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We determine the rates and energy and angular distributions of the positronium decays into a photon and
a neutrino-antineutrino pair, Ps → γνlν̄l. We find that both positronium spin states have access to this
decay channel, contrary to a previously published result. The low-energy tails of the spectra are shown to be
sensitive to the binding effects and agree with Low’s theorem. Additionally, we find a connection between
the behavior of the soft photon spectrum in both o-Ps → γνlν̄l and o-Ps → 3γ decays, and the Stark effect.
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I. INTRODUCTION

Positronium (Ps), the bound state of an electron and its
antiparticle, is a metastable leptonic atom. It is the lightest
known atom and in many ways resembles hydrogen. Like
hydrogen, Ps can form two spin states: the singlet para-
positronium (p-Ps) and the triplet orthopositronium (o-Ps).
The lifetimes of Ps are determined by the electron-positron
annihilation rate at rest, eþe− → 2γ, for p-Ps [1] and
eþe− → 3γ for o-Ps [2].
Decays of Ps can be precisely described within pure

quantum electrodynamics (QED), the only limitation being
the computational complexity of the higher orders in the
expansion in the fine structure constant α≃ 1=137. Despite
this complexity, many corrections in higher orders have
been calculated [3–15].
In addition to purely photonic decay modes, weak

interactions can transform Ps into final states involving
neutrinos [16–21]. Recently, Ref. [22] examined the exotic
decay of Ps into a photon and a neutrino-antineutrino pair
Ps → γνlν̄l, and claimed that only p-Ps can decay in this
way. On the other hand, Ref. [16] stated that o-Ps can decay
into such a final state and even estimated its branching
ratio.
To address the apparent contradiction of [22] and [16],

we calculate the Ps → γνlν̄l decay rates and photon spectra
for both p-Ps and o-Ps (Sec. II). We find that both p-Ps and
o-Ps have access to the Ps → γνlν̄l decay mode. In
addition to establishing a nonzero o-Ps rate, we find
differences between our calculated p-Ps rate and spectrum
and those of Ref. [22]. We calculate the angular distribu-
tions of Ps → γνlν̄l decays in Sec. III.
It is easy to mislead oneself into thinking that only one

Ps spin state can decay into γν̄ν, since none of the
previously studied final states was accessible to both. In
pure QED, o-Ps can decay into an odd number of photons
and p-Ps into an even number only, by the charge-
conjugation (C) symmetry. However, the weak bosons

couple to both the C-odd vector and the C-even axial
current. Thus, p-Ps can decay into a photon and a neutrino
pair by a vector coupling (analogous to its main γγ decay)
while o-Ps can decay into the same final state through an
axial coupling.
In three-body channels, the energy of decay products has

an extended distribution. Its low-energy tail is sensitive to
binding effects; such effects have been determined in the
three-photon decay of o-Ps [23–26]. We find analogous
phenomena in the Ps → γνlν̄l decay. In the present case
one can compare the low-energy behavior of p-Ps and o-Ps
decays, unlike in case of the 3γ final state, accessible only
to o-Ps. In Sec. V we employ the nonrelativistic effective
field theory (NREFT) methods of [24–26] to explain how
binding effects connect the linear behavior of the spectra
found in Sec. II with the cubic behavior at extremely low
energy, predicted by Low’s theorem [27] (Sec. IV).

II. DECAY RATES AND SPECTRA

The relevant eþe− → γνlν̄l annihilation graphs for
Ps → γνlν̄l decays are presented in Fig. 1. The photon
is emitted off the initial electron or positron before the eþe−
pair annihilates into a neutrino-antineutrino pair via Z- or
W-boson exchange. The s-channel Z-boson exchange
[Fig. 1(a)] contributes to the amplitude for all lepton flavors,
l, while the t-channel W-boson exchange [Fig. 1(b)]
contributes to the amplitude only when l ¼ e. The photon
can also be emitted off of an internal charged W boson
[Fig. 1(c)]; since this process is suppressed by an additional
factor ofm2=M2

W ≪ 1wherem is the electronmass andMW
is the W-boson mass, it is ignored in our calculations.
We begin by calculating both Ps → γνlν̄l decay ampli-

tudes. The initial incoming four-momenta of the electron
and positron are denoted by p1 and p2 while outgoing four-
momenta are denoted by ki where k1 is the four-momentum
of the neutrino, k2 the anti-neutrino and kγ the photon.
Since the Ps binding energy is small,Oðmα2Þ, compared to
the rest mass of the initial leptons, their average kinetic
energy is negligible. Therefore, we take the initial electron
and positron to be at rest with four-momentum
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p1 ¼ p2 ¼ p ¼ ðm; 0Þ. Similarly, the momenta of the
virtual Z and W bosons are also negligible compared to
their rest masses and their momentum is neglected in the Z
andW propagators. To account for the bound state nature of
Ps, we include p-Ps and o-Ps projection operators in the
spinor trace of the amplitudes along with a factor of
ψ0ð0Þ=

ffiffiffiffi
m

p
where ψ0ð0Þ is the Ps ground state wave

function. With these considerations, the Ps → γνlν̄l decay
amplitudes are

iMp=o ¼ −4
ffiffiffi
2

p
ieGFm

ψ0ð0Þffiffiffiffi
m

p ūðk1Þγμðvl − alγ5Þvðk2Þ

× TrΨp=o

�
γμðvl − alγ5Þ

p1 − kγ þm

ðp1 − kγÞ2 −m2
ϵ�γ

þ ϵ�γ
kγ − p2 þm

ðkγ − p2Þ2 −m2
γμðvl − alγ5Þ

�
ð1Þ

where GF ≃ 1.166 × 10−5=GeV2 is the Fermi constant
[28], α≃ 1=137 is the fine structure constant, ϵγ is the
photon polarization and Ψp=o are the p-Ps and o-Ps
projection operators of Ref. [29]. Here, vl and al describe
the electron vector and axial-vector couplings induced by
Z- (l ¼ e, μ, τ) and W- (l ¼ e; a Fierz transformation is
understood [17]) boson exchange,

vl ¼

8>><
>>:

1

4
þ sin2θW for l ¼ e

1

4
− sin2θW for l ¼ μ; τ;

ð2Þ

al ¼ 1

4
: ð3Þ

Since the weak mixing angle, θW , is such that sin2 θW ≃
0.238 [30] (numerically close to 1=4), the vector
coupling is suppressed for l ¼ μ, τ. We find the total
decay rates

Γp ≡ Γðp-Ps → γνlν̄lÞ ¼
2G2

Fm
5α4v2l

9π3

≈
�
3.5 × 10−14s−1 for l ¼ e

2.1 × 10−17s−1 for l ¼ μ; τ;
ð4Þ

Γo ≡ Γðo-Ps → γνlν̄lÞ ¼
8G2

Fm
5α4a2l

27π3
≈ 1.2 × 10−14 s−1:

ð5Þ

The branching ratios are small, as expected for weak
decays,

Brðp-Ps → γνν̄Þ ≈ Γðp-Ps → γνlν̄lÞ
Γðp-Ps → 2γÞ

≈
�
4.3 × 10−24 for l ¼ e

2.6 × 10−27 for l ¼ μ; τ;
ð6Þ

Brðo-Ps → γνν̄Þ ≈ Γðo-Ps → γνlν̄lÞ
Γðo-Ps → 3γÞ

≈ 1.7 × 10−21 for l ¼ e; μ; τ: ð7Þ

We find that the o-Ps not only can decay radiatively into
neutrinos, but also that since it can decay into all three
flavors with equal probability, its total decay rate into
νν̄γ is in fact slightly larger than for the p-Ps.
Equation (7) shows that the o-Ps branching ratio was

overestimated by 2 orders of magnitude in [16]. The
estimate of Ref. [16] has the correct powers of the universal
constants, GF; α, and m,

Γðo-Ps → γνlν̄lÞ
Γðo-Ps → 3γÞ ∝

�
GFm2

α

�
2

≈ 10−19: ð8Þ

However, the missing factor 4a2l=ð3π2ðπ2 − 9ÞÞ ≈ 0.01
reduces the branching ratio by 2 orders of magnitude.
In Ref. [22], o-Ps is claimed not to decay into γνν̄,

contrary to what we find. On the other hand, the decay rate

(a) (b) (c)

FIG. 1. Feynman graphs that contribute to the annihilation eþe− → γνlν̄l amplitudes relevant for the Ps → γνlν̄l decays where
l ¼ e, μ, τ. For both (a) and (b), there is an analogous graph where the photon is emitted off the positron leg. Both (b) and (c) only
contribute to the amplitude when l ¼ e.
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of p-Ps into this final state seems to be overestimated by
about a factor 60. The authors’ result, presented as

