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Dynamical chiral symmetry breaking (DySB) is studied within (2 + 1)-dimensional QED with N four-
component fermions. The leading and next-to-leading orders of the 1/N expansion are computed exactly.
The analysis is carried out in an arbitrary nonlocal gauge. Resumming the wave-function renormalization
constant at the level of the gap equation yields a strong suppression of the gauge dependence of the critical
fermion flavor number, N, (&), where £ is the gauge-fixing parameter, which is such that DySB takes place
for N < N,.(&). Neglecting the weak gauge-dependent terms yields N, = 2.8469, while, in the general
case, it is found that N,.(1) = 3.0084 in the Feynman gauge, N.(0) = 3.0844 in the Landau gauge, and
N,.(2/3) =3.0377 in the £ = 2/3 gauge where the leading order fermion wave function is finite. These
results suggest that DySB should take place for integer values N < 3.
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I. INTRODUCTION

We consider quantum electrodynamics in 2 + 1 dimen-
sions (QED;3) which is described by the Lagrangian

L=U(i) - eA)¥U —— F2 (1)

where U is taken to be a four-component complex spinor.
In the presence of N fermion flavors, the model has a
U(2N) symmetry. A (parity-invariant) fermion mass term,
mUW, breaks this symmetry to U(N) x U(N) (the case
of a parity-noninvariant mass will not be considered
here). In the massless case, loop expansions are plagued
by infrared divergences. The latter soften upon analyzing
the model in a 1/N expansion [1,2]. Since the theory is
super-renormalizable, the mass scale is then given by the
dimensionful coupling constant @ = Ne?/8, which is kept
fixed as N — oo. Early studies of this model [3,4]
suggested that the physics is rapidly damped at momen-
tum scales p > a and that a (parity-invariant) fermion
mass term breaking the flavor symmetry is dynamically
generated at scales which are orders of magnitude smaller
than the intrinsic scale a. Since then, dynamical chiral
symmetry breaking (DySB) in QED; and the dependence
of the dynamical fermion mass on N have been the
subject of extensive studies; see, e.g., [3-22].

A central issue is related to the value of the critical
fermion number, N, which is such that DySB takes place
only for N < N,.. An accurate determination of N is of
crucial importance to understanding the phase structure of
QEDj, with far-reaching implications ranging from particle
physics to planar condensed matter physics systems having
relativisticlike low-energy excitations such as some two-
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dimensional antiferromagnets [23] and graphene [24]. It
turns out that the values that can be found in the literature
vary from N, — oo [3,5-7], corresponding to DySB for all
values of N, all the way to N, — 0 in the case where no
sign of DySB is found [8,9]. Recent works based on
conformal field theory techniques tend to narrow this range,
but the upper bound found for N, still varies: N, < 3/2
[10] or N, <44 [11] or N, <9/4 [12]. Other works
suggest that there might be two different critical flavor
numbers [13,14]: N, < N where N, ~4 [13], N, <
4.422 [14], and, above 4.1 < N < 10.0 [13], N ~
6.24 [14], the theory is quasiconformal. Of importance to
us in the following is the approach of Appelquist et al. [4],
who found that N.=32/2>~3.24 by solving the
Schwinger-Dyson (SD) gap equation using a leading
order (LO) 1/N expansion. Lattice simulations in agree-
ment with a finite nonzero value of N, can be found in
[15]. Soon after the analysis of [4], Nash approximately
included next-to-leading order (NLO) corrections and
performed a partial resummation of the wave-function
renormalization constant at the level of the gap equation;
he found [16] N_.=3.28. Recently, upon refining the
work of [17], the NLO corrections could be computed
exactly in the Landau gauge yielding (in the absence of
resummation) [18] N, 3.29, a value which is surpris-
ingly close to the one of Nash [25]. More recently, using
different methods, several new estimates were given:

=14+ V2 ~2.41 in [19], N.~?2.89in [20], and N, =
2.85 in [21].

