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The decuplet baryons, A, £*, %, and Q~, are studied in nuclear matter by using the in-medium QCD
sum rules. By fixing the three-momentum of the particles under consideration at the rest frame of the
medium, the negative energy contributions are removed. It is obtained that the parameters of the A baryon
are more affected by the medium against the Q~ state, containing three strange quarks, whose mass and
residue are not considerably affected by the medium. We also find the vector and scalar self-energies of
these baryons in nuclear matter. By the recent progresses at the PANDA experiment at the FAIR and NICA
facility, it may be possible to study the in-medium properties of such states, even the multistrange =* and

Q~ systems, in the near future.
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I. INTRODUCTION

The investigations of the properties of hadrons under
extreme conditions have been the focus of much attention
for many years. Such investigations are very important in
the study of the internal structure of dense astrophysical
objects like neutron stars. The formation of neutron stars is
influenced by all four known fundamental interactions.
Hence, understanding of their nature can help us in the
course of unification of all fundamental forces within a
common theoretical framework, which is one of the biggest
challenges for physics. The recent observation of massive
neutron stars with roughly twice the solar mass [1,2] has
stimulated the focuses on the equation of state of the dense
nuclear matter (see for instance [3-6]). However, the
expected appearance of hyperons at about two times
nuclear density, called the “hyperon puzzle,” remains an
unresolved mystery in neutron stars (concerning the
appearance of hyperons in neutron stars, see, for example,
[7,8]). It has also been found that A isobars appear at a
density of the order of 2—3 times nuclear matter saturation
density, and a “A puzzle” exists, similar to the hyperon
puzzle if the potential of the A in nuclear matter is close to
the one indicated by the experimental data [9]. More
theoretical and experimental investigations on the proper-
ties of strange and nonstrange light baryons in a dense
medium are needed to solve such puzzles.

From the experimental side, the bound nuclear systems
with one, two, or three units of strangeness are poorly
known compared to that of the nonstrange states like
nucleons. The large production probability of various
hyperon-antihyperon pairs in antiproton collisions will
provide opportunities for a series of new studies on the
behavior of the systems containing two or even more units
of strangeness at the PANDA experiment at FAIR. By the
progresses made, it will be possible to study the in-medium
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properties of the doubly strange AA-hypernuclei as well as
the multistrange Z~, E*, and Q™ systems in the near
future [10].

From the theoretical side, the effects of a nuclear medium
on the physical parameters of the nucleon have been widely
investigated in the literature (see for instance [11-15] and
references therein). But, we have only a few studies
dedicated to the in-medium properties of hyperons and
decuplet baryons in the literature (for instance, see
[16-22]). In the present study, we investigate the impact
of nuclear matter on some spectroscopic parameters of the
A, ¥, B, and Q- decuplet baryons. In particular, we
calculate the mass and residue as well as the scalar and
vector self-energies of these baryons using the well-
established in-medium QCD sum rule approach. We
compare the in-medium results with those obtained at
p =0 or vacuum and find the corresponding shifts. To
remove the contributions of the negative energy particles,
we work at the rest frame of the nuclear matter and fix the
three-momentum of the particles under consideration.

IL A, =, 2, AND Q- BARYONS
IN NUCLEAR MATTER

In this section we aim to construct sum rules for the
mass, residue, and vector self-energy of the decuplet
baryons and numerically analyze the obtained results. To
this end and in accordance with the general philosophy of
the QCD sum rule approach,we start with a correlation
function as the building block of the method:

M, (p) =i / e ol Tl o O wo) (1)

where p is the four-momentum of the decuplet (D) baryon,
lyro) is the ground state of the nuclear matter, and 77, p, is the
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TABLE I. The value of the normalization constant A;, and the
quark flavors ¢y, g,, g3 for the decuplet baryons.

Ap q1 92 q3
oy 2/3 u d S
A° V1/3 d d u
=* 1/3 S S u
Q- 1/3 s S S

interpolating current of the D baryon. The general form of
the interpolating current for decuplet baryons in a compact
form reads

Mup = Ape™{ (g5 Cr,a5)q5 + (457 Cr,45) 45
+ (457 Cr,q%) a5} (2)

where a, b, ¢ are color indices; C is the charge conjugation
operator; and Ap, is the normalization constant. The quark
content and value of Ap, for different members are given in
Table I [23]. We will calculate the aforementioned corre-
lation function in two representations: hadronic and oper-
ator product expansion (OPE). By equating these two
representations, one can get the QCD sum rules for the
aimed physical quantities.

