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We provide analytical results for the O(a;) corrections to the double-spin density matrix elements in the
reaction eTe~ — 17. These concern the elements I/, It, In, tt, tn, and nn of the double-spin density matrix
elements where /, ¢, n stand for longitudinal, transverse and normal orientations with respect to the beam
frame spanned by the electron and the top quark momentum.
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I. INTRODUCTION

The measurement of polarization effects in top and
antitop quark events produced at ete™ colliders is very
interesting in that one can test the details of the Standard
Model production and decay mechanisms of the produced
top-antitop quark pairs and their decays. In addition such
measurements can be used to constrain deviations from
Standard Model couplings [1-4]. While single-spin polari-
zation effects are not observed for hadronically produced
top quark pairs as at the LHC due to parity conservation [5],
single-spin polarization effects are present in e e~ colliders
due to the existence of parity-violating components in the
production mechanism [6]. Parity conservation in the
production mechanism for the top and antitop pair, how-
ever, allows for spin-spin correlation effects between top
and antitop quark spins as at the LHC. The analysis of spin-
spin correlations of top quark pairs has become a very
popular subject in the last few years (see e.g. Ref. [7]).

The top quark retains its polarization at birth when it
decays because its lifetime is so short that it decays before
hadronization can wash out its polarization. Therefore,
polarization effects at the envisaged e*e™ colliders ILC and
CLIC should help to find new physics. Of interest is also
the role of quark mass effects in the production of quarks
and gluons in e" e~ annihilations. Analytical results for the
O(a,) radiative corrections to longitudinal single-spin
polarization including quark mass effects can be found
in Refs. [8—12], and corresponding results for the transverse
and normal polarization components can be found in
Ref. [13]. In Refs. [14-16] analytical results for the
O(a,) radiative corrections to longitudinal spin-spin cor-
relations between massive quark pairs can be found.

The aim of this paper is twofold. On the one hand we
provide an independent check of the numerical next-to-
leading-order (NLO) results presented in Refs. [17,18]. On
the other hand we provide analytical results for the O(a,)
radiative corrections to the transverse and transverse
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normal spin-spin correlation asymmetry (called transverse
and normal spin-spin asymmetry for short) and its polar
angle dependence for massive quark pairs produced in
e"e” annihilations.

To define and measure single-spin and spin-spin corre-
lation observables requires the definition of one or two
coordinate systems in the top quark and antitop quark rest
systems. Several coordinate bases have been proposed in
Ref. [19], namely the helicity basis, beamline basis and off-
diagonal basis. As advised in Refs. [17,18], in this paper we
use a common basis for both top and antitop quark
observables. As the z direction lies along the direction
of the top quark, for the top quark this basis can be referred
to as the helicity basis. However, two linearly independent
directions are necessary to build a frame. The beam frame
used here is spanned by the momenta of the electron and
quark. Leading-order results for spin-spin correlations in
this frame have been given in Ref. [19] while numerical
results for the O(ay) radiative corrections can be found in
Refs. [17,18]. However, it is not really necessary to choose
a common reference frame for the top and antitop rest
frames. For example, in Refs. [15,16,20] the respective
helicity systems for the top and antitop were chosen which
are not necessarily anticollinear at NLO. Still, the
differences are marginal because the mean deviation from
the anticollinearity due to O(a;) corrections is small [21].

In performing these calculations in the beam frame
spanned by the momenta of the electron and the quark,
it turned out that the integrals necessary for the phase space
integration are quite similar to those used by us in former
calculations [8—16] (see also Ref. [22] for the mathematical
background). Calculations performed in the event frame
spanned by the top, antitop and gluon including also elliptic
integrals will be found in a separate publication [23].

In the course of this paper we also explain how to
measure the spin-spin correlation (see e.g. Refs. [24,25]).
As in the corresponding hadronic case [26-29] we inves-
tigate spin-spin correlation effects through
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(1) the double angle distribution’

1 do
odcosfdcosb,

1
= Z(l + B cos@; — B, cos, — Ccos O cosb,),
(1)

where 6, and 6, are the angles between a fixed
direction given by the basis used and the direction of
flight of the charged lepton in the rest frames of the
top and antitop quark, respectively, and

(2) the opening angle distributions

ldo 1
ad¢_4(1 Dcos ), (2)
where ¢ is the angle between the directions of flight
of the charged leptons in the rest frames of the top
and antitop quark, respectively.
In Refs. [26-29] Bernreuther and coworkers dealt with the
subject of top-antitop spin-spin correlations at hadron
colliders. They introduced a variety of spin-spin observ-
ables and gave detailed prescriptions of how to measure
these observables.

The paper is organized as follows. In Sec. II we deal with
the double-spin density matrix, we specify quantization
axes and introduce observables. In addition, we explain
how these observables are related to angular dependences
measured in subsequent particle cascades. In Sec. III we
introduce our analytical O(«a,) results which are found in
Appendices A and B. The dependence of the observables
on the center-of-mass energy, the polar angle and the initial
beam polarization are discussed in Sec. IV. Section V
contains our conclusions.

II. THE DOUBLE-SPIN DENSITY MATRIX

Polarization observables are best described in terms of
the spin density matrix. The two spin states of a spin-1/2
fermion are denoted by |4 = £1/2). The two spin states
are eigenstates of the spin operator J, in a given frame. The
coefficients of the normalized spin density matrix p are
given by superpositions of the elements |1) (A'|. In a moving
frame one has the completeness relation

pmp= Y 1. (3)

J=+1/2

One can represent the two spin states as components of a
two-dimensional Pauli spinor which implies that one can

'For hadronically produced top-antitop quark pairs the single
angle coefficients B; and B, vanish at LO due to parity
conservation of the strong interactions.
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parametrize the (normalized) s%)in density matrix in terms
of Pauli matrices according to

N A 1 in
p=Py) = E(ﬂ + P'6;), (4)

where P = (P) is the three-dimensional polarization
vector. The expectation value of an arbitrary operator O
is obtained by calculating the trace, (O) = Tr(pO).

Next we introduce the double-spin density matrix which
is needed for the discussion of spin-spin correlation effects.
Given a quantization axis for the observation of single-
spin polarization and spin-spin correlation effects in e e~
collisions, the 4 x 4 un-normalized double density matrix
p is parametrized by expanding the density matrix along
outer products of the standard set of 2 x 2 matrices. One
has

p= (ﬁzlzz.m;)
1 i A SJ ~ VN ~
=PI ®T+05; @ 1+ p21 @8, + 176, ®6))
(5)

where the outer product symbol @ denotes the tensor
product between the spin states of the top and antitop
quarks according to (A®B), ;, 22, =As1 B, The labels
A1 (4)) and 4, (45) denote the two spin states of the top and
antitop quark, respectively.

