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We evaluate the elliptic gluon generalized transverse-momentum-dependent distribution inside a large
nucleus using the McLerran-Venugopalan model. We further show that this gluon distribution can be
probed through the angular correlation in virtual photon quasielastic scattering on a nucleus.
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I. INTRODUCTION

The quantum phase space distribution of partons inside
anucleon plays a central role in exploring the tomography
picture of nucleon. For a fast moving nucleon, a five-
dimensional phase space Wigner distribution which car-
ries the complete information on how a single parton is
distributed inside a nucleon has been introduced in the
literature [1-4]. The Fourier transform of the Wigner
distributions referred to as the generalized transverse-
momentum-dependent (GTMD) distributions [5] are
normally considered as the mother distributions of trans-
verse-momentum-dependent (TMD) distributions and
generalized parton distributions (GPDs). So far, the
studies of GTMDs mostly focus on the formal theory
side, including model calculations [5—11], the analysis of
the multipole structure associated with GTMDs [12,13] as
well as the investigation of their QCD evolution properties
[14]. Perhaps most interestingly, it has been revealed that
one of the GTMDs denoted as F 4 [5] can be related to the
parton canonical orbital angular momentum [3,15].

Recently, the issue of how to access GTMDs exper-
imentally is attracting growing attentions. In the context of
small x formalism, the impact parameter dependent unin-
tegrated gluon distributions often show up in the cross
sections of diffractive processes [16-23]. The equivalence
of gluon TMDs and small x unintegrated gluon distribu-
tions has been first established in Ref. [24], and further
clarified in Ref. [25]. The similar analysis were extended to
the finite N, case later [26,27]. Following the similar
procedure, one could also identify the impact parameter
dependent unintegrated gluon distributions as gluon
Wigner distributions due to the same operator structure
[28]. Therefore, one is allowed to probe gluon GTMDs in
various high energy diffractive scattering processes once a
small x factorization framework is employed.

Since the impact parameter b, and the gluon transverse
momentum ¢ | are left unintegrated in the current case, one
can define a new gluon Wigner distribution, the so-called
elliptic gluon Wigner distribution [28] associated with the
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nontrivial angular correlation 2(q, - b, )*> — 1. The inte-
grated version of this gluon distribution is known as the
helicity flip gluon GPDs [29,30]. It has been shown that
the elliptic gluon distribution naturally emerges after
implementing the impact parameter dependent Balistsky-
Fadin-Kuraev-Lipatov (BFKL)/Balistsky-Kovchegov (BK)
evolution [28,31-36] (for a previous detailed numerical
analysis, see Ref. [37]). This finding inspires us to construct
a saturation model for the elliptic gluon distribution which
can be used as a proper initial condition for the small x
evolution. In addition to this motivation, a semiclassical
model calculation of the elliptic gluon distribution would
be helpful for deepening our understanding of how the
tomography picture of nucleon/nucleus is affected by the
saturation effect. To be more specific, we will compute the
elliptic gluon GTMD in the McLerran-Venugopalan (MV)
model [38] that has been widely used to calculate the both
unpolarized and polarized small x gluon TMDs [39—43].
In the end, we point out that this gluon distribution is
accessible through a cos2¢ azimuthal asymmetry in
virtual photon-nucleus quasielastic scattering. Such meas-
urement can be performed at the future Electron-lon-
Collinder (EIC).

The rest of the paper is structured as follows. In the next
section, we present some details of the evaluation of the
gluon elliptic GTMD in the MV model. In Sec. III, we
derive the azimuthal dependent cross section for the
virtual photon-nucleus quasielastic scattering. The paper
is summarized in Sec. IV.

II. THE ELLIPTICAL GLUON GTMD
IN THE MV MODEL

As is well known, gluon TMDs are process dependent
and correspondingly possess the different gauge link
structure. The same statement applies to gluon GTMDs
as well. In the present work, we focus on discussing
the dipole-type gluon GTMD, which is defined as the
following [28,44]:

© 2016 American Physical Society
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where A | is the transverse momentum transfer to nucleus. Here the longitudinal momentum transfer to nucleus is ignored.
The gauge link in the current case takes a closed loop form in the fundamental representation. In the small x limit, up to the
leading logarithm accuracy the above expression can be reduced to [28]

xGpp(x,q,,A,) = <qu 7

with ®pp(g,,A ) being given by
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From a phenomenological point of view, the correlation limit where |A | | < |g | is the most interesting kinematical region.
In such a kinematical limit, depending on the angular correlation structure, one can parametrize ®pp(x,q,,A ) as

