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A comprehensive study on the nature of the Zcð3900Þ resonant structure is carried out in this work. By
constructing the pertinent effective Lagrangians and considering the important final-state-interaction
effects, we first give a unified description to all the relevant experimental data available, including the J=ψπ
and ππ invariant mass distributions from the eþe− → J=ψππ process, the hcπ distribution from
eþe− → hcππ, and also the DD̄� spectrum in the eþe− → DD̄�π process. After fitting the unknown
parameters to the previous data, we search the pole in the complex energy plane and find only one pole in
the nearby energy region in different Riemann sheets. Therefore, we conclude that Zcð3900Þ is of DD̄�

molecular nature, according to the pole counting rule method [Nucl. Phys. A543, 632 (1992); Phys. Rev. D
35, 1633 (1987)]. We emphasize that the conclusion based upon the pole counting method is not trivial,
since both the DD̄� contact interactions and the explicit Zc exchanges are introduced in our analyses and
they lead to the same conclusion.
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I. INTRODUCTION

The discovery of Xð3872Þ has opened a new era in
hadron physics [1]. Since then, more than two dozen of the
so-called exotic XYZ particles with hidden heavy-quark
flavors have been observed in the past decade [2]; see
Refs. [3,4] for recent experimental and theoretical reviews,
respectively. A common and interesting feature shared by
these exotic states is that many of them lie close to the
underlying thresholds composed of the open heavy-flavor
states. Then one important question is whether these newly
observed XYZ peaks from experimental analyses corre-
spond to the genuine or elementary resonance states, or the
nearby threshold effects, or even the mixture of the
previous two mechanisms. Many different methods have
been proposed to discern the inner structures of the
hadronic states, including the compositeness coefficient
analyses [5–10], the QCD sum rule study [11–14], the NC
trajectories of the resonance poles [15–17], and the pole
counting rule [18–21]. In the present work, we shall apply
the latter approach to study Zcð3900Þ, which was first
observed by the BESIII Collaboration [22].

The charged charmoniumlike state Zcð3900Þ, with mass
3899.0� 3.6� 4.9 MeV and width 46� 10� 20 MeV,
has been observed in the J=ψπ� invariant mass spectrum in
the eþe− → J=ψπþπ− process by the BESIII Collaboration
[22] in 2013. It has been confirmed by the Belle [23] and
CLEO [24] Collaborations in eþe− → J=ψπþπ− as well.
Later on, a peak structure with mass 3883.9� 4.5 MeV
and width 24.8� 11.5 MeV was observed in the ðDD̄�Þ�
invariant mass spectrum in the eþe− → π�ðDD̄�Þ∓ process
[25]. The angular distribution analysis on the πZc system in
the π�ðDD̄�Þ∓ channel given in Ref. [25] determines the
quantum number of Zc to be IðJPÞ ¼ 1ð1þÞ.
Regarding the nature of Zcð3900Þ, it is very interesting in

the theoretical aspect, in the sense that at the quark level it
can be accommodated only by a c̄c plus a light quark-
antiquark pair assignment and cannot be the conventional
c̄c charmonium. If these quarks are bounded together by a
color confining force, then Zcð3900Þ would be the compact
tetraquark state [13,26–31]. On the other hand, due to the
fact that the mass of Zcð3900Þ is very close to the DD̄�

threshold, it provides a natural candidate as a DD̄�

molecule [11,12,14,32–40]. In addition, there also exist
other possible explanations, such as the cusp effects
suggested in Refs. [41–44] and the anomalous triangle
singularity in Refs. [45,46]. A recent lattice investigation in
Ref. [47] gives a small negative scattering length in the
corresponding channel (repulsive interaction), hence in
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disfavor of a resonant picture. But one should be cautious
when interpreting the lattice result with the physical
measurements, since the lightest pion mass used in the
previous lattice study is 300 MeV, still much larger than its
physical value. Efforts have also been made in the literature
[48–50] in an attempt to distinguish between the molecule
picture and the tetraquark one, by estimating the decay
width of Zcð3900Þ. In Ref. [51], Zcð3900Þ in the photo-
production process γp → Zcð3900Þþn is studied.
In this work, the so-called pole counting rule, which was

developed in Ref. [18], shall be used in discriminating the
nature of Zcð3900Þ. This rule provides an elegant way to
distinguish the mechanisms of generating resonances
around the threshold by counting the number of nearby
poles of the amplitudes in the complex energy plane.
Through the study of the potential scattering with and
without the Castillejo-Dalitz-Dyson pole, it concludes that
for the molecular type of resonance there is just one
corresponding pole, while for the elementary type of
resonance there is a pair of poles lying close to the
threshold in the nearby unphysical Riemann sheets.
Though this rule is not asserted as a mathematical theorem,
it is most likely to hold in the physical regimes [18]. In
order to apply this rule, a precisely determined amplitude is
clearly crucial, and it also implies that the final conclusion
from this approach relies heavily on the input experimental
data. This is one of the reasons that we try to fit as many
available data as possible to better constrain the amplitude.
In this respect, we should mention that the very recent

works in Refs. [39,52] have also analyzed the DD̄� and
J=ψπ invariant mass distributions by emphasizing the
nonperturbative nature of the DD̄� interactions around
the Zcð3900Þ energy region. However, we point out that,
in addition to theDD̄� resummation mechanism, to include
a bare Zcð3900Þ field through the Breit-Wigner or Flatté
functions1 is another possibility to fit the data. Naively
speaking, the two mechanisms correspond to rather differ-
ent scenarios for Zcð3900Þ. If Zcð3900Þ is originated from
the DD̄� resummation, it has a good chance to be a DD̄�

molecular, while if it is an elementary state with DD̄�
playing only a minor role in its composition, it can be easily
described by the Flatté function. It should be emphasized
that a near-threshold pole location does not necessarily
imply a molecular structure. A good example is the
Xð3872Þ resonance [20]. A Flatté-type function fit with
an explicit resonance exchange gives an excellent descrip-
tion to the data, and pairs of poles are found in nearby
Riemann sheets. Regarding Zcð3900Þ, it is a priori not
known which approach gives a better description of the
data: the DD̄� resummation or the explicit resonance
exchange. One of the novelties in the present work is to

include both of the approaches to fit the data. Moreover,
instead of simply parameterizing theDD̄� interactions with
Xð4260Þ, J=ψ , and other light-flavor mesons with constant
or polynomial three-momentum terms [39,52], we describe
all the interactions by constructing the pertinent effective
Lagrangians and seriously take care of the resummation of
DD̄� by distinguishing the transverse and longitudinal parts
of the vector mesons. A simultaneous description of the hcπ
and ππ invariant mass distributions, in addition to the DD̄�
and J=ψπ ones, will be discussed. A comparison between
different scenarios realized by switching on and off differ-
ent parameters is made, the pole counting method estab-
lished in Ref. [18] is then applied, and we reach a solid
conclusion that Zcð3900Þ is of a molecular nature.
This paper is organized as follows. In Sec. II, we set up

the theoretical framework, including the construct of the
effective Lagrangians and the resummation of DD̄� loops.
The phenomenological results and discussions are pre-
sented in Sec. III. A short summary and the conclusions are
given in Sec. IV.