A. Quantization axes

Given a quantization axis for each spin degree of
freedom represented by the two orientation vectors e,
and ,, the coefficient functions p, pi, p® and p°%
denoting the rate function, the un-normalized single-spin
polarization components of the top and antitop quarks, and
the double-spin correlation component, respectively, can be
projected from Eq. (5) by tracing the appropriate products
of pwith T® 1, ¢i6; ® 1, 2)1 ® 6; or e}e,6; ® 6;. One
obtains

p=p1.1)+p(t. ) +p(. 1) +p(. 1)
pr=p( 1) +p(1 ) —p(L 1) =P 1),
pe=p(t. 1) =p(. ) +p. 1) =p(. 1),

pie=p(1. 1) =p(1 1) =L 1) + oL 1) (6)

where 1 and | represent the two orientations with respect
to the quantization axes. For the production process
ete™ — 11(G), the contributions on the right-hand side
of Eq. (6) are given by

’In order to distinguish between the Pauli matrix and cross
section, we use the symbol & for the former.
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(615 = Te(p3 (145, 6 @ (145 -6))
4 4
e"N,
= o Z giiLi, HW =T ;| (7)

defining the spin dependence of the squared matrix element
|T fl~|2 of the production process, where ¢ is the momentum
carried by the intermediate boson (y or Z). The multi-
component overall factor e*N.g; i/ g* incorporates the
boson propagator effect and the multicomponent electro-
weak coupling factors g;; which includes the dimensionless
part of the interactions of the fermions with the bosons
(cf. Ref. [12]). The various components of the lepton tensor
L,"w and hadron tensor H Lv are decomposed according to

L (LVV + LAA) LZ (LVV LAA)7

L3

m|~.w|~
N ’—‘l\)l'—‘

(LVA LAV), L (LVA +LAV) (8)
(and accordingly for the H') where V and A denote the
vector and axial-vector contributions. The double density
matrix can now be expanded into the tensor product of two
bases. In Ref. [17] the directions of the top quark (lAc), the
electron momentum (p) and a normalized vector (i)
perpendicular to these two has been used for both bases.
These two bases need not be the same. For convenience of
the phenomenological calculation of the double density
matrix via p(s,5,), we choose as bases the bases
(s7,5N,5E) of the two spins s; (i =1, 2) boosted to the
laboratory frame. The respective rest frame spin vectors are
given by

51 =(1,0,0), =(0,1,0), = (0,0,1),
5T = (cos6,,,0,—sinb},), 5 =(0,1,0),
55 = (sin@y,,0,cos0},), (9)

where 6, is the polar angle between the momenta of the
top and antitop quarks. At the Born term level one has
01, = 7. One obtains the double expansion

(p(1 ® 1) + (75T + psi¥ Gi®1)

+ (o7 + syl )(1® )

TT iT JT TN iT (JN TL .iT JL
+ (p"si' sy +p Nsisy + p" st s

+ps

Bl

ﬁ:

+pNT iN JT +pNN iN JN +pNL iN /L
+pLT iL g IT +pLN iL JN +pLL iL ]L)(O'i ®8'j)).
(10)

The relation between the un-normalized double-spin den-
sity matrix and the differential cross section is given by
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I | S
do(s1,52) = =5 p(51.5,)dPS. (11)
2q

For a two-particle final state as in e*e™ — 7 the Lorentz-
invariant phase space dPS is given by

=" dcosé. (12)

dPS
27 16n

where v = /1 =&, &= 4m?/q?, and @ is the polar angle
between the momenta of the electron and the top quark. For
the three-particle final state /7G one has two additional
integration parameters y:=1—2(p,q)/¢* and z:=1-

2(p2q)/4* q which are related to the energies E, =

219/ q* and E, = p,q/+/q* of the top quark and the
antitop quark in the laboratory frame. In terms of the

parameters y and z the three-particle phase space reads

2

q
dPSy = —+——
> 32(27)

dydzd cos Ody, (13)

where y is the azimuthal angle between the beam plane
spanned by the electron and the top quark, and the event
plane spanned by the top quark and the antitop quark
(or gluon).

B. Observables

We loosely refer to the single-spin polarization vectors
and the spin-spin correlation tensors as observables even if
the observability of these objects needs to be specified by
e.g. their subsequent decay distributions. We shall return to
this point in the next subsection.

Following Refs. [17,18] we define the observables

€1e; €]
Oelez:do ’ e]_do

do - do’

(14)

where ¢, and ¢, now are elements of the same frame, for
which, as in Refs. [17,18], we choose the top quark rest
frame. Differing from Refs. [17,18] we use an orthonormal
basis in the top quark rest frame. As in Ref. [30] the three
orthonormal basis vectors are defined by

;= (ﬁe'xﬁt>xﬁt A= ﬁe"xist 7— pt
|(Pe- X Pr) X Pyl |Pe- X Dol 1P
(15)

The three orthonormal basis vectors (?,ﬁj) define our
right-handed orthonormal frame. In order to check on the
results of Refs. [17,18] we have also worked in the

nonorthogonal frame (lAc b, i) employed in Ref. [17] where
k=1and p=p,/|p.|. Our unit vector 7 can be seen
to be a linear superposition of the unit vectors k and p
given by
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lAccose—i?

= -
sin @

(16)
Returning to Eq. (14), the numerators in Eq. (14) are
calculated according to

1

1 1 i 1
dot1e = 2—q2Tr<ﬁei§8l ® eé§3j>dPS = 2—q2pele2dPS,

(17)
A 1
do®! :2—(]2Tr p61§0i®]] dPSIz—qu 1dPS. (18)

The unpolarized rate in the denominators of Eq. (14)
provides for the appropriate normalization and can be
calculated according to

1 1
do = ﬁTr(pﬂ ® 1)dPS = 22 dPS: (19)

The phase space element dPS is rather symbolic and stands
for a generic phase space element that remains after single
or multiple phase space integrations. Summing up events in
terms of polarization degrees according to the three
quantization axes along 7, 7 and 2, one obtains contributions
to a correlation matrix. This, however, is still not the
quantity observed in the experiment. The polarization
unveils itself rather by angular distributions of the sub-
sequent decays of the top and antitop quarks.

C. Polarization analysis via subsequent cascade decays

In this subsection we discuss two measurements that
allow one to analyze two particular linear combinations of
the spin-spin coefficient functions. These measurements
employ the inclusive semileptonic decays #(1)/7(1) —
£t/¢~+ X derived from the dominant decays ¢ —
b¢*v, and T — bf~0, and require the reconstruction of
the momentum directions of the charged leptons in the
respective top/antitop rest frames.