The purpose of this work is to extend the exact results of
[18] to an arbitrary nonlocal gauge [26]. Such an achieve-
ment represents an essential improvement with respect to
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Nash’s approximate NLO results which were carried out in
the Feynman gauge 27 years ago. In this respect, there is
presently a strong ongoing interest in the study of the gauge
dependence of DySB in several models; see [22,27]. The
choice of the Landau gauge in [18] was motivated by recent
results on QED5 [22] showing the gauge invariance of N,
in this gauge when using the Ball-Chiu vertex [28].
Actually, after resumming the wave-function renormaliza-
tion constant, we find that the LO term in the gap equation
becomes gauge invariant, in agreement with Nash, but also
that NLO terms become only weakly gauge variant. As will
be shown in the following, this leads to a very stable value
of N, upon varying the gauge-fixing parameter. Moreover,
the large-N limit of the photon propagator in QED; has
precisely the same momentum dependence as the one in
the so-called reduced QED; see [29] and also [30]. One
difference is that the gauge-fixing parameter in reduced
QED is 2 times less than the one in QED;. Such a
difference can be taken into account with the help of our
present results for QEDj;, together with the multiloop
results obtained in [31,32]. The case of reduced QED,
and its relation with dynamical gap generation in graphene,
which is the subject of active ongoing research (see, e.g.,
the reviews in [33,34]), will be considered in a separate
paper [35]. In the following, we shall focus exclusively
on QED;.

The paper is organized as follows. In Sec. II, the LO
results are presented, and in Sec. III the NLO ones
including Nash’s resummation are presented. In Sec. IV,
the Conclusion is given, and in the Appendix some details
related to the resummation procedure within our working
frame are provided.

II. SCHWINGER-DYSON EQUATIONS
AND LEADING ORDER

With the conventions of Ref. [18], the inverse fermion
propagator is defined as S~!(p) = [1 + A(p)](ip + Z(p)),
where A(p) is the fermion wave function and X(p) is the
dynamically generated parity-conserving mass, which is
taken to be the same for all of the fermions. The SD
equation for the fermion propagator may be decomposed
into scalar and vector components as follows:

& o 2a d3k yﬂDMu(p - k)Z(k)Fy(p, k)
MO SN Gy HramE )
_ 2a &k D,,(p — k) py*kr*(p. k)
Alp)p? = =5 Tr 2r) [1 + AR + =2(k))
(2b)

where £(p) = Z(p)[1 + A(p)] and D,,(p) is the photon
propagator in the nonlocal £ gauge:
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_ Pu(p)
Onl0) = P G
Piulp) = g = (1- &) 2222, 9

p

I1(p) is the polarization operator and I'Y(p,k) is the
vertex function. In the following, Eq. (2) will be studied
for an arbitrary value of the gauge-fixing parameter ¢
All calculations will be performed with the help of the
standard rules of perturbation theory for massless
Feynman diagrams as in [36]; see also the recent short
review [37]. For the most complicated diagrams, the
Gegenbauer polynomial technique will be used follow-
ing [38].

To start with, let us consider the LO approximations in
the 1/N expansion. The latter are given by A(p) =0,
II(p) = a/|p|, and I'*(p, k) = y*, where the fermion mass
has been neglected [39] in the calculation of TI(p). A single
diagram contributes to the gap equation (2a) at LO (see
Fig. 1), and the latter reads

5(p) = 2218
8 / &k (k)
) @+ ZW)(p 0+ alp ]
@

Following [4], we consider the limit of large a and linearize
Eq. (4), which yields

8248 [ Bk Z(k)
i e

The mass function may then be parametrized as [4]
(k) = B(k*)™, (6)

where B is arbitrary and the index a has to be self-
consistently determined. Using this ansatz, Eq. (5) reads

_42+8B (P 28
TN (@

=0 (p) (7)

from which the LO gap equation is obtained:

FIG. 1. LO diagram to the dynamically generated mass Z(p).
The crossed line denotes mass insertion.
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2 1
1 :ﬂ, where f=————— and L =x’N.
L a(l/2 —a)
(8)
Solving the gap equation yields

1 16(2+¢)

=1+ bt 74
= A N©)

which reproduces the solution given by Appelquist et al.
[4]. The gauge-dependent critical number of fermions,
N.=N.(&) =16(2+&)/% is such that =(p) =0 for
N > N_, and

2(0) = exp[~27/(N./N = 1)'?] (10)

for N < N,. Thus, DySB occurs when @ becomes complex:
that is, for N < N,.