Γðp-Ps → γνlν̄lÞ ¼ α4G2
Fm

5

π3
Σðsin2 θWÞ, has the correct

dependence on coupling constants and the mass, but the
function of the weak mixing angle Σðsin2 θWÞ seems to be
an error. This can be seen in Eq. (11) in [22] that describes
the decay into muon neutrinos. Only the Z boson contrib-
utes in this channel, so the amplitude should be propor-
tional to the vector coupling of the Z to electrons and vanish
when sin2 θW → 1=4; the expression in that equation does
not vanish in this limit.
For the photon spectra we find very simple expressions,

1

Γp

dΓp

dxγ
¼ 6xγð1 − xγÞ; ð9Þ

1

Γo

dΓo

dxγ
¼ 3

2
xγð2 − xγÞ; ð10Þ

where xγ ¼ Eγ=m ∈ ð0; 1Þ. These spectra are shown in
Fig. 2. Since there is some similarity between Ps → γνlν̄l
and o-Ps → 3γ decays, the o-Ps → 3γ spectrum (first
calculated by Ore and Powell [2]) is also included in
Fig. 2 for comparison. When the photon reaches the
maximum energy, xγ ¼ 1, the neutrino (left handed) and
the antineutrino (right handed) move collinearly in the
direction opposite to the photon. Their spins cancel and the
angular momentum of the system is carried by the photon’s
spin. Clearly, this is possible only for o-Ps; for this reason,
the p-Ps spectrum vanishes at xγ ¼ 1 [Fig. 2(a)]. This
spectrum also vanishes at xγ ¼ 0. However, the p-Ps
spectrum of Ref. [22] vanishes at neither xγ ¼ 0 nor xγ ¼ 1.
The p-Ps spectrum is maximal at xγ ¼ 1=2, different

from the maximum xγ ¼ 2=3 predicted in [22]. On the
other hand the o-Ps spectrum is maximal at xγ ¼ 1 when

the photon carries the whole angular momentum of the
system.
We also note that the spectra we have found (neglecting

binding effects) are linear in the low-energy limit
[Fig. 2(b)]. Since Low’s theorem [27] predicts the low-
energy behavior of the spectrum to be cubic rather than
linear, we determine how binding effects modify the results
(9) and (10) (Sec. IV).

III. ANGULAR DISTRIBUTIONS
OF Ps→ γνlν̄l DECAYS

In Sec. II, we calculated the decay rates and spectra for
p-Ps and o-Ps, and found that both can decay into a photon
and a neutrino-antineutrino pair. To better understand these
decays, we calculate the angular dependence of the Ps →
γνlν̄l amplitudes (Sec. III A) and then use those amplitudes
to determine the angular distributions of Ps → γνlν̄l
decays (Sec. III B).

A. Angular dependence of the decay amplitudes

The angular dependence of the decay amplitudes is most
easily found by reformulating the three-body decay
Ps → γνlν̄l, in terms of a two-body decay Ps → γZ�, where
Z� is a massive vector boson of polarization ϵ and four-
momentum q. Specifically, the three-body phase space of the
decay rate is factorized into two two-body phase spaces (one
for Ps → γZ� and one for Z� → νν̄) and an integral over the
invariant mass squared of the Z� boson. After integrating
over the neutrino momenta, the Ps → γνlν̄l decay rate can
be written as the integral of the Ps → γZ� decay rate
(multiplied by a factor from the Z� → νν̄ phase space) over
the invariant mass of Z� squared (Appendix A),

Γp=o ¼
G2

F

2π2α

Z
dq2

2π
q2Γðp=oÞ−Ps→γZ� ; ð11Þ

(a) (b)

FIG. 2. The photon spectrum of p-Ps → γνlν̄l (solid), o-Ps → γνlν̄l (dashed) and o-Ps → 3γ (dotted) decays plotted over (a) the full
energy domain of the photon xγ ∈ ð0; 1Þ and (b) over the low-energy domain xγ ∈ ð0; 0.1Þ.
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where q ¼ k1 þ k2 is the Z� four-momentum and

Γðp=oÞ−Ps→γZ� ¼ 1

g
1

2mPs

Z
dΦ2ðp1 þ p2;q; kγÞ

jψ0ð0Þj2
m

×
1

3

X
spin=pol

jMðp=oÞ−Ps→γZ� j2: ð12Þ

Here, g is the number of polarizations of the initial Ps state.
From (11), it is clear that the three-body problem Ps →

γνlν̄l can be described in terms of the two-body problem
Ps → γZ�. The Z� couples to the electron current through
both vector and axial-vector coupling with the Feynman
rule ieϵ�ðvl − alγ5Þ at each e�Z� vertex.
To construct the angular dependence of the Ps → γZ�

decay amplitudes on the spherical angles θ and ϕ, we first
determine the decay amplitudes to final states where the
photon moves along the þz-axis and the Z� boson moves
along the −z-axis. The angular dependence is then deter-
mined by rotating the initial state and considering decay
along the new z0-axis [31]. Alternatively, one can obtain the
angular dependence using the helicity basis formalism of
Refs. [32–35].
The p-Ps → γZ� decay amplitudes are isotropic and

given by

Am0
γ ;m0

Z
ðθ;ϕÞ ¼ Am0

γ ;m0
Z
∝ δm0

γ ;−m0
Z
; ð13Þ

where m0
γ ∈ f�1g and m0

Z ∈ f�1; 0g are the spin projec-
tions of the photon and Z� along the z0-axis. The z0-axis
points along the photon trajectory defined by the spherical
polar angles θ and ϕ in the original unrotated frame. The
p-Ps amplitudes were calculated and are listed in Table I.
The o-Ps → γZ� amplitudes must be calculated for each

initial polarization of o-Ps. In the initial frame before decay,
the o-Ps atom is in a state of definite angular momentum
with some spin projection along the z-axis. We let jΛi
represent this initial state. The o-Ps atom subsequently
decays along the z0-axis with the amplitude AmΛ

m0
γm0

Z
where

mΛ ∈ f�1; 0g is the initial spin projection of o-Ps along the
z-axis. The o-Ps amplitudes are derived in Appendix B and
are listed in Table II.
To validate the amplitudes in Tables I and II, we use them

to calculate the decay rates and photon spectra, and
compare these with those obtained in Sec. II. To do this,

we first derive the spin averaged amplitudes squared. For
p-Ps, this task is simple,

1

3

X
m0

γm0
Z

jAmγm0
Z
j2
q¼−kγ ;EZ¼2m−Eγ

¼ 16v2le
4

3
: ð14Þ

To obtain the o-Ps spin averaged amplitude squared, it is
convenient to first sum over mΛ and m0

γ ,X
mΛm0

γ

jAmΛ
mγþj2q¼−kγ ;EZ¼2m−Eγ

¼
X
mΛm0

γ

jAmΛ
mγ−j2q¼−kγ ;EZ¼2m−Eγ

¼ 8a2le
4; ð15Þ

X
mΛm0

γ

jAmΛ
mγ0

j2
q¼−kγ ;EZ¼2m−Eγ

¼ 16a2le
4

m − Eγ
: ð16Þ

Then completing the sum over m0
Z and dividing by the

number of o-Ps and Z� polarizations yields the spin
averaged amplitude squared,

1

3 · 3

X
mΛm0

γm0
Z

jAmΛ
mγm0

Z
j2
q¼−kγ ;EZ¼2m−Eγ

¼ 16a2le
4

9

2 − xγ
1 − xγ

:

ð17Þ

The decay rates and spectra are calculated by substituting
Eqs. (14) and (17) into (11). Since the spin averaged
amplitudes squared are independent of θ and ϕ, the angular
integrations of (11) are easy and yield

Γp=o ¼
4G2

Fm
5α4

3π3

Z
1

0

dx

�
v2lxγð1 − xγÞ
a2lxγð2 − xγÞ=3

�
ð18Þ

¼ 4G2
Fα

4m5

9π3

�
v2l=2

2a2l=3

�
; ð19Þ

where the top (bottom) line in the curly brackets is used for
the p-Ps (o-Ps) decay rate. The decay rates (19) are identical
to (4) and (5). The spectra are the integrands of Eq. (18) and
are also equal to the spectra (9) and (10). Thus, the

TABLE I. The p-Ps → γZ� decay amplitudes,Am0
γm0

Z
=vle2, as a

function of the spherical angles θ and ϕ. Since p-Ps is odd under
parity, A−m0

γ−m0
Z
¼ −Am0

γm0
Z
; therefore, only the m0

γ ¼ þ1 ampli-
tudes need be tabulated.

m0
Z

m0
γ þ1 0 −1

þ1 0 0 4i=
ffiffiffi
2

p

TABLE II. The o-Ps → γZ� decay amplitudes, AmΛ
m0

γm0
Z
=ale2, as

a function of the spherical angles θ and ϕ evaluated at
q ¼ −kγ ; EZ ¼ 2m − Eγ . The mΛ ¼ −1 amplitudes can be
obtained from the mΛ ¼ þ1 amplitudes by the replacment θ →
θ þ π and ϕ → −ϕ.