There are two ways to analyze the polarization of the top
quark. The first is to treat the decay r —> b+ W' (= ¢+ +v)
as a cascade decay process [31-33]. The second way is to
analyze the polarized top decay directly in the top quark
rest frame [34]. We shall use the second possibility as has
also been done in Ref. [26]. In our theoretical analysis we
work in the narrow-width approximation for the top and
antitop quarks which is well justified since the top quark
width is much smaller than its mass. In order to describe the
spin dependence of the cascade decays ete™ — t(— b+
£t +uvy)+H— b+ +0,) we employ the density
matrix formalism of Ref. [26]. The whole cascade process
is written in product form in terms of the production density
matrix and the two decay density matrices. The absolute
square of the matrix element for the cascade process
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including the spin-density matrices p(7) and p(7) for the
decay of the top and antitop quark, respectively, is propor-
tional to the trace

Tr(p(17)(p(1) ® p(7))) = Paa, (D)Paay.a, (16)Di s, (7).
(20)

where p(77) is the double density matrix calculated in
this paper.

The spin-density matrices for the two decaying top and
antitop quarks are given by

20 ="2 (1 + a(0a )
20 =22 (1~ a(r)ay - 5), o)

where p(f) and p(7) are the partial widths of the corre-
sponding decay channel for the decay of the polarized top
and antitop quark, respectively, and a(¢) and a(7) are the
analyzing powers of the corresponding decay for the top
and antitop spin, respectively, along the flight directions
of the analyzing decay particles given by their three-
momentum vector directions ¢; and g, in the rest frames
of the top and antitop quark, respectively. If the decay
channels are charge conjugate to each other as in our case
for the top and antitop quark, the partial widths and the
analyzing powers are equal, p(7) = p(t) and a(7) = a(1).

The analyzing power of the final state lepton has been
analyzed in Refs. [35-37] including radiative corrections.
The Born term analyzing powers of the three final-state
particles in the decay #*, b and v, have been summarized
in Table 3 in Ref. [38]. The LO spin analyzing power in this
decay was found to be 100% if one uses the momentum of
the charged lepton as the analyzer. Because the decay
t(1) = b¢"v, has the same flavor structure, the result of
Ref. [38] can be carried over to the present case. Let us
define unit vectors g, in the direction of the charged leptons
(i =1, 2 stand for #*, £7). These unit vectors can be

expanded in the frame (7, 71, 2) to obtain
4; = 19} + hq} + lq|
= 7sin@; cosy; + Asin; siny; + lcosO;, (22)
where 6, is the polar angle and y; is the azimuthal angle of
the respective charged lepton in the rest frames of the top

and antitop quark. The calculation of the trace in Eq. (20)
results in

P P p P P
p(0)? (P +Y Pl =Yty = pthia) %’)-
i J i.j

(23)
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If only the polar angles 0, are observed, the integration over
the nonobserved azimuthal angles y; normalized by (27)~!
results in

p(1)2p(1 + (O cos 0 — (O') cos @, — (O) cos 0, cos 0,),

(24)

where (- - -) denotes integration over the whole phase space.
It is apparent that one can measure the observables (O') and
(O"y by analyzing the polar angle dependence of the
inclusive decays #(1)/7(1) — /¢~ + X. Other single-
spin and spin-spin polarization observables can be mea-
sured by analyzing in addition the azimuthal angular
dependence of the decays #(1)/1(1) - £ /¢~ + X.

The opening angle ¢ between the two charged leptons is
defined by ¢;-g, =cos¢. In order to determine the
opening angle distribution one has to integrate over all
angles except for ¢, i.e. the azimuthal angle y of an
expansion of ¢, in terms of ¢, and two arbitrary
perpendicular directions, and over all angles that determine
the orientation of ¢;. The first normalized integration

results in
L / Tr(p()(p(1) ® (1)) dy
( < ®;(“—Q2 0)))@(
p()

== {Tr(@) +Tr(p(q: -6 1))

—[Tr(p(1®4,-6))— 5))|cosg}.

(25)

Tr(p(q,-6® 4, -

Expanding §; = 7sin, cosy, + fisin 6, siny, + I cos6,
as before, integrating over the solid angle with
dy,d(cos®;) and normalizing by (4z)~!, one finally
obtains

o | TR () ® p(0))drdzid(cosey)

— o1 (1——<<0”> <o"">+<o”>>cos¢). (26)

Therefore, the trace TrO = O + O™ 4 O" of the three-
dimensional correlation matrix in phase-space integrated
form can be determined by measuring the opening angle
distribution. In Ref. [17] this observable was called O,.
Note that because this observable is equally derived from
the trace of p with the tensor product of the spin operator
with itself, the value is equal to 1 at LO and decreases
slightly if we include first-order radiative corrections.
Therefore, the dependence on cos¢ is at most 1/3 of
the integrated contribution.

PHYSICAL REVIEW D 94, 114003 (2016)
III. RESULTS UP TO O(a,)

Before presenting our NLO results derived from the one-
loop and tree-graph contributions, we begin by presenting
the Born term results. Equivalent results have already been
listed in Ref. [17] where, however, a different representa-
tion has been used. The unpolarized Born term contribution
is given by

p = e'N[(1 4 v*cos?0)gy; + (1 = v?)g1p + 20 cos Oguy
(27)

(¢* = 4ra). Replacing g;; = gpc + géc’ 912 = gpc Pé‘

and integrating over cos 6, this result is in agreement with
the well-known result

4ra? 3 — 2
c= 37 NCU< 3 gpt + v? ) (28)

The various single-spin and spin-spin contributions have
been defined in Eqgs. (17) and (18). They can be calculated
using the leading-order form of Eq. (7). One has

E=1-1?)

p= —e4Nc\/Esin O[v cos 0914 + ga1 + ga).

p" = —e*N \/EvsinOgys.

pt=e*N [v(1 +cos’)gy,

+cosO((1 + v?)ga; + (1 = ) gs)]s

p!' = e*Nsin*0(Egy1 + g1a),

p" = p" = e*N_ vsin’g,5,

pl = pl' = —e*N \/E[sin 0 cos 011 + g12) + v'sin Ogay),
P = —e*N 1v*sin’0g,,,

Pl = pin = —e* N v+\/Esin O cos O3,

Pl = e* N [(v* + c0s?0) g, + Ecos*0gy, + 20 cos Ogyy).

(29)

Using Eq. (16), the LO coefficient functions listed in this
subsection can be converted to the corresponding coeffi-
cient functions of Ref. [17].

