 0; μ2fÞ

¼ TqgðxB; 0; 0Þ −
αs
2π

�
1

ϵ̂
þ ln

μ2

μ2f

�

×
Z

1

xB

dx
x
½Pqg→qg ⊗ Tqg þ Pqgðx̂ÞTggðx; 0; 0Þ�; ð92Þ

where we have chosen the same factorization scale μf as that
in the fragmentation function. In principle, they do not have
to be the same. The above redefinition leads to a new QCD
evolution equation for the “diagonal” quark-gluon correlation
function:

μ2f
∂
∂μ2f TqgðxB; 0; 0; μ2fÞ

¼ αs
2π

Z
1

xB

dx
x
½Pqg→qg ⊗ Tqg þ Pqgðx̂ÞTggðx; 0; 0; μ2fÞ�:

ð93Þ
This evolution equation, as it stands, is not closed. It is a
common feature for higher-twist parton distributions
[60,61,76]. Under certain approximations for the functional
form in xi¼1;2;3 of the two-parton correlation functions, one
couldobtaina solution to theaboveevolutionequation [78,79].
According to the analysis of induced gluon spectra in
Refs. [9,10,80,81], the interference between soft and hard
contributions corresponds to Landau-Pomeranchuk-Migdal
(LPM) [82] interference which suppresses gluon radiation
with a large formation time τf ≫ RA. In the high-twist
formalism, the formation time of the medium-induced gluon
is defined as τf ¼ 1=½xð1 − x̂Þpþ�. Thus the LPM region can
be reached if we impose x̂ → 1 in Eq. (93). In this particular
kinematic region, the interference between soft and hard
rescatterings gives rise to a destructive effect to the final
contribution.
Notice that in Eq. (93), the quark-gluon correlation

function Tqg is coupled with the gluon-gluon correlation

function. In order to solve the evolution equation, in
principle, one needs an evolution equation for the gluon-
gluon correlation function Tgg. However, since we deal with
the SIDIS process, in which only Tqg enters at the LO as in
Eq. (23), our NLO calculation cannot give the evolution
equation for Tgg. In this case, we have to go beyond NLO to
next-to-next-to-leading order, or we could study transverse
momentum broadening for a process where Tgg enters at the
LO, e.g., a scalar particle production in the gluon-gluon
fusion channel in proton-nucleus (pþ A) collisions. This
way we will be able to derive the complete set of evolution
equations which couple both Tqg and Tgg correlation
functions.
Under the approximation of a large and loosely bound

nucleus where one can neglect the momentum and spatial
correlations of two nucleons [78], we can express the
quark-gluon correlation function TqgðxB; 0; 0; μ2fÞ in a
factorized form [83],

TqgðxB; 0; 0; μ2fÞ ≈
Nc

4π2αs
fq=AðxB; μ2fÞ

Z
dy−q̂ðμ2f; y−Þ;

ð94Þ

where fq=AðxB; μ2fÞ is the standard quark distribution
function inside a nucleus and q̂ðμ2f; y−Þ is the jet transport
parameter that describes the averaged transverse momen-
tum transfer squared per unit distance (or mean free path) in
the medium. Thus from Eq. (93) one could in principle
determine the factorization scale μ2f dependence of
q̂ðμ2f; y−Þ. Such QCD evolution of q̂ðμ2f; y−Þ will have
important consequences on quantitative studies of jet
quenching at NLO. A preliminary study for transverse
momentum broadening based on such a formalism with
q̂ðμ2f; y−Þ evolution incorporated shows good agreement
with experimental data from both eþ A and pþ A colli-
sions [84].
After MS subtraction of the collinear divergences into

the fragmentation function Dh=qðz; μ2fÞ and the twist-4
quark-gluon correlation function Tqgðx; 0; 0; μ2fÞ, we can
express the l2