m0
Z

mΛ m0
γ þ1 0 −1

þ1 þ1 0
ffiffiffi
2

p ð1þcosθÞeiϕ= ffiffiffiffiffiffiffiffiffiffi
1−xγ

p
−2isinθeiϕ

−1 2isinθeiϕ −
ffiffiffi
2

p ð1−cosθÞeiϕ= ffiffiffiffiffiffiffiffiffiffi
1−xγ

p
0

0 þ1 0 2sinθ=
ffiffiffiffiffiffiffiffiffiffiffi
1−xγ

p
4icosθ=

ffiffiffi
2

p
−1 −4icosθ=

ffiffiffi
2

p
−2sinθ=

ffiffiffiffiffiffiffiffiffiffiffi
1−xγ

p
0
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amplitudes of Tables I and II are consistent with our results
from Sec. II.
While it is evident that p-Ps and o-Ps cannot decay into

the same final states (even though they have the same
constituent particles), we confirm the orthogonality of the
p-Ps and o-Ps decay amplitudes. The o-Ps amplitudes,
AmΛ

�000 , are trivially orthogonal to the p-Ps amplitudes (13)
because p-Ps cannot decay into a longitudinally polarized
Z� and photon. To check the orthogonality of AmΛ

�0∓0 with
(13), we take their inner product,Z

dΩAmγ ;mZ
ðAmΛ

�0∓0 ðθ;ϕÞÞ�∝
Z

dΩðAmΛ
�0∓0 ðθ;ϕÞÞ�: ð20Þ

Since AmΛ
�0∓0 ðθ;ϕÞ are proportional to e�iϕ or cos θ

(depending on mΛ), the inner products vanish proving
orthogonality; this is as expected because AmΛ

�0∓0 ðθ;ϕÞ
(Table II) are p-waves while the p-Ps amplitudes are s-
waves (Table I).
Thus, the p-Ps → γνlν̄l and o-Ps → γνlν̄l decays do not

have access to the same final state despite the fact that the
final states contain the same constituent particles.

B. Angular distributions

The angular distribution for a specific γ þ Z� final state
is found by differentiating the decay amplitude (11), where
the squared amplitude corresponding to the specific final
state (Tables I and II) is used in place of the spin averaged
amplitude squared, by xγ and cos θ.
Since the p-Ps amplitudes are isotropic, the p-Ps → γνlν̄l

angular distributions are also isotropic [9Γpxγð1 − xγÞ=2 for
m0

γ ¼ �1]. Thus, p-Ps is equally likely to decay into a
photon and a neutrino-antineutrino pair where the photon is
emitted in any direction.
The o-Ps → γνlν̄l angular distributions are determined

to be

1

Γo

d2ΓmΛ
m0

γm0
Z

dxγdcosθ
¼ 27

64
xγð1− xγÞ

Z
dϕ
2π

�����
AmΛ

m0
γm0

Z

ale2

�����
2

q¼−kγ ;EZ¼2m−Eγ

;

ð21Þ
and are tabulated in Table III. Since Z� is a mathematical
convenience, the physical angular distributions for a given

o-Ps polarization mΛ and photon helicity m0
γ are obtained

by averaging over the Z� polarizations. For a o-Ps atom
initially polarized in the mΛ ¼ 0 state, the angular distri-
butions for decay into a photon of helicity m0

γ � 1 are
9Γoðsin2 θxγ þ 2 cos2 θxγð1 − xγÞÞ=16 and nonzero for all
θ. The angular distribution for o-Ps initially polarized in the
mΛ ¼ þ1 state decaying into a photon of helicitym0

γ ¼ þ1

is 9Γoð2 cos4ðθ=2Þxγ þ sin2 θxγð1 − xγÞÞ=16; since this
angular distribution vanishes for θ ¼ π, an o-Ps atom in
the mΛ ¼ þ1 state cannot decay into a photon of helicity
m0

γ ¼ þ1 along the −z-axis. Similarly, a o-Ps atom initially
polarized in the mΛ ¼ þ1 state cannot decay into a photon
of helicity m0

γ ¼ −1 along the þz-axis.
The photon spectrum for a specific γ þ Z� final state is

calculated by integrating the corresponding angular dis-
tribution by d cos θ. These spectra are listed in Tables IV
and V and provide further insight into Eqs. (9) and (10).
The photon spectrum of decays to final states with m0

γ ¼
� and m0

Z ¼∓ is proportional to xγð1 − xγÞ and vanishes
as xγ → 1. On the other hand, the photon spectrum of
decays to final states withm0

γ ¼ � andm0
Z ¼ 0 is linear and

maximal at xγ → 1. The o-Ps photon spectrum is maximal
at xγ ¼ 1 because the o-Ps decay has access to two
additional final states with a longitudinally polarized Z�;

TABLE III. The angular distributions for o-Ps → γνlν̄l decays, ðd2ΓmΛ
m0

γm0
Z
=dxγd cos θÞ=Γo. ThemΛ ¼ −1 distributions can be obtained

from the mΛ ¼ þ1 angular distributions by the replacement θ → θ þ π and ϕ → −ϕ.

m0
Z

mΛ m0
γ þ1 0 −1

þ1 þ1 0 27 cos4ðθ=2Þxγ=8 27 sin2 θxγð1 − xγÞ=16
−1 27 sin2 θxγð1 − xγÞ=16 27 sin4ðθ=2Þxγ=8 0

0 þ1 0 27 sin2 θxγ=16 27 cos2 θxγð1 − xγÞ=8
−1 27 cos2 θxγð1 − xγÞ=8 27 sin2 θxγ=16 0

TABLE V. o-Ps → γνlν̄l photon spectra, ðdΓo=dxγÞ=Γo, for
specific γ þ Z� final states and any mΛ.

m0
Z

m0
γ þ1 0 −1

þ1 0 9xγ=4 9xγð1 − xγÞ=4
−1 9xγð1 − xγÞ=4 9xγ=4 0

TABLE IV. p-Ps → γνlν̄l photon spectra, ðdΓp=dxγÞ=Γp, for
specific γ þ Z� final states. Since jAm0

γm0
Z
j2 ¼ jA−m0

γ−m0
Z
j2, only

the m0
γ ¼ þ1 decay rates need be tabulated.

m0
Z

m0
γ þ1 0 −1

þ1 0 0 9xγð1 − xγÞ
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these add to the linear term in the spectrum. The AmΛ
�0

amplitudes contain a factor of 2m=q¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1−xγ

p
from the

longitudinal polarization of Z�. This factor enhances the
amplitude for high-energy photons and cancels the factor
q2 ∝ ð1−xγÞ in the dq2 integral of (11). In the high-energy
limit, xγ → 1, the longitudinal polarization of Z� represents
a final state where the neutrino and antineutrino are
collinear.

IV. LOW’S THEOREM AND THE SOFT PHOTON
LIMIT OF THE SPECTRA

Low’s theorem [27] places constraints on the amplitude
of any radiative process and predicts the spectrum in the
soft photon limit. In Sec. II, the tree level electroweak
photon spectra, Eqs. (9) and (10), were found to be linear in
the low-energy limit, similar to the Ore-Powell o-Ps → 3γ
spectrum. However, it was pointed out by Ref. [23] that the
Ore-Powell spectrum is in contradiction with Low’s theo-
rem. Therefore, it is important to reconcile Eqs. (9) and (10)
with Low’s theorem.
Low’s theorem states that the OðE−1

γ Þ and OðE0
γÞ terms

in the Laurent expansion of the radiative amplitude,
X→Yþ γ, are obtained from knowledge of the nonradia-
tive amplitude, X → Y [23,24,27]. Expanding the radiative
amplitude, ϵμγMμ, in a Laurent series in the photon energy,
we obtain

ϵμγMμ ¼
X∞
n¼−1

MnEn
γ ; ð22Þ

where Mi is the coefficient of the OðEi−1
γ Þ term of the

Laurent series. The coefficients M0 and M1 are indepen-
dent of Eγ and determined by the nonradiative amplitude,
its derivatives in physically allowed regions and the
anomalous magnetic moments of the particles involved
in the reaction [27].
The M0 coefficient is proportional to the nonradiative

amplitude multiplied by the factor −Qiϵ · pi=kγ · pi, which
arises from the emission of a photon by an outgoing or
ingoing particle [24]. The M0 coefficient vanishes when
there are no moving charged particles in the initial and final
state of the nonradiative process or when the nonradiative
amplitude is 0. The coefficient M1 is a function of the
magnetic moments of the particles as well as the non-
radiative amplitude and its derivatives with respect to
energy and angle [27].
By combining the behavior of the radiative amplitude

and the phase space, we find that the low-energy photon
spectrum has the form

dΓ
dEγ

¼ A
Eγ

þ Bþ CEγ þDE2
γ þOðE3

γÞ; ð23Þ

where

A ¼ jM0j2;
B ¼ M0M�

1 þM1M�
0;

C ¼ jM1j2 þM0M�
2 þM2M�

0;