A. O(ay) loop contributions

The one-loop QCD vertex corrections have been calcu-
lated before in e.g. Refs. [8,12]. They can be expressed in
terms of the two invariants A and B appearing in the
covariant expansion of the matrix element (¢7]j*|0).
They read
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C 1 Azu? 1
ReA — - B5F ——yp+In ﬂ/; 20— (1+2%)In v
4o € m 1—vw
2v —2v 1+
2 . _ . _ 2 _ 2
+(1+v)<L12<1+U) L12<1—1)> 77.'> 3v ln<1_1)>+4v],

i 1 !
““CF<1-02)1n(1+”>, ImB:‘Zﬁu—yZ)n, (30)

-0 v

ReB = —

v

where u is the renormalization scale. The IR singularity is regularized by the parameter ¢ = (4 — D)/2 of dimensional
regularization, Cr = (N> —1)/(2N,) =4/3 for N, =3, and yz = 0.577... is the Euler-Mascheroni constant. The
dimensional IR regularization parameter 1/¢ can be converted to the gluon mass parameter used in the IR regularization
of the tree graph integrations according to

1 Amp?
1nA<—>——yE—|—ln< ﬂl; ), (31)
€ q

where A = mZ/q? is the normalized squared gluon mass. After folding the one-loop corrections with the Born term vertex
function (spins not summed!) one obtains

p=e*N.[(2(1 4 v’cos’0)ReA — v*(1 + 3cos’0)ReB)g;; + (2EReA + v?(3 + cos’0)ReB) g,
—4vcosOlmByy; + 4vcosORe(A — B) guy),
p'" = e*N sin?0[(2EReA + 3v°ReB)g;; + (2ReA — v’ReB)g,],

p" = p" = 2e*N vsin’d[(ReA — ReB)g;3 + ImBg,4].
4

N
= plt = _e e [sin@cos O(2EReA + v’ReB)(g11 + g12) — v(1 + &) sinflmBgy; + vsin O(2EReA + (1 — 3E)ReB) guyl,

p

Ve
P = —e*N v?sin’0[ReBg,; + (2ReA — 3ReB)g;»),
Pl =pit = —¢*N, \/LE [sin@cos O(2EReA + (1 —3€)ReB) g3 + (1 + &) sin@cos OlmBg,, — vsinOImB(gy; + ga )],
p''=e*N.[(2(v* + cos’0)ReA — v*(3 + cos?0)ReB) g, + (2Ecos?OReA + v*(1 + 3cos’0)ReB) g,
—4vcosOlmByy; + 4vcosO(ReA —ReB)gyy). (32)

- 2 _ 2
B. O(ay) tree-graph contributions where Ry, =./(1-y)*=¢ and R, =./(1-2)"-¢&
The gluon momentum p; is given by p3; = g — p; — p».
The sine and the cosine of the polar angle 6,
between the momenta of the top and antitop quark are

According to the Lee-Nauenberg theorem, the IR sin-
gularities of the O(a;) loop calculation are canceled against
the IR singularities appearing in the tree graph calculation.

In Ref. [39] we cut on the hard gluon phase space from given by
above. In this paper we consider the full three-particle
phase space. Let us specify the kinematics of the three-body
decay more explicitly. We work in the laboratory frame 0 — Vayz(1—y—2z) =&y +2)?
with the z axis defined by the top quark momentum Sz = R,R. ’
direction. The four-momenta ¢g and p;, p, read
l-y-z-yz-¢
cosf, = — . (34)

R.R
g =1/4*(1;0,0,0), e
1 2
=3 1_ ;0509R7 )
pir=5\a(1-y v) The

spin  four-vectors satisfy s;p;, =0 and
2

2
1 _ . . . .

Py =~ /qz(l — %R, sin),,0, R, cos6,)  (33) S =- 1. Including a sign for the orientation, they
2 are given by
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:tsf = j%(Ry;0,0, 1—y),

+1
Ve
+sT = +(0;1,0,0),
+s7 = £(0;c080,,,0, —sin6,,),

isllv = islzv = i(0,0, ],O) (35)

:l:Sé‘ (Rz,(l —Z) sin912,0,(1 —Z) 008912),

Finally, the event plane spanned by the momenta of
the top quark, antitop quark and gluon is rotated with
respect to the beam plane which is spanned by the
momenta of the electron and the top quark by an
azimuthal angle y. Viewed from the event plane the
electron and positron have the four-momenta

1
pL = E\/qz(l;:i:cos;(siné, Fsinysinf, Fcosh). (36)
We do not list the explicit forms of the tree-graph
contributions but merely catalog the generic structure
of the integrals that appear in the phase space
integration. The basic integrals have the structure

PHYSICAL REVIEW D 94, 114003 (2016)

Y+ 7 (y) ny, 1.
IMWMMZ/<&/ dzy™ "Ry Rz, (37)
o y- z(y)

where n, ranges from 0 to —4 and n, takes the values 0
and —2. The indices my, m, are limited from below by
my+m, > -2 and my,m, > —2. The integrals with
my +m_, = =2 are IR singular. For the regularization
of the IR singularity at y = z = 0 we use a finite gluon
mass mg = \/A7qZ, such that the phase space limits are

now given by y_ = A+ A y, =1—+/& and

1
() = —— (2y 22 — gy +2Ay +2A

Ty g
+ 2R\ /(v — A)? —Ag). (38)

The subtraction of the singularity is performed by adding
and subtracting an integral with the same singular
behavior but with a simpler integrand. The simplified
integrand is obtained from the original integrand by an
expansion around y = 0. In this expansion, both R, and
R, are replaced by v, leading to the generic diver-
gent parts

N ORE )

- s
Ip(=1,-1) :/A dy1n<zj(y)> ~1, —ln<111—:> In A, (39)

+\/A_§? z2(y)

where £25.(y) = (1 + %)y £ 20/ (y — A)* — A¢ and

(120w 2) 2

) @

The results for the generic divergent parts in Eq. (39) are only accurate up to power-suppressed terms in v/A. Adding and
subtracting these divergent parts (including a corresponding factor v™>""<), the difference between the original integral and
the divergent part turns out to be IR finite. This is equivalent to adding counterterms to the original unregularized integrals.
The counterterms take the form

4y [1-VEd
ID<_270)71D<09_2) _)_/U/ _y’
¢ Jo y

1+ 1-VE dy
IH(—-1,-1 21 —. 41
pl-1.=) = 2m(;E0) [T (41)

After having removed the IR singularities it is not difficult to do the z-integration. One encounters integrals of
the form

1pag.  Ing ln(l—z—%—ﬁ)_ln(l—z—ﬂ)
/Z 1R12dz—1_§+ 204_\/@\/3 2(1_\/5)\/3. (42)

In the subsequent y integration one encounters integrands of the form
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Lo=[ngi).  Le=[n(l-z£ VoL (43)

To do the y integration one uses the substitution

yzl—?(t—i—%) (44)

which allows one to factorize the arguments of the
logarithms, e.g.

dy:—ﬁ<1—tlz>dt, R),:LE(l—t),

w0 = (i5=Vp)
=257 ~(ie=ve)
w0 =G ) = ve)

(45)
Note that for integrals containing L_ the substitution
needs a subdivision of the integration interval [7_, 7]
into two parts, divided by the point #, where

I=v ty = Ve tro=1. (46)

Iy = \/E’ 0 2_\/57

3(4 —20& + £2)cos0) +

OOI»—

pnzNF ((10-&)(2 - 3¢) -

4;

(8 26+ 38 + (44 &)(2 — 5&)cos? )ISO(O) - ?

