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We discuss several possibilities to relate the t dependence of generalized parton distributions to the
distribution of angular momentum in the transverse plane. Using a simple spectator model, we demonstrate
that none of them correctly describes the orbital angular momentum distribution that for a longitudinally
polarized nucleon is obtained directly from light-front wave functions.
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I. INTRODUCTION

Since the famous European Muon Collaboration experi-
ment [1] there has been great interest in understanding the
contributions from orbital angular momentum and from
gluon spin to the nucleon spin. Meanwhile, generalized
parton distributions (GPDs) have been introduced as a
novel tool to describe the internal structure of hadrons. For
more than a decade, there has been a strong interest in
GPDs as many observables can be linked to them.
Specifically, GPDs have been used extensively since they
were first identified with the total angular momentum of the
quarks and gluons within a nucleon. The total angular
momentum carried by the quarks is calculated using the
second moment of GPDs as [2]

Jz ¼ 1

2

Z
dxx½Hðx; 0; 0Þ þ Eðx; 0; 0Þ�: ð1Þ

However, this famous Ji relation or sum rule yields the z
component of the total angular momentum of the quarks in
a nucleon that is polarized in the þz direction only when
GPDs are extrapolated to t ¼ 0 in the general expression

JðtÞ≡ 1

2

Z
dxx½Hðx; ξ; tÞ þ Eðx; ξ; tÞ�; ð2Þ

where t ¼ Δ2, x is the light-cone momentum fraction
carried by the quark (averaged between the initial and
final states), ξ≡ pþ−p0þ

pþþp0þ ¼ − Δþ
pþþp0þ is the longitudinal

momentum transfer, p and p0 are initial and final state
momenta of the nucleon, respectively, and Δ≡ p0 − p is
the momentum transfer.
GPDs have also been used to visualize nucleons in three

dimensions after doing the suitable Fourier transform (FT) of
these GPDs [3–5]. These images are in a space where one
dimension describes the light-cone momentum fraction (x)
and the other two dimensions describe the transverse position

(~b⊥) of the parton (relative to the transverse center of
momentum). This distribution of partons in the transverse
plane has a probabilistic interpretation in the same sense and
with the same limitations as the usual parton distributions.
For an unpolarized nucleon, the two-dimensional FTof GPD
Hðx; 0; tÞ in the transverse plane reads [3]

qðx; ~b⊥Þ ¼
Z

d2 ~Δ⊥
ð2πÞ2 e

−i ~Δ⊥·~b⊥Hðx; 0;−~Δ2
⊥Þ; ð3Þ

where the impact parameter ~b⊥, which is the Fourier

conjugate to ~Δ⊥, is defined in the two-dimensional transverse

plane perpendicular to the light-cone direction. Here, j~b⊥j≡
b⊥ is introduced as the displacement of the active quark (q)
from the transverse center of momentum of the entire
nucleon. The transverse center of momentum ~R⊥ is defined
as the weighted average of the transverse positions of all
partons, where theweight factor is the respective momentum
fraction [6]

~R⊥ ¼
X
i∈q;g

xi~r⊥i ¼ x~r⊥ þ ð1 − xÞ~R⊥s; ð4Þ

where x and ~r⊥ ≡ ~r⊥1 are the momentum fraction and
transverse position of the active quark and 1 − x and ~R⊥s
are those of the spectator(s). Therefore, for a quark, one can
write

~b⊥ ¼ ~r⊥ − ~R⊥ ¼ ð1 − xÞð~r⊥ − ~R⊥sÞ: ð5Þ

Further details of qðx; ~b⊥Þ can be found in Refs. [3–5,7].
In the context of t ≠ 0, there have been many discussions