A. Hadronic representation

The correlation function in the hadronic side is obtained
by inserting a complete set of baryonic states with the same
quantum numbers as the interpolating current. After per-
forming the integral over four-x, we get

(Wwoln,.p(0)|D(p*,5))(D(p*, s)1,.0(0) o)
p*z _ m*DZ

R (3)

I (p) = -

where |D(p*,s)) is the decuplet baryon state with spin s
and in-medium four-momentum p*, mj, is the modified
mass of the decuplet baryon in a medium, and ... indicates
the contributions of the higher states and continuum. The
matrix elements in Eq. (3) can be represented as

(Woln,.p(0)|D(p*, s)) = Apu,(p*,s),
(D(p*. $)1,.0(0)|wo) = 2pu,(p*. ). (4)

where u,(p*, s) is the in-medium Rarita-Schwinger spinor
and 4}, is the modified residue or the coupling strength of
the decuplet baryon to the nuclear medium. Inserting
Eq. (4) into Eq. (3) and summing over the spins of the
D baryon, one can, in principle, find the hadronic side of
the correlation function. Before that, it should be stated that
the current 7, , couples to both the spin-1/2 octet states
and the spin-3/2 decuplet states. In order to get only the
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contributions of the decuplet baryons, the contributions of
the unwanted spin-1/2 states must be removed from the
correlation function. For this aim, we come next with the
following procedure. The matrix element of 7, ;, between
the spin-1/2 and in-medium states can be decomposed as

Wolto(0)]5(P) = (C1pj + Caru(p). (5)

where C; and C, are constants and u(p*) is the in-medium
Dirac spinor of momentum p*. By multiplying both sides
of the above equation with y# and using the condition
Nu.py" = 0, we immediately find the constant C, in terms
of C,. Hence,

Wolno () 2 () = ¢, (— 4

5 , P+ m) u(p®).  (6)
where mj , is the modified mass of the spin-1 /2 baryons. It
can be easily seen that the unwanted contributions of the
spin-1/2 states are proportional to p;, and y,. By ordering
the Dirac matrices as y,# "y, and setting to zero the terms
with y, in the beginning and y, at the end and those
proportional to p, and pj, the contributions from the
unwanted spin-1/2 states can be easily eliminated.

Now, we insert Eq. (4) into Eq. (3) and use the
summation over spins of the Rarita-Schwinger spinor as

1
S S 45) = =G+ m5) 9= S

N

_2pupy | PuYy = Py 7)
3mi} 3mj, '

as a result of which we get

aplp(p - mi)

1
Had
Hm? (P) p*z_m;)z |:glul/_§yﬂyl/
2 p*p* Ko, ok
1y i *puy,,}Jr___' (8)
3mj; 3mj,

To proceed, we would like to mention that the in-medium
momentum and the modified mass can be written in terms
of the self-energies %,, and 5 as Py = DPy— %, and
mj, = mp + 5, where X5 is the scalar self-energy. The
self-energy %, , can also be written in a general form as

Zﬂ,’b‘ = Zv”y =+ Zlvp;u (9)

where %, is called the vector self-energy and u,, is the four-
velocity of the nuclear medium. In the mean-field approxi-
mation, the scalar and vector self-energies are obtained to
be real and independent of momentum and the X is taken
to be identically zero [11,24]. In this context, particles of
any three-momentum appear as stable quasiparticles with
self-energies that are roughly linear in the density up to
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nuclear matter density [11,25]. We perform the calculations
in the rest frame of the nuclear medium, i.e., u, = (1,0),
and at the fixed three-momentum of the D baryon, |p|. We
get

- . — S+ mp)
HHad , = )* /1* (p/ v D
U (Po p) D Dp2+2% —2]?02@—”’12)2

1 2
X Guv — gyy},u - WBQ (p;tpv - 21/‘p/4uu

1
- Zl}uﬂpll + Z%uyuu) + % (pﬂyy

- Zvu;ﬂ/v —Pu¥u + Zvuvyﬂ) e (10)

where po = p - u is the energy of the quasiparticle. After
ordering the Dirac matrices and eliminating the unwanted
spin-1/2 contributions, we get