D ¼ M0M�
γ þMγM�

0 þM1M�
2 þM2M�

1: ð24Þ

If M0 vanishes, then A ¼ B ¼ 0 and the soft photon
spectrum is of order EγdEγ. If both M0 and M1 vanish,
then A ¼ B ¼ C ¼ D ¼ 0 and the soft photon spectrum is
of order E3

γdEγ.
For p-Ps → γνlν̄l, the nonradiative p-Ps → νlν̄l ampli-

tude vanishes [17]; application of Low’s theorem yields
M0;1 ¼ 0 for the radiative decay, p-Ps → γνlν̄l. Since the
radiative o-Ps → γνlν̄l decay proceeds only via axial-
vector coupling while the nonradiative o-Ps → νlν̄l ampli-
tude is proportional to vector coupling [17], Low’s theorem
requires that the OðE−1

γ Þ and OðE0
γÞ terms of the radiative

o-Ps → γνlν̄l amplitude vanish (i.e., M0;1 ¼ 0). Thus, for
both Ps → γνlν̄l decays, Low’s theorem predicts that the
photon spectra are cubic in the low-energy limit in apparent
contradiction with Eqs. (9) and (10).
Equations (9) and (10) were calculated using the tree

level electroweak amplitude for the eþe− → γνlν̄l anni-
hilation multiplied by the probability density for the eþe−
pair to be at the origin. This calculation assumes that the
electron and positron are initially free and at rest, and
therefore neglects the binding effects in Ps. Binding effects
are of order mα2. For photons with comparable energies,
binding effects become important and Eqs. (9) and (10) are
no longer accurate.
To resolve the contradiction between Eqs. (9) and (10),

and Low’s theorem, we must include binding effects in the
soft photon spectrum of Ps → γνlν̄l decays. To do this we
employ the NREFT methods developed in Refs. [24–26].

V. SOFT PHOTON DECAY SPECTRA

NREFTs provide a systematic way of incorporating
binding effects in the computation of bound state decay
amplitudes. One computes the decay amplitudes in electro-
weak theory. Then a NREFT Hamiltonian is constructed to
reproduce the soft photon limit of the electroweak ampli-
tudes when ignoring binding effects. In other words, the
effective theory dynamics (ignoring binding effects) are set
equal to the low-energy limit of the electroweak dynamics.
The soft photon limit of the electroweak amplitudes are
calculated in Sec. VA. They are used in Secs. V C and VD
to calculate the matching condition used to verify that the
effective theory amplitudes (without binding) are indeed
equal to the soft photon limit of the electroweak
amplitudes.
Once this matching has been performed, the NREFT

Hamiltonian is used to calculate the effective theory
amplitudes and subsequently the soft photon spectra.
The effective theory amplitudes are calculated using

ANDRZEJ POKRAKA and ANDRZEJ CZARNECKI PHYSICAL REVIEW D 94, 113012 (2016)

113012-6



time-ordered perturbation theory and have both long
(Coulomb) and short distance (annihilation into a νlν̄l
pair) contributions.
The Coulomb (HC) and Coulomb interaction (Hint)

Hamiltonians describe the bound state dynamics of an
eþe− pair interacting with a quantized electromagnetic
field. Following Ref. [25], we argue that the dipole approxi-
mation of the Coulomb interaction Hamiltonian is valid in
the energy range Eγ ≪ m (Sec. V B). In the dipole approxi-
mation, the Coulomb Hamiltonians are

H ¼ HC þHint; ð25Þ

HC ¼ p2

m
−
α

r
; ð26Þ

Hint ¼ −ex ·E − μ½σϕ þ σχ � ·B; ð27Þ

in terms of the center ofmass variablesp ¼ ðp1 − p2Þ=2 and
x ¼ x1 − x2 where the subindices 1, 2 refer to the electron
and positron [24]. Here, σϕ=χ are the Pauli matrices acting on
the electron (ϕ) and positron (χ) spinors. The electric,E, and
magnetic, B, fields are evaluated in the dipole approxima-
tion and Hint can induce both E1 and M1 transitions within
the Ps atom.
The Coulomb Hamiltonian HC is the leading term in the

velocity of the electron v ≪ 1. The Coulomb interaction
Hamiltonian, Hint, is higher order in v and taken as a
perturbation. The (p/o)-Ps annihilation amplitude is given
by the first order v expansion of the electroweak eþe− →
νlν̄l annihilation amplitude calculated in Appendix C.
While the neutrino energies are of order OðmÞ, a non-
relativistic treatment is still valid since the annihilation into
a neutrino-antineutrino pair is a short distance effect—the
neutrinos are not dynamical.

A. Soft photon limit of the tree level
electroweak decay amplitude

Using the standard Feynman rules, the Ps → γνν̄ decay
amplitude (Fig. 1) is

M ¼ −2
ffiffiffi
2

p
iGFemv̄ðp2Þ

�
Jðvl − alγ5Þ

p1 − kγ þm

ðp1 − kγÞ2 −m2
ϵ�γ

þ ϵ�γ
kγ − p2 þm

ðkγ − p2Þ2 −m2
Jðvl − alγ5Þ

�
uðp1Þ; ð28Þ

where Jμðk1; k2Þ ¼ ūðk1Þγμð1 − γ5Þvðk2Þ is the neutrino
current, p1 and p2 are the electron and positron four-
momenta, k1 and k2 are the neutrino and antineutrino four-
momenta, kγ is the photon four-momentum and ϵγ is the
photon polarization.
We choose the Dirac representation for the electron and

positron spinors in (28). In this representation, the electron
spinor is

usðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

�
Eþm

p · σ

�
ϕs; ð29Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, ϕs is the two-component electron

spinor and the index s denotes the spin projection [36]. The
positron spinors are related to the electron spinors by
charge conjugation,

vsðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

�
p · σ

Eþm

�
χs; ð30Þ

where χs is the two-component spinor of the positron.
Since the Ps binding energy is small,Oðmα2Þ, the typical

momentum of the electron is small and we neglect it
[i.e., p1 ¼ p2 ¼ ðm; 0Þ]. In the limit Eγ → 0, the neutrino
momenta are back to back (k1¼−k2) and J0→ 0.
Factoring out the Eγ dependence and working with
k̂γ ¼ kγ=Eγ , Eq. (28) becomes

M ¼ 2
ffiffiffi
2

p
GFeχ†ðvlðk̂γ × ϵγÞ · Jþ alðϵγ × JÞ · σÞϕ;

ð31Þ
where we choose ϵγ to be real and transverse to kγ .
Projecting the electron and positron spinors onto the
p-Ps (χ†ϕ →

ffiffiffi
2

p
and χ†σϕ → 0) and o-Ps (χ†ϕ → 0 and

χ†σϕ →
ffiffiffi
2

p
ξ) states, the low-energy limit of the electro-

weak amplitudes is

Mp ¼ 4GFevlðϵγ × JÞ · k̂γ; ð32Þ
Mo ¼ 4GFealðϵγ × JÞ · ξ; ð33Þ

where ξ is the o-Ps polarization vector.

B. Dipole approximation of the Coulomb
interaction Hamiltonian

While normally the dipole approximation is applicable
for photons with wavelengths much larger than the spatial
extent of the Ps atom, 2=mα (i.e., Eγ ≪ mα), it has been
shown that the dipole approximation of the Coulomb
interaction Hamiltonian holds in the enlarged energy region
Eγ ≪ m for the three-body decay o-Ps → 3γ [25,26]. In
this energy region, amplitudes where the intermediate states
propagate via the Coulomb Green’s function are a series in
α

ffiffiffiffiffiffiffiffiffiffiffi
m=Eγ

p
∼

ffiffiffi
α

p
rather than integer powers of α. The main

contributions to the effective field theory amplitudes arise
from distances of order Oð1= ffiffiffiffiffiffiffiffiffi

mEγ

p Þ, which are much
smaller than the Ps radiusOð1=mαÞ [26]. We argue that the
same considerations apply to Ps → γνlν̄l decays and that
the dipole approximation holds in the extended energy
range Eγ ≪ m.
Initially, the Ps atom is in either the 1S0 or 3S1 states at

energy E0 ¼ −mα2=4 relative to the threshold. The p-Ps
(o-Ps) atom then emits a soft photon and the eþe− pair
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propagates nonrelativistically in the Coulomb field in a
C-odd (C-even) state of energy E0 − Eγ before annihilating
into a neutrino-antineutrino pair (Fig. 3).
The Green’s function of the eþe− pair, interacting via a

Coulomb field, GC, describes the propagation of the pair
between the emission of the soft photon and the annihi-
lation into a neutrino-antineutrino pair. It satisfies the
equation

�
HC þ κ2

m

�
GCðx; y; κÞ ¼ δðx − yÞ ð34Þ

and has a factor exp ð−κrÞ with −κ2=m ¼ Eγ. Therefore,
the virtual pair propagates over a distance of Oðκ−1Þ [25].
Since the spin-singlet state cannot annihilate into a

neutrino-antineutrino pair [17], the virtual C-odd (C-even)
state of Fig. 3(a) [3(b)] must be a triplet state of orbital
angular momentum L ¼ 2n (L ¼ 2nþ 1) for n a non-
negative integer. The amplitude for annihilation contains L
derivatives of the wave function at the origin and is
proportional to ðκ=mÞL. Since the expð−κrÞ dependence
of the Green’s function constrains the product Eγr to

order 1, the contributions of the intermediate states of
Fig. 3 to the amplitude are proportional to ðEγ=mÞL.
Therefore, only the intermediate states with the lowest n

(i.e., n ¼ 0) need to be considered for Eγ ≪ m [25]. The
intermediate state of Fig. 3(a) is the o-Ps ground state, 13S1,
while the intermediate states of Fig. 3(b) are the L ¼ 1 o-Ps
excited states, n3P0;1;2. These states are reached from the
initial p-Ps and o-Ps ground states by M1 and E1
transitions, respectively. Thus, the dipole approximation
is valid in the energy region Eγ ≪ m.

