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We perform the first iterative Monte Carlo (IMC) analysis of fragmentation functions constrained by all
available data from single-inclusive eþe− annihilation into pions and kaons. The IMC method eliminates
potential bias in traditional analyses based on single fits introduced by fixing parameters not well
constrained by the data and provides a statistically rigorous determination of uncertainties. Our analysis
reveals specific features of fragmentation functions using the new IMC methodology and those obtained
from previous analyses, especially for light quarks and for strange quark fragmentation to kaons.
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I. INTRODUCTION

Understanding the generation of hadrons from quarks
and gluons (partons) remains a fundamental challenge for
strong interaction physics. High-energy collisions of
hadrons or leptons offers the opportunity to study the
formation of mesons and baryons from partons produced in
hard collisions [1,2]. While the hard scattering process can
be computed perturbatively from the underlying QCD
theory, the hadronization of the quarks and gluons occurs
over long distances, and provides a unique window on
nonperturbative QCD dynamics [3].
Within the collinear factorization framework [4], the

formation of hadrons is characterized by universal non-
perturbative fragmentation functions (FFs), which in an
infinite momentum frame can be interpreted as probability
distributions of specific hadrons h produced with a fraction
z of the scattered parton’s longitudinal momentum or
energy. As in the case of parton distribution functions
(PDFs), which describe the quark and gluon momentum
distributions inside hadrons, the nonperturbative FFs are
presently not calculable from first principles, and must be
determined phenomenologically from QCD-based analyses
of high-energy scattering data or from QCD-inspired
nonperturbative models [5].
In addition to providing information on the fundamental

hadronization process, FFs are also indispensable tools for
extracting information on the partonic structure of the
nucleon from certain high-energy processes, such as semi-
inclusive deep-inelastic scattering (SIDIS) of leptons from
nucleons. Here, assuming factorization of the scattering and
hadronization subprocesses, the SIDIS cross section can be

expressed in terms of products of PDFs and FFs summed
over individual flavors. The selection of specific hadrons in
the final state, such as π� or K�, then allows separation of
the momentum and spin PDFs for different flavors.
The need for well-constrained FFs, especially for kaon

production, has recently been highlighted [6–8] in global
analyses of polarized SIDIS observables used to determine
the strange quark contributionΔs to the spin of the nucleon.
Inclusive deep-inelastic lepton-nucleon scattering data
alone are incapable of determining this without additional
input from theory, such as the assumption of SU(3)
symmetry, or other observables. Kaon production in
polarized SIDIS in principle is such an observable, involv-
ing a new combination of polarized u, d and s quark PDFs,
which, when combined with the inclusive data, allow each
of the flavor distributions to be determined—provided the
FFs are known.
As pointed out by Leader et al. [7], however, the variation

between the strange-to-kaon FFs from different analyses is
significant and can lead to qualitatively different conclusions
about the magnitude and even sign of the Δs distribution. In
particular, analysis [7,9] of thepolarizedSIDISdata using the
DSS [10] parametrization of FFs, togetherwith inclusiveDIS
polarization asymmetries, suggests a positive Δs at inter-
mediate x values, x ∼ 0.1–0.2, in contrast to the generally
negative Δs at all x obtained from inclusive DIS data alone,
assuming constraints on theweak baryon decays from SU(3)
symmetry [11]. Employing instead the HKNS [12] FF
parametrization, in which the strange fragmentation to kaons
is several times smaller in some regions of z compared with
that from the DSS [10] fit, yields a negative Δs consistent
with the inclusive-only analyses [8]. It is crucial, therefore, to
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understand the origin of the differences in the magnitudes
and shapes of the strange, as well as other, FFs found in the
different analyses before one can draw reliable conclusions
about the strange quark content of the nucleon extracted from
analyses including SIDIS data.
Differences between FFs can come from a variety of

sources, including different data sets used in the analyses
(single-inclusive eþe− annihilation, SIDIS, inclusive
hadron production in pp collisions), the choice of para-
metrization for the FFs, assumptions about FFs that are not
well constrained by data, or even the presence of local
minima in the fitting procedure. Most of the analyses to
date have been performed at next-to-leading order (NLO)
accuracy in the strong coupling constant [6–8,10,12–18],
although more recent studies have explored the effects of
incorporating next-to-next-to-leading order (NNLO) cor-
rections [19], as well as other theoretical developments
such as threshold resummation [20–22] and hadron mass
effects [22].
A common feature of all existing FF analyses is that they

are obtained from single fits, using either eþe− single-
inclusive annihilation (SIA) data alone, or in combination
with unpolarized SIDIS and inclusive hadron production in
pp collisions. In order to address some of the questions
raised by the recent ambiguities in the strange quark FFs
and their impact on the Δs determination, in this paper we
go beyond the standard fitting paradigm by performing the
first Monte Carlo (MC) analysis of FFs. In particular, we
extend the methodology of the iterative Monte Carlo (IMC)
approach introduced in Ref. [11] for the analysis of spin-
dependent PDFs to the case of FFs.
The virtue of the IMC approach is that it allows for a full

exploration of the parameter space when sampling initial
priors for any chosen parametric form for the fitting
function. It thereby eliminates any bias introduced by
fine-tuning or fixing specific parameters that are not well
constrained by the data, a practice often employed to
control single fits. Furthermore, the conventional polyno-
mial-type parametrization choice can have multiple solu-
tions that lead to various local minima in the χ2 landscape,
whereas the IMC technique statistically surveys all possible
solutions, thereby avoiding the fit being stuck in false
minima.
A further important advantage of the IMC technology is

in the extraction of uncertainties on the FFs. In standard
analyses the theoretical errors are typically determined
using the Hessian [12] or Lagrange multiplier methods
[10], in which a tolerance parameter Δχ2 is introduced to
satisfy a specific confidence level (C.L.) of a χ2 probability
density function with N degrees of freedom. In the IMC
framework, the need for tolerance criteria is eliminated
entirely and the uncertainties are extracted through a robust
statistical analysis of the Monte Carlo results.
As a first IMC analysis of FFs, we confine ourselves to

the case of charged pion and kaon production in eþe− SIA,

using all available π� and K� cross section data from
DESY [23–26], SLAC [27–31], CERN [32–36], and KEK
[37], as well as more recent, high-precision results from the
Belle [38,39] and BABAR [40] Collaborations at KEK and
SLAC, respectively. Although SIA data in principle only
constrain the sum of the quark and antiquark distributions,
we also make use of flavor-tagged data [33] which allow
separation of hadron production from heavy and light
quarks. In addition, the availability of data over a range
of kinematics, from relatively low center-of-mass energies
Q ≈ 10 GeV up to the Z-boson pole, Q ≈ 91 GeV, allows
for the separation of the up- and down-type FFs due to
differences in the quark-boson couplings in the γ and Z
channels [18]. To ensure proper treatment of data at z ∼ 1,
we systematically apply correct binning by integrating over
each z bin, rather than taking bin averages as in previous
analyses. We also studied the z cuts on the data in different
channels that need to be applied at low z values, below
which the collinear framework breaks down and our
analysis is not expected to be reliable.
Note that our aim here is not so much the definitive

determination of FFs, which would require inclusion of all
possible processes that have sensitivity to FFs, but rather to
explore the application of the IMC methodology to FFs to
determine the maximal information that can be extracted
from the basic eþe− SIA process alone. The lessons learned
here will be used in subsequent analyses of the entire global
set of SIA and other high-energy scattering data to provide
a more definitive determination of the individual FFs.
We begin in Sec. II by reviewing the formalism for the

eþe− annihilation into hadrons, including a summary of
the SIA cross sections at NLO and Q2 evolution of the
fragmentation functions. To improve the computational
efficiency we perform the numerical calculations in
moment space, reconstructing the momentum dependence
of the fragmentation functions using inverse Mellin trans-
forms. The methodology underpinning our global analysis
is presented in Sec. III, where we describe the parametri-
zations employed and the treatment of uncertainties. This
section also outlines the essential features of the IMC
method used to perform the fits to the data, highlighting
several improvements in the methodology compared to that
introduced originally in the global analysis of the Jefferson
Lab Angular Momentum (JAM) Collaboration spin-
dependent PDFs [11]. The experimental data sets analyzed
in this study are summarized in Sec. IV, and the results of
our analysis presented in Sec. V. We compare the fitted
cross sections with all available eþe− data, for both
inclusive and flavor-tagged cross sections, finding good
overall χ2 values for both pion and kaon production. We
illustrate the convergence of the iterative procedure for the
favored and unfavored FFs, the latter being partially con-
strained by the flavor-tagged data. The shapes and magni-
tudes of the FFs from our IMC analysis are compared
and contrasted with those from previous global fits,
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highlighting important differences in the light-quark sector
and for quark fragmentation to kaons. Finally, in Sec. VI we
summarize our findings and preview future extensions of
the present analysis.