A
HHI/ad(pO’ Z)) = pop ==
! (Po—Ep)(Po _Ep)
_ngﬂuﬂ]—i_”" (11)

where E, =X, +/|p[*+m}} and E,=%,—/|p|* + m}}
are the positions of the positive- and negative-energy poles,
respectively. One can write the above equation as an
integral representation in terms of the spectral density,

L1 o ApE(py, p)
Mad(p, 5) = — do— 22507 12
Hv (pO p) 2ﬂ'i/_m @ - po ( )

(M9, + Gt

Had

where the spectral density Ap,

(po, p), defined by
Ap2Y(po. P) = Lim,_o: I3 (0 + ie, p)
- (@ — i€, p)]., (13)

is given as
Ap/l;lz?d(po’ Z’) == %j”lﬁ)zg [m*Dg;w + gﬂuﬁ
2y/my +[pf?
- 2179;”14 [5(0) - Ep) - 5(&) - Ep)] (14)
|
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The next step is to exclude the negative-energy pole
contribution by multiplying the correlation function with

— 2 .
the weight function (@ —E,)ev” and performing the
integral over @ from —w, to wy, i.e.,

e, (15)

o

> @0 >
9 (o, ) = / s (o, 7) (-

where @, is the threshold parameter and M? is the Borel
mass parameter that shall be fixed later. After performing
the integral in Eq. (15), the hadronic side of the correlation
function takes its final form in terms of the corresponding
structures,

Hll;ltjid(p()a Z)) = ii)ze_Eg/Mz [mi)gﬂu + Gt — ngﬂvﬂ]' (16)

B. OPE representation

The OPE side of the correlation function is calculated at
the large spacelike region p? < 0 in terms of QCD degrees
of freedom. One can write the OPE side of the correlation
function, in terms of the involved structures, as

N9 (po. p) = 111 (po. P) g + T (po. P) PG
=+ HS(p07 ﬁ)ﬂg;w’ (17)

where the IT,(pg, p) functions, with i = 1, 2, or 3, can be
written in terms of the spectral densities Ap;(py, p) in the
OPE side as

1 o0 Ap; D
/ dw pl(p()’p)’ (18)

Hi(p07p>_2”i ~ W — po

where Ap;(pg, p) are the imaginary parts of ITL;(pg, p)
functions obtained from the OPE version of Eq. (13). The
main aim, in the present subsection, is to find the
Api(po, p) spectral densities, by use of which we can find
the T1;(py, p) functions in the OPE side. To proceed, we
start with the correlation function in Eq. (1). By substituting
the explicit form of the interpolating current for the
decuplet baryons under consideration into the correlation
function in Eq. (1) and after contracting out all the quark
pairs using Wick’s theorem, we get

i . ! / / ! ! /
H!S)IJPEA<p) = geabcea’b’c’ / d4xesz<{252a (x)yusltaib (x)yﬂszc ()C) - 2Sf1b (x)YyS/Za (x)yﬂSﬁc ()C)
+ 48 (x)7,8"5% (x)7,84 (x) 4 2857 (x)y, 84 (x)y, S (x)
— 285 (x)y, S5 (x)7,,89¢ (x) = S5 (x) Tr[SE" (x)7,8'4Y (x)7,.]
+ S5 (X) TS5 (x)7, 89 (x)y,] — 4S5 (x) Tr[S5 (x)7, S5 (x)7,] } )y (19)

114002-3



K. AZIZI, N. ER, and H. SUNDU
2i

PHYSICAL REVIEW D 94, 114002 (2016)

I () = =5 cupecane [ dre (S5 (S (S5 () + S (S5 (St (0

+ 8¢ (x)y, 8" (x) 7,84 (x) + S (x)7, 878 ()7, S5 (x) + S5 (x)y, 82" (x)y,85 (x)
+ S (x)7, 89 (x)7, 82 (x) + S (x)Tr[S5 (x)y, 5% (x)7,]

+ 85 (T[S (1), "¢ (x)7,] + S5 (O Tr[SE (x)7,8'8 (x)7,] )y

(20)

= l . ’ ’ ’ ’ ’ ’
HI(’)EE’_ (p> = geabcea’b’c’ / d4xetpx<{2sga (X)YUS/?b (X)Yusﬁc (X) - 2S§b (X)YUSI;M (x)yﬂS2C (X)

+ 48 (x)y, S8 (x)7,59¢ (x) + 2859 (x)y, 8% (x) 7,2 (x) — 2857 (x)y, 52 (x),,59¢ (x)
— S5 (xX)Tr[S2 (x)7, 84" (x)y,] + S5 (x) Tr[SEY (x)y,8'4 (x)y,]