hT-weighted differential cross section up to
NLO at twist 4 as,

dhl2
hTσ

Di
dPS

¼ σh
X
q

e2q

Z
1

xB

dx
x
Tqgðx; 0; 0; μ2fÞ

Z
1

zh

dz
z
Dh=qðz; μ2fÞδð1 − x̂Þδð1 − ẑÞ

þ σh
αs
2π

X
q

e2q

Z
1

zh

dz
z
Dh=qðz; μ2fÞ

Z
1

xB

dx
x

�
ln

�
Q2

μ2f

�
½δð1 − x̂ÞPqqðẑÞTqgðx; 0; 0; μ2fÞ

þ δð1 − ẑÞðPqg→qg ⊗ Tqg þ Pqgðx̂ÞTggðx; 0; 0; μ2fÞÞ�

þHC−R
qg ⊗ Tqg þHC−V

qg ⊗ Tqg −HA
qg ⊗ TA

qg þHC
gg ⊗ Tgg

�
; ð95Þ
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which includes finite NLO corrections to the hard part
coefficient function. Just like the NLO correction to
the differential cross section at leading twist in Eq. (9),
the finite hard part coefficient at NLO also depends on the
factorization scale which will reduce the overall factoriza-
tion scale dependence of the cross section when combined
with the scale dependence of the fragmentation functions
and the twist-4 quark-gluon correlation function as
determined by the evolution equations. Substituting the
l2
hT-weighted cross section in Eq. (95) and leading-twist

differential cross section in Eq. (9) into Eq. (15), we are
able to compute the transverse momentum broadening in
SIDIS at NLO, which is the main result of this paper.
Our results in this paper verify for the first time the

factorization of the l2
hT-weighted differential cross section

at twist 4 in NLO. The collinear divergences associated
with the quark fragmentation function and twist-4 quark-
gluon correlation function are factorized, and one is left
only with finite hard coefficient functions, which also
depend on the factorization scale. One should also consider
contributions from double quark scattering [85] and hadron
production from gluon fragmentation for more complete
NLO calculations. These will be left for future publications.
It is also worth mentioning that the techniques we have

developed here in principle can also be applied to study
the situation where one uses a different weighting factor
instead of l2

hT . One such possibility will be a Bessel
weighting as advocated in Ref. [86]. For the advantages
of such a Bessel weighting, see, e.g. Refs. [65,87]. We plan
to study such a possibility in the future.

IV. SUMMARY

We have calculated the NLO pQCD corrections to the
nuclear transverse momentum broadening in semi-inclu-
sive hadron production in deep inelastic eþ A collisions.
Specifically, we have demonstrated in detail how to
evaluate at NLO the transverse-momentum-weighted dif-
ferential cross section at twist 4. By including contributions
from quark-gluon and gluon-gluon double scatterings, as
well as interferences between single and triple scatterings,
we have shown explicitly that soft divergences cancel out
between real and virtual corrections, and the remaining
collinear divergences can be absorbed into the redefinition
(renormalization) of the final-state fragmentation function
and initial-state twist-4 quark-gluon correlation function,
which enabled us to identity a DGLAP-type evolution
equations for the twist-4 quark-gluon correlation function.

After the subtraction of collinear divergences, the trans-
verse-momentum-weighted cross section can be factorized
as a convolution of twist-4 nuclear parton correlation
functions, the usual twist-2 fragmentation function and
hard parts which are finite and free of any divergence. With
the NLO results for inclusive cross section and transverse-
momentum-weighted differential cross section in hand, our
result can be further applied to phenomenological studies of
transverse momentum broadening in HERMES and experi-
ments at the Jefferson Lab experiments and future Electron
Ion Collider facilities. Such detailed phenomenological
studies will be carried out in a forthcoming paper [84].
We want to emphasize that it is important to perform

similar studies for some other processes. For example,
through the NLO calculations of transverse momentum
broadening in Drell-Yan lepton pair production in pþ A
collisions, we can verify the collinear factorization at twist
4, and demonstrate the universality of the twist-4 quark-
gluon correlation function. This will be published in a
separate paper. On the other hand, an extension to scalar
particle production through the gluon-gluon fusion channel
in pþ A collisions will enable us to study the evolution
equation for the twist-4 gluon-gluon correlation function,
from which we can derive a complete set of evolution
equations for twist-4 parton correlation functions.
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APPENDIX: COMPLETE LIST
OF FINITE TERMS