Dpp(x,q.A)) g1 1A

The Fourier transform of the first term on the right side
of the equation [d*>A e®P1F (g%,A?%) is the normal
impact parameter dependent dipole-type unintegrated
gluon distribution. The second term O,(¢7,A?%) is a
T-odd (or C-odd) distribution and commonly referred to
as the odderon exchange. The expectation value of the spin
independent odderon has been computed in a quasiclassical
model and shown to be proportional to the slope of the
saturation scale [45]. For a transversely polarized target,
one can introduce a spin dependent odderon associated
with the angular correlation ¢, - S| where S, is the target
transverse spin vector [43,46]. It has been shown in
Refs. [47,48] that three different T-odd gluon TMDs can
be related to the spin dependent odderon. We refer readers
to Ref. [49] for the relevant phenomenology studies of
|
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these distributions. The third term, namely the elliptic
gluon GTMD F¢(g%,A?%), is what we are interested to
compute in the MV model. Higher order harmonics that
could exist are not shown in the above equation. Note that
the BFKL dynamics only produces even harmonics, while
one may expect that odd harmonics could be generated by
taking into account the Bartels-Kwiecinski-Praszalowicz
(BKP) evolution [50] which describes the asymptotical
behavior of the C-odd gluon exchange at high energy.

To gain some intuition how the elliptic gluon distribution
emerges from a quasiclassical treatment, it would be
instructive to first compute it in the dilute limit.
Expanding the Wilson line to the first nontrivial order
(neglecting the tadpole type diagram for the moment),
one has

by 2‘3’; <Az <ér, b, + %)AJ (52‘, b, - %) > (5)

Following the standard procedure, we solve the classical Yang-Mills equation and express the gauge field in terms of the

color source,

AL <§1_’b1_ +%> = /d2y¢G<bl +%—M>ﬂa(§?’h) (6)

with
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We proceed to evaluate the color source distribution by a Gaussian weight function W, [p] = exp [— f d*x /’“ ’”g )] This

leads to
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where py (Ay) = [ dx e iy (xy) with pa(x)) = [ dETAx(E7, x1). In the correlation limit, we can Taylor expand the
above formula in terms of the power |A | |/|¢ |- According to the parametrization for ®pp(x, g, A ), it is easy to find the
following expressions for the gluon GTMDs in the dilute limit:

a‘chﬂA(AL)
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In the below, we will use the above results as the base line to compare with the results in the saturation regime.

To extend the analysis to the saturation regime, we have to take into account all initial/final state interactions encoded in
the Wilson lines. We still follow the standard procedure to evaluate the Wilson lines in the MV model. The contributions
from the tadpole-type diagram should be included in the current case. The dipole amplitude in the MV model then reads
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The above expression can be further simplified by making the following approximations valid in the correlation limit. In the
perturbative region, the fact that |r, | < |b, |~ |x | allows us to Taylor expand the logarithm term,
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where ¢ is the azimuthal angle between | and y, = b | — x . Since the integration is dominated by the small y, region,
one can make a Taylor expansion in terms of y |,
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Inserting it into Eq. (11), we obtain
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The simple power counting tells us that the second term scales as A% Q2/¢% . In the kinematical region where Q,|A | | < g7,
it is not necessary to sum the second term into the exponential form. Based on this observation, the dipole distribution can
be expressed as

d*b d*r, _. . r’ 0 \2 o 0 A ey
W"’_m“_l%h X {1 —glz {2<M %> - ”i%a}Q%(bi)] e, (14)

where Q, (b ) is the commonly defined impact parameter dependent saturation scale. After carrying out the azimuthal angle

(I)DP(xs q.1, AL) = /

integration, one arrives at
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where J, is the second order Bessel function. These are the
main results of our paper. In the dilute limit where
g% > Q2> A?, one can reproduce Eq. (9) by expanding
the exponential and keeping the first nontrivial term. This
provides us a nice consistency check. Another observation
one can make is that the elliptic gluon distribution vanishes
if color source were uniformly distributed in the transverse
plane of a nucleus. Following the same method, one could
also compute the Weizsicker-Williams (WW) type gluon
elliptic GTMD in the MV model. However, we leave it
for the future study as it is less interesting phenomeno-
logically [28].