II. THEORETICAL FRAMEWORK TO STUDY
eþe− → J=ψππ;DD̄�π;hcππ CHANNELS

A. Pertinent effective Lagrangians

Assuming that Zcð3900Þ is an IðJPÞ ¼ 1ð1þÞ particle,
we construct the effective Lagrangian to describe the
interactions between Zcð3900Þ and other particles. Here
we use the conventional Proca vector representation to
incorporate the vector and axial-vector states Xð4260Þ and
Zcð3900Þ, denoted by Xμ and Zμ

c, respectively, while in
Ref. [21] the antisymmetric tensor formalism is employed.
In the molecular picture, the nonperturbative DD̄� inter-
action is responsible for the near-threshold state Zcð3900Þ.
The one-pion exchange contribution in the open heavy-
flavor meson-meson scattering is still under debate, as
discussed in Ref. [53]. There is evidence that the pion-
exchange contribution is a subleading effect in the heavy-
flavor meson-meson (Dð�ÞD�=Bð�ÞB�) scattering. For
example, a perturbative nature of the pion exchange is
established based on the power counting scheme of the
effective field theory in Ref. [54]. Especially, it is obtained
that the expansion energy scale for the isovector case
increases by a factor of 3 compared to the isoscalar one,
implying a more perturbative nature of the DD̄� scattering
in the Zc channel than that in the Xð3872Þ case. This fact is
further supported by explicit calculations, which show that
the light q̄q meson exchanges indeed play a minor role in
the DD̄� scattering [55]. Based on this argument, we will
consider only the local contact DD̄� interaction in this
work. The contact DD̄� four-point interaction takes the
following form under the consideration of heavy quark
symmetry [56]:

LDD�DD� ¼ λ1hðDD̄�μ þ H:c:Þ2i; ð1Þ
1We are interested in the threshold energy region; therefore, the

Flatté-type function is more proper than the Breit-Wigner type
with a constant width.
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where the field operators D and D� are SUð2Þ isospin
doublets:

D ¼
�
Dþ

D0

�
; D� ¼

�
D�þ

D�0

�
:

The D̄D� meson loop should include the D̄0D��, D̄−D�þ,
and D̄0D�0 intermediate states. To simplify the notations,
D̄D�=D̄�D is denoted as D̄D� from now on.
We construct formally the effective Lagrangian in a

relativistic framework, but we should mention that only the
energy regions close to the D̄D� threshold will be focused.
Concerning the D̄D� interactions with J=ψπ and hcπ, the
operators with the lowest number of derivatives which are
invariant under C, P, chiral, and isospin symmetry trans-
formations are given by

LDD�ψπ ¼ λ2∇νψμhD̄�μuνDi þ λ3ψμh∇νD̄�μuνDi
þ λ4∇νψμhD̄�νuμDi þ λ5ψμh∇μD̄�νuνDi þH:c:;

ð2Þ

LDD�hcπ ¼ ðλ6∇μHνhD̄�
ρuσDi

þ λ7Hμh∇νD̄�
ρuσDiÞϵμνρσ þ H:c:; ð3Þ

where Hμ denotes the axial-vector state hc, ψμ stands for
the J=ψ , ∇μ is a covariant derivative operator, ϵμνρσ is the
fourth-order antisymmetric tensor, and uμ corresponds to
the standard chiral building block that includes the light-
flavor mesons

u ¼ exp

�
iϕffiffiffi
2

p
fπ

�
; ϕ ¼

� π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

�
;

uμ ¼ iu†∂μu − u∂μu†:

For details of the chiral building blocks, one is referred to,
for example, Ref. [57].
On the other side, to include Zcð3900Þ as a bare state

[i.e., the compact quark(s) and antiquark(s) bounded
together through color force], we include the following
operators:

LXZcπ ¼ g4∇νXμhZμ
cuνi; ð4Þ

LZcψπ ¼ g5∇νψμhZμ
cuνi; ð5Þ

LZcDD� ¼ f5hZμ
cðDD̄�

μ þ H:c:Þi; ð6Þ

LZchcπ ¼ f7∇νHμhZcρuσiϵμνρσ; ð7Þ

where Zμ
c is given by a 2 × 2 matrix

Zμ
c ¼

� Z0
cffiffi
2

p Zþ
c

Z−
c − Z0

cffiffi
2

p

�
:

The four-point interactions between Xð4260Þ and
J=ψππ, hcππ, D̄D�π are also taken into account:

LXψππ ¼ g1Xμψνhuμuνi þ g2Xμψ
μhuνuνi þ g3Xμψ

μhχ�i;
ð8Þ

LXDD�π ¼ f1∇νXμhD̄�μuνDi þ f2Xμh∇νD̄�μuνDi
þ f3∇νXμhD̄�νuμDi þ f4Xμh∇μD̄�νuνDi þH:c:;

ð9Þ

LXhcππ ¼ f6∇λ∇ρXμHνhuλuσiϵμνρσ; ð10Þ

where χ� is another standard chiral building block, χ� ¼
u†χu† � uχ†u [57].
In addition to the strong D̄D� final-state interaction

(FSI), we also carefully include the ππ FSI in the processes
eþe− → J=ψππ and eþe− → hcππ, where the ππ system is
mainly in the s wave. The strong ππ interactions are taken
into account within the framework of the unitarized chiral
perturbation theory (χPT) up to next-to-leading order [58],
where the Oðp4Þ low-energy constants are fixed by fitting
the ππ scattering data. The resulting poles of the f0ð500Þ
and f0ð980Þ are in good agreement with those from the
more strict approaches [59,60]. The details of the χPT
Lagrangian and the unitarization procedure for ππ scatter-
ing shall not be repeated in the present work. Interested
readers are referred to Ref. [58] and references therein.
Before ending this subsection, we point out that the word

“effective” in the effective Lagrangian here does not imply
that the Lagrangian introduced previously follows certain
proper power counting rules; rather it means that the
Lagrangian includes all the expected nearby (hence impor-
tant) singularities of a given process, in the limited energy
range of data fitting.

B. Calculation of the amplitudes

Next, we calculate the amplitudes corresponding to the
eþe− → J=ψππ, D̄D�π, and hcππ processes. The center of
mass (CM) energies in those processes are fixed at
4.26 GeV in accord with the experimental analyses
[22,25,61].2 The final amplitudes generated by the effective
Lagrangian in the previous subsection and also the

2Note that three different CM energies at 4.23, 4.26, and
4.36 GeV are taken for the hcππ channel in Ref. [61]. Never-
theless, the impact on the mass distribution of hcπ with the small
variances of the CM energies is found to be negligible. Therefore,
we simply fix the CM energy at 4.26 GeV for the hcππ channel,
as done for the other two cases.
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important ππ FSIs are depicted separately for the J=ψππ,
D̄D�π, and hcππ processes in Figs. 1–3. Let us explain the
meaning of different symbols in the previous figures in
more detail. The gray blob with a specific number indicates

that this interacting vertex is a composite interaction, in the
sense that it comprises more than one Feynman diagram
dictated by the Lagrangian in the previous subsection. The
composite vertices are graphically defined in Figs. 2 and 3.

FIG. 1. Decay diagrams of Xð4260Þ or γ�. The ellipses stand for the infinite series sum of the D̄D� loops.