C. Soft photon spectrum for p-Ps → γνlν̄l
As noted in Sec. V B, p-Ps cannot decay into a νlν̄l pair;

therefore, p-Ps → γνlν̄l decay proceeds solely through an
M1 transition. The M1 interaction flips the spin of either
the electron or positron and takes the initial p-Ps state, 11S0,
to an intermediate o-Ps state. Within the dipole approxi-
mation, the only allowed intermediate state is the o-Ps
ground state, 13S1.
In time-ordered perturbation theory, the effective theory

amplitude for p-Ps → γνlν̄l, Fig. 3(a), is

Meff
p ¼

X
n

ih0jÂðνlν̄lÞ
s jnihnjiμðσϕ þ σχÞ · Bjp-Psi

Ep − En − Eγ
¼

X
ms

−ih0jÂðνlν̄lÞ
s j13S1;msih13S1;msjiμðσϕ þ σχÞ ·Bjp-Psi

ΔEhfs þ Eγ
; ð35Þ

where ΔEhfs ¼ Eo − Ep is the hyperfine splitting energy
difference, and Ep and Eo are the p-Ps and o-Ps ground

state energies. Here, Âðνν̄Þ
s is the s-wave o-Ps → νlν̄l

annihilation operator (derived in Appendix C),

Âðνlν̄lÞ
s ¼ 2

ffiffiffi
2

p
iGFmvlðJ · σÞ: ð36Þ

To simplify the effective theory amplitude, we begin by
evaluating the annihilation and magnetic matrix elements in
the numerator. Projecting the electron and positron spinors
onto the spin triplet state (χ†σϕ →

ffiffiffi
2

p
ξ), the annihilation

matrix element becomes

h0jÂðνlν̄lÞ
s j13S1;msi ¼ 2

ffiffiffi
2

p
iGFmvlJ · ðχ†σϕÞψ0ð0Þ

¼ 4iGFmvlJ · ξψ0ð0Þ; ð37Þ
where ψ0 is the Ps ground state wave function. The
magnetic matrix element is

h13S1;msjiμðσϕ þ σχÞ · Bjp-Psi
¼ effiffiffi

2
p

m
Eγðk̂γ × ϵγÞ · ðχ†σϕÞ�

¼ effiffiffi
2

p
m
Eγðk̂γ × ϵγÞ ·

ffiffiffi
2

p
ξ�: ð38Þ

(a) (b)

FIG. 3. Effective theory graphs for (a) p-Ps → γνlν̄l and (b) o-Ps → γνlν̄l. The open square (circle) represents a M1 (E1) transition
while the solid star represents the annihilation of o-Ps into a neutrino-antineutrino pair.
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Summed over the polarizations of the intermediate o-Ps
states in (35), X

ξ

ξiξi� ¼ δij; ð39Þ

the effective theory amplitude becomes

Meff
p ¼ 4GFevlψ0ð0Þðϵγ × JÞ · k̂γAmðEγÞ; ð40Þ

where ψ0 is the ground state Ps wave function. The
magnetic amplitude, Am, contains all of the dependence
on soft photon energy in the effective theory amplitude,

AmðEγÞ ¼
Eγ

ΔEhfs þ Eγ
¼ xγ

ϵþ xγ
; ϵ≡ ΔEhfs

m
: ð41Þ

To ensure that the effective theory amplitude (40) is
consistent with electroweak theory, we consider xγ ≫ ϵ
and neglect the hyperfine energy difference in the energy
denominator of (35) (i.e., Am ¼ 1). The effective theory
amplitude, ignoring binding effects, is therefore

Meff
p → 4GFevlψ0ð0Þðϵγ × JÞ · k̂γ: ð42Þ

Since (42) is equal to the soft photon limit of the tree level
electroweak amplitude (32), the M1 transition and annihi-
lation operator (36) fully account for the emitted soft
photon and νlν̄l annihilation in p-Ps → γνlν̄l decays.
Assured that the effective theory amplitude (40) is

consistent with the full electroweak theory, we use it to
calculate the low-energy photon spectrum. We need both
the three body phase space in the xγ → 0 limit and the spin
averaged amplitude squared. In the xγ → 0 limit, the three
body phase space is�

1

128π3
dx1dxγ

	
xγ→0

≈
1

128π3
xγ
2
d cos θdxγ; ð43Þ

where θ is the angle between the neutrino and photon. The
spin averaged square of the amplitude is

X
ϵγ

jMeff
p j2 ¼

X
ϵγ

j4GFevlψ0ð0ÞAmðEγÞðϵγ × JÞ · k̂γj2

xγ → 0 → 128G2
Fv

2
lα

4m5jAmðEγÞj2ð1þ cos2θÞ; ð44Þ

where
P

ϵγ
jðϵγ ×JÞ · k̂γj2 ¼ 16E2

1ð1þðk̂γ · k̂1Þ2Þ, k̂γ · k̂1 ¼
cos θ and E1 → m. Here, k̂1 and k̂γ are the unit
3-momentum vectors of the neutrino and photon.
The effective theory photon spectrum is obtained by

multiplying (44) by (43) and integrating over d cos θ where
the allowed integration range is −1 ≤ cos θ ≤ 1,

�
1

Γp

dΓp

dxγ

�
eff

¼ 9π3

2m5α4G2
Fv

2
l

Z
1

−1
d cos θ

1

128π3
xγ
2

X
ϵγ

jMeff
p j2

¼ 6xγjAmðEγÞj2: ð45Þ

The spectrum is proportional to the square of the magnetic
amplitude,Am. The magnetic amplitude has simple asymp-
totic behavior; it is linear in xγ for xγ ≪ ϵ and approx-
imately constant for xγ ≫ ϵ,

Am ≈
�
xγ=ϵ for xγ ≪ ϵ

1 for xγ ≫ ϵ:
ð46Þ

Therefore, the effective theory spectrum (45) is cubic in xγ
in the low-energy limit, xγ ≪ ϵ, as required by Low’s
theorem. Above the hyperfine splitting, xγ ≫ ϵ, the spec-
trum shifts from being cubic in the photon energy to linear.
The ratio of the p-Ps → γνlν̄l effective theory to the tree

level electroweak spectrum is plotted in Fig. 4. In the
intermediate energy region (ϵ ≪ xγ ≪ 1), the ratio plateaus

(a) (b)

FIG. 4. Log-log plot of the ratio of the effective theory amplitude to the tree level electroweak amplitude for p-Ps → γνν̄ decays in
(a) the low-energy limit α6 < xγ < α2 and (b) the high-energy limit α3=5 < xγ < 1. The vertical line in (a) indicates the hyperfine
splitting energy (xγ ¼ ϵ ¼ 7α4=12) while the horizontal line in (b) is placed at 1 to indicate the region where the effective and full theory
spectra are equal.
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near 1 (Fig. 4) indicating that the effective theory and tree
level electroweak spectrum (9) are approximately equal
(the two spectra intersect at xγ ≈ 5.75 × 10−5). For high-
energy photons xγ ≲ 1, the ratio spikes revealing that the
effective theory spectrum differs significantly from the
tree level electroweak spectrum and is no longer accurate
[Fig. 4(b)]. Below the hyperfine energy splitting, the ratio
in the log-log plot is linear with a slope of 2 since the
effective theory spectrum is cubic in xγ while the tree level
electroweak spectrum is linear [Fig. 4(a)].