on the connection between the current theoretical GPD
framework and deeply virtual Compton scattering (DVCS)
experiments. One can find the details inRef. [8]. Therefore, it
is useful to study the t dependence of GPDs with the total
angular momentum in the coordinate space to check if the
partonic interpretation still holds in that space. Furthermore,
the work presented in Ref. [9] (see also Ref. [10]) suggests
that the three-dimensional FT of Eq. (2) can be used to
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calculate the distribution of angularmomentum in coordinate
space. The “chiral quark soliton model” that was used in
Ref. [10] had an infinite target mass; therefore, there was no
issue of relativistic corrections. The relativistic corrections
would potentially be an issue upon taking the three-
dimensional FT of the generalized form factors [available
in Eq. (2)] for finite nucleon mass. The interpretation of the
three-dimensional FT of form factors (FFs) as a distribution
in three-dimensional space becomes ambiguous and suffers
from relativistic corrections at length scales equal to or
smaller than the Compton wavelength of the target [3,11].
However, a two-dimensional FTof FFs does not suffer from
such relativistic corrections. As a corollary, one finds that the
distribution of charge in the transverse plane is given by the
two-dimensional FTof theDirac form factor [11]. Because of
these results, performing a two-dimensional FT of FFs to
study the angular momentum distribution in the transverse
plane has been suggested (for example, see Ref. [12]).
Furthermore, there are potential issues due to total derivative
terms linking canonical and symmetric energy momentum
tensors [13]. We are therefore motivated by these inves-
tigations and suggestions, as mentioned above, to investigate
the t dependence of GPDs with the total angular momentum
distributions of the quark in the transverse plane for a
longitudinally polarized nucleon. Before proceeding, we

should note that while Lz does not commute with ~b⊥, it does
commute with j~b⊥j, and it is thus meaningful to discuss

Lzðj~b⊥jÞ.
In the following sections, we prescribe four different

techniques to study the angular momentum distributions in
the context of the scalar diquark model (SDQM). First, we

define a two-dimensional FT of Eq. (2) as ~Jð~b⊥Þ. This
technique will be referred to as the naive technique in this

paper. In the second technique, using ~Jð~b⊥Þ, we derive the
two-dimensional FT of the result that was originally
suggested for the purpose of the three-dimensional FT in
Refs. [9,10]. This technique will be referred to as the
Polyakov-Goeke (PG) technique. In the third technique, we
present an independent derivation of the distribution of
angular momentum in the transverse plane in the infinite
momentum frame (IMF). Finally, we compare these three
different distributions with the one calculated directly from
light-front wave functions (LFWFs) using the widely
recognized Jaffe-Manohar (JM) definition for orbital angu-
lar momentum (OAM). In momentum space, this definition
preserves the partonic interpretation.

II. DISTRIBUTION OF ANGULAR MOMENTUM
IN THE TRANSVERSE PLANE

A. Naive technique

We take the two-dimensional FT of Eq. (2) to calculate
the distribution of total angular momentum (TAM) in the
transverse plane in the Drell-Yan frame as

~Jð~b⊥Þ ¼
Z

d2 ~Δ⊥
ð2πÞ2 e

−i ~Δ⊥·~b⊥Jðt ¼ −~Δ2
⊥Þ ð6Þ

where the TAM distribution depends only on the distance

b⊥ ≡ j~b⊥j from the origin, which is the transverse center of
the entire nucleon. It is evident that

Z
d2~b⊥ ~Jð~b⊥Þ ¼ Jðt ¼ 0Þ≡ Jz; ð7Þ

but that does not automatically imply that ~Jð~b⊥Þ represents
the distribution of TAM in the transverse plane.

B. Polyakov-Goeke technique: Two-dimensional
reduction of Polyakov-Goeke prescription

The relation between the symmetric energy-momentum
tensor (EMT) and the total angular momentum distribution,
which is defined and available in Ref. [9], reads [2,14,15]