Let us now close this section by presenting a simple
numerical estimation. It is rather common to parametrize
the b, dependence of the saturation scale as the following
[20,23]:

b’ 1
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FIG. 1. The double ration R as the function of g, for
A} =0.1 GeV.
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We fix the parameters to be Agcp = 0.2 GeV, B, =

8 GeV~2 and Q% =1 GeV?. Inserting the above formula
into Eq. (16), the elliptical gluon distribution takes the form

d\b,|d|r
P (@81 = = [ L g e)
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- - ~|. 18
2482 P74 (18)

We are interested in studying how the elliptic gluon
distribution is affected by the saturation effect. To this
end, we plot the double ratio defined in the following as the
function of ¢ :

ng / ‘7:)‘.0

R(qi. A7) = ,
N ]

(19)

where A% /g% is the ratio between the elliptic gluon
distribution and the normal dipole gluon distribution in
the dilute limit. When performing the numerical calcula-
tion, we impose a cut off 7 GeV~! for the upper limit of
|b, | integration. This effectively corresponds to removing
the forward scattering contribution. Our numerical result
presented in Fig. 1 indicates that the elliptic gluon
distribution is suppressed in the saturation regime, while
at high transverse momentum, the double ratio approaches
one as expected. We plan to carry out a more detailed
numerical analysis in a future publication.

ITII. OBSERVABLE

In Ref. [28], it has been proposed to probe the elliptic
gluon GTMD by measuring diffractive dijet production in
electron-nucleus collisions. Such a process was first studied
in Ref. [51]. In the back-to-back kinematical limit where
the individual jet transverse momentum P | is much larger
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than the nucleon recoiled momentum A |, a cos2(¢p —
¢4, ) angular modulation of the cross section of this process
is sensitive to the elliptic gluon GTMD. Instead of the
diffractive dijet production in eA collisions, we now
consider transversely polarized virtual photon-nucleus
quasielastic scattering y*(g) + A(P) — A(P') + X, which
also offers us the opportunity to probe the elliptic gluon

|

PHYSICAL REVIEW D 94, 114017 (2016)

distribution via the angular correlation cos 2(4557; —da,)s
where e}}* is the virtual photon transverse polarization
vector.

In the dipole approach, the diffractive cross section
for a transversely polarized virtual photon scattering off
nucleus has been computed in Refs. [17,18] and takes
the form

dor dz .
O g | B @ W (0 )
d*A, ﬂ/Z(l—Z)/ a7 (0% 2)

R O ) SO

where \IIVT*(QZ, ri,z) is the transversely polarized virtual photon wave function. The wave function squared can be

expressed as

U7 (% r ., 2)

1 - 21)2(6? r)? +

(6? xrp)?

2
2 =2N, E Zem®q z(1 —z)(
m
q

where e% =

=) et K (Iroles)]?, (21)

0?z(1 — z) and z is the longitudinal momentum fraction of virtual photon carried by quark. Here, quark mass is

ignored. Inserting the MV model results, the azimuthal independent cross section is expressed as

dor - dz 2 2 .2 /dzbL —ib; Ay — _rif? ’
7a ﬂ/iz(l _Z)/d ri®(0 ,rl,z){ 207 1—e (22)

while the azimuthal dependent cross section reads
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with the scalar part of the wave function being given by

(0212, 7 72NZ Zem "

2
(I)E(Q27 ri’z) _ 2NCZ Aem €y
7 V3

If the virtual photon is induced by a lepton, only the V,
component [52,53] of the corresponding leptonic tensor
contributes to the azimuthal dependent cross section. To be
precise, the contribution from this component yields a
cos 2¢p,_, azimuthal modulation where ¢,_4 is the angle
between the hadron/nucleus plane and the lepton plane.
One notices that the azimuthal asymmetry in this process
offers us a direct access to the second derivative of the
saturation scale with respect to bi. As such, the elliptic

- A3 dz
Lo [ o [ driet(en Aol

x / dlb  |15(1A 15 )b P

2 3 b2 202 aflb’ _’iQ?(”i/)
gzb(f)e G (1 e ) @)
[+ (1 =2 ef[Ky(|rLlep))?, (24)
z(1—2) [ZZ2 — 2z}€?-[K1(|rJ_|ef)]2. (25)

gluon GTMD can be easily determined through measuring
this observable.

IV. SUMMARY

We derived the elliptic gluon GTMD inside a large
nucleus using the MV model. Our result can be used as the
initial condition when implementing small x evolution. We
further proposed to probe the elliptic gluon GTMD through
the angular correlation in quasielastic virtual photon
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scattering off a nucleus. This measurement can, in princi-
ple, be carried out at the future EIC. Since such a study will
deepen our understanding of how the gluon tomography is
induced by small x dynamics, it might be worthwhile to
pursue a comprehensive numerical analysis of this observ-
able for the typical EIC accessible kinematical region in a
future publication.
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