— 455 (x) Te[S5 (x)7, 8% (x)7,]})

and

N

(21)

H;?I}JE97 (p) = €abc€a'b' ¢! / d4xeipx<{S§a/ (x)yys/?b/ (x)Yﬂvaw/ ()C) - S;‘a’ (x)yuslgbl (x)yﬂSlSlC/ (x)

— S (x)y, "4 (x)y, S5 (x) + S ()7, 854 (x)y,,84 (x) = S5 (%) Tr[S2 (x)y, 8% (x)7,]

+ 85 (TS (07,88 ()7,

where §' = CS”C. Here, S, 4, denotes the light quark
propagator and it is given at the nuclear medium in the
fixed-point gauge as [11]

847 (x) = (wol g (x)g" (0)][wo),,

i a 1 m‘l a 1 a -
=229 Gapt et O)
igS a 1 v v
v Fi,(0)r ”’A? [£o" + oA+ -+, (23)

where py is the nuclear matter density, m, is the light quark
mass, yg and )7’,; are the Grassmann background quark
fields, and F° ,‘;‘y are classical background gluon fields. After
inserting Eq. (23) into Egs. (19)—(22), we obtain the
products of the Grassmann background quark fields and
classical background gluon fields that correspond to the
ground-state matrix elements of the corresponding quark
and gluon operators [11]:

Xaa(X)75(0) = (9ua(¥)G1(0)),, -
F?AFED = <G?/1G5v>pw
xZa;?ZﬂFﬁy = (9aalbpGiuv) py»
and

)(ZGIZ[}ZZ}’)_(Z(S = <Qaaqbﬁq0}/ad§>p[v . (24)

Now, we need to define the quark, gluon, and mixed
condensates in nuclear matter. The matrix element

(22)

|
(94a(X)Gpp(0)) ,, is parametrized as [11]

_ 6a _ _
0000 Oy, =2 | (0}, + (@D,
1 _
+§xﬂxy<qD/4qu>pN +- ) 501/)’

(@i, + @D,

1 _
02 (qrDyDg) p, + ) rf,ﬂ] - (25)

The quark-gluon mixed condensate in nuclear matter is
written as

<gsqaaqbﬂ G;Ijv >/JN
[ _ .
= _9L6b <gsq6 : Gq>pN [6/41/ + l(“ﬂyl/ - uvyﬂ)ﬂ]aﬂ
+ <gsqﬂ6 ’ GQ>pN [G/wﬂ + i(u;ﬂ/y - uyyﬂ)]aﬂ

—4({qu - Du - Dq>pN + im,(qlu - Dq>pN)
X [G/w + 2i(”y7y - uuyu)ﬂ]aﬂ}? (26)

where 4, are Gell-Mann matrices and D, =1 (y,D+
Dy,). The matrix element of the four-dimensional gluon
condensate can also be parametrized as
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5AB
<G?ﬁG/€b>pN = % [<G2>pN (gkugllz - gkug/l/t)

+ O((E* + B?%), )], (27)

where we ignore the last term in this equation because of its

negligible contribution. The different condensates in the

above equations are defined in the following way [11,26]:
(@r.4),, = (qtq),, u,.

(@D,q),, = (qu-Dq), u,=—im,(quq), u,,

_ 4 _ 1
<qyﬂDUQ>pN :§<qﬂu 'DQ>pN (uﬂulz _Zg;w>
i
+§n1q<qq>/),\,(M;t”z/_g/u/)v
_ 4 _ 1
<unDuq>pN :§<C]MDMDq>/)N uﬂuu_zg/w

L,
_8<gsq0" GQ>/1N(M/4MI/ _gyl/>’

<qyﬂDﬂDuq>pN = 2<qﬂl/l ‘Du- Dq>pN
1
|:uxluﬂuy _g (u/lg/w + UyGiw + uygﬂﬂ):|

1
—g<gﬁﬂ0' Gg>pN(l’t/1u;4uu_”igﬂu)7 (28)
where, in their derivations, the equation of motion has been
used and the terms O(m3) have been neglected due to their
ignorable contributions [11].