FIG. 2. Decay composite vertices.
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The blobs labeled by 1–3 represent the interactions
between the initial state Xð4260Þ or the virtual γ� and
the final states J=ψππ, D̄D�π, and hcππ, without including
any D̄D� FSI. Their explicit definitions are given in Fig. 2.
Basically, these three blobs describe the tree-level ampli-
tudes of eþe− → J=ψππ; D̄D�π; hcππ by including the
possible ππ FSIs.3 The blobs labeled by 4–6 stand for
the tree-level transition amplitudes from D̄D� to D̄D�,
J=ψπ, and hcπ, respectively, which are explicitly shown in
Fig. 3. As clearly depicted in Figs. 2 and 3, not only the
contact interactions but also the bare Zc exchanges are
explicitly included in our calculation.
The ππ FSI, denoted by the shaded circle with pion

legs in Fig. 2, is important only for the IJ ¼ 00 ππ
system when they are produced from the contact vertex.
For the case when one of the pions is being produced by
Zc emission, it should not be affected much by another
pion previously produced, remembering that the lifetime
of Zc is rather long compared with the typical hadron
lifetime. An explicit verification of this statement will
be given in Sec. III. We closely follow Ref. [21] to
implement the ππ FSI. We simply give a sketch on how
to include this effect here and refer to the previous
reference for further details. The decay amplitude of,
e.g., X=γ� → J=ψππ after including the ππ FSI takes
the form

A1 ¼ Atree
1 α1ðsÞT11ðsÞ þAtree

2 α2ðsÞT21ðsÞ;
A2 ¼ Atree

2 α1ðsÞT12ðsÞ þAtree
2 α2ðsÞT22ðsÞ; ð11Þ

where the coupled channels with ππ (labeled as channel 1)
and K̄K (labeled as channel 2) are considered. A1 stands
for the expression of the diagram with the shaded circle
between the pion legs in Fig. 2. Atree

1 (Atree
2 ) denotes the

contact tree-level amplitude of X=γ� → J=ψππðK̄KÞ cal-
culated using the Lagrangian equation (8). In Eq. (11),
α1;2ðsÞ are mild polynomial functions. T11ðsÞ,
T12ðsÞ½¼ T21ðsÞ�, and T22ðsÞ correspond to the unitarized
isoscalar-scalar partial-wave amplitudes for ππ → ππ,
ππ → K̄K, and K̄K → K̄K, respectively [58]. All of the
unknown low-energy constants in those unitarized ampli-
tudes are fixed by fitting the scattering data.
With the preparation given above, we are now ready to

calculate the decay amplitudes of πD̄D�, J=ψππ, and hcππ
channels by including the strong D̄D� FSI, i.e., the infinite
series sum of the D̄D� loops in Fig. 1. We make a careful
study on the resummation of the infinite geometry series of
D̄D� loops by properly taking into account the general
composite four-point vertex, which includes both the local
contact interaction and also the Zc exchange, as depicted in
the top row in Fig. 3. We demonstrate that, in order to
accomplish the resummation of D̄D� loops, one needs to
split the amplitudes into two geometry series, i.e., the
transverse part and the longitudinal one. In order not to
interrupt the present discussion, we simply elaborate the
essentials to obtain these results here, and the detailed

FIG. 3. Four-point composite vertices.

3Strictly speaking, blobs 1 and 3 are not tree-level amplitudes,
since the infinite sum of the light-flavor meson loops are included
through the unitarization of the ππ scattering amplitude.
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calculations and explicit forms of the amplitudes after
taking into account the D̄D� bubble chains as depicted in
Fig. 1 are relegated to Appendix B.
Notice that the composite rescattering vertex of DD̄� is

generated in two ways—contact interaction and Zcð3900Þ
exchange in the s channel as shown in the top row in
Fig. 3—and can be written as

iAμν ¼ iλ1gμν − f25D
μνðl2Þ; ð12Þ

where l ¼ pD̄ þ pD� is the momentum of Zcð3900Þ, and its
propagator Dμνðl2Þ reads

Dμνðl2Þ ¼ −i
gμν − lμlν

m2
Z

l2 −m2
Z
; ð13Þ

withmZ denoting the mass parameter of Zcð3900Þ. In order
to sum up the infinite-loop chain, it is necessary to divide
the propagator into transverse and longitudinal parts:

Dμνðl2Þ ¼
−iðgμν − lμlν

m2
Z
Þ

l2 −m2
Z

¼ −iPμν
T ðl2Þ

l2 −m2
Z

þ iPμν
L ðl2Þ
m2

Z
; ð14Þ

with Pμν
T ¼ gμν − lμlν

l2 and Pμν
L ¼ lμlν

l2 . In Ref. [20], a detailed
analysis is made on the longitudinal part, concluding that
the longitudinal part has only a minor impact on the
behavior of the amplitudes near D̄D� threshold and serves
as a background contribution only. Particularly, it points out
that the poles originated from the longitudinal amplitudes
are far away from the D̄D� threshold and hence are
unphysical.

III. PHENOMENOLOGICAL ANALYSES

A. Description of the fit strategies

After obtaining the full amplitudes of the πD̄D�, J=ψππ,
and hcππ channels, we make use of them to perform
numerical fits in the following. We focus on two scenarios
in the fits.

(i) Fit I: Consider only the ðD̄D�Þ2 contact interaction.
This is realized by switching off all Zc couplings to
other particles, that is, to fix the couplings g4, g5, f5,
and f7 in Eqs. (4)–(7) to zero. In this situation, we
test the molecular nature of Zcð3900Þ.

(ii) Fit II: Assume that there indeed exists a bare
Zcð3900Þ state, which is described by a Flatté
propagator.4 Meanwhile, we turn off the ðD̄D�Þ2
four-point contact interaction vertex, that is, to fix
the coupling λ1 in Eq. (1) to zero.

Of course, in addition to the above two fits we also test the
mixed situation, that is, to include both the ðD̄D�Þ2 four-
point contact interaction and the bare Zc exchange. We will
briefly discuss the mixed-type fit result in the following
subsection.
In fit I, there is only a ðD̄D�Þ2 contact interaction and the

Zcð3900Þ-exchange contributions are excluded. To be
more specific, we fix the couplings g4, g5, f5, and f7 in
Eqs. (4)–(7) to zero in this case. Then the denominators of
transverse and longitudinal amplitudes presented in
Appendix B [e.g., Eq. (B1)] take the form

1 − iλ1ΠT; 1 − iλ1ΠL; ð15Þ

respectively, with λ1 characterizing the strength of ðD̄D�Þ2
contact interaction; cf. Eq. (1). The functions ΠT and ΠL
are defined in Eqs. (A2) and (A3), respectively. However,
in reality the D̄D� may scatter into other lighter channels,
and this fact is taken into account by introducing a constant
parameter in Eq. (15):

1 − iλ1ðΠT þ c0Þ; 1 − iλ1ðΠL þ c0Þ; ð16Þ

where c0 is real and accounts for the effects of the channels
that are far below the D̄D� threshold. Its major effect is to
bring a possible decay width (into light channels) to the
D̄D� molecule.
In fit II, D̄D� interacts only through exchanging inter-

mediate s-channel Zcð3900Þ. There is no D̄D� contact
interaction, and λ1 is fixed to zero. At the same time, the
coupling parameters in Eqs. (2) and (3) are also set to zero,
implying that we do not consider the contact interactions
between D̄D� and J=ψπ; hcπ in fit II. Then the denomi-
nators of transverse and longitudinal amplitudes presented
in Appendix B [e.g., Eq. (B1)] take the following form:

1 −
if25

l2 −m2
Z
ΠT; 1þ if25

m2
Z
ΠL; ð17Þ

respectively, where f5 represents the coupling strength
between Zcð3900Þ and D̄D�; cf. Eq. (6). Apart from the
D̄D�, J=ψπ, and hcπ channels, there could be other decay
channels whose thresholds are much lighter than the
production energy of Zcð3900Þ. Since all such thresholds
are far away from the D̄D� one, their contributions to the
Zcð3900Þ decay width are approximately parameterized as
a constant Γ0. In order to account for these contributions,
the denominator of the transverse propagator in Eq. (17) is
replaced by

l2 −m2
Z þ imZΓZc

ðl2Þ; ð18Þ

where ΓZc
ðl2Þ ¼ ΓJ=ψπðl2Þ þ Γhcπðl2Þ þ Γ0, with ΓJ=ψπðl2Þ

and Γhcπðl2Þ the partial widths of the Zcð3900Þ for

4An explicit resonance exchange with the Flatté-type para-
metrization does not automatically guarantee an elementary state;
rather, it may still simulate a molecular state according to the pole
counting rule. We will elaborate this point in detail later.
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corresponding channels. The widths ΓJ=ψπðl2Þ and Γhcπðl2Þ
are given, respectively, by

ΓJ=ψπðl2Þ ¼
jpψ j
8πl2

jMJ=ψπj2; ð19Þ

Γhcπðl2Þ ¼
jpHj
8πl2

jMhcπj2; ð20Þ

where jpψ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2−ðmJ=ψþmπÞ2Þðl2−ðmJ=ψ−mπÞ2Þ

4l2

q
and jpHj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2−ðmhcþmπÞ2Þðl2−ðmhc−mπÞ2Þ
4l2

q
; mJ=ψ , mhc , and mπ are the

mass of J=ψ , hc, and π, respectively. In addition,MJ=ψπ and
Mhcπ are the tree-level amplitudes of Zcð3900Þ decaying
into J=ψπ and hcπ, which can be calculated using the
Lagrangians in Eqs. (5) and (7), respectively:

MJ=ψπ ¼ −ig5pπ · pψϵZ · ϵψ ; ð21Þ

Mhcπ ¼ −if7pα
Hp

β
πϵμναβϵ

μ
Zϵ

ν
H; ð22Þ

where pψ , pH, and pπ are the momenta of J=ψ , hc, and π,
respectively; ϵZ, ϵψ , and ϵH are the polarization vectors of
Zcð3900Þ, J=ψ , and hc, respectively.
Before ending this section, we briefly comment the

difference between our approach and the one in
Refs. [53,62]. The latter two references used Lippmann-
Schwinger equations to properly take into account the
coupled-channel unitarities to study the Zb spectrum, while
in our approach only the elastic unitarity in D̄D� channel is
strictly incorporated through the bubble-chain resumma-
tion, since this is the most important channel responsible
for the Zcð3900Þ peak. For the inelastic channels, such as
J=ψπ and hcπ, we make an approximation to consider their
unitarization effects, that is, to introduce their finite widths
in the denominator of the Zc propagator; cf. Eq. (18). One
should not expect strong nonperturbative effects appearing
among these inelastic channels. In other words, the
unitarizations of these two channels are unlikely to produce
any new significant singularity. Furthermore, we focus on
the energy region around 3900 MeV in the present work,
while the J=ψπ and hcπ thresholds are more than 600 and
200 MeV below the Zcð3900Þ peak, respectively.
Therefore, our way to include the unitarization effects
from the J=ψπ and hcπ channels should be justified around
the Zcð3900Þ region.

B. Data fitting and numerical results

Wemake a combined fit to the data on the J=ψπ� and ππ
invariant mass spectra in the J=ψππ channel [22,23,63],
D̄D� mass distributions in the D̄D�π� channel [25], and the
hcπ� invariant mass spectrum in the hcπþπ− channel [61].
The energy resolution of different channels is also consid-
ered. To be more specific, the J=ψππ amplitude that has

been projected to the s wave of the ππ system by including
also the ππ FSI [21,58] is convolved with a Gaussian
function with the energy resolution fixed to be σ ¼
4.2 MeV [22], which can be written as follows:

ΓðlÞ ¼
Z

lþ3σ

l−3σ
dl0

1ffiffiffiffiffiffi
2π

p
σ
Γðl0Þexp−ðl0−lÞ2

2σ2 : ð23Þ

Here l ¼ mJ=ψπ is the momentum of Zcð3900Þ, and Γ is the
cross section of Yð4260Þ=γ� → J=ψππ.5 On the other side,
the energy resolutions of the hcππ and D̄D�π channels are
1.8 [61] and 1 MeV [25], respectively, which can be safely
ignored.
We point out that the ππ spectrum in the J=ψππ channel

has been carefully studied, while this is not the case in the
recent works in Refs. [39,52]. Although the ππ dynamics
gives more like a background contribution to the interested
Zcð3900Þ energy region, its coherent interference with
other terms in the full amplitude can provide non-negligible
effects. Three sets of ππ data in the J=ψπþπ− channel are
fitted, which are from BESIII [22], Belle [23], and BABAR
[63]. Besides ππ data, we also fit the D̄D� (including
D−D�0 and DþD̄�0) data from 3.87 to 4.11 GeV of
Ref. [25], the MmaxðJ=ψπ�Þ data from 3.67 to 4.1 GeV
of Ref. [22],6 and the hcπ� data from 3.80 to 3.93 GeV
in Ref. [61].
There are 16 and 14 coupling parameters for fit I and fit

II, respectively. Adding four parameters of ππ final-state
interaction [21], seven normalization parameters, and one
parameter for a DD̄� (incoherent) background, the number
of parameters in total is 28 and 26 for fit I and fit II,
respectively. The fit results are plotted in Figs. 4 and 5.
It is found that the χ2=d:o:f: ¼ 497=ð291 − 26Þ in fit II is

a little bit larger than χ2=d:o:f: ¼ 454=ð291 − 28Þ of fit I.7
From our experience in data fitting, this result is very
interesting—naively, one might expect that the bubble-
chain description would not fit the data very well compar-
ing with the standard concise Flatté description with
explicit resonance exchange. A quick conclusion might
be that this result does not seem to disfavor the molecule
picture comparing the elementary Zc mechanism. We will
in fact realize soon in the next subsection that the Flatté
description for the explicit resonance exchange in the
present analysis is actually “dynamically” equivalent to
the bubble-chain parametrization, according to the pole
counting rule.

5However, the final result does not rely much on whether the
energy resolution is considered or not.

6The maximum spectrum MmaxðJ=ψπ�Þ is the mass distribu-
tion of the larger one of MJ=ψπþ and MJ=ψπ− which shows only
one Zc peak but gives equivalent information, compared with
the MJ=ψπ� mass distribution [22].