D. Soft photon spectrum for o-Ps → γνν̄

In o-Ps → γνlν̄l decays, the E1 transition takes the
initial o-Ps ground state, 13S1, to the excited o-Ps states
n3P0;1;2 (n ≠ 1), which then decay into a νlν̄l pair. The M1
transition takes the initial o-Ps state, 13S1, to the p-Ps
ground state, 11S0, which cannot decay into a νlν̄l pair and
therefore does not need to be considered.
The effective theory o-Ps → γνlν̄l decay amplitude,

Fig. 3(b), is given by

Meff
o ¼

X
n

ih0jÂðνlν̄lÞ
p jnihnjiex ·Ejo-Psi

Eo−En−Eγ

¼−2
ffiffiffi
2

p
iGFealEγ

X
n

h0jðJ×σÞ ·pjnihnjx ·ϵγjo-Psi
Eo−En−Eγ

;

ð47Þ

where Âðνlν̄lÞ
p is the p-wave o-Ps → νlν̄l annihilation

operator (derived in Appendix C),

Âðνlν̄lÞ
p ¼ −2

ffiffiffi
2

p
GFalðJ × σÞ · p: ð48Þ

As in the calculation of the effective theory p-Ps → γνlν̄l
amplitude (Sec. V C), we now demonstrate that the effective
theory amplitude (without binding) is equal to the soft
photon limit of the electroweak amplitude. To calculate the
effective theory amplitude, ignoring binding effects, we take
Eγ ≫ mα2 and ignoreEo − En in the energy denominator of
(47) which yields

Meff
o → 2

ffiffiffi
2

p
iGFale

X
n

h0jðJ × σÞ · pjnihnjx · ϵγjo-Psi

¼ 2
ffiffiffi
2

p
iGFaleh0jðJ × σÞ · px · ϵγjo-Psi: ð49Þ

The tensor operatorpixj can be decomposed into irreducible
spherical tensor operators

pixj ¼ δij

3
p · xþ pixj − pjxi

2

þ 1

2

�
pixj þ pjxi −

2

3
δijp · x

�
: ð50Þ

Since the initial o-Ps state is an s-wave, only the operator
with zero angular momentum [first term of (50)] gives a
nonzero matrix element. Additionally, we may take the
operator p to act only on x because x · ∇ψ0 vanishes at the
origin. With these considerations, the effective theory
amplitude (ignoring binding effects) (49) simplifies to

Meff
o → 4GFealðJ × ϵγÞ · ξψ0ð0Þ: ð51Þ

Since this is equal to the soft photon limit of the tree level
electroweak amplitude (33), the E1 transition and annihi-
lation operator (48) fully account for the emitted soft photon
and νlν̄l annihilation in o-Ps → γνlν̄l decays. Thus,
Eq. (47) is the complete effective theory amplitude.
We now return to the general case, without any assump-

tions about photon energies. Expanding the inner products
of the effective theory amplitude (47), we find

Meff
o ¼ 4GFealEγðJ × ξÞiϵjγ

×
Z

d3xd3yδð3ÞðxÞ∂i
x

�X
n

hxjnihnjyi
En þ κ2=m

�
yjψ0ðyÞ

¼ 4GFealEγðJ × ξÞiϵjγ
×
Z

d3y½∂i
xGCðx; y; κÞ�x¼0y

jψ0ðyÞ ð52Þ

where −κ2=m ¼ Eo − Eγ and GCðx; y; κÞ is the Coulomb
Green’s function. The derivative selects the l ¼ 1 partial
wave of the Green’s function [26],

½∂i
xGCðx; y; κÞ�x¼0 ¼ 3yiG1ð0; y; κÞ; ð53Þ

where the partial wave decomposition of the Coulomb
Green’s function can be found in Appendix C of Ref. [24].
Substituting (53) into (52) and preforming the angular
integrations yields the effective theory amplitude

Meff
o ¼ 4GFealðJ × ξÞ · ϵγψ0ð0ÞAeðEγÞ: ð54Þ

Here, the electric amplitude, Ae, is determined to be

AeðEγÞ ¼
4πEγ

ψ0ð0Þ
Z

∞

0

dyy4GC;1ð0; y; κÞψ0ðyÞ

¼ ð1 − νÞð3þ 5νÞ
3ð1þ νÞ2

þ 8ν2ð1 − νÞ
3ð2 − νÞð1þ νÞ3 2F1

�
1; 2 − ν; 3 − ν;

ν − 1

νþ 1

�
;

ð55Þ

where ν ¼ αffiffiffiffiffiffiffiffiffiffiffi
4xγþα2

p . In the first line of (55) we use the

integral representation of the electric amplitude from
Ref. [25]. The hypergeometric function 2F1 simplifies to
the so-called Hurwitz-Lerch Φ function [37],
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1

2 − ν 2F1

�
1; 2 − ν; 3 − ν;

ν − 1

νþ 1

�

¼ 1

2 − ν
Φ

�
ν − 1

νþ 1
; 1; 2 − ν

�

¼
X∞
n¼0

1

2 − νþ n

�
ν − 1

νþ 1

�
n
; ð56Þ

AeðEγÞ¼
1−ν

3ð1þνÞ2

×

�
3þ5νþ 8ν2

1þν

X∞
n¼0

1

2−νþn

�
ν−1

νþ1

�
n
	
: ð57Þ

At high energies, equivalent to xγ ≫ α2 and ν≃ α
2
ffiffiffi
xγ

p → 0,

this amplitude can be expanded as a series in α= ffiffiffiffiffixγp ,

Ae ¼ 1 −
2α

3
ffiffiffiffiffixγp þ ð2 − 2 ln 2Þα2

3xγ
þ…; ðxγ ≫ α2Þ: ð58Þ

For xγ ≫ α2, the electric amplitude is thus approximately 1.
In this region the binding effects are relatively unimportant.
Indeed, the expression (54) agrees with the amplitude
obtained when binding effects are ignored, Eq. (51), when
we take Ae → 1.
On the other hand, in the extreme soft photon limit

xγ ≪ α2, equivalent to ν≃ 1 − 2xγ
α2

→ 1−, the electric ampli-
tude can be expanded as a series in xγ=α2. The leading
behavior is

Ae ¼
2xγ
α2

þ… ðxγ ≪ α2Þ: ð59Þ

The leading term in the soft photon limit is linear in xγ with
a slope of 2=α2.
To summarize, the electric amplitude is linear in the

photon energy below the binding energy and approximately
constant above it. The expansions (59) and (58) are
important when determining the behavior of the photon
spectrum in the limits xγ ≪ α2 and xγ ≫ α2.
It is instructive to look for a simpler way to derive the

leading low-energy term (59). In the soft photon limit, the
wavelength is large and the electric field of the wave is
approximately constant. This is similar to the situation in
the Stark effect. Since the first order correction to the ground
state energy for the Stark effect vanishes [Eð1Þ ∝
hψ0jx · ϵγjψ0i ¼ 0], one evaluates the second order correc-
tion to the ground state energy,

Eð2Þ ¼
X
n≠0

hψ0jH0jnihnjH0jψ0i
E0 − En

; ð60Þ

where H0 ∝ x · ϵγ ¼ r cos θ. The form of (60) is similar to
the low-energy limit of the effective theory amplitudewhere
Eγ ¼ 0 in the energy denominator of (47),

Meff
o ¼−2

ffiffiffi
2

p
iGFealEγ

X
n

h0jðJ×σÞ ·pjnihnjx ·ϵγjo-Psi
Eo−En

:

ð61Þ

Since Eq. (60) can be summed exactly using the method of
Dalgarno and Lewis [38,39], we can exploit the similarity
between Eqs. (60) and (61) to evaluate the effective theory
amplitude in the soft photon limit.
Equations (60) and (61) can be summed exactly by

finding a function F that satisfies

½F;H0�ψ0ðxÞ ¼ x · ϵγψ0ðxÞ: ð62Þ

For the unperturbed positronium Hamiltonian, H0, the
function F is given by

F ¼ −
m
2
x · ϵγ

�
a2 þ ar

2

�
: ð63Þ

With F in hand, we evaluate Eq. (61),

Meff
o ¼ −2

ffiffiffi
2

p
iGFealEγh0jðJ × σÞ · pFjo-Psi

¼ −4GFealEγðJ × ξÞ ·
Z

d3xδð3ÞðxÞ∇ðFψ0ðxÞÞ

¼ 4GFealψ0ð0Þðϵγ × JÞ · ξ 2xγ
α2

: ð64Þ

Thus, in the limit xγ≪α2 the electric amplitude is Ae≈
2xγ=α2, which is equal to the first order term of the
expansion (59).
Similarly, the Stark effect can be related to the soft

photon limit of the E1 portion of the o-Ps → 3γ decay
amplitude. The annihilation operator that contributes to the
E1 portion of the o-Ps → 3γ decay amplitude is of the same
form as the o-Ps p-wave νlν̄l annihilation operator and
contains a p derivitive. A calculation, using the summation
technique above, reveals that in the soft photon limit,
Ae ≈ 2xγ=α2. This agrees with the soft photon limit of
the electric amplitude derived in [24,26] by expansion of
the p-wave Green’s function.
With this understanding of the electric amplitude, we

proceed to the photon spectrum. Both the spin averaged
square of the amplitude (54) and the three-body phase
space in the x → 0 limit are needed. Squaring (54),
summing over the photon polarizations and averaging over
the initial o-Ps polarizations yields