II. FORMALISM

A. Cross section and fragmentation functions

The eþe− → hX cross section is typically measured as a
function of the variable z ¼ 2ph · q=Q2, where ph is the
momentum of the detected hadron h and q is the momen-
tum of the exchanged photon or Z-boson with invariant

mass Q ¼
ffiffiffiffiffiffi
Q2

p
. In the eþe− center-of-mass frame, z ¼

2Eh=Q can be interpreted as the momentum fraction of the
parent quark carried by the produced hadron. For a given
hadron h the experimental z distribution is usually given as

Fhðz;Q2Þ ¼ 1

σtot

dσh

dz
ðz;Q2Þ; ð1Þ

which we shall refer to as the “empirical” fragmentation
function for a given hadron of type h. In Eq. (1) the total
inclusive eþe− cross section σtot can be calculated at
NLO as

σtotðQ2Þ ¼
X
q

4πα2

Q2
~e2qð1þ 4asðμ2RÞÞ þOða2sÞ; ð2Þ

where α ¼ e2=4π is the electromagnetic fine structure
constant and asðμRÞ≡ αsðμRÞ=4π, with the strong coupling
constant αs evaluated at the ultraviolet renormalization
scale μR. The index q runs over the active quark flavors
allowed by the hard scale Q, and we introduce the short-
hand notation for the charges

~e2q ¼ e2q þ 2eqg
q
Vg

e
Vρ1ðQ2Þ þ ðge2A þ ge2V Þðgq2A þ gq2V Þρ2ðQ2Þ:

ð3Þ

Here the quark vector and axial vector couplings are given
by gqV ¼ 1

2
− 4

3
sin2 θW and gqA ¼ þ 1

2
for the q ¼ u, c flavors,

while for the q ¼ d, s, b flavors these are gqV ¼ − 1
2
þ

2
3
sin2 θW and gqA ¼ − 1

2
. Similarly, the electron vector and

axial vector couplings are given by geV ¼ − 1
2
þ 2 sin2 θW

and geA ¼ − 1
2
, respectively. Because the weak mixing angle

sin2 θW is ≈1=4, the contribution from the vector electron
coupling is strongly suppressed relative to the axial vector
coupling. The terms with ρ1 and ρ2 arise from γZ
interference and Z processes, respectively, and are given by

ρ1ðQ2Þ ¼ 1

4sin2θWcos2θW

Q2ðM2
Z −Q2Þ

ðM2
Z −Q2Þ2 þM2

ZΓ2
Z
; ð4aÞ

ρ2ðQ2Þ ¼ 1

ð4sin2θWcos2θWÞ2
Q4

ðM2
Z −Q2Þ2 þM2

ZΓ2
Z
; ð4bÞ

where MZ and ΓZ are the mass and width of the Z boson,
respectively.
Within the collinear factorization framework, the empir-

ical fragmentation function Fhðz;Q2Þ can be approxi-
mately calculated in terms of quark fragmentation
functions into hadrons,

Fhðz;Q2Þ ≈ Fh
collðz;Q2Þ

¼
X
i

½Hi ⊗ Dh
i �ðz;Q2; μ2R; μ

2
FFÞ þOða2sÞ; ð5Þ

where “⊗” refers to the standard convolution integral
½H ⊗ D�ðzÞ ¼ R

1
z ðdẑ=ẑÞHðẑÞDðz=ẑÞ, and the sum runs

over all parton flavors i ¼ q, q̄, g. Here Hi is the short-
distance hard cross section calculable in fixed-order per-
turbative QCD, and Dh

i is the partonic fragmentation
function. As discussed below, the quark contributions
Hq depend on the charges ~e2q, while the gluon contribution
is independent of the charges.
At NLO in the MS scheme (which we use throughout in

this analysis), the hard cross section can be written

Hiðẑ;Q2;μ2R;μ
2
FFÞ¼Hð0Þ

i ðẑ;Q2;μ2R;μ
2
FFÞ

þasðμRÞHð1Þ
i ðẑ;Q2;μ2R;μ

2
FFÞþOða2sÞ;

ð6Þ

where ẑ is the partonic energy fraction carried by the
outgoing hadron. As in Eq. (2), μR is the renormalization
scale stemming from regularization of the ultraviolet

divergences in the virtual graphs that contribute to Hð1Þ
i ,

while μFF is a factorization scale associated with the FFDh
i .

Note that the dependence of the convolution integral in
Eq. (5) on the scales μR and μFF is a remnant of the fixed-
order perturbative QCD approximation to Fcoll, which will
be canceled by inclusion of higher-order terms in the
perturbative series. At leading order in as, the 2 → 2 phase

space is such that ẑ ¼ z, so that Hð0Þ
i is proportional to

δðẑ − zÞ. At higher orders, additional QCD radiation effects
open up the phase space for the outgoing fragmenting
parton such that ẑ varies between z and 1.
The partonic FF Dh

i can be interpreted as the number
density to find a hadron of type h in the jet originating from
the parton i with momentum fraction ẑ [41]. As for PDFs,
FFs are sensitive to ultraviolet divergences, and after
renormalization they acquire dependence on the scale
μFF. (The subscript “FF” denotes the final-state factoriza-
tion scale, in contrast to the initial-state factorization scale
in PDFs.) In practice, to optimize the perturbative expan-
sion of the hard cross section, we set μR ¼ μFF ¼ Q.
However, for completeness we leave the dependence of
μR and μFF in Eq. (5) and below explicit. In general,
variation of the scales around Q allows one to assess the
uncertainty in the perturbative expansion. For instance, in
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Ref. [19] a significant reduction of the scale dependence
was found with the inclusion of the NNLO corrections.

B. Scale dependence

In perturbative QCD the scale dependence of the FFs is
described by the evolution equations,

dDh
i ðẑ; μ2FFÞ

d lnðμ2FFÞ
¼ ½Pij ⊗ Dh

j �ðẑ; μ2FFÞ; ð7Þ

where Pij are the timelike i → j splitting functions. Since
the FFs cannot be calculated from first principles, the ẑ
dependence is fitted to the data at some input scale
μ2FF ¼ Q2

0. The latter is chosen at the lowest possible value
where a perturbative QCD description can be applied in
order to minimize errors induced by backward evolution
from the truncation of the perturbative series.
The simplest approach to solving the evolution equa-

tions (7) is to use one of several numerical approximation
techniques to solve the integro-differential equations
directly in ẑ space [42]. Alternatively, as discussed in
Ref. [11], it can be more efficient to solve the equations in
Mellin moment space, where the Nth Mellin moment of a
function fðzÞ is defined as

f ðNÞ ¼
Z

1

0

dzzN−1fðzÞ; ð8Þ

and similarly for all other moments of functions denoted in
boldface. In this framework the convolution integrals in
Eqs. (6) and (7) can be rendered as ordinary products of the
Mellin moments,

Fh
collðN;Q2Þ ¼

X
i

HiðN;Q2; μ2R; μ
2
FFÞDh

i ðN;Q2; μ2R; μ
2
FFÞ

þOða2sÞ; ð9Þ
and

dDh
i ðN; μ2FFÞ

d lnðμ2FFÞ
¼ PijðN; μ2R; μ

2
FFÞDh

j ðN;Q2; μ2R; μ
2
FFÞ: ð10Þ

The evolution equations for Dh
i can be solved using the

methods described in Ref. [43], and the hadronic fragmen-
tation function in z-space can be obtained using the inverse
Mellin transform,

Fh
collðz;Q2Þ ¼ 1

2πi

Z
C
dNz−NFh

collðN;Q2Þ: ð11Þ

The main advantage of the Mellin techniques is the
improvement in speed in the evaluation of the observables
and evolution equations. Another advantage is that the
experimental cross sections are typically presented as
averaged values over bins of z. Such averaging, between
zmin and zmax, can be simply done analytically,

hFh
collðz;Q2Þiz bin ¼

1

ðzmax − zminÞ
1

2πi

×
Z
C
dN

ðz1−Nmax − z1−Nmin Þ
1 − N

Fh
collðN;Q2Þ;