(14 /&)(2 = 4/E = 38)(1 = 3cos20) 17 (0)

(96 — 8& — 1882 + 383 +

PHYSICAL REVIEW D 94, 114003 (2016)

It came as a surprise to us that in the end the contributions
containing L_ in the integrand cancel (for a discussion, see
Appendix A). One is finally left with three types of integrals

I (n) = / L(t)edr, (47)
1L, (n) = / L(5)(1 £ 1)-dr, (48)

= [ Lo -y d @)

where L stands for L, L or can be skipped if no logarithm
appears in the integrand. Our final results contain only those
integrals (with L =Ly, L, and n = 0) which contain
dilogarithms. All other contributions are at most logarith-
mic. These dilogarithmic integrals, together with the
standard logarithmic integrals, are found in Appendix A.

C. O(a;) total contributions

When one adds the O(ay) loop and tree-graph contri-
butions, one obtains IR-finite results. The list of results is
quite long and they are presented in Appendix B. As an
illustrative example we list the NLO unpolarized rate p =
g11P1 + 912P12 + 9a3Paz + Gaapas Where the coefficients
pij are given by

+ (6 — &)(16 — 28 + 3£%)cos20) 43

(1= /&)(2 +4\/E = 3&)(1 — 3cos?0) 1 (0)

+ 2(1 + 02c0s20) (1 + 02) (2(0) + 1%0(0)) — 4o (£ + f@)}, (50)
p1n = NE 34—” (14 — & — (6 — &)cos?0) + 2 (48 20 — 382 + 3E(4 + &£)cos?0) 3 — = (8 5& 4 3&cos20) 15 (0)

-§(1 — /&)1 = 3cos20) 1" (0 ﬁa +VE)(1 = 3c0s?0) 17" (0)

()0 +1520) - 4l + D). (51)
pa3 = NE[—4zv cos b, (52)
pas = N[=8\/E(1 = \/E) + 16¢, + 4v(2 — 3E) 5

—2(4 = 58)15°(0) + 4v((1 + v*)(T12(0) — 112(0)) — 407 )] cos 6. (53)

The common factor N is given by
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N = N, BEF

54
4rv (54)
which is composed of the overall Born term factor e*N,,
the strong coupling factor ay, the color factor Cr and the
relative three-/two-particle phase space factor (4zv)~!.

IV. NUMERICAL RESULTS AND COMPARISON

In order to check on our analytical results we compare
them with the numerical results of Refs. [17,18]. Using the
same values for the parameters as given in Refs. [17,18], we
reproduce the entries of Table I in Ref. [17] with an
accuracy of 0.2%. We also agree on the various figures
presented in Ref. [18]. We remind the reader that we
employ an orthonormal frame (7,7, 1) instead of the non-
orthogonal frame (IAc b, ) of Ref. [17] and the un-normalized
but orthogonal frame (IAc, Kt 1) of Ref. [18].

A. Polar angle dependence for different energies

In Figs. 1-6 we present our results for some of the
observables defined in Eq. (14). The full set of nine
observables for the correlation matrix can be divided up
into the diagonal elements O", O™ and 0", and a set of
six off-diagonal elements. For the parameters we use the
values [40]

my; =91.1876(21) GeV, TI', =2.4952(23) GeV,
m, = 174.6(1.9) GeV
sin?@y, = 0.23126(5), as(myz) = 0.1185(6),
Gr/(hc)® = 1.1663787(6) x 107> GeV~2. (55)
In Fig. 1 we plot the polar angle dependence of the

dominant diagonal element O". The value is close to 100%
in the forward and backward directions and decreases

slightly with increasing center-of-mass energy +/¢” In

1—1 -05 0 i 0.5 i 11
T T T -
s, IETT T Jos
L NSe T _ - R ]
\\ ......... ///
0.6 S~ " Joe
o} [ ]
04F o4
: e ——400GeV 1
e . S e 500GeV  _1g»
; ——-800GeV ]
e 1000 GeV ]
] S T R IR |\
-1 -05 0 0.5 1
cos 6
FIG. 1. The observable O" as a function of cos @ for different

energies \/¢> = 400 (solid line), 500 (dotted), 800 (dashed), and
1000 GeV (dashed dotted).
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ol ' '—(})..:_s 0 05 L
: VNN
08 /«' > 038
o/
0.6f / 06
o
04f 04
. —— 400 GeV -
oobkd 500 GeV X 02
N ——= 800 GeV -E_\\'-
----- 1000 Gev | RN
=0
cos 6

FIG. 2. The observable O as a function of cos @ for different

energies \/¢> = 400 (solid line), 500 (dotted), 800 (dashed), and
1000 GeV (dashed dotted).

the transverse direction the value falls off to 10% for

V/q* = 400 GeV and only to 70% for \/¢*> = 1000 GeV
while the location of the minimum tends to the backward
direction.

While the depth of the minimum for O decreases with

increasing c.m. energy \/? the situation is reversed for
O'" shown in Fig. 2. In the forward and backward directions
the value is exactly zero, as there is no boost that can turn
the transversal direction into the direction of the quark,
while the maximal value slightly falls from nearly 100%
for \/¢? = 400 GeV to 90% for \/q* = 1000 GeV. The
position of the maximum of O" roughly coincides with the
position of the minimum of O,

The remaining diagonal element O is again exactly
zero in the forward and backward directions. As shown in
Fig. 3, the maximum of the absolute value of this (negative)
observable O™ increases from 10% for \/? =400 GeV

to 70% for \/q> = 1000 GeV, with nearly the same
position of the extremum as for O" and O".