JðtÞ þ 2t
3

d
dt

JðtÞ ¼
Z

d3~bei~b· ~ΔϵijksibjT0kð~b; ~sÞ; ð8Þ

where Tμν is the EMT, T0kð~b; ~sÞ represents the momentum
distribution of the quarks within the nucleon (and thus the
integrand on the right-hand side is interpreted as the

angular momentum density), ~b is three-dimensional coor-
dinate space, and ~s is the nucleon spin. In our case, the
nucleon is polarized in the þz direction.
References [9,10] suggest that the three-dimensional FT

of Eq. (8) yields the distribution of angular momentum in
three-dimensional coordinate space. As mentioned before,
there is an issue of relativistic corrections for the three-
dimensional FT. However, there are no such corrections to
the two-dimensional FT of FFs in the infinite momentum
frame. We thus define the two-dimensional FT in the
coordinate space (~b⊥) as

ρPGJ ð~b⊥Þ≡
Z

dbzϵijksibjT0kð~b; ~sÞ: ð9Þ

With the help of Eq. (6), the two-dimensional FT of Eq. (8)
yields

ρPGJ ðb⊥Þ ¼
1

3
~Jðb⊥Þ −

1

3
b⊥

d
db⊥

~Jðb⊥Þ: ð10Þ

In the following, the total angular momentum distribution
defined by Eq. (10) will be referred to as the PG technique
because it was derived as the two-dimensional reduction of
the result available in Ref. [9].

C. Infinite momentum frame technique

As an alternative, one can derive the distribution of TAM
directly in the IMF. For this purpose, we define the EMT
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Tμν in terms of several form factors. Note that it is the same
Tμν that was used to derive Eq. (8). The form factors of the
symmetric EMT (valid for quarks and gluons) read [2,10]

hp0jTμνjpi¼uðp0Þ
�
M2ðtÞ

PμPν

MN
þJðtÞiðP

μσνρþPνσμρÞ
2MN

Δρ

þd1ðtÞ
ΔμΔν−gμνΔ2

5MN
�cðtÞgμν

�
uðpÞ; ð11Þ

where uðpÞ is the nucleon spinor, MN is the mass of the
nucleon, and 2P ¼ pþ p0.
The z component of the total angular momentum of the

quarks in terms of angular momentum density Mαμν is
defined as [16]

Jz ¼ ϵzxy
Z

d2~b⊥Mþxy; Mþxy ¼ Tþybx − Tþxby:

ð12Þ
To define TAM distribution in the transverse plane, one

needs to localize the nucleon in the transverse direction. For
this purpose, states jpþ; ~R⊥; szi, which are the eigenstates
of the transverse center of momentum, are introduced in
terms of the light-cone helicity eigenstates as

jpþ; ~R⊥ ¼ ~0⊥; szi ¼
N

ð2πÞ2
Z

d2 ~p⊥jpþ; ~p⊥; szi; ð13Þ

where N is a normalization constant satisfying

jN j2 R d2 ~P⊥
ð2πÞ2 ¼ 1 [3–7].

For these transversely localized states the TAM distri-
bution in impact parameter space (in the IMF) can be
defined as

ρIMF
J ð~b⊥Þ≡ 1

pþ hpþ; ~R⊥ ¼ ~0⊥; szj½Tþyð~b⊥Þbx

− Tþxð~b⊥Þby�jpþ; ~R⊥ ¼ ~0⊥; szi: ð14Þ

In order to evaluate the matrix elements we note the phase
factor

hpþ; ~p0⊥; szjTþjð~b⊥Þjpþ; ~p⊥; szi
¼ hpþ; p0⊥; szjTþjð0⊥Þjpþ; p⊥; szie−i~b⊥· ~Δ⊥ ; j ¼ x; y;

ð15Þ

where the matrix elements of the EMT are evaluated using
Eq. (11). We note that only the term involving pþσxyΔy in
the second term of Eq. (11) survives, taking the matrix
elements between helicity eigenstates that have the same
light-cone helicity ½hpþ; p0⊥; szjσþjjpþ; p⊥; szi ¼ 0� and
symmetric integration around the z axis.