The gauge-dependent fermion wave function may be
computed in a similar way. At LO, Eq. (2b) simplifies as

Ay == [ 55 Palp “0PPRE
N Klp—kl

where the integral has been dimensionally regularized with
D = 3 — 2¢. Taking the trace and computing the integral on
the rhs yields

e 7)€ 2e
RS L7

Ci(¢)

ﬁ28
ZFCI(EHO(S), (12)

where the MS parameter i has the standard form
ji> = 4me ey, with the Euler constant 7, and

2 14
= 2 - ——2In2| +—-
€0 =+ 53y (@30 1-2m2| + 2 -oc).
(13)
We note that, in the £ = 2/3 gauge, the value of A(p) is
finite and C, (¢ = 2/3) = +4/(92*N). From Egs. (12) and

(13), the LO wave-function renormalization constant may
be extracted:
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_dA(p) _4(2-39)
= du — 32°N (14)

a result which coincides with the one of [41].

III. NEXT-TO-LEADING ORDER

A. Self-energy contributions

We now consider the NLO contributions and parametrize
them as

(NLO) 8\ 2 (pZ)—a
IO (p) = N 3(47[)3 (Th + ) + 25, +35),

(15)

where each contribution to the linearized gap equation is
represented graphically in Fig. 2. Adding these contribu-
tions to the LO result, Eq. (7), the gap equation has the
following general form:

2+ f)ﬁJr T4(8) +Z(8) +25,(8) + Z5(8)

1= ,
L L2

(16)

where ¥, = 7%;, (i =1,2,3.A). In [18], these contribu-
tions were computed in the Landau gauge, £ = 0. After
very tedious and lengthy calculations, these computations
could be extended to an arbitrary nonlocal gauge. We now
summarize our results.

The contribution X, [see Fig. 2(a)] originates from
the LO value of A(p) and is singular. Using dimensional
regularization, and for an arbitrary parameter &, it reads

e [ (4 1
EofGo-a-e)foes

+ (E_fg 252)] (17)

V) =V(a) +¥V(1/2-a)

i:A(‘f) =

where

—20(1) + —2In2,

(18)

1/2—a

and V¥ is the digamma function.

p—Fk k k
@ o S -
B
k k k k k k k
(© q (d) q

(a) (b)

FIG. 2. NLO diagrams to the dynamically generated mass X(p). The shaded blob is defined in Eq. (20).
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The contribution X; [see Fig. 2(b)] is finite and reads

£1(8) = —2(2 + HpIL,

where the gauge dependence comes from the fact that we

work in a nonlocal gauge and IT arises from the two-loop
polarization operator in dimension D =3 [31,42,43],
which may be graphically represented as

Y Do

The contribution %, [see Fig. 2(c)] is again singular.
Dimensionally regularizing it yields

,(8) = —zi—iﬁ[miﬂ <§+ v j)

4
+§<§(1—5)+«:2> +§+§£—4€2}
+(1-8)%,, (21a)

£a(a) = (4a = DAV (@) = ¥'(1/2 - )

2@+ 5 i@t (21b)

where U’ is the trigamma function and I, (a) is a dimen-
sionless integral that was defined in [18].

The singularities in £, (&) and ¥, (&) cancel each other
out and their sum, therefore, is finite. Defining £, (&) =
4 (E) + 25, (&), the latter reads

20 =201 - 9(0) - (5 (1= 42
~p(30+e-¢). 22)

Finally, the contribution X5 [see Fig. 2(d)] is finite and
reads

23(8) = E5(a. &) + (3 +4£-28)p7,  (23a)
Si(a, &) = %(1 + 88+ & + 2a(1 — &))al,(a)

-l—%(l +4&—a(l - 52))ﬂj2(1 +a)

+%(—7 — 16& + 3&)al5(a), (23b)

where the dimensionless integrals I,(a) and I5(a) were
defined in [18].
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B. Gap equation (1)

Combining all of the above results, the gap equation (16)
may be written in an explicit form as

2 1 N
JCa [8S(a, &) - 22+ 9)1p
5 26 2
+ (—§+?§—3§2>ﬂ2 - 8ﬂ<§(1 -&) —§2>],
(24)
where

S(a,&) = (E5(a. &) +2(1 = §)%5(a))/8. (25)

At this point, we consider Eq. (24) directly at the critical
point @ = 1/4, i.e., at f = 16. This yields