-1 -0.5 0 0.5 1
L L L
L —— 400 GeV 1
04 _ ........ 500 GeV —: 04
.............. —— - 800 GeV
...... 1000 GeV A
é 02 / —0.2
I ST S~o
Fo 7 mimime ~~o
L /et Tl ] = ~~o
//_/ -—._,_.:_:_:==§
0p% 0
[ 1 | |
-1 -0.5 0 0.5 1
cos 6
FIG. 3. The observable O™ as a function of cos @ for different

energies \/¢> = 400 (solid line), 500 (dotted), 800 (dashed), and
1000 GeV (dashed dotted).
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0.5 1
! —0.6
——400GeV ]
........ 500 GeV 04
= ——— 800 GeV _E 02
5 F SwsN T 1000 GeV 3
C-e 10
= —
N ---_._._._..----::': / 02
................... 3-04
* 1-0.6
0.5 1

FIG. 4. (0" + O")/2 as a function of cos@ for different

energies \/g> = 400 (solid line), 500 (dotted), 800 (dashed),
and 1000 GeV (dashed dotted).

Looking at the off-diagonal elements, the values for the
observables 0" and O" are very close, albeit not equal. In
Fig. 4 the mean value (O + O'")/2 of these two observ-
ables is displayed. The value again vanishes in the forward
and backward direction. The sine-type run of the curve for
low energies is again shifted to the backward direction for
higher energies while the absolute values are falling. The
position of the zero crossing coincides again roughly with
the positions of the extrema in the previous diagrams.

In Fig. 5 we show the normalized difference of the two
adjoint nondiagonal elements, (O — O!)/2. Obviously,
the normalized difference vanishes for small energies and

increases to a maximum value of 2.3% for \/? =
1000 GeV. However, for increasing energies the position
of the maximum stays at a nearly constant value of
approximately cos§ = —0.67.

In Fig. 6 the angular dependence of the trace TrO =
O+ O™ + O of the three-dimensional correlation
matrix relevant for the opening angle distribution is shown.
At threshold (and also at LO) the trace is 1 while for higher

-1 -05 0 0.5 1
— | R A
| , rd S . b
ool . ——400GeV o0
| ’_/ N e 500 GeV
N ——— 800 GeV
g\ | il /’ o ‘.\. ..... 1000 GeV
9 i/ \\\ \". ]
o 001 -_fI/ AN 00!
H \\ \'\ E|
! \\\ .\.N
? NS
...................................................... - ¢*‘<~\.,_‘
0 1 1 foeseese.. gooer 0
1 —05 0 0.5 1
cos 6

FIG. 5. (0" —0")/2 as a function of cos@ for different

energies \/q> = 400 (solid line), 500 (dotted), 800 (dashed),
and 1000 GeV (dashed dotted).
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-1 -05 0 05 1
1 ———————r——r——r— 1
f f |
? oos T =095
c -7 =T
o - T ]
+ /// Pl -
o) prad -~
b == /_/ — 400 GeV
I P — 500 GeV
0.9 - ——-800Gev  —09
e e” | L l1000 GeV
-1 ~05 0 05 1
cos 6

FIG. 6. Trace TrO as a function of cos @ for different energies

\V/g> =400 (solid line), 500 (dotted), 800 (dashed), and
1000 GeV (dashed dotted).

energies the value decreases especially in the backward
direction.

B. Dependence on initial beam polarization

The initial beam polarization can be easily implemented by
changing the electroweak coupling factors g;; according to

91j = (L=h_h )gi; + (ho = hy)gs),
94y = (ho—h.)gi; + (1 = h_hy)ga;. (56)

where h_ and & are twice the helicities of the initial electron
and positron beams, respectively [30]. For the normalized
density matrix elements one remains with the single parameter
dependence given by Ref. [30]

h_—h,

=T 57
1—h_h, (57)

P =

It is clear that the two limiting cases P.; = £1 cannot be
realized technically. However, since the polarization effects
are governed by P and not by h. = —h, = F 1, one can
get very close to the limiting cases P.; = F 1 with presently
achievable degrees of beam polarization of ~80% (see the
discussion in Ref. [30]). For example, for h_ = —h, = —0.8
one has P = —0.976. In Fig. 7 we show the dependence of

O" on the polar angle for \/? = 1000 GeV and the values
P = 0, £1. The dependence of the spin-spin correlation on
the initial beam polarization turns out to be much smaller than
the dependence of the single-spin polarization (cf. Ref. [30]).
For O" it amounts to 10% close to cos # = —0.7 while the
single-spin observable can change locally by more than 100%.

C. Comparison with other publications

As mentioned earlier, we have checked that the single-
spin observables are analytically identical to the one
presented in Refs. [11-13]. This by-product in the present
investigation provides a profound cross-check for our
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FIG. 7. The observable O as a function of cos® for \/q> =
1000 GeV and different initial beam polarizations, given by
P eff — 0, :l:l

calculation. Because of the use of different observables, the
results of Refs. [14—16] cannot be directly compared with
O' * On the other hand, we obtain good agreement with the
diagrams presented in Ref. [18].

V. RESULTS IN THE BASES OF
PARKE AND SHADMI

Parke and Shadmi have discussed the case of completely
polarized beams which leads to very simple rate and
polarization formulas [19]. They considered the two cases
LR (h_.=-1,h, =1)and RL (h_ =1, h, = —1). Here
we concentrate on the case LR. Parke and Shadmi have
introduced the chiral electroweak coupling factors f;; and
Jf1r Which can be related to our coupling factors g;; by [30]

frL = Va1 — 914 — gar + Gaa
= Q.0+ lrzl(ve + ac)(vy +ay),
fir = V911 + 914 — 941 — Gaa
= Qle + |ZZ|(1}€ + ae)(vf - af)' (58)
Since the production threshold for top quarks of mass
175 GeV is far above the Z boson pole, we neglect the Z
width and we have therefore dropped the contributions of

the coupling factors g3 23, 93132 and gs4.43. For the case LR
one has the following replacements:

911 = 2911 — 295 = fi, + fige
912 = 2912 =294 = 2f11.f 1R

914 = 2014 — 2944 = _(f%L _f%R)’

gar = 294 = 2911 = —(f1L + fir),

942 = 2940 — 2912 = —2f o[ LR

Gaa = 2044 — 2914 = f%L —f%R~ (59)

’In Refs. [14-16], p-L has been investigated.

PHYSICAL REVIEW D 94, 114003 (2016)

For some frequently occurring linear combinations one
obtains

(fre + frr)*
g =912 = +(fre = fLr)*
9a1 + 9ao = —(frr + frr)*
—( )

9a1 — 9ar = —(frr — frr 2. (60)

g+ 92—+

Using the abbreviations (v = /1 — 4m?/q%)

Arr = frr(1+wvcos8) + frr(1 —vcosh),

T =sinOV1—v*(fr + frr)

L= fr;(cos@+v)+ frr(cosd —v), (61)
where A%R == T2 + L2 + 4fLLfLszsin26 and
(1 £cos0)*(fr(l£0) + frr(l F v))* = (Ag £ L)
()

we shall present our Born term results on the single- and
double-spin density matrices in two different coordinate
systems. These are the helicity basis and the off-diagonal
basis introduced in Ref. [19].