Equation (14) after simplification thus yields

ρIMF
J ðb⊥Þ ¼∓ 1

2

�
b⊥

d
db⊥

~Jðb⊥Þ
�
; ð16Þ

where the TAM distribution depends only on the distance

b⊥ ≡ j~b⊥j.
Here, it is noted that Eq. (8), which was derived in

Ref. [9], has been used in Ref. [10] to study the angular
momentum density in the infinite target mass frame.
Equation (8) was later modified to its relativistic version
in Ref. [13]. One can derive Eq. (16) directly from the
relativistic version of Eq. (8) available in Ref. [13].

III. MODEL CALCULATIONS AND RESULTS

We use the SDQM to calculate the proposed OAM
densities to test if any of the densities agree with the
distribution of OAM in the transverse plane obtained using
light-front wave functions which has a partonic interpreta-
tion. The SDQM is not a good approximation for quantum
chromodynamics (QCD). However, it is perfect to illustrate a
point of principle: None of the above proposed distributions
agrees with the partonic calculation to be derived below.
What is particularly useful about the SDQM in this context is
that maintaining Lorentz invariance (which is important
here) is straightforward and there are no added complications
due to the absence of gauge fields. Of course QCD is a gauge
theory, but if a certain interpretation fails already in a
nongauge theory—as we will demonstrate—it is very
unlikely to hold in a gauge theory.
The relevant GPDs contained in Eq. (2) are calculated

using the following LFWFs for the SDQM [17–19]:

ψ↑
þ1

2

ðx; ~k⊥Þ ¼
�
M þm

x

�
ϕðx; ~k2⊥Þ;

ψ↑
−1
2

ðx; ~k⊥Þ ¼ −
k1 þ ik2

x
ϕðx; ~k2⊥Þ;

ψ↓
þ1

2

ðx; ~k⊥Þ ¼
k1 − ik2

x
ϕðx; ~k2⊥Þ;

ψ↓
−1
2

ðx; ~k⊥Þ ¼
�
M þm

x

�
ϕðx; ~k2⊥Þ; ð17Þ

where

ϕð~k2⊥Þ≡ ϕðx; ~k2⊥Þ ¼
g=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

M2 − ~k2⊥þm2

x − ~k2⊥þλ2

1−x

¼ −gx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞp

~k2⊥ þ uðλ2Þ
and uðλ2Þ ¼ m2ð1 − xÞ −M2xð1 − xÞ þ xλ2: ð18Þ

Here, g is the Yukawa coupling and M, m, and λ are the
masses of the “nucleon,” “quark,” and “diquark,”

ANGULAR MOMENTUM DISTRIBUTION IN THE … PHYSICAL REVIEW D 94, 114021 (2016)

114021-3



respectively. Furthermore, ~k⊥ ≡ ~k⊥q − ~k⊥scalar represents
the relative transverse momentum between the quark and
the diquark (scalar). The upper wave function index ↑
refers to the helicity of the “nucleon” and the lower index to
that of the “quark.”
GPDs using overlap integrals of LFWFs in the Drell-Yan

frame read [18]

Hðx; 0;−~Δ2
⊥Þ ¼

Z
d2~k⊥
16π3

½ψ↑
þ1

2

ðx; ~k0⊥Þψ↑
þ1

2

ðx; ~k⊥Þ

þ ψ↑
−1
2

ðx; ~k0⊥Þψ↑
−1
2

ðx; ~k⊥Þ� ð19Þ

¼ g2

16π3
ð1 − xÞ

Z
d2~k⊥

� ðmþ xMÞ2
½ð~k02⊥ þ uðλ2ÞÞð~k2⊥ þ uðλ2Þ�

þ k01 − ik02

ð~k02⊥ þ uðλ2ÞÞ
·

k1 þ ik2

ð~k2⊥ þ uðλ2ÞÞ

�
ð20Þ

and

Eðx; 0;−~Δ2
⊥Þ ¼

−2M
Δ1 − iΔ2

Z
d2~k⊥
16π3

× ½ψ↑
þ1

2

ðx; ~k0⊥Þψ↓
þ1

2

ðx; ~k⊥Þ

þ ψ↑
−1
2

ðx; ~k0⊥Þψ↓
−1
2

ðx; ~k⊥Þ� ð21Þ

¼ −2Mg2

16π3ðΔ1 − iΔ2Þ
Z

d2~k⊥

×
ðMxþmÞð1 − xÞ

½ð~k02⊥ þ uðλ2ÞÞð~k2⊥ þ uðλ2Þ�
½ðk1 − ik2Þ − ðk01 − ik02Þ�;