ð12Þ

without deteriorating the numerical performance. In con-
trast, such an advantage does not exist if one evaluates
Fh
collðz;Q2Þ and solves the DGLAP evolution equations

directly in z space [44]. In practice, at small z the bin sizes
are quite small and taking the central z values might be
appropriate. However, at large z the bin sizes increase and,
depending on the precision of the measured cross sections,
the averaging step becomes important.
For clarity, we express the Mellin moments of the hard

factor in Eq. (9) in terms of unnormalized hard factors eHi,

HqðN;Q2; μ2R; μ
2
FFÞ ¼

~e2qP
q0 ~e

2
q0

eHqðN;Q2; μ2R; μ
2
FFÞ

ð1þ 4asðμ2RÞÞ
; ð13aÞ

HgðN;Q2; μ2R; μ
2
FFÞ ¼

eHgðN;Q2; μ2R; μ
2
FFÞ

ð1þ 4asðμ2RÞÞ
; ð13bÞ

where the charge factors for the gluon moments cancel. The
perturbative expansion of ~Hi is then given by

eHqðN;Q2;μ2R; μ
2
FFÞ ¼1þ asðμ2RÞeHð1Þ

q ðN;Q2; μ2R; μ
2
FFÞ

þOða2sÞ; ð14aÞ

eHgðN;Q2;μ2R;μ
2
FFÞ¼ asðμ2RÞeHð1Þ

g ðN;Q2;μ2R;μ
2
FFÞþOða2sÞ;

ð14bÞ
where the gluon contribution begins at NLO. Physically,
this corresponds to gluon fragmentation into hadrons from
real QCD radiation that occurs at NLO. For completeness,
in Appendix A we list the formulas for eHð1Þ

q;g at NLO.
To solve the evolution equations in Eq. (9), we follow the

conventions of Ref. [43], which we briefly summarize here.
For convenience we work in a flavor singlet and nonsinglet
basis, in which we define the flavor combinations

Dh
�3 ¼ Dh

u� − Dh
d� ; ð15aÞ

Dh
�8 ¼ Dh

u� þ Dh
d� − 2Dh

s� ; ð15bÞ

Dh
�15 ¼ Dh

u� þ Dh
d� þ Dh

s� − 3Dh
c� ; ð15cÞ

Dh
�24 ¼ Dh

u� þ Dh
d� þ Dh

s� þ Dh
c� − 4Dh

b� ; ð15dÞ

Dh
�35 ¼ Dh

u� þ Dh
d� þ Dh

s� þ Dh
c� þ Dh

b� − 5Dh
t� ; ð15eÞ

Dh
� ¼ Dh

u� þ Dh
d� þ Dh

s� þ Dh
c� þ Dh

b� þ Dh
t� ; ð15fÞ
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where Dh
q� are the Mellin moments of the charge con-

jugation-even and conjugation-odd FFs Dh
q�ðz;Q2Þ ¼

Dh
qðz;Q2Þ �Dh

q̄ðz;Q2Þ. Depending on the number of
active flavors nf, one needs to consider only the equations
up toD�

n2f−1
; otherwise the system becomes degenerate. The

evolution equations in this basis can be expressed as

∂Dh
�j

∂ ln μ2FF ¼ P�
NSD

h
�j; ð16aÞ

∂Dh
−

∂ ln μ2FF ¼ P−
NSD

h
− ð16bÞ

∂
∂ ln μ2FF

�
Dhþ
Dh

g

�
¼

�
Pqq Pqg

Pgq Pgg

��
Dhþ
Dh

g

�
; ð16cÞ

with the splitting functions in Mellin space Pij listed in
Appendix B. An important observation here is that all the
“þ” FFs maximally couple to the gluon FFs, while the “−”
functions decouple completely. In particular, if one con-
sider observables that depend only on “þ” combinations,
then the “−” components can be ignored.
In our analysis we use an independent implementation of

the evolution equations in Mellin space as described in
Ref. [43], finding excellent agreement with existing evo-
lution codes.

III. METHODOLOGY

A. Input scale parametrization

In choosing a functional form for the FFs, it is important
to note that the SIA observables are sensitive only to the
charge conjugation-even quark distributions Dh

qþðz;Q2Þ
and the gluon FF Dh

gðz;Q2Þ. These couple maximally in
the Q2 evolution equations, while the charge conjugation-
odd combinations Dh

q−ðz;Q2Þ decouple entirely from both
Dh

qþðz;Q2Þ and Dh
gðz;Q2Þ. In our analysis we therefore

seek only to extract theDh
qþ and gluon distributions, and do

not attempt to separate quark and antiquark FFs. This
would require additional data, such as from semi-inclusive
deep-inelastic hadron production, which can provide a filter
on the quark and antiquark flavors.
As a reference point, we consider a “template” function

of the form

Tðz; aÞ ¼ M
zαð1 − zÞβR

1
0 dzz

1þαð1 − zÞβ ; ð17Þ

where a ¼ fM; α; βg is the vector of shape parameters to be
fitted. The denominator is chosen so that the coefficient M
corresponds to the average momentum fraction z. In our
numerical analysis we will use the template functions to

build the FF parametrization at an input scale of Q2
0 ¼

1 GeV2 for the light quarks, and Q2
0 ¼ m2

c (m2
b) for charm

(bottom) quarks.
Using charge conjugation symmetry, one can relate

Dhþ
qþ ¼ Dh−

qþ ; Dhþ
g ¼ Dh−

g ; ð18Þ

for all partons. For pions we further use isospin symmetry
to set the uþ and dþ functions equal, while keeping the
remaining FFs independent. Since the uþ and dþ distri-
butions must reflect both the “valence” and “sea” content of
the πþ, we allow two independent shapes for these, while a
single template function should be sufficient for the heavier
flavors and the gluon,

Dπþ
uþ ¼ Dπþ

dþ ¼ Tðz; aπudÞ þ Tðz; a0πudÞ; ð19aÞ

Dπþ
sþ;cþ;bþ;g ¼ Tðz; aπs;c;b;gÞ: ð19bÞ

The additional template shape for the uþ or dþ increases
the flexibility of the parametrization in order to accom-
modate the distinction between favored (valence) and
unfavored (sea) distributions, having different sets of shape
parameters aπud and a0πud.
For the kaon the sþ and uþ FFs are parametrized

independently because of the mass difference between
the strange and up quarks. Since these contain both valence
and sea structures, to improve the flexibility of the para-
metrization we use two template shapes here, and one
shape for each of the other distributions,

DKþ
sþ ¼ Tðz; aKs Þ þ Tðz; a0Ks Þ; ð20aÞ

DKþ
uþ ¼ Tðz; aKu Þ þ Tðz; a0Ku Þ; ð20bÞ

DKþ
dþ;cþ;bþ;g ¼ Tðz; aKd;c;b;gÞ: ð20cÞ

The total number of free parameters for the kaon FFs is 24,
while for the pions the number of parameters is 18.
For the heavy quarks c and b we use the zero-mass

variable flavor scheme and activate the heavy-quark dis-
tributions at their mass thresholds, mc ¼ 1.43 GeV and
mb ¼ 4.3 GeV. For the Q2 evolution we use the “trun-
cated” solution in Ref. [43], which is more consistent with
fixed-order calculations. Finally, the strong coupling is
evaluated by solving numerically the β-function at two
loops and using the boundary condition at the Z
pole, αsðMZÞ ¼ 0.118.

B. Iterative Monte Carlo fitting

In all previous global analyses of FFs, only single χ2 fits
have been performed. In this case it is common to fix by
hand certain shape parameters that are difficult to constrain
by data in order to obtain a reasonable fit. However, since
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some of the parameters and distributions are strongly
correlated, this can bias the results of the analysis. In
addition, there is no way to determine a priori whether a
single χ2 fit will become stuck in any one of many local
minima. The issues of multiple solutions can be efficiently
avoided through MC sampling of the parameter space,
which allows exploration of all possible solutions. Since
this study is the first MC-based analysis of FFs, we briefly
review the IMC procedure, previously introduced in the
JAM15 analysis of polarized PDFs [11], and highlight
several important new features.
In the IMC methodology, for a given observable O the

expectation value and variance are defined by

E½O� ¼
Z

dmaPðajdataÞOðaÞ; ð21Þ

V½O� ¼
Z

dmaPðajdataÞðOðaÞ − E½O�Þ2; ð22Þ

respectively, where a is the m-component vector represent-
ing the shape parameters of the FFs. The multivariate
probability density PðajdataÞ for the parameters a condi-
tioned by the evidence (e.g., the data) can be written as

PðajdataÞ ∝ LðdatajaÞ × πðaÞ; ð23Þ

where πðaÞ is the prior and LðdatajaÞ is the likelihood. In
our analysis πðaÞ is initially set to be a flat distribution. For
LðdatajaÞ we assume a Gaussian likelihood,