A. Helicity basis
Rewriting the Born term results of Sec. III in terms of the
chiral coupling factors f;; and f;r, the nonvanishing
contributions are given by
p=+e'N(T? + L* +2f  fLrv*sin®d),

pt=+e*N.TAg,

pl = _e4NCLALR’

p' = +e*No(T? + 2f L fLrvsin*0),

pll — plt — —€4NCLT9
Pt = —2e*N v*sin®0f .1 f 1
Pl = +e* N (L? + 2f 1 frrv*sin’0). (63)

From the single-spin density matrix elements p’ and p’ one
can calculate the angle between the polarization vector of
the top quark and the direction of the top quark. For
definiteness we call this angle 0; . One has

Sil’leLR _ ,Dt _ TALR _Z (64)
COS GLR pl LALR L ’

We shall see that the direction of the polarization vector of
the top quark defines the z direction of the off-diagonal
basis of Parke and Shadmi.
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In order to check on our results we calculate the rates
p(1.1), p(1.1), p(L. 1) and p(1, 1. Note that Parke and
Shadmi have defined the quantization axes as the momen-
tum axes of the top and antitop quark, respectively.
Therefore, the second arrow has to be reinterpreted to fit
with our convention. Using both conventions, at the Born
term level one obtains

PHYSICAL REVIEW D 94, 114003 (2016)

plir7) = p(h, 1) = 3 (0 + pt = = pi®)
1

1
=7 (p=p") = Z€4NcT2» (65)

and p(1,7)) = p(l.1) = p(t. 1) = p(1;7;) since pt =
p’2 = pl. Furthermore, one obtains

p(ty1y) =p(1.1) = %(p +pl 4R+ pht) = %(p +2p' 4 p'")
= L EN((1 = c0s02(F1i(1 = 0) + gl +)P)
p(t1y) =p(l. ) = %(P —pli=pl 4 pht) = %(p —2p' +p")
= 2 N1+ 0802 (F1. (14 ) + frall =) (66)

where we have used the relation (62). All rates agree with
the results of Parke and Shadmi.

B. Off-diagonal basis

Parke and Shadmi have introduced an off-diagonal
basis by demanding that the rates p(t474) and p(t7))
vanish in that basis. We show that this demand leads to
the condition that the angle 0, between the helicity
basis and the off-diagonal basis is determined by
Eq. (64). Let us consider the rate p(#47;)" in the off-
diagonal basis”

e! =cosf ge! +sinf; ge’,

e’ = —sin@, e + cos O, ge'. (67)
Using the spin projection formula (17) and Eq. (65), at
the Born term level one has

_ 1 .
p(tyty) = 1 (p = cos?Ogp" — sin*O gp"
— 2sin HLR COS HLRpl’)

1
= Ze4NC(L sin@; g + TcosOrz)>.  (68)

Therefore, the condition p(#47;)' =0 defines the off-
diagonal basis via the condition L sin@; p + T cos 0, = 0.

C. O(ay) corrections

Parke and Shadmi [19] expressed their expectations that
radiative corrections to their analysis of spin-spin correla-
tions in ete~ annihilations are small. An attempt to

*Note that the direction of the active angle 6,y is opposed to
the direction of the passive angle 6.

|

estimate the effects of radiative corrections were published
in Ref. [20]. However, since the calculation of Ref. [20]
employed the soft-gluon approximation, the results are
incomplete in the sense that spin-spin correlation effects
due to hard gluon emission are missed in such a calculation.
The present paper rectifies this omission.

Going beyond the Born term level, the simultaneous
disappearance of p’ and p(t414)" is no longer granted. In
this case one has to decide which of the two quantities is
used to define the angle 6; ;. Here we decide to define the
angle via the single-spin quantity, as it was done in
Ref. [30]. This definition is physically more transparent.
Furthermore it is also valid for unpolarized or partly
polarized beams. In addition to the polar angle 6;p, an
azimuthal angle y; » has to be defined which points out of
the plane spanned by the electron and top quark momenta.
Actually, this azimuthal angle is already present at the
Born term level if one takes into account the coupling
factors g3 and g43. The angles can be unambiguously
defined by

t 1

sin9LR:p— COSQLR:p—
() + () ()7 + ()
(69)
and
sinypgr = p” )
V) + (") + (01)?

_ (P)* + (') 0
COSXLr \/(pt)Z (") + (pl)z' (70)

In Fig. 8 we show cos 8, as a function of cos@ for the
four center-of-mass energies used throughout this paper.
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-1 -05 0 0.5 1
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FIG. 8. cos#;p as a function of cos@ for different energies

\/55 =400 (red lines), 500 (blue), 800 (green), and 1000 GeV
(purple), at cos @ = 0 distinguishable from top to bottom. While
the color convention is the same as in Figs. 1-6, the line style
distinguishes between Born term results (dashed lines) and O(«,)
results (solid lines).

The Born term result for \/E2~ =400 GeV coincides per-
fectly with the result shown in Fig. 2 of Ref. [19], if we take
into account that £ = —@;; is defined counterclockwise.
Radiative corrections vanish at the boundaries cos @ = 41
and are maximal close to cosd = —0.2 amounting to

absolute changes of —1.0% (1/¢* = 400 GeV), —1.9%
(500 GeV), —3.8% (800 GeV), and —4.4% (1000 GeV).

While the irrelevance of the Z width far from the Z pole
is nicely demonstrated by the fact that the absolute value of
the azimuthal angle y;r at the Born term level is below
0.00035, due to the three-body kinematics of the final state
the value for the azimuthal angle is 2 orders of magnitude
higher if one includes O(a; ) radiative corrections. Note that
xrr 1s an odd function of . Therefore, in Fig. 9 y;p is
shown again as a function of cos 6 only.

-1 -05 0 05 1
0.0l ———————————————————— 001
PN —— 400 GeV
\
ok AN 500 GeV 0
N ——— 800GeV w
AN 1000 GeV et ]
8001 NSO =27 /000
>< L . \\ it ”// o 4
- S
002 N e e —-002
ol s T
-1 -05 0 05 1
cosf

FIG. 9. y;r as a function of cos @ for different energies \/? =
400 (solid line), 500 (dotted), 800 (dashed), and 1000 GeV
(dashed dotted). Born term results are 2 orders of magnitude
smaller and coincide with the abscissa.
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FIG. 10. p(t47;)'/p as a function of cos @ for different energies

\/q*> =400 (solid line), 500 (dotted), 800 (dashed), and
1000 GeV (dashed dotted).