By substituting the above matrix elements and the in-
medium condensates, after lengthy calculations, we find the
expression of the correlation function in coordinate space.
Using the relation

1 a°t . . B

L(D/2=n) ( I )D/Z—n’

['(n) 2 (29)

pert x 2\ _
I (s0. M%) = 575,
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we transform the calculations to the momentum space.
Then, with the help of the replacement

o))" s

we find the imaginary parts of the obtained results for
different structures called the spectral densities Ap;(pg, p)
in the OPE side in terms of (p?)". After ordering the Dirac
matrices like the physical side, we set p*> = p3 — |p|* and
replace p, with w. In order to remove the contributions of
the negative-energy particles, we multiply the OPE side by

(30)

W2
the weight function (w — E,,)e™» like the physical side and
perform the integral

(31)

> Wo N w2
I, (. ) = / dwhp,(w, B)(w—E,)e 5.

Wo

By carrying out the integration over w, one can find the
I1;(wg, p) functions in the Borel scheme. By using
wy = \/%, with s; being the continuum threshold in
nuclear matter, and making some variable changes, we
find the final expressions of the IT; (s, M?) functions. As an
example, we present the functions IT;(sj, M?) for £*, which
are obtained as

k=6
I0;(s5. M?) = TP (s5. M?) + > T (s5. M%), (32)
k=3

where pert denotes the perturbative contributions and the
upper indices 3, 4, 5, and 6 stand for the nonperturbative
contributions. These functions are obtained as

BE, M \/s§(my + m, + m,)(3M? — 4p* + 253)]e ?

102472

NG

™" (55, M?) = S [E,M>\/s5(3M? — 45> + 257)] e

T8 (5, M?) = 0,

1 /0 3E,(mg 4 m, + mg) BM* —4M>p* +4p*) _
0

T
"y
12807 A s

|

|

e M,

E,(3M* —aM*p* +4p*) _.

e m?

7 :

(33)
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T (sg, M?) =

T3 (s5, M?) =

I3 (s, M?) =

T (s, M?) =

H4(S0’M2)

T3 (s, M?) =

T (s, M?) =

I3 (s, M?) =

T (s5. M%) =

M?\/s; .
7\/2; [(3my + 3my —4my)(u'u), + (3m, +3m;—4my)(d'd), + (3m,+3my—4m,)(s"s)

247 PN

Nlo,,¥

-2E (< +<W>,, (dd),, )le”

+ i / ds— [4E,((diDyiDyd), + (@iDgiDgu), + (5iDyiDys), ) —4E,({dg,cGd),
T

+ (ug,oGuy, + <sgS0Gs>pN) — 12E,(m, + m,)(d"iDyd), —12E,(my+ my){(u'iDou),
- 12E,(m, + mu)(sTiDos>pN - 6E,(myms + mym, — M* + 2]_52)<L_Zd>pN
— 6E,(mymy + mymy — M* + 2p*)(uu) , — 6E,(m,m, + mymy — M* 4+ 2p*)(ss),
+ (12my = 9mg = 9m, )(d"d), + (12m, —9ms —9my)(u'u), + (12m, —9m, —9m,)(s"s)

MZ\/_

3672

S
w2
PN PN ] e M,

(uhu), +(d'd), +(s's),,)

5o 1 _
— ds—[4E,((d"iDyd
+216ﬂ'2/0 S\/E[ p(< 2540} >

+ E,(27Tmg + 2Tmg = 10m,)(au) , + E,(27m, 4 27m, — 10m,)(5s)
—3M*((u'u), +(d'd), (+s's), )e,

+ (u'iDgu), + (s'iDys), )+ E,(27Tm, +27m, — 10m,)(dd),,

PN PN

PN

M? _
\/7 =32( <uJ’iD0u>pN + <dTiD0d>pN + (sTiD0s>pN) - 9E,,(<uTu>pN + <d*d>p

L+ (sTs), )

21672
+ qu(<uu>pN + <dd>pN +(55),,)]
1 . . 3. . a .
1322 ), \/_ [12E,({d"iDgiDod),, + (u'iDgiDou),,, + (s'iDoiDys),, )

+32M*((d"iDyd), + (u'iDou), + (s'iDys), )—8M*mq((dd), + (uu), + (3s), )
—TE,({(d"g,0Gd), + (u'g,0Gu), + (s'g,6Gs), )— E,(54m,m;+ 54m m, —OM?* + 18p*)(d"d)
— E,(54m my + 54mym; — OM* +18p%) (u'u),, — E,(54m,my + 54m, m, — IM* + 18;32)<sTs>pN]e_ﬁ,