LðdatajaÞ ∝ exp

�
−
1

2
χ2ðaÞ

�
; ð24Þ

with the χ2 function defined as

χ2ðaÞ ¼
X
e

�X
i

�
DðeÞ

i NðeÞ
i − TðeÞ

i

αðeÞi NðeÞ
i

�2

þ
X
k

ðrðeÞk Þ2
�
: ð25Þ

Here DðeÞ
i and TðeÞ

i represent the data and theory points,

respectively, and αðeÞi are the uncorrelated systematic and
statistical experimental uncertainties added in quadrature.
The normalization uncertainties are accounted for through

the factor NðeÞ
i , defined as

NðeÞ
i ¼ 1 −

X
k

rðeÞk βðeÞk;i

DðeÞ
i

: ð26Þ

Here βðeÞk;i is the kth source of point-to-point correlated

systematic uncertainties in the ith bin, and rðeÞk the related

weight, treated as a free parameter. In order to fit the rðeÞk

values, a penalty must be added to the definition of the χ2,
as in the second term of Eq. (25).
Clearly the evaluation of the multidimensional integra-

tions in Eqs. (21) and (22) is not practical, especially when
O is a continuous function such as in the case of FFs.
Instead one can construct a MC representation of PðajdataÞ
such that the expectation value and variance can be
evaluated as

E½O� ¼ 1

n

Xn
k¼1

OðakÞ; ð27Þ

V½O� ¼ 1

n

Xn
k¼1

ðOðakÞ − E½O�Þ2; ð28Þ

where the parameters fakg are distributed according to
PðajdataÞ, and n is the number of points sampled from the
distribution PðajdataÞ.
Our approach to constructing the Monte Carlo ensemble

fakg is schematically illustrated in Fig. 1. The steps in the
IMC procedure can be summarized in the following
workflow:

(i) Generation of the priors
The priors are the initial parameters that are used

as guess parameters for a given least-squares fit. The
resulting parameters from the fits are called “pos-
teriors.” During the initial iteration, a set of priors is
generated using a flat sampling in the parameter
space. The sampling region is selected for the shape
parameters α > −1.9 and β > 0, so that the first
moments of all FFs are finite. The boundary for β
restricts the distributions to be strictly zero in the
z → 1 limit. The upper boundaries for α and β are
selected to cover typical ranges observed in previous
analyses [10,12,16]. Note, however, that the poste-
riors can be distributed outside of the initial sam-
pling region, if this is preferred by the data.

For each subsequent iteration, the priors are
generated from a multivariate Gaussian sampling
using the covariance matrix and the central param-
eters from the priors of the previous iteration. The
central parameters are chosen to be the median of the
priors, which is found to give better convergence
compared with using the mean. This sampling
procedure further develops the JAM15 methodology
[11], where the priors were randomly selected from
the previous iteration posteriors. This allows one to
construct priors that are distributed more uniformly
in parameter space as opposed to priors that are
clustered in particular regions of parameter space.
The latter can potentially bias the results if the
number of priors is too small.

(ii) Generation of pseudodata sets
Data resampling is performed by generating

pseudodata sets using Gaussian smearing with
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the mean and uncertainties of the original exper-
imental data values. Each pseudodata point ~Di is
computed as

~Di ¼ Di þ Riαi; ð29Þ

where for each experiment Di and αi are as in
Eq. (25), and Ri is a randomly generated number
from a normal distribution of unit width. A
different pseudodata set is generated for each fit
in any given iteration in the IMC procedure.

(iii) Partition of pseudodata sets for cross-validation
To account for possible overfitting, the cross-

validation method is incorporated. Each experimen-
tal pseudodata set is randomly divided 50%=50%
into “training” and “validation” sets. However, data
from any experiment with fewer than 10 points are
not partitioned and are entirely included in the
training set.

(iv) χ2 minimization and posterior selection
The χ2 minimization procedure is performed

with the training pseudodata set using the Levem-
berg-Marquardt lmdiff algorithm [45]. For every
shift in the parameters during the minimization

procedure, the χ2 values for both training and
validation are computed and stored along with their
respective parameter values, until the best fit for
the training set is found. For each pseudodata set, the
parameter vector that minimizes the χ2 of the
validation is then selected as a posterior.

(v) Convergence criterion
The iterative approach of the IMC is similar to the

strategy adopted in the MCVEGAS integration [46].
There, one constructs iteratively a grid over the
parameter space such that most of the sampling is
confined to regions where the integrand contributes
the most, a procedure known as “importance sam-
pling.” Once the grid is prepared, a large amount of
samples is generated until statistical convergence of
the integral is achieved.
In Ref. [11] the convergence of the MC ensemble

fakg was estimated using the χ2 distribution. While
such an estimate can give some insight about the
convergence of the posteriors, it is somewhat indi-
rect as it does not involve the parameters explicitly.
In the present analysis, we instead estimate the
convergence of the eigenvalues of the covariance
matrix computed from the posterior distributions. To
do this we construct a measure given by

V ¼
Y
i

ffiffiffiffiffiffi
Wi

p
; ð30Þ

where Wi are the eigenvalues of the covariance
matrix. The quantity V can be interpreted in terms of
the hypervolume in the parameter space that enc-
loses the posteriors, and is analogous to the ensem-
ble of the most populated grid cells in a given
iteration of the VEGAS algorithm [46]. The IMC
procedure is then iterated starting from step 1, until
the volume remains unchanged.

(vi) Generation of the Monte Carlo FF ensemble
When the posteriors volume has reached conver-

gence, a large number of fits is performed until
the mean and expectation values of the FFs con-
verge. The goodness of fit is then evaluated by
calculating the overall single χ2 values per experi-
ment according to

χ2ðeÞ ¼
X
i

�
DðeÞ

i − E½TðeÞ
i �=E½NðeÞ

i �
αðeÞi

�2

; ð31Þ

where E½TðeÞ
i � and E½NðeÞ

i � are the expectation values
of the theory calculation and fitted point-to-point
normalization factors over the Monte Carlo poste-
riors, respectively [see Eq. (27)]. This allows a direct
comparison with the original unmodified data.

Finally, note that while the FF parametrization adopted here
is not intrinsically more flexible than in other global

FIG. 1. Workflow of the iterative Monte Carlo fitting strategy.
In the upper diagram (red lines) an iteration begins at the prior
sampler and a given number of fits are performed, generating an
ensemble of posteriors. After the initial iteration, with a flat
sampler, the generated posteriors are used to construct a multi-
variate Gaussian sampler for the next iteration. The lower
diagram (with blue lines) summarizes the workflow that trans-
forms a given prior into a final posterior.
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analyses, the MC representation is significantly more
versatile and adaptable in describing the FFs. Indeed, the
resulting averaged central value of the FFs as a function of z
is a linear combination of many functional shapes, effec-
tively increasing the flexibility of the parametrization.

IV. DATA SETS

In the current analysis we use all available data sets from
the single-inclusive annihilation process eþe− → hX, for
h ¼ π� and K� mesons. Table I summarizes the various
SIA experiments, including the type of observable mea-
sured (inclusive or tagged), center-of-mass energy Q,
number of data points, and the χ2 values and fitted
normalization factors for each data set. Specifically, we
include data from experiments at DESY (from the TASSO
[23–25] and ARGUS [26] Collaborations); SLAC (TPC
[27–29], HRS [30], SLD [31] and BABAR [40]
Collaborations); CERN (OPAL [32,33], ALEPH [34]

and DELPHI [35,36] Collaborations); and KEK (TOPAZ
[37] and Belle [38,39] Collaborations). Approximately half
of the 459 π� data points and 391 K� data points are near
the Z-boson pole, Q ≈MZ, while the most recent, high-
precision Belle and BABAR data from the B-factories are at
Q≃ 10.5 GeV. The latter measurements in particular
provide a more comprehensive coverage of the large-z
region, and reveal clearer scaling violation effects com-
pared with the previous higher-energy measurements.
In the TPC, OPAL, DELPHI and SLD experiments,

light-quark and heavy-quark events were separated by
considering the properties of final-state hadrons. In the
SLD experiment, for example, events from the primary c
and b quarks were selected by tracks near the primary
interaction point. For each secondary vertex, the total
transverse momentum and invariant mass were obtained,
after which the data were separated into c- and b-tagged
events depending on the masses and transverse momenta.
Some events without the secondary vertex were considered

TABLE I. Single-inclusive eþe− annihilation experiments used in this analysis, including the type of observable (inclusive or tagged),

the center-of-mass energy Q (in GeV), the number of data points Ndat, the average fitted point-to-point normalization factors NðeÞ
i

averaged over each experimental data set (or “1” for data sets not providing correlated systematic errors), and the χ2 values, for pions and
kaons. Note that the normalization factors for the various TASSO data, indicated by (*) in the table, are in the range 0.976–1.184 for
pions and 0.891–1.033 for kaons. The listed χ2 and average normalization values correspond to fits obtained including the BABAR
“prompt” data [40], while the results including instead the “conventional” BABAR data are listed in parentheses only for pions (for kaons
the “prompt” and “conventional” data sets are essentially identical).