L2 —16(24 &)L, —8[S(&) —4(2 + &)1
—16(4 — 50£/3 + 5£%)] = 0, (26)

where  S(¢) = S(a = 1/4.6) = (£5(&) +2(1 = §)£,)/8,
with £, =35 (a=1/4) and (&) = S5(a = 1/4,8).
Solving Eq. (26), we have two standard solutions:

L..=8(2+¢&) £+d (&),

d\ (&) = 8[S(e:) —8(4—1326—%952—%#1&[)} (27)

In order to provide a numerical estimate for N., we
have used the series representations [18] to evaluate the
integrals: 7zl (¢ =1/4)=R, and nl,(a=1/4+i8)=
R, — iP5 + O(8%), where 6 — 0 regulates an artificial
singularity in 7zl;(a = 1/4) = R, + P,/4. With 10000
iterations for each series, the following numerical estimates
are obtained [18]:

R, = 163.7428, R, =209.175, P, =1260.720,

(28)

from which the complicated part of the self-energies can be
evaluated:

A

2, = 4Ry,
£3(§) = (& = DRy = (74165 = 38)P/16. (29)
Combining these values with the one of I yields
N.(6=0)=3.29, N.(6=2/3)=3.09, (30)

where — solutions are unphysical and there is no solution in
the Feynman gauge. In the Landau gauge, we recover the
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result of [18]. The range of £ values for which there is a
solution corresponds to £ <& <&, where &, = 0.88
and £_ = -2.36.

C. Gap equation (2)

Following Ref. [16], we would like to resum the LO term
together with the part of the NLO corrections containing
terms ~f°. In order to do so, we will now rewrite the gap
equation (24) in a form which is suitable for resummation.
This amounts to extracting the terms ~f and ~f> from the
complicated parts of the fermion self-energy, Eqs. (21b)
and (23b). All calculations done, this yields

=3B —8) +Zy(a). (31a)

R, = 3.7428,

iz(a)

3, =3, (a=1/4) = 4R,, (31b)
where the rest, iz = iz(a: 1/4), was determined by

imposing Eq. (29). Similarly,

25(8) = —4E(4 + &)f + Z3(a. &), (32a)
Sa(a8) = 3 (1+82-+ & + 2a(1 - &)ra(a)
+%(1 + 48— a(1 - )1+ a)

- % (=7 = 16¢ + 3&*)nT5(a), (32b)

£i(6) = (@~ DR - (T+16:-38) 12, (32¢)

where the form of the rest, £5(&) = Z3(a = 1/4,&), is
imposed by Eq. (29). Equating Egs. (32c) with (32b) for
a = 1/4 and using the values

wly(a=1/4) = zJy(a =5/4) = RY = 17.175,  (33a)
wly(a=1/4) = RY + PY /4, (33b)
PY =-19.28 (33c)

yields
R, =RY —16 = 1.175, P,=PY =-1928.  (34)

With the help of the results (31) and (32), the gap
equation (24) may be written as

2+ é)ﬁ
L

+ (%—5)(2+§)ﬂ2+4ﬂ<§2 —25—13—6)]7 (35)

1:

+12 [8S( &) —202+9p
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where

S(@, &) = (Z3(a, &) +2(1 - 9)%y(a))/8.  (36)
At this point, Egs. (24) and (35) are strictly equivalent to
each other and yield the same values for N,.(&).

D. Resummation

Equation (35) is the convenient starting point for
performing a resummation of the wave-function renorm-
alization constant. Up to second order, the expansion of the
latter reads

200202 2
= 4+ 4. M —4(Z=
M= ' g <3 5)’ (37)

where AV is the LO part and A2) the NLO one. The latter
can be obtained from Gracey’s calculations [43] and reads

A2 = 8<287 @_g)n) (38)

As can be seen from Eq. (35), the NLO term ~f° is
proportional to the LO wave-function renormalization
constant. This term and the LO term in the gap equation
can be thought of the first and zeroth order terms,
respectively, of an expansion in 1,. Following Nash, it is
possible to resum the full expansion of 14 at the level of the
gap equation (see the Appendix for details), leading to

8p 14 ,
where
Aa, &) = 85(a, &) —4p(E +4& +8/3) —2B(2 + )M
(40)

Interestingly, the LO term in Eq. (39) is now gauge
independent. With the help of Egs. (37) and (38),
Eq. (39) can now be written explicitly as

1= e - 5G] @

which displays a strong suppression of the gauge depend-
ence even at NLO, as £-dependent terms do exist, but they

enter the gap equation only through the rest, S, which is
very small numerically.
We now consider Eq. (41) at the critical point, « = 1/4