1 (Zs(;2 /SS Fp(md +m, + ms) s
dw e M,
12822\ 7 /, Jo W

1 a G2> /SS E, _
g ds—L e 2,
57672 < 7/, Jo NG

PN PN

0, (34)
@ [4mq <STiD0S> + dm <dTlD0d> + 4dm <M%l'D0M>/)N - 4<HlD0lD0d>pN - 4<EiD0iD0S>pN
. . _ - » sk E s
— (wiDyiDyu), —(dg,0Gd), — (59,06Gs), — (ugSO'Gu>pN]A ! dsj%e I
O’
[(d'g,0Gd), + (u'g,0Gu), + (s'g,6Gs) ]/S6 dsEe_ﬁ, (35)
727[2 s PN s PN s PN 0 \/E

13 (55, M?)
T8 (s, M?)
1§ (s, M?)

0
O,
0

(36)
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TABLE II. Numerical values of input parameters.

PHYSICAL REVIEW D 94, 114002 (2016)

Input parameters

Values

id

nmy; mg; Mg

PN

(d' ), (s7s),,
(@q)o (35)0

(G9) > (55),,
(q'9,6Gq), : (s'9,0Gs),
(q"'iDyq),, s (s"iDys),

(

270 MeV [11]
2208, MeV; 4.7°5 , MeV; 961 MeV [27]

(0.11)* GeV? [11,26,28]

3pw; 0 [11,26,28,29]

(—0.241)3 GeV?3; 0.8 (7g), [30]

0.5(m, + my) [11,26,28]

0.059 GeV [31]

0.04 £ 0.02 [32]; 0.066 £ 0.011 £ 0.002 [33]; 0.02(13)(10) [34]
(@4)o + z-pn3 (35)0 + Y 3-py 111,26,28,29.35]

—0.33 GeV2py; —y0.33 GeV2py [11,26,28,29,35]

my(5s)

0.18 GeVpy: ™20 10,02 GeVpy [11,26,28,29.,35]
3mgpy =0; 0 [11,26,28,29,35]

0.8 GeV? [30]

(G9,6Gq)o + 3 GeVpy; (39,6Gs), + 3y GeVZpy [11,26,28,29,35]

PN

; 03y GeVpy — & (50,0Gs), [11,26,28,29,35]

0.031 GeV?py — 5 (ngsan)ﬂN; 0.031y GeV3py — 15 (sTgA.aGs>pN [11,26,28,29,35]

(29,6Gq)o; (59,0Gs)o mg(gq)o: m(5s)o

(q9,6Gq),,;: (59;06Gs),,

(4iDyiDygq),,,; (5iDoiDys),, 0.3 GeV*py —§(q9,06Gq)
(q"iDyiDyq) s (s'iDgiDys),,

(%G, (0.33 £ 0.04)* GeV* [30]
&G?),, (%G?)y — 0.65 GeVpy [11,26,28]

C. Sum rules for physical observables:
Numerical results

Having obtained the hadronic and OPE sides of the
correlation function, we match them to find QCD sum rules
for the mass, residue, and self-energies of the considered
decuplet baryons:

E2
—a
Apmpe i =TI (s5, M?),
EZ
2 —5 _ 2
Aye i =Tl (s5, M?),
2

E)
225, e = T (s5, M2). (37)

Now, we proceed to numerically analyze the above sum
rules in the A%, T* E*, and Q~ channels, both in vacuum
and nuclear medium. The sum rules contain numerous
parameters, numerical values of which are collected in
Table II.

Besides the above input parameters, the QCD sum
rules depend also on two auxiliary parameters that should
be fixed: the Borel parameter M?> and the continuum
threshold s;5. The continuum threshold is not totally
arbitrary and it is correlated with the energy of the first
excited state with the same quantum numbers as the
interpolating currents for decuplet baryons. According
to the standard prescriptions, we take the interval
(mp +0.4)? GeV? < 5 < (mp +0.6)> GeV2. The stan-
dard criteria in calculating the working window of the
Borel parameter is that not only the contributions of the

higher resonances and continuum should be adequately
suppressed, but the contributions of the higher-dimensional
condensates should be small and the perturbative contri-
butions should exceed the nonperturbative ones. These
criteria lead to the following intervals:

1.1 GeV? < M? < 1.4 GeV? for A°
1.5 GeV2 < M? < 1.9 GeV? for T
2.2 GeV? < M? <2.5 GeV? for B*
2.6 GeV? < M? <3.0 GeV? for Q.