Pions Kaons

Experiment Ref. Observable Q (GeV) Ndat norm. χ2 Ndat norm. χ2

ARGUS [26] Inclusive 9.98 35 1.024 (1.058) 51.1 (55.8) 15 1.007 8.5
Belle [38,39] Inclusive 10.52 78 0.900 (0.919) 37.6 (21.7) 78 0.988 10.9
BABAR [40] Inclusive 10.54 39 0.993 (0.948) 31.6 (70.7) 30 0.992 4.9
TASSO [23–25] Inclusive 12-44 29 (*) 37.0 (38.8) 18 (*) 14.3
TPC [27–29] Inclusive 29.00 18 1 36.3 (57.8) 16 1 47.8

uds tag 29.00 6 1 3.7 (4.6)
b tag 29.00 6 1 8.7 (8.6)
c tag 29.00 6 1 3.3 (3.0)

HRS [30] Inclusive 29.00 2 1 4.2 (6.2) 3 1 0.3
TOPAZ [37] Inclusive 58.00 4 1 4.8 (6.3) 3 1 0.9
OPAL [32,33] Inclusive 91.20 22 1 33.3 (37.2) 10 1 6.3

u tag 91.20 5 1.203 (1.203) 6.6 (8.1) 5 1.185 2.1
d tag 91.20 5 1.204 (1.203) 6.1 (7.6) 5 1.075 0.6
s tag 91.20 5 1.126 (1.200) 14.4 (11.0) 5 1.173 1.5
c tag 91.20 5 1.174 (1.323) 10.7 (6.1) 5 1.169 13.2
b tag 91.20 5 1.218 (1.209) 34.2 (36.6) 4 1.177 10.9

ALEPH [34] Inclusive 91.20 22 0.987 (0.989) 15.6 (20.4) 18 1.008 6.1
DELPHI [35,36] Inclusive 91.20 17 1 21.0 (20.2) 27 1 3.9

uds tag 91.20 17 1 13.3 (13.4) 17 1 22.5
b tag 91.20 17 1 41.9 (42.9) 17 1 9.1

SLD [31] Inclusive 91.28 29 1.002 (1.004) 27.3 (36.3) 29 0.994 14.3
uds tag 91.28 29 1.003 (1.004) 51.7 (55.6) 29 0.994 42.6
c tag 91.28 29 0.998 (1.001) 30.2 (40.4) 29 1.000 31.7
b tag 91.28 29 1.005 (1.005) 74.6 (61.9) 28 0.992 134.1

Total: 459 599.3 (671.2) 391 395.0
χ2=Ndat ¼ 1.31 (1.46) χ2=Ndat ¼ 1.01
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as light-quark (u, d, s)-tagged if a track did not exist with an
impact parameter exceeding a certain cutoff value. Other
tagged data sets used different techniques for selecting the
quark-tagged events. In the OPAL experiment, separated
probabilities for u, d and s quark fragmentation were also
provided, which in practice provide valuable constraints on
the flavor dependence in the light-quark FFs.
For the Belle measurements [38], the data are provided in

the form dσh=dz, and care must be taken when converting
this to the hadronic FF in Eq. (1). The fragmentation energy
scale Q=2 is reduced by initial-state (ISR) or final-state
(FSR) photon radiation effects, so that the measured yield
involves a variation of this scale. In practice, the energy
scales in the measured events are kept within 0.5% of the
nominal Q=2 value, and a MC simulation is performed to
estimate the fraction of events with ISR or FSR photon
energies < 0.5% ×Q=2. For each bin the measured yields
are reduced by these fractions to exclude events with large
ISR or FSR contributions. To convert the dσh=dz data with
the ISR/FSR cut to the total hadronic FF in Eq. (1) one
therefore needs to correct the theoretical total cross section
σtot by multiplying it by the ISR/FSR correction factor,
which is estimated to be 0.64616(3) [38,39].
For the BABAR experiment [40], two data sets were

provided, for “prompt” events, which contain primary
hadrons or decay products of lifetimes shorter than
10−11 s, and “conventional” events, which include decays
of lifetimes ð1 − 3Þ × 10−11 s. For pions the conventional
cross sections are ∼5%–15% larger than the prompt cross
sections, while for kaons these are almost indistinguish-
able. The prompt data are numerically close to the LEP and
SLD measurements after taking into account Q2 evolution,
although the conventional ones are technically closer to
most previous measurements which included all decays. In
our analysis, we consider both data sets, and assess their
impact on the fits phenomenologically.
Finally, our theoretical formalism is based on the fixed-

order perturbation theory, and does not account for resum-
mations of soft-gluon logarithms or effects beyond the
collinear factorization which may be important at small
values of z. To avoid inconsistencies between the theoreti-
cal formalism and the data, cuts are applied to exclude the
small-z region from the analysis. In practice, we use a cut
z > 0.1 for data at energies below the Z-boson mass and
z > 0.05 for the data at Q ≈MZ. For kaon data, below
z ≈ 0.2 hadron mass corrections are believed to play a more
prominent role [22]. Since these are not considered in this
analysis, we apply the cut z > 0.2 for the low-Q kaon data
sets from ARGUS and BABAR.
At large values of z, threshold resummation effects

become increasingly important [20–22], and taking these
into account leads to some reduction in the fitted χ2 values
[20], as well as smaller theoretical uncertainties when
NNLO effects are also included [19]. Exploration of
threshold effects is, however, outside the scope of the

present analysis, which instead focuses on the implemen-
tation of the IMC methodology in the context of fragmen-
tation functions. Following the recent fit by de Florian et al.
[17], we also do not impose any large-z cut, leaving a more
detailed investigation of threshold effects for future work.

V. ANALYSIS RESULTS

In this section we present the main results of our IMC
analysis. We first establish the stability of the IMC
procedure by examining specific convergence criteria,
and then illustrate the results for the fragmentation
functions through comparisons with data and previous
analyses. Programs for generating the FFs obtained in this
analysis, which we dub “JAM16FF,” can be downloaded
from Ref. [47].

A. IMC convergence

We examine two types of convergence tests of the IMC
procedure, namely, the iterative convergence of the priors
(the “grid”), and the convergence of the final posterior
distributions. As discussed in Sec. III B, the convergence of
the priors can be tested by observing the variation of the
volume V with the number of iterations, as shown in Fig. 2.
For each iteration 200 fits are performed. During the initial
∼10 iterations, the volume changes some 9 orders of
magnitude, indicating a very rapid variation of the prior
distribution. After ∼30 iterations, the volume becomes
relatively stable, with statistical fluctuations around 2
orders of magnitude due to finite statistics. The stability
of the prior volume indicates that the region of interest in
the parameter space has been isolated by the IMC
procedure.
Having obtained an optimal MC priors sample, a final

iteration is performed with 104 fits. In Fig. 3 we illustrate
the statistical properties of the final posterior distribution by
showing averaged ratios of FFs with smaller samples (100,
200, 500 and 1000) relative to the total 104 samples (the

FIG. 2. Normalized IMC volume versus number of iterations
for pions (red lines) and kaons (blue lines). The approximate
convergence of the volumes is indicated by the colored regions.

FIRST MONTE CARLO ANALYSIS OF FRAGMENTATION … PHYSICAL REVIEW D 94, 114004 (2016)

114004-9



averaged error bands are displayed only for the 200 and 104

samples). Using 200 posterior samples, one obtains uncer-
tainty bands that are comparable with those with 104

samples. For the central values most of the FFs with 200
samples agree well with the 104 samples. Some exceptions
are the Dπ

sþ , Dπ
g , DK

dþ and DK
g FFs; however, here the

differences are in regions where the FFs are poorly deter-
mined and the relative error bands are large. For practical
applications these effects will be irrelevant, and using a
sample of 200posteriorswill be sufficient to give an accurate
representation of FFs. Unless otherwise stated the results
presented in the following use 200 fits from the final sample.