With 0, and y;r at hand, one finally can calculate the
value for p(#47;)". While this value is zero at the Born term
level, with

¢! =sinf, g(cosy ge’ + siny ge") +cos@ e’ (71)

and using Egs. (65) and (17) one obtains

- 1 .
p(tyty) = 1 (p — p"'sin*0 gcos?y
— p"sin?0), gsin’y; g — p'cos?O, x
— 2p™sin’@, p Sin ¥ g COS Y1 r
—2p™*sin @, g cos O, cos y r

—2p"™ sin O cos O g siny; ). (72)

The result for the normalized quantity p(t47,)'/p is

shown in Fig. 10. For \/q? =400 GeV the result is
still very small with a minimum value of 0.005% close to
cosf = 0. The deviation grows for higher center-of-
mass energies, and a maximum is found again close
to cos@ = —0.67 with values of p(#417;)'/p = 1.2% and

1.7% for \/q> = 800 and 1000 GeV, respectively. This
observation again confirms the rigidity of the back-to-
back direction [21].

VI. SUMMARY AND CONCLUSION

We have presented the results of an analytical O(«a)
calculation of polarized top-antitop quark production in
ete™ annihilation within the Standard Model. We have
checked our results against previously available analyti-
cal O(ay) results on single-spin polarization effects as
well as previous numerical O(a,) results on spin-spin
polarization effects which were obtained with the phase
space slicing method. Our results were presented in the
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form of spin-spin density matrices defined in the
respective rest frames of the top quark and antitop
quark. Based on the spin-spin density formalism we
discussed how the spin-spin correlations can be mea-
sured through an angular analysis of the polarized top
quark decays #(1) - bW (- " +v) and the corre-
sponding antitop quark decay. We have briefly discussed
how to generalize our results to the case of polarized
ete™ annihilation which has allowed us to discuss the
O(a,) corrections to the LO maximal spin-spin correla-
tion effects in the off-diagonal basis which were dis-
covered by Parke and Shadmi [19].

Our results have been obtained in the so-called beam
frame defined by the incoming beam electron and the
outgoing top quark. Corresponding O(a;) results for the

|

2

in(

¢ —ln(M), fz—ln<2_\/g>, f3—1n<1+”>.

PHYSICAL REVIEW D 94, 114003 (2016)

so-called event frame spanned by the top-antitop quark and
the gluon will be presented in a forthcoming publication [23].
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APPENDIX A: DILOGARITHMIC INTEGRALS

This appendix contains the standard logarithms and the
dilogarithmic integrals which are the main building blocks
for the O(a,) final results. The logarithms necessary to
write up the results are given by

2(1 4+ V/¢)

7o)

T—o (A1)

VE

The dilogarithmic integrals are given by Eq. (47) for n = 0. A special treatment is necessary for the integral / ,L_" (0) because
this integral is IR divergent. After extracting the divergent part according to the method explained in the main text, one is left
with the subtracted integral
dt dt
t—t, ot

Loy [ Lo(t)dr L+o\ [0/ dt

I,_(O)—[ e 21n<1_v>/ (t—t_+
B 1—v 1+ _ 1—v—+/¢ ,
=) () ()

As the IR divergence is general, the coefficient for this integral is also proportional to the Born term result. As such, one can
resum the contributions from the IR-divergent part of the tree-term diagrams,

() () ()

1—v— /¢
(1-v)?

-0

1_1”7_‘/3> +Liy (2 > (A2)

1 . (1—-v)2\ 1_. (14 v)?
—Li) | -——%5 ) —zLih [ -——F% A3
#5ta(-) (-G -
and the contributions from the IR-divergent part of the one-loop diagrams,
I 14+ . 2v . [ —2v N
I, =In(=2)1 Li,(—— ) -L - A4
L n<4 N1=o) T\ i) 7 (Ad)
to obtain
170(0) = 12 (0) + 1p — 1. (AS)

For the other dilogarithmic integrals there is no need for regularization. Using the known identities for dilogarithms, one
can of course try hard to simplify the expressions in terms of dilogarithms and double logarithms. However, the outcome
is still arbitrary and in general will not justify the effort. Still, we brought the results into a form which is manifestly real,
obtaining
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A o
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S Li %) +Li <#> _ oL, (?) (A6)

~
—
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|
|
c
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~

£
)
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Still, not all of these integrals are independent of each other. Because

"’y=<1 L ! J)m (A7)

t—t_ t—t,

for the standard substitution ¢ = (1 —y — /(1 —y)?> — &)/+/& used in this paper, and

2 dz Zt dz
L= & L= _—_% A8
0 /Z z * /Z 1+ -2 (A8)

using the symmetry of the phase space for 77 pairs, one obtains

1-VE dz
15(0) + 11(0) — 15 (0 / / li\[_zy

1-/E dZ dy L
=1,"(0 21 0), A9
o B = ORI (49)
where for the last step we used
dy 1 2
— = -F—dt Al10
1+ 2y (t:Flit> (A10)

Using Eq. (A9) to eliminate Ifi(O), we obtain the results presented in Appendix B. The relation also takes into account
the integrals with L_(#) which are absent in our case. If such integrals appear in an intermediate step, they can be
eliminated by using the relation

L, 1-/E&
o dy — () — 2 ]L-
/ / 1-VE —zl+\/_ y 1;7(0) = 2177(0). (A11)

The nonappearance of L_(t) is related to the fact that there is no singularity at the upper boundary y = 1 — /&

APPENDIX B: O(«;) RESULTS

In this appendix we present our analytic results for the O(a;) contributions to the correlation matrix in terms of the three

unit vectors 7, 7 and / in the laboratory frame. The detailed results have to be combined with the electroweak form factors
(cf. Ref. [12]) to obtain

PPZ — ZgupP i (Bl)

1, P> € {t,n,1}). The general factor N is given in Eq. . Again, p;!"? is divided up into five different angular
(P, P M. Th 1 f: N is gi in Eq. (54). Agai Z‘PZ is divided i five diff 1
dependences,

! e o
pl}; 1Py :Z(l —+ cos 9),01[;5) +§Sln20p§'ILP'+§COSGp§.lFP2
1 1
+5sin0cos Opjy" + 2 sin Opjjy”, (B2)

where the additional indices stand for unpolarized transverse (U), longitudinal (L), forward-/backward-asymmetric (F),
longitudinal/transverse interference (/), and parity-asymmetric (A) components of the intermediate (y or Z) boson. Our
results read
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