Making use of the working windows of the auxiliary
parameters and the values of other inputs, as examples, we

0.8
—_— $0=2.66 GeV?
——————— $,=3.00 GeV?
0.7F e 50=3.35 GeV?
s
[
O 0.6 e eeeeenneeae]
« T P S e Pt Tl ettt
g
0.5+
0.4 . . . . .
110 115 120 125 130 135 1.40
M?(GeV?)

FIG. 1. The in-medium mass of the A baryon as a function of
M? at different fixed values of the threshold parameter s, and
central values of other input parameters.
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0.8+

T

T

T

T

T

0.9 T T T i j
_ 50=2.66 GeV?
_______ 50=3.00 GeV?
0.8 e 50=3.35 GeV? 1
>
©
o
A 0.7 e e e e
TP L L LPLELEERE
*
v d
~ 0.6} ]
0.5 L : . : :
110 115 120 125 130 135 1.40
M?(GeV?)

FIG. 2. The in-medium residue of the A baryon as a function of
M? at different fixed values of the threshold parameter s, and
central values of other input parameters.

plot the in-medium mass mj, residue A}, and vector
self-energy X4 of the A baryon as functions of M? at
different fixed values of the threshold parameter s, and
central values of other input parameters in Figs. 1-3.
From these figures we see that the in-medium mass
and residue as well as the vector self-energy demonstrate
good stability with respect to M? in its working
region. It is also clear that the results very weakly
depend on the threshold parameter s, in its working
window.

In this part, we would like to briefly discuss
the dependence of the results on the values of the
three-momentum of the particles under consideration and
the density of the nuclear matter. We work at zero temper-
ature and, as is seen from Table II, we take the external
three-momentum of the quasiparticles approximately equal
to Fermi momentum, |p| =270 MeV, in the numerical
analysis. However, our numerical results show that the
physical quantities overall do not considerably depend on
this parameter in the interval [0, 0.27] MeV (see Figs. 4-6).
This is an expected result. In the case of nucleons in nuclear
matter, each quasinucleon has its own quasi-Fermi sea;

0.70 T T T : :
e 50=2.66 GeV?
0.65f @ ------- 5)=3.00 GeV2 9
---------- 50=3.35 GeV?
_. 0.60} 1
3
g 0 . 55 L T e L g Ly e gyt
>h|<
0.50 b
0.45} ]
0.40 . . . . .
110 115 120 125 130 135 1.40
M?(GeV?)

FIG. 3. The vector self-energy of the A baryon as a function of
M? at different fixed values of the threshold parameter s, and
central values of the other input parameters.

mj(GeV)

0.0
0.00

015 020 0.25 0.30

1P 1(GeV)

0.05 0.10

FIG. 4. The in-medium mass of the A baryon as a function of
|p| at central values of all auxiliary and input parameters.

hence, the external three-momentum of the quasinucleon is
set at the Fermi momentum at py = 0.16 fm™ =
(110 MeV)? [11,15]. For a similar reason, the external
three-momentum for the quasidecuplet baryons, especially
the strange members, can be easily set to zero. To see
how the results behave with respect to the nuclear matter
density, we show the dependence of the ratio of the
mass and residue of, for instance, the A baryon in nuclear
matter (mj, A) to the mass and residue in vacuum
(mp, Ap), as well as X4 /m} on py/pR', with pi' =
(0.11)> GeV? being the saturation density used in the
analysis, in Figs. 7-9. From these figures we see that
the results depend linearly on the nuclear matter
density.

After numerical analyses of the results for all baryons,
using the values presented in Table II, we find the values of
the masses and residues both in nuclear matter and vacuum.
We also obtain the vector and scalar self-energies of the
baryons under consideration in the nuclear medium. Note
that the vacuum results are obtained from those of the in-
medium when py — 0. The average values for the con-
sidered physical quantities are presented in Table III. The

1.0 T T T T :

g
)
.
.

0.4} ]

x102(GeV?)

A

0.2+ ]

0.0
0.00

015 0.20 025 0.30

IP1(GeV)

0.05 0.10

FIG.5. The in-medium residue of the A baryon as a function of
|p| at central values of all auxiliary and input parameters.
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1.0 T T T T T

0.8+ 1

54 (GeV)

0.0 . . . . .
0.00 005 010 015 0.20 0.25 0.30

IP1(GeV)

FIG. 6. The vector self-energy of the A baryon as a function of
|p| at central values of all auxiliary and input parameters.

errors quoted in this table correspond to the uncertainties in
the calculations of the working regions for the auxiliary
parameters as well as those coming from the errors of other
input parameters.