B. SIA cross sections

In Fig. 4 the normalized yields of the final posteriors
versus χ2 per datum for the training and validation sets are

presented using the full sample of 104 fits. In the ideal
Gaussian limit, the distributions are expected to peak
around 2 [11]. In practice, inconsistencies between data
sets shift the peak of the distribution to larger χ2=Ndat

values. This is evident for the pion production case in
Fig. 4, where the χ2=Ndat distribution peaks around 2.5. In
contrast, for kaon production the distribution peaks around
2.1. We stress, however, that even if the peak occurs at 2, it
does not imply consistency among the data sets (or data
versus theory), since the larger experimental uncertainties
in the kaon data sets compared with the pion can induce
such behavior.
The ratios of experimental SIA cross sections to the fitted

values are shown in Figs. 5 and 6 for pions and kaons,
respectively. For the pion production data, at the lower
energies Q≲ 30 GeV there is good overall agreement

FIG. 3. Fragmentation functions computed from 100 (pink), 200 (black), 500 (green), 103 (yellow) and 104 (red for pions, blue for
kaons) fits, normalized to the latter. The uncertainties for the 200 (black shaded) and 104 results are indicated by the bands.
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FIG. 4. Normalized yield of IMC fits versus χ2=Ndat for the training (blue forward hashed), validation (green backward hashed), and
combined (red dotted) samples for π (left panel) and K production (right panel).

FIG. 5. Ratio of experimental single-inclusive eþe− cross sections to the fitted values versus z (or zmin for OPAL data [32,33]) for pion
production. The experimental uncertainties are indicated by the black points, with the fitted uncertainties denoted by the red bands. For
the BABAR data [40] the prompt data set is used.
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between the fitted cross sections and the data, with the
exception of a few sets (TPC, HRS and TOPAZ) that differ
by ∼5%–10%, within relatively large errors. Interestingly,
the older ARGUS data [26] are consistent with the recent
high-precision measurements from Belle [38,39] and
BABAR [40]. We find, however, that the Belle pion data
require an ≈10% normalization, which may be related to
the overall normalization correction from initial-state radi-
ation effects [39] or other corrections. This should not,
however, affect the z dependence of the extracted FFs.
A relatively good description is also obtained for the data

at higher energies, Q ¼ MZ, which generally have smaller
uncertainties, although some discrepancies appear at higher
z values. In particular, an inconsistency is apparent between
the shapes of the DELPHI [35,36] and SLD [31] spectra at
z≳ 0.4 for both inclusive and uds-tagged data, with the
DELPHI data lying systematically above the fitted results
and SLD data lying below. For the heavy-quark-tagged
results the agreement with DELPHI and SLD data is
generally better, with only some deviations at the highest
z values where the errors are largest. The OPAL tagged data
[32,33] are the only ones that separate the individual light-
quark flavors u, d and s from the heavy flavors. The latter
have rather large χ2 values for both pion and kaon data sets,

particularly the b-tagged sample of the pion case. While the
unfavored d-tagged kaon sample is well described in the fit,
the unfavored s-tagged pion data appear less consistent
with the theory. In all cases the OPAL tagged data require a
normalization of ≈20%. Note that the observable for the
OPAL data is the z-integrated cross section from zmin to 1.
The total χ2=Ndat for the resulting fit to all pion data sets

is ≈1.31. Using the conventional BABAR pion data set
instead of the prompt gives a slightly worse overall fit, with
χ2=Ndat ¼ 1.46, with the difference coming mostly from
the BABAR and TPC inclusive data sets. The Belle data, on
the other hand, are better fitted when the conventional
BABAR data set is used. Since the conventional BABAR
data lie ∼10% higher than the prompt, which themselves lie
slightly below the Belle data, the Belle cross sections
require a normalization shift that is closer to that needed for
the conventional BABAR data.
For the kaon cross sections, the overall agreement

between theory and experiment is slightly better than for
pions, mostly because of the relatively larger uncertainties
on the K data. At low energies, as was the case for pions,
the TPC data [27–29] lie ≈10% below the global fit.
Interestingly, though, the Belle kaon data [38,39] do not
require as large a normalization shift as was needed for the

FIG. 6. As in Fig. 5, but for kaon production.
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Belle pion data in Fig. 5. At energies near the Z-boson pole,
Q ¼ MZ, the deviations at large z between the theoretical
and experimental cross sections are not as prominent as for
pions, with only the SLD heavy-quark-tagged data [31]
exhibiting any significant disagreement. The OPAL flavor-
tagged data [32,33] generally prefer an ≈10%–15% nor-
malization for all quark flavors. The DELPHI inclusive and
light-quark-tagged data [35,36], which do not include an
overall normalization parameter, appear to systematically
lie ≈10% below the fitted results across most of the z range.
Fits to other high-energy data sets generally give good
agreement, and the χ2=Ndat value for the combined kaon fit
is found to be 1.01.

C. Fragmentation functions

The fragmentation functions resulting from our IMC
analysis are shown in Fig. 7 at the input scale, which is
taken to beQ2 ¼ 1 GeV2 for the u, d, s and g flavors and at
the mass thresholdsQ2 ¼ m2

q for the heavy c and b quarks.
The curve bundles represent random samples of 100
posteriors from the full set of fitted results, with the central
values and variance bands computed fromEqs. (21) and (22)
using the 200 posteriors selected for the final JAM16FF
results [47]. Generally the pion FFs have a larger magnitude
than the kaon FFs, with the exception of the strange quark,
where the sþ to kaon distributionDKþ

sþ is larger than that for
the pion,Dπþ

sþ , over most of the z range. As expected, the uþ

and dþ FFs to πþ, which correspond to sums of favored and
unfavored distributions and reflect the valence structure of
the pion, are dominant at intermediate and large values of z,
z≳ 0.2. In the limit of exact isospin symmetry (neglecting

mass differences between u and d quarks), these are in fact
identical, Dπþ

uþ ¼ Dπþ
dþ . The sþ to pion distribution, in

contrast, is smaller in magnitude, with a peak value at x ∼
0.3–0.4 that is less than≈1=2 that for the nonstrange quarks.
Since this distribution is entirely unfavored, and constrained
mostly by the scant flavor-tagged data, it has somewhat
larger uncertainties comparedwith the nonstrange FFs. Note
that our analysis uses two shapes for the favoredDπþ

uþ ¼ Dπþ
dþ

FFs, but one shape for all other pion distributions, Eqs. (19).
For the heavy-quark FFs to pions, the characteristic

differences between the sþ, cþ and bþ distributions
generally reflect the different masses of the quarks, with
larger mass corresponding to softer distributions. The cþ
and bþ FFs, in particular, are large at low z values, z≲ 0.1,
and comparable to the light-quark FFs evolved to the same
scale. (Note that the heavy-quark distributions exist only
above the mass threshold, Q > mq.) The gluon FF Dπþ

g is
less singular, but is strongly peaked at z ≈ 0.25 at the input
scale. Its uncertainties are also larger than those for the
favored distributions, as their effects on the SIA cross
sections are of higher order in αs.
For the fragmentation to kaons, one of the most

conspicuous differences with pions is the large magnitude
of the strange FF DKþ

sþ at intermediate and high values of z,
where it is comparable to the uþ and dþ FFs to pions.
Reflecting the valence quark structure of K�, theDKþ

uþ FF is
also similar in size, but because of the mass difference
between the strange and nonstrange light quarks there is no
reason for the favored uþ and sþ fragmentation to kaons to
be equal. In fact, we find DKþ

sþ ≳DKþ
uþ at high values of z.

Unlike for pions, the dþ fragmentation to kaons is

FIG. 7. Fragmentation functions for uþ, dþ, sþ, cþ, bþ and g into πþ (red bands) and Kþ (blue bands) mesons as a function of z at the
input scale (Q2 ¼ 1 GeV2 for light-quark flavors and gluon, Q2 ¼ m2

q for the heavy quarks q ¼ c and b). A random sample of 100
posteriors (yellow curves for πþ, green for Kþ) is shown together with the mean and variance (red and blue bands).
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unfavored,DKþ
dþ ≪ DKþ

uþ , with relatively large uncertainties,
peaking at z ∼ 0.1 and playing a role similar to that of sþ
fragmentation to πþ. The heavy-quark FFs to kaons are also
sizable compared with the light-quark functions, but peak
at slightly larger z values than the corresponding pion FFs.
The gluon FF to kaons, DKþ

g , peaks at rather high z values,
z ≈ 0.85, at the input scale, consistent with the findings of
some earlier analyses [12], and is very small in magnitude.
The unusual shapes of some of the FFs, such as the gluon

to πþ and Kþ or the unfavored light-quark FFs, lead to the
natural question of whether these are robust distributions or
possibly artifacts of the fitting procedure. We can address
this by observing snapshots in the IMC chain, as illustrated
in Fig. 8, where the FFs from selected iteration steps are
plotted at the input scale as a function of z. The first and last
rows in Fig. 8 show the initial and final steps in the IMC
procedure, respectively. In addition to the posterior shapes
and uncertainties, we display in each row the prior
distributions as individual curves. After performing the
initial iteration, the large spread in the prior FFs due to the

flat sampling of the parameter space is reduced signifi-
cantly, especially for distributions that are more strongly
constrained by the SIA data. For the FFs that are less
directly constrained by the data, more iterations are needed
before convergence is reached, as illustrated by the sþ to πþ
distribution, for example. We find that after ≈30 iterations
all of the distributions become stable, which is consistent
with the convergence of the volumes observed in Fig. 2.
Although the peaks in some of the FFs, such as Dπþ;Kþ

g

and Dπþ
sþ , are prominent at the input scale, after Q2

evolution these become largely washed out. This is
illustrated in Fig. 9, where the FFs are evolved to a
common scale for all FFs that are above the quark thresh-
old, namely at Q2 ¼ 1, 10 and 100 GeV2 and at the Z-
boson pole, Q2 ¼ M2