ð22Þ

where ~k0⊥ ¼ ~k⊥ þ ð1 − xÞ ~Δ⊥ is the relative transverse
momentum of the quark in the final state of a nucleon
and uðλ2Þ is defined in Eq. (18). Since some of the above
~k⊥ integrals diverge, a manifestly Lorentz-invariant Pauli-
Villars regularization is applied to regularize the divergent
pieces of the integrals. For this purpose, λ2 → Λ2ð¼ 10λ2Þ
is employed throughout this paper.
Using Eq. (1) and the GPDs available in Eqs. (20)

and (22), one can calculate the quark OAM for a nucleon
polarized in the þz direction as

Lz ¼ 1

2

Z
1

0

dx½xHðx; 0; 0Þ þ xEðx; 0; 0Þ − ΔqðxÞ�;

where

ΔqðxÞ ¼
Z

d2~k⊥
16π3

½jψ↑
þ1

2

ðx; ~k⊥Þj2 − jψ↑
−1
2

ðx; ~k⊥Þj2�; ð23Þ

and the quark spin angular momentum reads [17,20]

S ¼ 1

2

Z
1

0

ΔqðxÞdx ¼ g2

32π2

Z
1

0

ð1 − xÞ

×

�
ðMxþmÞ2

�
1

uðλ2Þ −
1

uðΛ2Þ
�
− ln

�
uðΛ2Þ
uðλ2Þ

��
dx:

ð24Þ

Now, from Eqs. (2) and (6), one can define GPDs
and TAM in impact parameter space b⊥ as [21]

~Jð~b⊥Þ ¼
1

2

Z
1

0

x½Hðx; ~b⊥Þ þ Eðx; ~b⊥Þ�dx; ð25Þ

where

Hðx; ~b⊥Þ ¼
Z

d2 ~Δ⊥
ð2πÞ2 e

−i ~Δ⊥·~b⊥Hðx; 0;−~Δ2
⊥Þ

¼ ½ψ↑�
þ1

2

ðx; ~r⊥Þψ↑
þ1

2

ðx; ~r⊥Þ þ ψ↑�
−1
2

ðx; ~r⊥Þψ↑
−1
2

ðx; ~r⊥Þ�

×
1

ð1 − xÞ2 ð26Þ

and

Eðx; ~b⊥Þ ¼
Z

d2 ~Δ⊥
ð2πÞ2 e

−i ~Δ⊥·~b⊥Eðx; 0;−~Δ2
⊥Þ:

ð−i ∂
∂bx −

∂
∂byÞ

2M
Eðx; ~b⊥Þ ¼ ½ψ↑�

þ1
2

ðx; ~r⊥Þψ↓
þ1

2

ðx; ~r⊥Þ

þ ψ↑�
−1
2

ðx; ~r⊥Þψ↓
−1
2

ðx; ~r⊥Þ�
1

ð1 − xÞ2 ;

ð27Þ

where ~b⊥ and ~r⊥ are related by ~b⊥ ¼ ð1 − xÞ~r⊥ [21].
This relation was recently discussed in Ref. [22] using
LFWFs constructed from the soft-wall AdS/QCD
prediction.
Here, in order to describe distributions in impact

parameter space, we introduce LFWFs in the impact
parameter space b⊥ as

ψ↑↓
�1

2

ðx; ~b⊥Þ≡ 1

2πð1 − xÞ
Z

d2~k⊥e−i
~k⊥ ·~b⊥
1−x ψ↑↓

�1
2

ðx; ~k⊥Þ;