7If we drop out ππ data and include only DD�, J=ψπ, and hcπ
data, the χ2=d:o:f: would be 282=ð189 − 21Þ in fit I and
274=ð189 − 19Þ in fit II.
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Though the overall quality of fit I and fit II is quite
similar, there are some minor differences between the two
fits. For the D̄D� invariant mass spectrum, the two fits both
agree well with the data. The peak near 3900 MeV in the
J=ψπ spectrum in fit II is a bit wider than that in fit I, while
for the hcπ� spectrum, the molecule mechanism produces
an enhancement near 3.88 GeV in Fig. 4(d), which is,
however, absent in the bare Zc-exchange picture.
In principle, the most general fit is the “mixed” one by

including both ðD̄D�Þ2 contact interactions and Zcð3900Þ
exchanges as shown in Figs. 2 and 3. In this case, the
denominators of transverse and longitudinal amplitudes
presented in Appendix B [e.g., Eq. (B1)] take the form

1 − i
�
λ1 þ

f25
l2 −m2

Z

�
ΠT; 1 − i

�
λ1 −

f25
m2

Z

�
ΠL: ð24Þ

However, we explicitly verify that this way to perform the
fits does not obviously improve the total χ2 comparing with
fit I and fit II. Since more parameters are involved in the

mixed mechanism, the fit procedure becomes more unsta-
ble compared with fit I and fit II. Therefore, at this level of
study no useful information can be extracted from the
mixed fit, and we refrain from discussing it further.
Now it is in order to comment on the relative strengths

between different mechanisms in the ππ and J=ψπ spectra.
In Fig. 6, we show different contributions from the last two
diagrams in the first line of Fig. 2, i.e., the dressed contact
vertex with ππ FSI and the tree-level Zc exchange. It is
clear that the former contribution dominates the ππ invari-
ant mass distribution and the latter behaves more like a
small background term. The anatomy of different contri-
butions in J=ψπ spectrum is given in Fig. 7. Though the
peak structure around 3.9 GeV is mainly contributed by the
Zc-exchange diagram, the ππ FSI dressed contact vertex
gives important background effects.

C. Pole analysis

According to the pole counting rule [18], a molecule
generated in s-wave scattering can be distinguished from an

(a) (b)

(c) (d)

FIG. 4. (a) D0D�− invariant mass spectrum from Ref. [25]; (b) DþD̄�0 invariant mass spectrum from Ref. [25]; (c) J=ψπ� maximum
invariant mass spectrum from Ref. [22]; (d) hcπ� invariant mass spectrum from Ref. [61].
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elementary particle by counting the number of poles near
the relevant physical threshold on different Riemann sheets.
In this subsection, we search for poles of the previously
determined amplitudes in the complex energy plane.
Three thresholds are relevant, namely, J=ψπ, hcπ, and

D̄D�. However, through the fit procedure it is found that the
hcπ channel plays only a minor role; i.e., it has only a
negligible partial width. Hence, as a good approximation
the coupled-channel system reduces to a two-channel
problem. We define in Table I the naming scheme of
different Riemann sheets. From Eqs. (B1)–(B13), one can
see that the relevant poles in our amplitudes correspond to
the zeros of the transverse denominator. As commented
previously, the poles resulting from the longitudinal part are
far away from the focused energy region and unphysical
[20]. We therefore search for poles in Eqs. (16) and (18) on
four Riemann sheets characterized by the D̄D� and J=ψπ
thresholds. In Table II, we list all the nearby poles around
the D̄D� threshold. If the hcπ data are not included in fit I,

(a) (b)

(c)

FIG. 5. The ππ invariant mass spectra of the eþe− → J=ψππ process. (a), (b), and (c) correspond to ππ invariant mass spectra from
Ref. [22], Ref. [23], and Ref. [63], respectively.

FIG. 6. The black solid line denotes the ππ invariant mass
distribution from fit II. The green dashed line denotes the
contribution from the pure contact amplitude with ππ FSI. The
red dashed-dotted line represents the Zc-exchange contribution.
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then the pole will be located on sheet IV.8 On the contrary,
the (nearby) pole always locates on sheet IV for fit II. The
major difference between an explicitly introduced reso-
nance and the molecule generated by a bubble-chain
mechanism is that there are always intrinsic two (pair
of) poles built in the former case in the coupled-channel
situation. But our numerical analysis shows that, in fit II,
one of the two poles in the Flatté propagator is far away
from the D̄D� threshold and, hence, is not physically
relevant at all.9 Therefore, we reach the most important
physical conclusion in this work: Although the Flatté-type
parametrization and the bubble-chain mechanism look
very different from the beginning, they are practically
equivalent in the present case. This observation confirms
the molecular nature of Zcð3900Þ according to the pole
counting rule [18].10 Here we would like to emphasize
that “close to the threshold” does not in any sense
necessarily lead to a molecular picture. A good counter-
example is the Xð3872Þ resonance; it is also very close to
the D̄D� threshold. Nevertheless, an application of the
pole counting rule indicates that it is mainly of a c̄c nature

[19,20]. This conclusion agrees with results from other
approaches [65–67].
For completeness, we also show in Table III all partial

widths from fit II. Notice that here we do not include in the
fit the constant width Γ0 in Eq. (18). The reason is that,
since the J=ψπ threshold is also quite low from the D̄D�

threshold, its q2 dependence is weak, making it hard to
distinguish from the constant Γ0 (see Fig. 8 for an
illustration). In other words, the value of ΓJ=ψπ given in
Table III should be better understood as a sum of ΓJ=ψπ and
Γ0. Besides, the partial width ΓD̄D� is obtained using the
tree-level decay width formula and the mass is chosen at the
peak position (the line-shape mass), since the pole is
slightly below the D̄D� threshold. In Fig. 8, we show
explicitly the strong energy dependences of ΓZc→D̄D�

and the almost flat behavior of ΓZc→J=ψπ . An important

FIG. 7. The black solid line denotes the J=ψπ invariant mass
distribution from fit II. The other notations are the same as those
in Fig. 6.

TABLE I. The sign of the kinematic factors ρðsÞ in Eq. (A6)
defines four Riemann sheets.

Sheet I Sheet II Sheet III Sheet IV

ρJ=ψπðsÞ þ − − þ
ρD̄D� ðsÞ þ þ − −

TABLE II. The pole locations from fit I and fit II, with hcπ data
included. The numbers are given in units of GeV.

Sheet I Sheet II Sheet III Sheet IV

Fit I � � � 3.87988� 0.00390i � � � � � �
Fit II � � � � � � � � � 3.87909� 0.00143i

TABLE III. The resulting partial decay widths of Zcð3900Þ
from fit II.

Partial decay width ΓJ=ψπ ΓD̄D� Γhcπ

Value in MeV 13.33� 0.62 16.47� 0.72 0.04� 0.03

FIG. 8. The energy dependence of the partial decay width of
Zcð3900Þ.

8The pole location here is controlled by the sign of λ1
parameter (the contact coupling of D̄D�D̄D�). If λ1 is positive,
the pole is in sheet II, which means Zc is a molecular bound state
of D̄D�; if λ1 is negative, a pole in sheet IV would be found,
which means Zcð3900Þ is a virtual state of D̄D�.

9The distant pole locates at 2.88� 0.35iGeV in sheet III. This
pole is not actually meaningful any more, since it is far outside
the energy region under control.

10In Ref. [6], the spectral-density-function (SDF) approach is
employed to calculate the elementariness and compositeness
coefficients. In Appendix C, we follow Refs. [6,64] to use the
SDF method to calculate the elementariness coefficient of
Zcð3900Þ. Though suffering from large uncertainties, it seems
to indicate that D̄D� is the dominant component inside Zcð3900Þ,
which confirms the pole counting rule result.
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conclusion from this plot is that the ratio of
ΓZc→D̄D�=ΓZc→J=ψπ is quite sensitive to the pole position
of Zcð3900Þ and bears a large uncertainty.
On the other hand, in the parametrization of fit I, the

possible decay of the DD̄� molecule into light channels is
taken into account by adding an additional parameter c0 as
done in Eq. (16), which is, however, difficult to directly
connect to partial widths.
At the end of this section, we should mention that, in the

above fits, the hcπ data are included. Nevertheless, since no
significant Zcð3900Þ signal is observed in the hcπ spectrum
[61], we also perform other fits by assuming that Zcð3900Þ
does not decay into hcπ and do not include the hcπ data.
The output is rather interesting: For fit I we find that the
pole moves from sheet II to sheet IV when excluding the
hcπ data. It implies that Zcð3900Þ is a bound state of D̄D�
when including the hcπ data in the fit and becomes a virtual
state when hcπ data are excluded. On the contrary, for fit II
the pole will always reside on sheet IV. It is worth pointing
out that the conclusion of the molecular nature of Zcð3900Þ
is not changed regardless of including or excluding the hcπ
data in the fits.