Z. Recall that the lowest Q
2 in any of

the data sets is ≈100 GeV2, so the shapes at Q2 ¼ 1 and
10 GeV2 are not directly compared with experimental data
and are shown for illustration only.
Compared with parametrizations from other global FF

analyses, our fitted FFs are qualitatively similar for the

FIG. 8. Iterative convergence of the πþ (red bands) and Kþ (blue bands) fragmentation functions for the uþ, dþ, sþ, cþ, bþ and g
flavors (in individual columns) at the input scale. The first row shows the initial flat priors (single yellow curves for πþ and green curves
for Kþ) and their corresponding posteriors (error bands). The second and third rows show selected intermediate snapshots of the IMC
chain, and the last row shows the priors and posteriors of the final IMC iteration.
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most part, but reveal important differences for specific
distributions, as Fig. 10 illustrates. For pions, our uþ and
dþ distributions are close to the HKNS [12] and DSS [10]
results at large z, but are ∼20%–30% larger in magnitude at
low z values, z≲ 0.3. The strange quark to pion FF peaks at
somewhat larger z than the nonstrange, with a magnitude

similar to that in previous fits. The peak in the gluon FF at
z ≈ 0.25 coincides with that in the HKNS and DSS gluon
FFs, but our distribution is rather more narrow with a
smaller large-z tail.
The comparison between the various parametriza-

tions for the kaon FFs is quite instructive, especially for

FIG. 9. Evolution of the uþ, dþ, sþ, cþ, bþ and g fragmentation functions to πþ (red curves) and Kþ (blue curves) with the scale, from
the input scale Q2 ¼ 1 GeV2 (solid) to Q2 ¼ 10 GeV2 (dot-dashed), Q2 ¼ 100 GeV2 (dashed) and Q2 ¼ M2

Z (dotted).

FIG. 10. Comparison of the JAM fragmentation functions (solid curves) for πþ (red curves) and Kþ (blue curves) with the HKNS [12]
(dashed curves) and DSS [10] (dotted curves) parametrizations at the input scale Q2 ¼ 1 GeV2 for the light-quark and gluon
distributions, and Q2 ¼ 10 and 20 GeV2 for the cþ and bþ flavors, respectively.
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the light-quark flavors and the gluon. The favored DKþ
uþ

and DKþ
sþ FFs in our fit turn out to be of comparable

magnitude, with the uþ closer to the HKNS results and sþ
closer to DSS. In particular, for the u quark to kaon FF our
result is ≈30%–50% larger than HKNS, but some 2–3
times greater than DSS over the range 0.2≲ z≲ 0.9. On
the other hand, the strange to kaon FF lies between the
HKNS and DSS results at intermediate z values, but
coincides with the DSS at z≳ 0.5. Interestingly, we do
not observe the large excess of s to K fragmentation over u
to K found in the DSS analysis, which has important
phenomenological consequences for the extraction of the
polarized strange quark PDF from semi-inclusive DIS
data [7,8].
Recall that in our analysis we use two shapes for the

favored DKþ
uþ and DKþ

sþ FFs, Eqs. (20), and one shape for all
other kaon distributions. In contrast, previous analyses
[10,12] parametrized the uþ and (the unfavored) ū functions
separately, assuming that at the input scale DKþ

ū ¼ DKþ
d ¼

DKþ
d̄

. In contrast, with the IMC procedure in the present
analysis we do not impose any relation between the ū and d̄
FFs, parametrizing only the qþ distributions as constrained
by data.
For the gluon to kaon FF we find a similarly hard

distribution as in earlier analyses, peaking at rather large z
values, z ∼ 0.8 at the input scale. The harder shape of DKþ

g

compared with Dπþ
g can be understood in terms of the

higher energy needed for a gluon to split to an ss̄ pair than
to a uū or dd̄ pair in the pion case [12].

Despite the striking shape of the gluon FF at the input
scale, it is almost entirely washed out after Q2 evolution to
the Z-boson scale, as Fig. 11 illustrates. Here the FFs DðzÞ
[rather than zDðzÞ] are compared for the HKNS [12], DSS
[10] and AKK [16] parametrizations. Viewed on a loga-
rithmic scale, the qualitative features of the shapes of FFs
are similar across all the parametrizations, especially the
HKNS, DSS and the present fit. The AKK results generally
lie above the other parametrizations in the low-z region,
while more variation is observed at higher z values.

VI. CONCLUSION

We have performed the first Monte Carlo based QCD
analysis for parton to hadron fragmentation functions
within collinear factorization, using all existing single-
inclusive eþe− annihilation data into pions and kaons. In
particular, we include the recent high-precision SIA data
from the Belle [38,39] and BABAR [40] Collaborations,
which significantly extend the kinematical coverage to
large values of z.
Our analysis is based on the iterative Monte Carlo

approach, first adopted in the recent QCD analysis of
polarized PDFs [11], which provides a robust determina-
tion of expectation values and uncertainties for the FFs. We
further extended this methodology by sampling new priors
from previous iterations using a multivariate Gaussian
distribution, implementing a new strategy for assessing
the convergence of the IMC chain by considering the
covariance matrix of the posterior distributions. This

FIG. 11. Comparison of the JAM fragmentation functions (solid curves) for πþ (red curves) and Kþ (blue curves) with the HKNS [12]
(dashed curves), DSS [10] (dotted curves) and AKK [16] (dot-dashed curves) evolved to a common scale Q2 ¼ M2

Z. Note that the
fragmentation functions DðzÞ are shown rather than zDðzÞ.
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allowed us to sample fairly the parameter eigenspace after
each iteration instead of the posteriors, which can exhibit
several distinct solutions. We find that an accurate repre-
sentation of the FFs can be attained with a sample of
200 fits.
We obtained a relatively good overall description of the

pion and kaon SIA data at both low and high center-of-
mass energies, despite some tensions between the high-
energy DELPHI and SLD pion data sets in the large-z
region. For the kaon data a very good χ2=Ndat ∼ 1 was
achieved, partly because of larger experimental uncertain-
ties and also less evident tensions between data sets.
The shapes of the pion FFs are qualitatively similar to

those found in previous analyses, with the exception of the
unfavoredDπþ

sþ and theDπþ
g distributions. The latter is more

strongly peaked around the maximum at small z values than
either the HKNS or DSS results, while the former has a
somewhat harder z distribution. The kaon FFs, on the other
hand, show greater deviation from the earlier results. Here,
the favored DKþ

sþ function is similar in magnitude to that
from the DSS parametrization [10] for 0.5≲ z≲ 1, but
displays important differences at z≲ 0.5 that stem from the
greater flexibility of the parametrization used in our
analysis. We also find a larger magnitude of the DKþ

uþ FF
at moderate to low z values compared with the DSS fit in
particular. In contrast, the gluon to kaon distribution, which
peaks at very large z values, z ∼ 0.85, but with a very small
magnitude, is consistent with the DSS result. The disparity
between the fitted Dπþ

g and DKþ
g functions is particularly

striking. At energies on the order of the Z-boson mass,
the evolved distributions are much more similar to those of
the previous analyses, with the exception of the Dπþ

g and
Dπþ

sþ FFs.
The partial separation of the FFs for the various quark

flavors has been possible because of the existence of the
tagged flavor data and the Q2 dependence of SIA cross
sections, from low Q ∼ 10 GeV up to the Z-boson mass,
selecting differently weighted combinations of FFs in the γ
and Z-exchange cross sections. To further decompose the
quark and antiquark FFs, and better constrain the gluon
fragmentation, additional information will be needed from
SIDIS and meson production in pp collisions. More
immediately, it will be particularly interesting to examine
the effect of the strange to kaon fragmentation on the
extraction of the polarized strange quark PDF Δs from
SIDIS data. A combined analysis of polarized DIS and
SIDIS data and SIA cross sections is currently in
progress [48].