(f = 16), which yields
128 256 (40 .
- <§+H)] 0. (42

Li-—Le- [83(@
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Solving Eq. (42), we have two standard solutions:

64
Lc,i = ? + dZ(é)7

dy(&) = (634)2 + {85’(5) — ? (490 + Hﬂ . (43b)

In order to provide a numerical estimate for N ., we have
used the values of R, R,, and P, of Egs. (31) and (34).
Combining these values with

(43a)

. - R, 7P
SE=0=hk —¢ -5 (442)
. 5P
SE=1)= —3—22, (44b)
R, 5R, 49P
Se=2/3=3-F "5 )

together with the value of I1, yields, for L (&) and N (&)
(— solutions being unphysical),

L.(0)=3044, L.(2/3)=29.98, L.(1)=29.69,
(45a)
N.(0) =3.08, N.(2/3)=3.04, N,(1)=30L
(45b)

Actually, solutions exist for a broad range of values of &:
E_<E<E,, where £, =4.042 and . = —8.412; this is
consistent with the weak & dependence of the gap equation.
Moreover, following [29], we think that the “right” (that is,
the best) gauge choice is one close to £ = 2/3 where the
LO fermion wave function is finite. Indeed, as can be seen
by comparing Egs. (30) and (45b), upon resumming the
theory, the value of N.(&) increases (decreases) for small
(large) values of &. For & =2/3, the value of N, is very
stable, decreasing by only 1% to 2% during resummation.
Finally, if we neglect the rest, i.e., S (&) = 0in Eq. (42), the
gap equation becomes ¢ independent and we have

L, =28.0981, N, =2.385. (46)
The results of Eq. (46) are in full agreement with the recent
results of [21], where the NLO corrections have been
analyzed in an approximation corresponding to S(&) = 0,

i.e., taking into account only the NLO terms ~f and ~f;
see the Appendix for details.
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IV. CONCLUSION

We have studied DySB in QED; by including 1/N?
corrections to the SD equation exactly and taking into
account the full & dependence of the gap equation.
Following Nash, the wave-function renormalization con-
stant has been resummed at the level of the gap equation,
leading to a very weak gauge variance of the critical
fermion number, N.. The value obtained for the latter,
Eq. (45b), suggests that DySB takes place for integer values
N <3 in QEDs;.
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APPENDIX: RESUMMATION

In this appendix, we give some details related to the
resummation procedure of Nash [16] within our working
frame. As we shall explain below, the resummation
procedure consists of resumming the LO term together
with the part of the NLO corrections containing terms ~/°.
In order to do so, we consider the gap equation corre-
sponding to Eq. (35) in the main text, which we reproduce
here for clarity:

2+9)p
L

1= + % [8&((1, &) =22+ &)11p
" (%—g)(zmﬁz +4ﬁ(52—§f—%6>} (A1)

where (as displayed in the main text)

S(a, &) = (Z3(a, &) +2(1 - §)%,(a)) /8, (A2)
and (as found in the main text)
,(a=1/4) =4R,, R, =3.7428, (A3a)
= < P
Sia=1/4.6) = (& = DR, = (T+166 =38 2.
R, =1.175, P, =-19.28. (A3b)

Equation (A1) is a convenient starting point to perform a
resummation a la Nash [16]. In order to implement this
resummation, let us first consider the integral

o E(K)  [Max(lAl [p])
A 91K Nax 1] 12D [Min<|k|,|p|>

[
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= B(p*)™,

il
1-22

T QRa-N(1-2a-7)"
(AS)

with some arbitrary A. Using the fact that Z(p)
we have

_ L fa =(|k]) Max(
=500 M g, )[Min(k

B 1 N 1
C \2a—24 1=-2a-21

Taking the derivative of 4 and putting 1 =0, we have
another important integral:

L fe SO )

=50 /O | ! {Min(Ik,|P|)]
1 1 p

- <(2a)2+ (1 —2a)2> B

Thus, we can now represent the gap equation (A1) in the
form

(A6)

4240 [y B

=20 Max(K]. ]7])
{4238 Max(kL.|p)]) | Al
{” 3L 1[Min<|k|,|p|>”+ L
(A7)

where

A(a, &) = 88(a, &) — 4P (52 +4¢ + + %tn) (A8)