In this appendix, we list the finite terms in the
leading-twist differential cross section and twist-4 weighted
differential cross section at NLO. The finite terms HNLO

T2−qq,
HNLO

T2−qg, and HNLO
T2−gq for the leading-twist differential cross

section at NLO in Eq. (9) can be written as

HNLO
T2−qq ¼ CF

�
−8δð1 − x̂Þδð1 − ẑÞ þ 1þ ð1 − x̂ − ẑÞ2

ð1 − x̂Þþð1 − ẑÞþ
þ δð1 − ẑÞ

�
ð1þ x̂2Þ

�
lnð1 − x̂Þ
1 − x̂

�
þ
−
1þ x̂2

1 − x̂
ln x̂þ ð1 − x̂Þ

�

þ δð1 − x̂Þ
�
ð1þ ẑ2Þ

�
lnð1 − ẑÞ
1 − ẑ

�
þ
þ 1þ ẑ2

1 − ẑ
ln ẑþ ð1 − ẑÞ

�
þ 1þ 4ð1 − yÞ þ ð1 − yÞ2

1þ ð1 − yÞ2 2x̂ ẑ

�
; ðA1Þ
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HNLO
T2−qg ¼ ln½ẑð1 − ẑÞ�PgqðẑÞδð1 − x̂Þ þ CF

�
1þ ðx̂ − ẑÞ2
ẑð1 − x̂Þþ

þ ẑδð1 − x̂Þ þ 1þ 4ð1 − yÞ þ ð1 − yÞ2
1þ ð1 − yÞ2 2x̂ð1 − ẑÞ

�
; ðA2Þ

HNLO
T2−gq ¼ ln

1 − x̂
x̂

Pqgðx̂Þδð1 − ẑÞ þ TR

�
2x̂2 − 2x̂þ 2ẑ2 − 2ẑþ 1

ẑð1 − ẑÞþ
þ 2x̂ð1 − x̂Þδð1 − ẑÞ

þ 1þ 4ð1 − yÞ þ ð1 − yÞ2
1þ ð1 − yÞ2 4x̂ð1 − x̂Þ

�
: ðA3Þ

For the twist-4 weighted differential cross section, besides the finite term for virtual diagrams as given in Eq. (67), there
are nine finite terms. For the central-cut diagrams, we have four finite terms: Hss

qg−C ⊗ Tqg associated with soft-soft double
scattering, Hhh

qg−C ⊗ Tqg associated with hard-hard double scattering, Hsh
qg−C ⊗ Tqg associated with soft-hard double

scattering, and Hhs
qg−C ⊗ Tqg associated with hard-soft double scatterings. For the asymmetric-cut diagrams, we also have

four finite terms: Hsh
qg−L ⊗ TL

qg (or Hsh
qg−L ⊗ TR

qg) associated with soft-hard scattering in left-cut (right-cut) diagrams,
Hhs

qg−L ⊗ TL
qg (or Hhs

qg−L ⊗ TR
qg) associated with hard-soft scattering in left-cut (right-cut)diagrams. At the same time, we

also have the finite term for gluon-gluon double scattering HC
gg ⊗ Tgg. They are given by the following expressions:

Hss
qg−C ⊗Tqg ¼ x2

d2

dx2
Tqgðx;0;0ÞCF

�ð1− x̂Þðx̂2þ2x̂ ẑ−2x̂þ ẑ2−2ẑþ2Þ
ẑ2ð1− ẑÞþ

−δð1− ẑÞð1− x̂Þ
�
2x̂þ ln

x̂
1− x̂

ð1þ x̂2Þ
�

þ1þ4ð1−yÞþð1−yÞ2
1þð1−yÞ2

2x̂ð1− x̂Þ2
ẑ

�
−x

d
dx

Tqgðx;0;0ÞCF

�
−4x̂3þ x̂2ð9−4ẑÞ−6x̂ð1− ẑÞþðẑ−2Þẑþ2

ẑ2ð1− ẑÞþ
þδð1− ẑÞ

�
ð3x̂2−6x̂−1Þþ ln

x̂
1− x̂

ð4x̂3−5x̂2−1Þ
�
−
1þ4ð1−yÞþð1−yÞ2

1þð1−yÞ2
2x̂ð1− x̂Þð3−4x̂Þ

ẑ

�

þTqgðx;0;0ÞCF

�
2x̂ ẑð2x̂2−5x̂þ4Þþ x̂2ð6x̂2−18x̂þ19Þ−8x̂þð1− ẑÞ2þ1

ẑ2ð1− x̂Þþð1− ẑÞþ
þ4δð1− x̂Þδð1− ẑÞ

þδð1− ẑÞ
��

lnð1− x̂Þ
1− x̂

�
þ
−

ln x̂
1− x̂

�
½1þ x̂2ð6x̂2−14x̂þ9Þ�−δð1− ẑÞ2x̂

3−7x̂2þ8x̂þ1

ð1− x̂Þþ
þδð1− x̂Þ

��
lnð1− ẑÞ
1− ẑ

�
þ
þ ln ẑ
1− ẑ

�
1þ ẑ2

ẑ2
−δð1− x̂Þ ð1þ ẑÞ2

ẑ2ð1− ẑÞþ
þ1þ4ð1−yÞþð1−yÞ2

1þð1−yÞ2
4x̂ð1− x̂Þð2−3x̂Þ

ẑ

�
;

ðA4Þ

Hhh
qg−C ⊗Tqg ¼TqgðxB;x−xB;0ÞCA

�
δð1− x̂Þ

��
lnð1− ẑÞ
1− ẑ

�
þ
þ ln ẑ
1− ẑ

�ð1þ ẑ2Þ½CF=CAð1− ẑÞ2þ ẑ�
ẑ2

þδð1− x̂Þð1− ẑÞ½CF=CAð1− ẑÞ2þ ẑ�
ẑ2

þð1þ ẑ2Þ½CF=CAð1− ẑÞ2þ ẑ�
ẑ2ð1− x̂Þþð1− ẑÞþ

þ2δð1− ẑÞ
��

lnð1− x̂Þ
1− x̂

�
þ
−

ln x̂
1− x̂

��
;

ðA5Þ

Hsh
qg−C⊗Tqg¼x

d
dx

Tqgðx;0;xB−xÞCA

2

�ð1þ x̂ẑ2Þ½ẑþ2CF=CAð1− ẑÞ�
ẑ2ð1− ẑÞþ

−δð1− ẑÞð1þ x̂Þ
�
1þ ln

x̂
1− x̂

��

−x
d
dx2

Tqgðx;x2;xB−xÞ
����
x2→0

CA

2

�
1

ẑ2
þ x̂

�
½ẑþ2CF=CAð1− ẑÞ�þTqgðx;0;xB−xÞ

×
CA

2

�ðx̂2ẑ2−2x̂ẑ2−1Þ½ẑþ2CF=CAð1− ẑÞ�
ẑ2ð1− x̂Þþð1− ẑÞþ
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��
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þ
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lnx̂
1− x̂

�
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��
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1− ẑ

�
þ
þ ln ẑ
1− ẑ

�
1þ ẑ2
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�
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Hhs
qg−C ⊗ Tqg ¼ x

d
dx

TqgðxB; x − xB; x − xBÞ
CA

2

�ð1þ x̂ẑ2Þ½ẑþ 2CF=CAð1 − ẑÞ�
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��
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ẑ2
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ẑ2ð1 − ẑÞþ
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Hsh
qg−L ⊗ TL

qg ¼ − x
d
dx2

TL
qgðx; x2; xB − xÞj

x2→0

CA
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�
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Hhs
qg−R ⊗ TR

qg ¼ − x
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HC
gg ⊗ Tgg ¼ x2

d2

dx2
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− δð1 − ẑÞ ln x̂
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