ψ↑↓
�1

2

ðx; ~r⊥Þ≡ 1

2π

Z
d2~k⊥e−i

~k⊥·~r⊥ψ↑↓
�1

2

ðx; ~k⊥Þ: ð28Þ

The factor 1
1−x in the exponent accounts for the fact that the

variable ~k⊥ is Fourier conjugate to ~r⊥ ¼ ~r⊥1 − ~r⊥2, the
displacement between the active quark and the spectator
(scalar). The prefactor 1

ð1−xÞ also ensures the proper nor-

malization of the wave functions,
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Z
jψ↑↓

�1
2

ðx; ~b⊥Þj2d2~b⊥ ¼
Z

jψ↑↓
�1

2

ðx; ~r⊥Þj2d2~r⊥

¼
Z

jψ↑↓
�1

2

ðx; ~k⊥Þj2d2~k⊥: ð29Þ

Inserting Eqs. (26), (27), (28), and (17) into Eq. (25)
yields

~Jðb⊥Þ ¼
g2

32π3

Z
1

0

x
1 − x

× ½ðMxþmÞ2½K0ðZÞ�2 þ uðλ2Þ½K1ðZÞ�2�dx

þ 2Mg2

32π3

Z
1

0

xðMxþmÞ½K0ðZÞ�2dx; ð30Þ

where Z ¼ j b⊥
1−x j

ffiffiffiffiffiffiffiffiffiffiffi
uðλ2Þ

p
, uðλ2Þ is defined in Eq. (18), and

KnðZÞ is the modified Bessel function of the second kind.
Using Eqs. (2), (6), (20), (22), and (25), it is straightfor-

ward to verify the following relation numerically for a
consistency check of our expressions.

Z
d2b⊥ ~Jðb⊥Þ ¼

1

2

Z
dxx½Hðx; 0; 0Þ þ Eðx; 0; 0Þ�: ð31Þ

Using the LFWFs available in Eq. (28), one can evaluate
the spin angular momentum distribution in the transverse
plane ðb⊥Þ for a nucleon polarized in the þz direction as

Sðb⊥Þ ¼
1

2

Z
1

0

dx½jψ↑
þ1

2

ðx; ~b⊥Þj2 − jψ↑
−1
2

ðx; ~b⊥Þj2�; ð32Þ

where

jψ↑
þ1

2

ðx; ~b⊥Þj2 ¼
g2

16π3
ðMxþmÞ2
ð1 − xÞ ½K0ðZÞ�2;

jψ↑
−1
2

ðx; ~b⊥Þj2 ¼
g2

16π3
uðλ2Þ
ð1 − xÞ ½K1ðZÞ�2: ð33Þ

If one assumes that ~Jðb⊥Þ, ρPGJ ðb⊥Þ, and ρIMF
J ðb⊥Þ can be

interpreted as TAM densities, then the differences

Lnaiveðb⊥Þ≡ ~Jðb⊥Þ − Sðb⊥Þ; ð34Þ

LPGðb⊥Þ≡ ρPGJ ðb⊥Þ − Sðb⊥Þ; and ð35Þ

LIMFðb⊥Þ≡ ρIMF
J ðb⊥Þ − Sðb⊥Þ ð36Þ

would have to represent the respective OAM densities.
In the following section, we will investigate if that is

indeed the case by comparing these distributions with the
one calculated directly from LFWFs in impact parameter
space using the JM definition.

A. Impact parameter space distribution directly
from light-front wave functions

With the LFWFs available in Eq. (17), one can compute
the orbital angular momentum Lz of the “quark” for a
“nucleon” polarized in the þz direction directly as
[16,23–25]

Lz ¼
Z

1

0

dx
Z

d2~k⊥
16π3

ð1 − xÞjψ↑
−1
2

ðx; ~k⊥Þj2

¼ g2

16π2

Z
1

0

ð1 − xÞ2 ln
�
uðΛ2Þ
uðλ2Þ

�
dx: ð37Þ

Lorentz-invariant Pauli-Villars regularization is manifestly
applied to evaluate the above integral. It is straightforward to
show