ACKNOWLEDGMENTS

We are grateful to Hrayr Matevosyan and Felix Ringer
for helpful discussions. This work was supported by the
U.S. Department of Energy (DOE) Contract No. DE-
AC05-06OR23177, under which Jefferson Science

Associates, LLC operates Jefferson Lab, and by the
DOE Contract No. DE-SC008791. N. S. thanks KEK
and J-PARC for their hospitality during a visit where some
of this work was performed. The work of S. K. was
supported by the Japan Society for the Promotion of
Science (JSPS) Grants-in-Aid for Scientific Research
(KAKENHI) Grant No. JP25105010.

APPENDIX A: HARD SCATTERING
COEFFICIENTS

For completeness, in this appendix we give the hard
coefficient functions in Mellin moment space at NLO. For
the quark case, the NLO coefficient is [13,49]

eHð1Þ
q ðN;Q2; μ2R ¼ Q2; μ2FFÞ

¼ 2CF

�
5S2ðNÞ þ S21ðNÞ þ S1ðNÞ

�
3

2
−

1

NðN þ 1Þ
�
−

2

N2

þ 3

ðN þ 1Þ2 −
3

2

1

ðN þ 1Þ −
9

2
þ 1

N

þ
�

1

NðN þ 1Þ − 2S1ðNÞ þ 3

2

�
ln

Q2

μ2FF

�
; ðA1Þ

while the gluon one has

eHð1Þ
g ðN;Q2; μ2R ¼ Q2; μ2FFÞ

¼ 4CF

�
−S1ðNÞ N2 þ N þ 2

ðN − 1ÞNðN þ 1Þ −
4

ðN − 1Þ2 þ
4

N2

−
3

ðN þ 1Þ2 þ
4

ðN − 1ÞN þ N2 þ N þ 2

NðN2 − 1Þ ln
Q2

μ2FF

�
; ðA2Þ

whereCF ¼ 4=3. Here the harmonic sums S1ðNÞ and S2ðNÞ
can be written in terms of the Euler-Mascheroni constant γE,
the polygamma function ψN , and the Riemann zeta function
ζ, analytically continued to complex values of N [49],

S1ðNÞ ¼
XN
j¼1

1

j
⟶ γE þ ψ ð0Þ

Nþ1; ðA3Þ

S2ðNÞ ¼
XN
j¼1

1

j2
⟶ ζð2Þ − ψ ð1Þ

Nþ1; ðA4Þ

where the mth derivative of the polygamma function ψ ðmÞ
N is

given by

ψ ðmÞ
N ¼ dmψN

dNm ¼ dmþ1 lnΓðNÞ
dNmþ1

: ðA5Þ
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APPENDIX B: TIMELIKE SPLITTING
FUNCTIONS

The Nth moments of the splitting functions in the
timelike region, up to Oða3sÞ corrections, can be written
for the general case when μR ≠ μFF as [43]

PijðN; μ2R; μ
2
FFÞ ¼ asðμ2RÞPð0Þ

ij ðNÞ þ a2sðμ2RÞ

×

�
Pð1Þ
ij ðNÞ − β0P

ð0Þ
NSðNÞ ln μ

2
FF

μ2R

�
; ðB1Þ

where β0 ¼ 11 − 2nf=3. At leading order the timelike
splitting function moments are given by the well-known
expressions [50,51]

Pð0Þ
NS� ¼ Pð0Þ

qq ¼ −CF

�
4S1ðNÞ − 3 −

2

NðN þ 1Þ
�
; ðB2aÞ

Pð0Þ
qg ¼ 4nfCF

N2 þ N þ 2

NðN − 1ÞðN þ 1Þ ; ðB2bÞ

Pð0Þ
gq ¼ N2 þ N þ 2

NðN þ 1ÞðN þ 2Þ ; ðB2cÞ

Pð0Þ
gg ¼ −CA

�
4S1ðNÞ − 11

3
−

4

NðN − 1Þ −
4

ðN þ 1ÞðN þ 2Þ
�

−
2nf
3

; ðB2dÞ

where CA ¼ 3. Note that our notation for the off-diagonal

timelike splitting functions Pð0Þ
qg and Pð0Þ

gq is opposite to that
in Ref. [52].
At NLO accuracy, the timelike splitting function

moments are given by [50,52,53]

Pð1Þ
NS� ¼ −C2

F

�
8S1ðNÞ ð2N þ 1Þ

N2ðN þ 1Þ2 þ 8

�
2S1ðNÞ − 1

NðN þ 1Þ
��

S2ðNÞ − S02�

�
N
2

��

þ 12S2ðNÞ þ 32~S�ðNÞ − 4S03�

�
N
2

�
−
3

2
− 4

ð3N3 þ N2 − 1Þ
N3ðN þ 1Þ3 ∓ 8

ð2N2 þ 2N þ 1Þ
N3ðN þ 1Þ3

�

− CACF

�
268

9
S1ðNÞ − 4

�
2S1ðNÞ − 1

NðN þ 1Þ
��

2S2ðNÞ − S02�

�
N
2

��
−
44

3
S2ðNÞ − 17

6

− 16~S�ðNÞ þ 2S03�

�
N
2

�
−
2

9

ð151N4 þ 236N3 þ 88N2 þ 3N þ 18Þ
N3ðN þ 1Þ3 � 4

ð2N2 þ 2N þ 1Þ
N3ðN þ 1Þ3

�

−
1

2
nfCF

�
−
80

9
S1ðNÞ þ 16

3
S2ðNÞ þ 2

3
þ 8

9

ð11N2 þ 5N − 3Þ
ðN2ðN þ 1Þ2Þ

�
þ Δð1Þ

NS; ðB3aÞ

Pð1Þ
qq ¼ Pð1Þ

NSþ þ nfCF

�ð5N5 þ 32N4 þ 49N3 þ 38N2 þ 28N þ 8Þ
ðN − 1ÞN3ðN þ 1Þ3ðN þ 2Þ2

�
þ Δð1Þ

qq ; ðB3bÞ

Pð1Þ
gg ¼ −

1

2
nfCA

�
−
80

9
S1ðNÞ þ 16

3
þ 8

9

ð38N4 þ 76N3 þ 94N2 þ 56N þ 12Þ
ðN − 1ÞN2ðN þ 1Þ2ðN þ 2Þ

�

−
1

2
nfCF

�
4þ 8

ð2N6 þ 4N5 þ N4 − 10N3 − 5N2 − 4N − 4Þ
ðN − 1ÞN3ðN þ 1Þ3ðN þ 2Þ

�

− C2
A

�
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9
S1ðNÞ þ 32S1ðNÞ ð2N
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32

3

þ 16S02þ
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N
2

� ðN2 þ N þ 1Þ
ðN − 1ÞNðN þ 1ÞðN þ 2Þ − 8S1ðNÞS02þ

�
N
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�
þ 16~SþðNÞ − 2S03þ

�
N
2

�

−
2

9
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2
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ð560N2 þ 1488N þ 576Þ
ðN − 1Þ2N3ðN þ 1Þ3ðN þ 2Þ3

�
þ Δð1Þ

gg ; ðB3cÞ

NOBUO SATO et al. PHYSICAL REVIEW D 94, 114004 (2016)

114004-18



Pð1Þ
qg ¼ 2nfC2

F

��
S21ðNÞ − 3S2ðNÞ − 2π2

3
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where the terms

Δð1Þ
NS ¼ C2

F

�
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��
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are present specifically for the timelike functions [52]. In
Eqs. (B3) the sum

S0m�

�
N
2

�
¼ 2m−1

XN
j¼1

1þ ð−1Þj
jm

ðB5aÞ

has the analytic continuation
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�
N
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; ðB5bÞ
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with

S3ðNÞ ¼
XN
j¼1

1

j3
⟶ ζð3Þ þ ψ ð2Þ

Nþ1; ðB6Þ

~S�ðNÞ ¼ −
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S1ðNÞ
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−
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ðψ ð0Þ
ðNþ1Þ=2 − ψ ð0Þ
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�
;

ðB7Þ

Gð1ÞðNÞ ¼ ψ ð1Þ
ðNþ1Þ=2 − ψ ð1Þ

N=2: ðB8Þ
The last term in Eq. (B8) involves an integral over the
dilogarithm function,

LiðNÞ≡
Z

1

0

dxxN−1 Li2ðxÞ
1þ x

; ðB9aÞ

and can be approximated using the expansion [49]

LiðNÞ ≈ 1.01
N þ 1

−
0.846
N þ 2

þ 1.155
N þ 3

−
1.074
N þ 4

þ 0.55
N þ 5

:

ðB9bÞ
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