1

3

X
ξϵγ

jMeff
o j2 ¼ 1

3

X
ξϵγ

j4GFealψ0ð0ÞAeðEγÞðϵγ × JÞ · ξj2

xγ → 0→ 128G2
Fa

2
lα

4m5jAeðEγÞj2
�
1−

1

3
cos2θ

�
;

ð65Þ
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where
P

ξϵγ
jðϵγ × JÞ · ξj2=3 ¼ ð16E2

1Þð1 − 1
3
ðk̂γ · k̂1Þ2Þ,

k̂γ · k̂1 ¼ cos θ and E1 → m. Multiplying by the three-
body phase space in the limit xγ → 0 and integrating over
cos θ yields the effective theory spectrum

�
1

Γo

dΓo

dxγ

�
eff

¼ 27π3

8G2
Fm

5α4a2l

×
Z

1

−1
d cos θ

1

128π3
xγ
2

1

3

X
ξϵγ

jMeff
o ðEγÞj2

¼ 3xγjAeðEγÞj2: ð66Þ

The effective theory spectrum is proportional to the square
of the electric amplitude and thus shares the same transi-
tional behavior at xγ ¼ α2. Substituting the leading term
from Eqs. (59) and (58) into (66) we obtain the approximate
form of the spectrum in the limits xγ ≪ α2 and xγ ≫ α2,

�
1

Γo

dΓo

dxγ

�
eff

≈

8<
:

12

α2
x3γ for xγ ≪ α2

3xγ for xγ ≫ α2
: ð67Þ

Clearly, for photons with xγ ≪ α2, the spectrum is cubic in
the photon energy as required by Low’s theorem. For
photons in the energy range α2 ≪ xγ ≪ 1, both the
effective theory and tree level electroweak spectra are
approximately linear with a slope of 3.
The ratio of the effective theory spectrum to the tree level

electroweak spectrum for o-Ps → γνlν̄l decays is plotted in
Fig. 5. The effective theory spectrum and tree level
electroweak spectrum are approximately equal in the
intermediate energy range xγ ∼Oð10−2 − 10−1Þ (Fig. 5).
For high-energy photons the ratio spikes upward indicating
that the effective theory spectrum differs significantly from

the tree level electroweak spectrum and is no longer
accurate [Fig. 5(b)]. Below the binding energy, the ratio
in the log-log plot is linear with a slope of 2 since the
effective theory spectrum is cubic in xγ while the tree level
electroweak spectrum is linear [Fig. 5(a)].

VI. CONCLUSIONS

We calculated the decay rate and photon spectrum of the
decay of Ps into a photon and a neutrino-antineutrino pair
(Ps → γνlν̄l). Both Ps spin states have access to the γνlν̄l
decay channel where the p-Ps and o-Ps final states are
orthogonal despite being comprised of the same particles.
The decay rates are given by (4) and (5) and the tree
level electroweak photon spectrum by (9) and (10). These
rates and spectra were further examined by calculating
the angular dependence of the decay amplitudes, angular
distributions and spectra for specific γ þ Z� final states
(Tables I–IV).
In principle, this decay could be observed. Experimentally,

this channel would appear as the decay of Ps into a single
photon if the neutrinos goundetected. Experimental detection
of this channel would however be very challenging given the
small branching ratios.
The soft photon limit of the tree level electroweak spectra

[Eqs. (9) and (10)] was compared with that predicted by
Low’s theorem and found to be in disagreement. This
contradiction was resolved by including binding effects in
the computation of the soft photon spectrum using the
methods of nonrelativistic effective field theories. The
effective theory spectra are given by Eqs. (45) and (66),
and are valid for photon energies much less than the
electron mass.
For photon energies much larger than the hyperfine

splitting yet still much smaller than the electron rest
mass (mα4 ≪ Eγ ≪ m), the p-Ps → γνlν̄l effective theory

(a) (b)

FIG. 5. Log-log plot of the ratio of the effective theory amplitude to the tree level electroweak amplitude for p-Ps → γνν̄ decays for
(a) the low-energy limit α4 < xγ < 0.1 and for (b) the high-energy limit α2 < xγ < 1. The vertical line in (a) indicates the binding energy
(xγ ¼ α2=2) while the horizontal line in (b) is placed at 1 where the effective theory and electroweak theory spectra are equal.
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spectrum approaches the tree level electroweak spectrum
(9). Below the hyperfine splitting (Eγ ≪ mα4), the effective
theory spectrum is cubic in the soft photon energy as
required by Low’s theorem. In the dipole approximation of
the Coulomb interaction, soft photon p-Ps → γνlν̄l decays
proceed only by the magnetic M1 transition.
The o-Ps → γνlν̄l effective theory spectrum approaches

the tree level electroweak spectrum (10) for photon
energies much larger than the binding energy but still
much smaller than the electron rest mass (mα2 ≪ Eγ ≪ m).
For photon energies much smaller than the binding energy
(Eγ ≪ mα2), the effective theory spectrum is cubic in the
photon energy as required by Low’s theorem. In the dipole
approximation of the Coulomb interaction, soft photon
o-Ps → γνlν̄l decays proceed only by the electric E1
transition.
Lastly, we find connection between the Stark effect and

the soft photon limit of the o-Ps → γνlν̄l spectrum and the
E1 contribution to the o-Ps → 3γ spectrum.
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APPENDIX A: FORMULATION OF THE
Ps→ γνlν̄l DECAY RATE IN TERMS

OF γ AND Z�

The Feynman diagrams relevant for the Ps → γνlν̄l
decay are illustrated in Fig. 1. As in Sec. II we neglect
the 3-momentum of the incoming leptons and the virtual
W and Z bosons. With these approximations, the
ðp=oÞ‐Ps → γνlν̄l amplitudes are

iMp=o ¼
iGFffiffiffiffiffiffiffiffi
2πα

p ðϵγÞ�μgνρTr½Xμν
p=oðp1; kγÞ�Jρðk1; k2Þ; ðA1Þ

where

Xμν
p=oðp1; kγÞ ¼ Tr

�
2mΨp=oððieÞγνðvl − alγ5Þ

p1 − kγ þm

ðp1 − kγÞ2 −m2
ð−ieÞγμ þ ð−ieÞγμ kγ − p2 þm

ðkγ − p2Þ2 −m2
ðieÞγνðvl − alγ5ÞÞ

	
;

ðA2Þ

and Jμðk1; k2Þ ¼ ūðk1Þγμð1 − γ5Þvðk2Þ is the neutral weak
current. The p-Ps and o-Ps projection operators are given
byΨp ¼ ð1þ γ0Þγ5=ð2 ffiffiffi

2
p Þ andΨo ¼ ð1þ γ0Þγ · ξ=ð2 ffiffiffi

2
p Þ

where ξ is the o-Ps polarization vector [29].
To calculate the Ps → γνlν̄l decay rate, we start from the

standard formula,

Γp=o ¼
1

2mPs

Z
dΦ3ðp1 þ p2; k1; k2; kγÞ

jψ0ð0Þj2
m

×
1

g

X
spin=pol

jMp=oj2; ðA3Þ

where ψ0ð0Þ is the ground state positronium wave function
at the origin and g is the number of Ps polarizations of the
initial state [40].
Substituting the three-body spin averaged matrix

element squared,
X

spin=pol

jMp=oj2

¼ gαβgμρgνσ
G2

F

2πα
Xαμ
p=oX

βν
p=o

�Tr½k1γρð1 − γ5Þk2γσð1 − γ5Þ�;
ðA4Þ

into (A3) and decomposing the three-body phase space as
detailed in Appendix A, yields

Γp=o¼
1

2mPs

Z
ds
2π

dΦ2ð2p1;kγ;qÞ

×
jψPsð0Þj2

m

gαβgμρgνσ
g

G2
F

2πα
Xαμ
p=oX

βν
p=o

�

×
Z

dΦ2ðq;k1;k2Þk1ηk2λTr½γηγρð1− γ5Þγλγσð1− γ5Þ�;

ðA5Þ
where s ¼ q · q is the invariant mass of Z� squared and q is
its four-momentum. The neutrino phase space integral can
be performed by writing the neutrino momentum product,
k1ηk2λ, as a linear combination of the only available
tensors, k1ηk2λ ¼ Aq2gηλ þ Bqηqλ. The momentum con-
serving delta function in dΦ2ðq; k1; k2Þ forces q ¼ k1 þ k2.
A system of equations for A and B is obtained by
contracting

R
dΦ2ðq; k1; k2Þk1ηk2λ with gηλ and qηqλ, and

yields the solution A ¼ 1=12 and B ¼ 1=6. Thus, the
neutrino contribution to the decay rate is
Z

dΦ2ðq; k1; k2Þk1ηk2λTr½γηγρð1 − γ5Þγλγσð1 − γ5Þ�

¼ 1

3π
½qρqσ − q2gρσ� ¼ 1

3π
q2
X
s

ϵρsðqÞϵσs �ðqÞ; ðA6Þ

where the sum over the polarizations of a massive vector
boson is given by
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X
s