IV. DISCUSSIONS AND CONCLUSIONS

This work is devoted to the study of the nature of the
Zcð3900Þ state. For this purpose, we construct relevant
effective Lagrangians which incorporate all possibly impor-
tant singularities close to the D̄D� threshold to calculate the
eþe− → J=ψππ, hcππ, and D̄D�π processes. The ππ final-
state interactions are included for the J=ψππ; hcππ channels
by using the unitarized chiral perturbation theory, while for
the strong D̄D� interaction we carefully perform the infinite
series sum of the D̄D� loops. Hence, we provide a good
parametrization form to fit the relevant data, which include
the J=ψπ and ππ distributions from eþe− → J=ψππ, the hcπ
invariant mass spectrum from eþe− → hcππ, and the D̄D�

spectrum from eþe− → D̄D�π.
Two different fits are performed with quite different

physical motivations: Fit I, which includes only the ðD̄D�Þ2
contact interactions, is responsible for the examination of
the molecular mechanism, and fit II, which includes only
the Flatté form of the Zcð3900Þ exchange, is to test the
elementary picture. It is remarkable that the two seemingly
very different approaches point to the same conclusion:

Zcð3900Þ is a D̄D� molecule. As we have already empha-
sized, this conclusion is not trivial, considering the near-
threshold Xð3872Þ resonance as a counterexample. The
question of whether Zc is a bound state or a virtual one still
remains open, though the latter is slightly preferred.
Furthermore, we find that the main decay channels of
Zcð3900Þ are J=ψπ (possibly including effects of other
lighter channels) andDD̄�. No strong evidence is found for
its decay into hcπ.
It was recently emphasized in Refs. [42,43] that, in a

special kinematic region, obvious threshold enhancement
was produced by a meson triangle diagram without
introducing a genuine state for Zcð3900Þ. Furthermore, it
is suggested in Refs. [45,46] that the anomalous triangle
singularity may also have a significant impact on the near-
threshold behavior. We also investigate this interesting
situation. Our preliminary result shows that the “anomalous
threshold” may be of some importance to improve the fit
quality but does not change the qualitative picture obtained
in this paper; i.e., Zcð3900Þ is a molecule composed
of DD̄�.
Finally, we briefly comment on the recently discovered

Pcð4450Þ state [68]. The Pcð4450Þ state was observed by
the LHCb Collaboration in the J=ψp channel in the Λ0

b →
J=ψK−p process. Since a proton is made of uud, the
former process is very similar to the one under investigation
if one replaces a ud pair inside the proton by a d̄, which are
of the same quantum number. Therefore, one naturally
expects the Pcð4450Þ state to be a molecular state made of
ΣcD�. Nevertheless, such a suggestion requires the spin
quantum number of Pcð4450Þ to be 3

2
rather than 5

2
as

preferred by Ref. [68]. The investigation along this research
line is ongoing.
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APPENDIX A: THE LOOP INTEGRALS

The D̄D� meson loop integral can be divided into transverse and longitudinal parts

Πμν ¼
Z

dDk
ð2πÞD

gμν − kμkν

m2
D�

ðk2 −m2
D�Þððp − kÞ2 −m2

DÞ
¼ Pμν

T ΠT þ Pμν
L ΠL ðA1Þ

and
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ΠT ¼ −i
16π2

�
I0
2
−

p2

2m2
D�

I2 þ
p2 þm2

D� −m2
D

2m2
D�

I1 −
1
3
p2 − ðm2

D� þm2
DÞ

4m2
D�

�
−

iR
16π2

�
1þ p2

12m2
D�

−
m2

D� þm2
D

4m2
D�

�
; ðA2Þ

ΠL ¼ ΠT þ i
16π2

p2

m2
D�

I2 þ
iR
16π2

p2

3m2
D�

; ðA3Þ

where R ¼ − 1
ϵ þ γE − ln 4π is the ultraviolet divergent part and p ¼ pD̄ þ pD� .

The scalar integrals In in Eqs. (A2) and (A3) are

In ¼
Z

1

0

dxxn ln
m2

Dxþm2
D� ð1 − xÞ − p2xð1 − xÞ

μ2
; n ¼ 0; 1; 2;

I0 ¼ −B0ðsÞ;

I1 ¼ −
sþm2

D� −m2
D

2s
B0ðsÞ þ

A0ðmD�Þ − A0ðmDÞ
2s

;

I2 ¼ −
ðsþm2

D� −m2
DÞ2 −m2

D�s
3s2

B0ðsÞ þ
A0ðmD� Þ − 2A0ðmDÞ

3s

−
1

18
þm2

D� −m2
D

3s2
ðA0ðmD� Þ − A0ðmDÞÞ þ

m2
D� þm2

D

6s
: ðA4Þ

Here the basic one-point loop function A0ðmÞ and two-point loop function B0ðsÞ are, respectively,

A0ðmÞ ¼ −m2

�
−1þ ln

m2

μ2

�
;

B0ðsÞ ¼ 2 − ln
m2

D

μ2
þ sþm2

D� −m2
D

2s
ln

m2
D

m2
D�

þ ρmDmD� ðsÞ ln
λðsÞ − 1

λðsÞ þ 1
; ðA5Þ

where the kinematic factor λðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s−ðmD�þmDÞ2
s−ðmD�−mDÞ2

q
and ρm1m2

ðsÞ is given by

ρm1m2
ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ

p
s

: ðA6Þ

Hence, Eqs. (A2) and (A3) could be rewritten as

−iΠTðsÞ ¼
1

16π2

�
s − 3ðm2

D þm2
D� Þ

18m2
D�

−
sþm2

D −m2
D�

12m2
D�s

A0ðmDÞ −
sþm2

D� −m2
D

12m2
D�s

A0ðmD� Þ

þ s2 þm4
D� þm4

D þ 10m2
D�s − 2m2

D�m2
D − 2m2

Ds
12m2

D�s
B0ðsÞ

�
−

R
16π2

�
1þ s

12m2
D�

−
m2

D� þm2
D

4m2
D�

�
; ðA7Þ

−iΠLðsÞ ¼
1

16π2

�ðm2
D −m2

D� − 3sÞA0ðmDÞ
4m2

D�s
þ ð−m2

D þm2
D� þ sÞA0ðmD� Þ
4m2

D�s

−
ðm4

D − 2m2
Dðm2

D� þ sÞ þ ðm2
D� − sÞ2ÞB0ðsÞ

4m2
D�s

�
þ R
16π2

�
1þ s

4m2
D�

−
m2

D� þm2
D

4m2
D�

�
: ðA8Þ

Several different approaches are adopted in the literature to renormalize the loops in the nonperturbative calculation
[53,69–71]. In the present work, the divergences in Eqs. (A2) and (A3) are removed through subtraction at the physical
threshold:

Π̄TðsÞ ¼ ΠTðsÞ − ΠTðsthÞ; Π̄LðsÞ ¼ ΠLðsÞ − ΠLðsthÞ;
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with sth ¼ ðmD þmD� Þ2. Notice that choosing subtraction
at a particular point (threshold) does not bring any
additional constraint on the fits, since the effect of an
arbitrary subtraction point can be absorbed by other fitted
parameters. The near-threshold behaviors of Π̄TðsÞ and
Π̄LðsÞ are

Π̄TðsÞ ¼
1

16π
ð−ρmDmD� ðsÞ þOðρ2ðsÞÞÞ;

Π̄LðsÞ ¼
1

16π
ðρ3mDmD� ðsÞ þOðρ4ðsÞÞÞ: ðA9Þ

Other relevant tensor integrals that appear in the expres-
sions of decay amplitudes in the following discussions are
given by

Π1;μνα ¼
Z

dDk
ð2πÞD

ðgμν − kμkν
m2

D�
Þkα

ðk2 −m2
D� Þððp − kÞ2 −m2

DÞ
; ðA10Þ

Π2;μναβ ¼
Z

dDk
ð2πÞD

ðgμν − kμkν
m2

D�
Þkαkβ

ðk2 −m2
D� Þððp − kÞ2 −m2

DÞ
: ðA11Þ

After Feynman parametrization, the above tensor integrals
take the form

Π1;μνα ¼
Z

1

0

dx

��
xpαgμν −

x3pμpνpα

m2
D�

�
Σ1 −

pνx
m2

D�
Σ2;μα −

pμx

m2
D�

Σ2;να

�
; ðA12Þ

Π2;μναβ ¼
Z

1

0

dxðpνpβΣ2;μα þ pνpαΣ2;μβ þ pμpβΣ2;να þ pμpαΣ2;νβ þ pαpβΣ2;αβ þ pμpνΣ2;αβÞ

×

�
−

x2

m2
D�

�
þ
Z

1

0

dx

��
gμνpαpβx2 −

x4pμpνpαpβ

m2
D�

�
Σ1 þ gμνΣ2;αβ −

1

m2
D�

Σ3;μναβ

�
; ðA13Þ

where

Σ1 ¼
Z

dDk
ð2πÞD

1

ðk2 − ΔÞ2 ¼
−i
16π2

ðRþ lnΔÞ; ðA14Þ

Σ2;μν ¼
Z

dDk
ð2πÞD

kμkν
ðk2 − ΔÞ2 ¼

i
16π2

gμν
2

Δðð−Rþ 1Þ − lnΔÞ; ðA15Þ

Σ3;μναβ ¼
Z

dDk
ð2πÞD

kμkνkαkβ
ðk2 − ΔÞ2 ¼

i
16π2

Δ2

8

��
−Rþ 3

2

�
− lnΔ

�
ðgμνgαβ þ gμαgνβ þ gμβgναÞ; ðA16Þ

and Δ ¼ m2
Dxþm2

D� ð1 − xÞ − p2xð1 − xÞ. The divergences in Eqs. (A14)–(A16) are also removed by the threshold
subtraction.

APPENDIX B: DECAY AMPLITUDES

1. The amplitude of Xð4260Þ → J=ψπþπ−

Based on the effective Lagrangians given in Sec. II, one can calculate the diagrams depicted in Fig. 1. When summing the
bubble-chain diagrams, it is useful to distinguish whether the composite vertices in Fig. 1 depend on the loop momentum or
not. For the composite vertices involving the external states, we use subscripts A and B to represent the loop-momentum-
independent and -dependent parts, respectively. The amplitude of Xð4260Þ → J=ψπþπ− can be divided into four parts:
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iMμν
1AA ¼

ðf1 − f5g4
m2

Z
Þðλ2 − f5g5

m2
Z
Þq · qþq− · q0ΠLP

μν
L þ f3λ4qþμq−νqμ1q0ν1ΠLP

μ1ν1
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

þ
ðf1 þ f5g4

l2−m2
Z
Þðλ2 þ f5g5

l2−m2
Z
Þq · qþq− · q0ΠTP

μν
T þ f3qþμqμ1ðλ2 þ f5g5

l2−m2
Z
Þq− · q0ΠTP

μ1ν
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
λ4q−νq0ν1ðf1 þ f5g4

l2−m2
Z
Þqþ · qΠTP

μν1
T þ f3λ4qþμq−νqμ1q0ν1ΠTP

μ1ν1
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
f3qþμqμ1ðλ2 − f5g5

m2
Z
Þq− · q0ΠLP

μ1ν
L þ λ4q−νq0ν1ðf1 − f5g4

m2
Z
Þqþ · qΠLP

μν1
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

; ðB1Þ

iMμν
1AB ¼ ðλ3gνν1q−αΠ1;ν1ν2α − λ5q−ν1Πν

1;ν2ν1
Þ

×

 ðf1 þ f5g4
l2−m2

Z
Þq · qþPμν2

T þ f3qþμqμ1P
μ1ν2
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
ðf1 − f5g4

m2
Z
Þq · qþPμν2

L þ f3qþμqμ1P
μ1ν2
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

!
; ðB2Þ

iMμν
1BA ¼ −ðf2gμμ1qþαΠ1;μ1μ2α þ f4q−μ1Π

μ
1;μ1μ2

Þ
ðλ2 − f5g5

m2
Z
Þq0 · q−Pμ2ν

L þ iλ4q−νq0ν1P
μ1ν2
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

− ðf2gμμ1qþαΠ1;μ1μ2α þ f4q−μ1Π
μ
1;μ1μ2

Þ
ðλ2 þ f5g5

l2−m2
Z
Þq0 · q−Pμ2ν

T þ iλ4q−νq0ν1P
μ1ν2
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

; ðB3Þ

iMμν
1BB ¼ f2λ3qþαq−βgμμ1gνν1Π2;μ1ν1αβ þ f2λ5qþα q−ν1gμμ1Π αν

2;μ1ν1
þ f4λ5qþμ1q−ν1Π μν

2;μ1ν1

þ qþμ1q−αgνν1Πμ
2;μ1ν1α

f4λ3 − i

 ðλ1 þ f2
5

l2−m2
Z
ÞPμ2ν2

T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
ðλ1 − f2

5

m2
Z
ÞPμ2ν2

L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

!

× ðf2gμμ1qþαΠ1;μ1μ2α þ f4qþμ1Π1;μ1μ2μÞðλ3gν1νq−βΠ1;ν2ν1β − λ5q−ν1Πν
1;ν2ν1

Þ: ðB4Þ

The momenta of Xð4260Þ, Zcð3900Þ, J=ψ , and πþðπ−Þ are labeled as q, l, q0, and qþðq−Þ, respectively. ϵμX and ϵμψ are the
polarization vectors of Xð4260Þ and J=ψ , in order. Finally, the full amplitude of Xð4260Þ → J=ψπþπ− can be written as

iMXð4260Þ→J=ψπþπ− ¼ ϵXμϵ
�
ψνðiMμν

1AA þ iMμν
1AB þ iMμν

1BA þ iMμν
1BBÞ: ðB5Þ

In order to simplify the above and following expressions, we have redefined the coupling parameters to absorb the pion
decay constant fπ and its mass mπ .