Following Nash [16], the integral (A7) may be viewed as
the first 2 orders of the expansion of the integral (A4), with
the anomalous dimension A corresponding to the wave-
function renormalization constant:

20 12) 2
M=—a4 =+, AN =4(Z-¢), (A9
A L + L2 + <3 5) ( )

where A(!) is the LO part and A(2) the NLO one. In order to

resum this contribution, we perform the following replace-
ment:

o (k) 4239 1))
Ad'k'Maxw rp|>{” 3L I{Minukr,pw]}
N >(|k|) Max(|k|, |p|)]*
IRC [Min(|k|,|p|)] - (A

After this replacement, the gap equation (A7) takes the
form

PHYSICAL REVIEW D 94, 114011 (2016)

42+ ¢) 1 =24 Ala, &)
L Qa-i)(1-2a—24y)  L* °

(A11)
It is convenient to multiply Eq. (All) by the factor
(2a — A4)(1 =2 — 14). This yields

4(2L+ 9) (1-22,)

Awg)

a—24)(1 =2a—2,) =

+ 2a—24)(1 =2a— 1)

(A12)

Note that the lhs can be represented as 2a(l —2a)—
A4(1 = 24), which leads to

42 +¢)

2a(1 = 2a) = 44 (1= 2y) + (124,

Aa.§)
Lr

+ Qa—24)(1 =2a— ) (A13)
From Eq. (A13), we see that, after resummation, Ay,
Eq. (A9), will contribute to the gap equation up to
NLO. The expression of A} can be obtained from
Gracey’s calculations [43] and reads

A2 =_8 <;¥7 + @ —~ 5) ﬁ). (A14)
Hence,
-2+ )
_ 4(2%2”“) % (10 = AM)2 = 8(2 + £)20)
:g’—i+% (M —4/1<1><13—4+§>>, (A15)

which shows the complete cancellation of the £ dependence
at LO. Now, it is convenient to return to the standard form
for the gap equation by multiplying Eq. (A13) by the factor
1/[2a(1 = 2a)]. This yields

86 B 14 A(a.f)
1= 7 (,@_g0) (2 Al
3L+4L2</1 A <3+§>)+ 2 (A16)
or, more explicitly (as shown in the main text),
- 8,6 ~ 16 /40 .

which displays a strong suppression of the £ dependence at
NLO: the ¢ dependence exists, but only through terms
which are very small numerically.

We may now consider Eq. (A17) at the critical point,
a=1/4 (f = 16), which yields
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L2 —1—28LC - [85‘(5) _ 26 <@+ﬁ)] =0,

3 3 |9 (A18)

where S(£) = S(a = 1/4,¢). Solving Eq. (A18), we have
two standard solutions:
64

Lc,:i: - ? + dZ(f)’

dy(&) = (%)Z [83(5) —? <§+ﬁ>] (A19)

As explained in the main text, a numerical estimate of N,
can be obtained by using the values of R;, R, and P, in
Egs. (A3a) and (A3b). Combining these values with (as
displayed in the main text)

- . R, 7P
S(sz):Rl—f—ﬁé,
- 5P
Se=0=-%"

- R, 5R, 49P,
S(E=2/3)==-"2-
(£=2/3) 3 72 384"

together with the value of IT = 92/9 — 72, yields, for L, (&)
and N (&),

PHYSICAL REVIEW D 94, 114011 (2016)

Li(0)=3044,  L7(0)=1222,
Li(2/3)=12998,  Lz(2/3)=12.69
Li(1)=29.69,  Lz(1)=1298, (A20a)
N#(0)=3.08,  Nz(0) =124,
N#(2/3) =304, Nz(2/3)=129
N:(1)=301, Nz(1)=131, (A20b)

where the — solutions are considered as unphysical. The
+ solutions are the ones presented in the main text. Notice
that, if we neglect the rest in Eq. (A18), i.e., we assume that

S(£) =0 in Eq. (A18), the gap equation becomes &
independent and we have (as given in the main text)

L.=280981, N, =285. (A21)

The result of Eq. (A21) is in full agreement with the recent
results of Ref. [21], where the NLO corrections have been
analyzed in an approximation corresponding to S (&) =0,
i.e., taking into account only the NLO terms ~f and ~f3? in
the rhs of Eq. (Al).
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