ϵρsðqÞϵσs �ðqÞ ¼
qρqσ

q2
− gρσ: ðA7Þ

Substituting (A6) into Eq. (A5), we obtain the Ps → γνlν̄l
decay rate in terms of Ps → γZ�,

Γp=o ¼
1

2mPs

Z
ds
2π

dΦ2ð2p1; kγ; qÞ

×
jψPsð0Þj2

m

gαβ
g

G2
F

2πα
Xαμ
p=oX

βν
p=o

� 1

3π
q2
X
s

ðϵsÞμðϵ�sÞν

¼ G2
F

2π2α

Z
dq2

2π
q2
�

1

2mPs

Z
dΦ2ð2p; kγ; qÞ

jψPsð0Þj2
m

×
1

3g

X
pol

jMðp=oÞ−Ps→γZ� j2
�

¼ G2
F

2π2α

Z
dq2

2π
q2Γðp=oÞ‐Ps→γZ� : ðA8Þ

APPENDIX B: DERIVATION OF THE o-Ps
AMPLITUDES WITH THEIR ANGULAR

DEPENDENCIES

Initially, the o-Ps atom is in a state of definite angular
momentum denoted by jΛi. Since o-Ps and its decay
products, γ and Z�, are all spin-one particles, we abbreviate
the angular momentum states j1; msi by jmsi where ms is
the projection of spin along the z-axis. The massive Z�
boson has access to all three spin projection states (i.e.,
mZ ∈ f�1; 0g) while the massless photon cannot access
the longitudinally polarized j0i state (i.e., mγ ∈ f�1g).
Conservation of angular momentum requires that the spin
projection quantum numbers satisfy mγ þmZ ¼ mΛ; as a
result, there are four different modes in which o-Ps can
decay along the z-axis.
Consider jΛi initially polarized in the state jþi along the

z-axis. Since the photon must have mγ ¼ �1, conservation
of angular momentum implies jγi ¼ jþi and jZ�i ¼ j0i;
we assign the amplitude Aþ0 to this decay. If jΛi is initially

polarized in the state j−i, jγi ¼ j−i and jZ�i ¼ j0i; we
assign the amplitude A−0 to this decay. Lastly, if jΛi is
initially polarized in the state j0i, mγ ¼ −mZ and therefore
jγi ¼ j�i and jZ�i ¼ j∓i; we assign amplitudes A�∓ to
these decays.
The o-Ps → γZ� amplitudes along the z-axis are

A�0 ¼ � 4e2al
q

�
Eγ þ EZ

q
ξ · ϵ��

	
¼ � e2ffiffiffi

2
p Eγ þ EZ

q
δmΛ;�;

ðB1Þ

A�∓ ¼ � 4ie2alffiffiffi
2

p ξ · ẑ ¼ � ie2ffiffiffi
2

p δmΛ;0; ðB2Þ

where ϵ� are the transverse polarization vectors of the
photon and ξ is the o-Ps polarization vector. Here q is the
momentum of the Z�.
To determine the angular dependence of the decay

amplitudes on the spherical angles, θ and ϕ, we consider
two coordinate systems fx; y; zg and fx0; y0; z0g. The z0-axis
is defined by the angles θ and ϕ in the fx; y; zg coordinate
system and represents the decay axis. The angular depend-
ence of the decay amplitudes is constructed by rotating the
initial o-Ps state and then considering the decay into γ þ Z�
along z0.
The combination of rotations required to bring fx; y; zg

onto fx0; y0; z0g (Fig. 6) is determined to be

R ¼ Rz0 ðαÞRy0 ðθÞRz0 ðϕÞ; ðB3Þ

where RnðθÞ ¼ eiθn·S is the operator for rotations about the
axis given by the unit vector, n, and S ¼ ðSx; Sy; SzÞ is the
spin-one matrix operator [36].
Application of R to jΛi yields the amplitude for jΛi to be

in the state jm0
Λi along the z0-axis for eachm0

Λ ∈ f�1; 0g. If
jΛi is initially polarized in the state jþi, then jΛi has an
amplitude of 1

2
ð1þ cos θÞeiαeiϕ to be in the state jþ0i (the

mΛ ¼ 1 state along the z0 axis). If jΛi is in the state jþ0i, it

FIG. 6. Sequence of rotations that transforms fx; y; zg (solid) to fx0; y0; z0g (dashed).
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decays to jþ0; kẑ0iγ ⊗ j00;−kẑ0iZ with an amplitude Aþ000 ,
where k is the magnitude of the photon momentum along
z0. Thus, the total amplitude for the decay of a o-Ps atom
with spin projection mΛ ¼ þ1 into a photon moving along
þz0-axis with spin projection m0

γ ¼ þ1 is

AmΛ¼þ
þ000 ðθ;ϕÞ ¼ Aþ000

2
ð1þ cos θÞeiαeiϕ: ðB4Þ

Similarly, the amplitude for the final state j−0; kẑ0iγ ⊗
j00;−kẑ0iZ is

Aþ
−000 ðθ;ϕÞ ¼

A−000

2
ð1 − cos θÞe−iαeiϕ; ðB5Þ

and the amplitudes for j�0; kẑ0iγ ⊗ j∓0;−kẑ0iZ are

Aþ
�0∓0 ðθ;ϕÞ ¼ −A�0∓0ffiffiffi

2
p sin θeiϕ: ðB6Þ

We denote the o-Ps decay amplitudes with their full
angular dependencies asAmΛ

m0
γm0

Z
where mΛ ∈ f�1; 0g is the

initial spin projection of o-Ps along the z-axis, and, m0
γ ∈

f�1g and m0
Z ∈ f�1; 0g are the spin projections of the

photon and Z� along the z0-axis. The amplitudes, A0
m0

γm0
Z
,

are obtained using the method outlined above while A−
m0

γm0
Z

is obtained fromAþ
m0

γm0
Z
by the prescription θ → θ þ π, ϕ →

−ϕ and α → −α. The o-Ps amplitudes, AmΛ
m0

γm0
Z
, are listed in

Table II where we have chosen the convention α ¼ 0.

APPENDIX C: DERIVATION OF THE eþe− → νν̄
ANNIHILATION OPERATOR

In order to calculate the effective theory amplitudes
(Sec. V), we require the Oðjpj=mÞ expansion of the
eþe− → νlν̄l annihilation amplitude (Fig. 7). The electron
and positron four-momenta are p1 ¼ ðE;pÞ and p2 ¼
ðE;−pÞ while the neutrino and antineutrino four-momenta
are k1 and k2. The amplitude of Fig. 7 is

Aðνlν̄lÞ ¼−i
ffiffiffi
2

p
GFv̄ð−pÞJðvl−alγ5ÞuðpÞ

¼ 2
ffiffiffi
2

p
iGFmχ†

�

ðσ·pÞ†
2mc 1

�
Jðvl−alγ5Þ

�
1
σ·p
2mc

�	
ϕ

¼ χ†Âðνlν̄lÞϕ; ðC1Þ
where

Âðνlν̄lÞ ¼ 2
ffiffiffi
2

p
iGFmð σ·p2m 1 Þ

�
J0 −J · σ
J · σ −J0

�

×

�
vl −al
−al vl

��
1
σ·p
2m

�
ðC2Þ

is the νlν̄l annihilation operator. From momentum con-
servation, k1 ¼ −k2, and the time component of the neutral
weak current vanishes, J0 ¼ 0. Therefore, the νlν̄l anni-
hilation operator becomes

Âðνlν̄lÞ ¼ 2
ffiffiffi
2

p
iGFmvlðJ · σÞ − 2

ffiffiffi
2

p
GFalðJ × σÞ · p:

ðC3Þ

The first term of Eq. (C3), proportional to vector coupling,
is the s-wave o-Ps → νlν̄l annihilation operator,

Âðνlν̄lÞ
s ¼ 2

ffiffiffi
2

p
iGFmvlðJ · σÞ: ðC4Þ

In the computation of the p-Ps → γνlν̄l effective theory
amplitude, the s-wave annihilation operator takes the
intermediate s-wave o-Ps state into a neutrino-antineutrino
pair. The second term, proportional to axial coupling, is the
p-wave o-Ps → νlν̄l annihilation operator,

Âðνlν̄lÞ
p ¼ −2

ffiffiffi
2

p
GFalðJ × σÞ · p: ðC5Þ

In the computation of the o-Ps → γνlν̄l effective
theory amplitude, the p-wave annihilation operator takes
the intermediate p-wave o-Ps states into a neutrino-
antineutrino pair.

(a) (b)

FIG. 7. The eþe− → νlν̄l annihilation graphs for (a) Z-boson exchange and (b) W-boson exchange. The graph (a) contributes to the
Ps → νlν̄l amplitude for all lepton flavors l ¼ e, μ, τ while (b) only contributes to the amplitude when l ¼ e.
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