Lz ¼ Lz ð38Þ
as was expected since Lz in the SDQM does not contain a
vector potential; therefore, no gauge-related issues arise
[23,26]. Likewise, one can define the OAM density directly
from the LFWFs available in Eq. (28) as

Lðb⊥Þ ¼
Z

1

0

dxð1 − xÞjψ↑
−1
2

ðx; ~b⊥Þj2

¼ g2

16π3

Z
1

0

dxuðλ2Þ½K1ðZÞ�2: ð39Þ

Here, Lðb⊥Þ represents the orbital angular momentum
density for the active quark as a function of the distance
from the transverse center of momentum in a “nucleon” that
is polarized in the þz direction.
The TAM distribution of the active quark in the trans-

verse plane is shown in Fig. 1. For the different techniques,
obviously, the area under the graphs is the only feature that
all four distributions have in common, i.e.,Z

∞

0

db⊥b⊥ ~Jðb⊥Þ ¼
Z

∞

0

db⊥b⊥ρPGJ ðb⊥Þ

¼
Z

∞

0

db⊥b⊥ρIMF
J ðb⊥Þ

¼
Z

∞

0

db⊥b⊥ðLðb⊥Þ þ Sðb⊥ÞÞ: ð40Þ

Similarly, the OAM distributions of the active quark in
the transverse plane are shown in Fig. 2; also in this case,
the area under the graphs for all four distributions is the
only common feature, i.e.,Z

∞

0

db⊥b⊥Lnaiveðb⊥Þ ¼
Z

∞

0

db⊥b⊥LPGðb⊥Þ

¼
Z

∞

0

db⊥b⊥LIMFðb⊥Þ

¼
Z

∞

0

db⊥b⊥Lðb⊥Þ ¼
Lz

2π
: ð41Þ
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Equations (40) and (41) ensure that the TAM/OAM does
not change regardless of whether one uses a different frame
or technique to perform the calculations.
The b⊥ distributions of OAM presented in Fig. 2 for the

three different techniques (naive, PG, and IMF) do not
agree with the one associated with the definition introduced
by Jaffe-Manohar. Therefore, these results clearly demon-
strate that Lnaiveðb⊥Þ, LPGðb⊥Þ, and LIMFðb⊥Þ do not
represent the orbital angular momentum distribution for
a longitudinally polarized nucleon since Lðb⊥Þ already has
that interpretation in momentum space. Furthermore, using
the naive technique in the SDQM, we also conclude that the
FT of JðtÞ does not represent the distribution of angular
momentum in the transverse plane regardless of whether

the FT is two dimensional or three dimensional. All three
techniques discussed above are associated with the FT of
JðtÞ. While JðtÞ itself indeed is identified with the second
moment of GPDs in the limiting case t → 0, our inves-
tigation exhibits three different possibilities of relating the t
dependence of GPDs to the angular momentum distribu-
tions in the transverse plane. None of them turns out to
yield the distribution one would expect from the Jaffe-
Manohar definition for a longitudinally polarized nucleon.

IV. DISCUSSION

A. Naive technique

It was demonstrated using the SDQM that, although JðtÞ
yields the z component of the total angular momentum of
the quarks for a nucleon polarized in theþz direction in the
limit t → 0, the two-dimensional FT of its t dependence
does not yield the distribution of angular momentum in the
transverse plane.
This result is best understood by recalling that Lorentz or

rotational invariancewas heavily used inRef. [2] for deriving
Eq. (1) as it restricts the allowed tensor structure. InRef. [27],
Ji’s angular momentum sum rule was rederived by consid-
ering the transverse deformation of parton distributions in a
transversely polarized nucleon, and in several steps of the
derivation, rotational invariance was used for rotations that
mix “longitudinal” and “transverse” directions. When one
considers distributions in the transverse plane, rotational
invariance is no longer fully applicable. This is analogous to
the observation that the unintegrated Ji relation, i.e.,
JðxÞ≡ x

2
½Hðx; 0; 0Þ þ Eðx; 0; 0Þ�, is not the x distribution

of JzðxÞ for a longitudinally polarized nucleon [23].