From this table, first of all, we see that our predictions on
the masses in vacuum are in good consistency with the
average experimental data presented by PDG [27]. The
masses obtained in the nuclear medium show negative
shifts for all decuplet baryons. From the values of the scalar
self-energy (Z3)), demonstrating the shifts in the masses due
to finite density, we deduce that the maximum shift in the
masses, due to the nuclear medium, with the amount of
56% belongs to the A baryon and its minimum, 2%,
corresponds to the Q™ state. This is an expected result
since the A state has the same quark content as the nuclear
medium and is more affected by the nuclear matter. When
going from A to Q~, the up and down quarks are replaced
with the strange quark. The Q~ state, having three s quarks,
is less affected by the medium. The small shifts in the
parameters of €~ may be attributed to the intrinsic
strangeness in the nucleons.

In the case of the residues, our predictions in vacuum
are overall comparable with those obtained in [36,37]
within the errors. The small differences may be linked

0.4r 50=2.66 GeV? RERSTY
-——=-- $0=3.00 GeV? I
0.2r e 50=3.35 GeV? B
oo0L. . ... ...
00 02 04 06 08 10 12 14
onlpR

FIG.7. m}/my versus py/p3d at central values of M? and other
input parameters.
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1.2 T T T T T T j
1.0 ]
ol T
a
<
< 06} ]
<
0.4f $0=2.66 GeV? ]
______ 5p=3.00 GeV?
02 s 5p=3.35 GeV? ]
0.0 . A . L L . *
00 02 04 06 08 10 12 14
Pnlpit

FIG. 8. 24/, versus py/p5dt at central values of M? and other
input parameters.

to different input parameters used in these works. The
values of residues are also considerably affected by
the medium. The shift in the residue of A with an amount
of 46% 1is the maximum. The residue of Q~ again is
minimally affected by the medium with an amount of
roughly 5%.

The value of vector self-energy is considerably large in
all decuplet channels. It is again systematically reduced
when going from the A to the Q™ baryon. Our results
may be confronted with the experimental data of the
PANDA Collaboration at the FAIR and NICA facility.
However, we should state that those experiments corre-
spond to heavy ion collisions and not exactly to a
nuclear medium. Hence, the appropriate way to make
such a comparison would be to present sum rules at finite
density but where the density is introduced through the
baryonic chemical potential. This offers the possibility of
exploring a wide range of densities. We worked with the
nuclear matter density since the in-medium condensates
are available as functions of nuclear matter density, not
chemical potential, and we extracted the zero-density
(vacuum) sum rules, as a means of normalizing the finite
density sum rules, to compare the results with the
available experimental data and other theoretical predic-
tions in vacuum.

0.41 50=2.66 GeV? hmeo ]
—————— 50=3.00 GeV? ety
0.2F e 50=3.35 GeV? 4
0.0 . . . . . . .
00 02 04 06 08 10 12 14
pnlp

FIG.9. X4 /my versus py/pi at central values of M? and other
input parameters.
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TABLE III. The numerical values of masses, residues, and self-energies of A, £*, E*, and Q~ baryons.

s (GeV?) 4 (GeV?) my (GeV) mj (GeV) T4 (MeV) 25 (MeV)
Present study 0.013 £ 0.004 0.007 £ 0.002 1.297 + 0.364 0.571 £0.159 550 + 51 =726

As+ (GeV?) X (GeV?) ms: (GeV) mi. (GeV) 3%, (MeV) 5. (MeV)
Present study 0.024 £ 0.007 0.016 £ 0.005 1.385 + 0.387 0.927 £ 0.259 409 £ 41 —458

Az (GeV?) A% (GeV?) mz« (GeV) mg. (GeV) X2 (MeV) Zé, MeV)
Present study 0.035 £0.011 0.027 £ 0.008 1.523 £ 0.426 1.399 + 0.392 148 £ 15 —-124

Ao~ (GeV?) Ao- (GeV?) mq- (GeV) mg- (GeV) X4 (MeV) Zfz, MeV)
Present study 0.044 £0.013 0.042 £ 0.013 1.668 + 0.467 1.634 +0.457 46 £5 -34
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