2. The amplitude of Xð4260Þ → D̄D�π�

The amplitude of Xð4260Þ → D̄D�πþ needs to be divided into two parts:

iMμν
2A ¼ i

ðf1 þ f5g4
l2−m2

Z
Þq · qþPμν

T þ f3qþμqμ1P
μ1ν
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ i
ðf1 − f5g4

m2
Z
Þq · qþPμν

L þ f3qþμqμ1P
μ1ν
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

; ðB6Þ
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iMμν
2B ¼ −if2qD� · qþgμν − if4q

μ
D�qþν þ ðf2gμμ1qþρΠ1;μ1ν1ρ þ f4qþμ1Π1;μ1ν1μÞ

0
B@ ðλ1 þ f2

5

l2−m2
Z
ÞPν1ν

T

1− iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
ðλ1 − f2

5

m2
Z
ÞPν1ν

L

1− iðλ1 − f2
5

m2
Z
ÞΠL

1
CA;

ðB7Þ
where qD� , l ¼ qD� þ qD are the momenta of D� and Zcð3900Þ and ϵμX and ϵμD� are the polarization vectors of Xð4260Þ and
D�, respectively. Then the full amplitude of Xð4260Þ → D̄D�πþ can be written as

iMXð4260Þ→D̄D�π ¼ ϵXμϵ
�
D�νðiMμν

2A þ iMμν
2BÞ: ðB8Þ

3. The amplitude of Xð4260Þ → hcπþπ−

We divide the amplitude of Xð4260Þ → hcππ into four parts, which are given by

iMμν
3AA ¼ ΠL

ðf1 − f5g4
m2

Z
Þq · qþPν1μ

L þ f3qþμqμ1Pμ1ν1
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

ðλ6qαHq−β ϵνν1αβ þ if5f7q
ρ
Hq

−
σDν1βϵ

ρσβνÞ

þ ΠT

ðf1 þ f5g4
l2−m2

Z
Þq · qþPν1μ

T þ f3qþμqμ1Pμ1ν1
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

ðλ6qαHq−β ϵνν1αβ þ if5f7q
ρ
Hq

−
σDν1βϵ

ρσβνÞ; ðB9Þ

iMμν
3AB ¼

ðf1 þ f5g4
l2−m2

Z
Þq · qþPμμ1

T þ f3qþμqσPσμ1
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

ð−λ7q−βΠ1;μ1ν1αϵ
ν1ναβÞ

þ
ðf1 − f5g4

m2
Z
Þq · qþPμμ1

L þ f3qþμqσPσμ1
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

ð−λ7q−βΠ1;μ1ν1αϵ
ν1ναβÞ; ðB10Þ

iMμν
3BA ¼ ðf2qþαΠ1;μν1α þ f4qþμ1Π μ

1;μ1ν1
Þð−λ6qHαq−β ϵ

νν1αβ − if5λ6qHρq−σDαβgν1αϵρσβνÞ
þ ðf2qþαΠ1;μμ2α þ f4qþμ1Π μ

1;μ1μ2
Þð−λ6qHαq−β ϵ

νν1αβ − if5λ6qHρq−σDαβgν1αϵρσβνÞ

×

0
B@iðλ1 þ f2

5

l2−m2
Z
ÞΠTP

ν1μ2
T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
iðλ1 − f2

5

m2
Z
ÞΠLP

ν1μ2
L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

1
CA; ðB11Þ

iMμν
3BB ¼

0
B@ iðλ1 þ f2

5

l2−m2
Z
ÞPμ2ν2

T

1 − iðλ1 þ f2
5

l2−m2
Z
ÞΠT

þ
iðλ1 − f2

5

m2
Z
ÞPμ2ν2

L

1 − iðλ1 − f2
5

m2
Z
ÞΠL

1
CAλ7q−βΠ1;ν2ν1αϵ

ν1ναβ

× ðf2qþαΠ1;μμ2α þ f4qþμ1Πμ
1;μ1μ2

Þ þ ðf2qþσΠ2;μν1σα þ f4qþμ1Πμ
2;μ1ν1α

Þλ7q−βϵν1ναβ; ðB12Þ

where l, pH, ϵ
μ
X, and ϵ

μ
H are the momenta of Zcð3900Þ and hc and the polarization vectors of Xð4260Þ and hc, respectively.

Then the full amplitude of Xð4260Þ → hcππ follows:

iMX→hcππ ¼ ϵXμϵ
�
HνðiMμν

3AA þ iMμν
3AB þ iMμν

3BA þ iMμν
3BBÞ: ðB13Þ

In order to implement the strong ππ final-state interaction, we first need to project out the s-wave component of the ππ
system for the amplitudes of J=ψππ and hcππ, and this is done by using the helicity amplitude decomposition method in
Ref. [72]. Then the final forms of the amplitudes after the implementation of the ππ final-state interactions are given by
Eq. (11); see Ref. [21] for details.
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APPENDIX C: THE ANALYSIS OF SPECTRAL
DENSITY FUNCTION SUM RULE

We follow Refs. [6,64] to use the spectral density
function method to calculate the probability for
Zcð3900Þ to be an elementary state in this section. Both
the J=Ψπ and DD̄� channels couple to the Zcð3900Þ state.
We set E ¼ 0 at theDD̄� threshold. For simplicity, we omit
the isospin violation and use the nonrelativistic Flatté
parametrization of the SDF, which is analogous to the
one adopted in Ref. [64]:

wðEÞ ¼ 1

2π

g1
ffiffiffiffiffiffiffiffiffi
2μE

p
θðEÞ þ Γ0

jE − E0 þ i
2
g1

ffiffiffiffiffiffiffiffiffi
2μE

p þ i
2
Γ0j2

; ðC1Þ

with μ ¼ mD�−mD0=ðmD�− þmD0Þ the reduced mass. We
take from fit II MZc

¼ 3.903 GeV and E0 ¼
MZc

− ðmD þmD̄� Þ ∼ 0.028 GeV. Meanwhile, the decay
width to the inelastic channel is Γ0 ¼ 0.01333 GeV;
cf. Table III. The coupling constant f5 in the Lagrangian
(L ⊃ f5Z

þμ
c D�−

μ D0) is 13.71 GeV from fit II. The coupling
g1 in Eq. (C1) can be obtained from f5 as follows. The tree-
level decay width in the CM frame is

ΓðEÞ ∼ 1

3

X
spins ofZc;D�

jif5ϵ�D� · ϵZc
j2

ffiffiffiffiffiffiffiffiffi
2μE

p
8πM2

Zc

∼
f25

ffiffiffiffiffiffiffiffiffi
2μE

p
8πM2

Zc

þOðE=M4
Zc
Þ:

On the other hand, in the Flatté parametrization the width is

ΓðEÞ ∼ g1
ffiffiffiffiffiffiffiffiffi
2μE

p
:

Therefore, we obtain

g1 ¼
f25

8πM2
Zc

∼ 0.491:

With the above inputs, we can then calculate the SDF,
which is shown in Fig. 9.
To proceed, we calculate the possibility for Zc to be an

elementary particle by taking the integral of the SDF in a
reasonable energy interval [6,64]. In fit II, the central
energy of Zc is about Ec ¼ 4.000 × 10−3 GeV, and the
total width (pole width) is Γ ¼ 0.02984 GeV. Then we
integrate the SDF with different intervals, and the results
are given in Table IV.
FromTable IV, we see that there are some ambiguities and

uncertainties when estimating the elementariness coefficient
Z, since it is rather sensitive to the integral interval.
Nevertheless, even if we take the interval as large as 6Γc,
theZ is still smaller than 50%.11 Sowe conclude that the SDF
sum rulemethod confirms themolecular nature ofZcð3900Þ.
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