B. Polyakov-Goeke technique and IMF technique

In hadron spin structure studies, the total angular
momentum of a quark is decomposed into spin and orbital
parts, and the spin distribution of the quark in the transverse
plane can be obtained using a two-dimensional FT of axial
form factors. To study angular momentum distribution in
the transverse plane, one may be tempted to interpret the
two distributions (densities), proposed in Eqs. (10) and
(16), as a sum of spin and orbital angular momentum
distributions (densities). In particular, the observation that
ρIMF
J ðb⊥Þ differs from the light-front wave-function–based
result may thus appear surprising. However, both proposed
densities have in common that they are based on the
symmetric energy momentum tensor Tμν. On the other
hand, the symmetric energy momentum tensor Tμν can be
expressed in terms of canonical energy momentum tensor
T μν and spin current Sμνλ [28,29]. The total angular
momentum density, which preserves the interpretation as
a sum of spin and orbital angular momentum densities, is
based on the canonical energy momentum tensor.
Therefore, it is important to illustrate the role of the total
divergence term available in Tμν.
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×

O
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M

FIG. 2. OAM distribution of the quark in the scalar diquark
model for a nucleon polarized in the þz direction. Solid line:
Lðb⊥Þ, directly from LFWFs [Eq. (35)]; dashed line: LPGðb⊥Þ,
PG technique [Eq. (36)]; dotted line: LIMFðb⊥Þ, IMF technique
[Eq. (36)]; dash-dotted line: Lnaiveðb⊥Þ, naive technique

[Eq. (34)]. The plots are in units of g2

16π.
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FIG. 1. TAM distribution of the quark in the scalar diquark
model for a nucleon polarized in the þz direction. Solid line:
Lðb⊥Þ þ Sðb⊥Þ, directly from LFWFs [Eq. (39)+Eq. (32)];
dashed line: ρPGJ ðb⊥Þ, PG technique [Eq. (10)]; dotted line:
ρIMF
J ðb⊥Þ, IMF technique [Eq. (16)]; dash-dotted line: ~Jðb⊥Þ,

naive technique [Eq. (16)]. The plots are in units of g2

16π.
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The symmetric energy momentum tensor for the mass-
less Dirac particle can be expressed as

Tμν ¼ i
2
qðγμDν

↔ þ γμDν
↔ Þq: ð42Þ

Using the equations of motion (valid in matrix elements),
one finds

qγxDþ
↔

q ¼ qγþDx
↔
q − ∂yðqγþγxγyqÞ

þ 1

4
∂−½q†−γ0γxγþγ−qþ − q†þγ0γxγ−γþq−�: ð43Þ

Inserting this into the total angular momentum density,
one finds

xTþy − yTþx ¼ xqγþiDy
↔
q − yqγþiDx

↔
qþ qγþiγxγyq

þ i∂xðxqγþγxγyqÞ þ i∂yðyqγþγxγyqÞ

þ i
4
∂−½xqγyγþγ−q − yqγxγþγ−q�: ð44Þ

Therefore, there are two terms that together have the
physical interpretation as an orbital angular momentum
density: a term that represents the spin density, as well as a

total derivative term. While the presence of these total
derivative terms has no consequences for the integrated
quantities, they cause a profound dilemma when attempting
to study angular momentum densities. Though xTþy −
yTþx seems to be a perfect candidate for the total angular
momentum density, one has to be careful not to interpret
that density as a simple sum of orbital angular momentum
density and spin density. This statement may sound
paradoxical but it is due to the presence of terms that
are total derivatives and thus do not contribute to the overall
angular momentum. Nevertheless, these contributions play
an important role in studying the angular momentum
density in the transverse plane. Note that, although the
issue of total derivative terms was raised and discussed in
Ref. [13], it was illustrated explicitly in this paper using
model calculations.
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