
Implications of general lepton mass matrices in the standard model on mee

Samandeep Sharma,1,2 Gulsheen Ahuja,1,* and Manmohan Gupta1
1Department of Physics, Panjab University, Chandigarh 160014, India
2Department of Physics, GGDSD College, Chandigarh 160030, India

(Received 7 July 2016; published 13 December 2016)

Within the framework of the standard model (SM), using the facility of weak basis (WB) trans-
formations, the general Dirac neutrino mass matrix and the charged lepton mass matrix can essentially be
considered as texture two zero mass matrices. Using type I seesaw formula for Majorana neutrino mass
matrix, our analysis yields lower boundsmee ≳ 0.001 eV for normal mass ordering and mee ≳ 0.08 eV for
inverted mass ordering, the latter being tantalizingly close to the expected outcome of the ongoing
experiments. Interestingly, for inverted mass ordering, mee is largely independent of variation of mass m3,
whereas, for normal mass ordering with m1 in the range 0.0001 eV–0.01 eV, the bound on parameter mee

gets further sharpened and one obtains mee within the band 0.014–0.042 eV. Further, noting that a
particular set of texture four zero quark mass matrices has been shown to be a unique viable option for the
description of quark mixing data, an analysis of similar mass matrices in the lepton sector has also been
carried out to obtain bounds for the parameter mee with interesting consequences.
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I. INTRODUCTION

For the last more than a decade, spectacular advances
have taken place in our understanding of the neutrino
oscillation phenomenology owing to various solar [1],
atmospheric [2], reactor [3], and accelerator [4] neutrino
experiments. At present, the neutrino oscillation data is
parametrized in terms of two mass squared differences
Δm2

sol, Δm2
atm and three mixing angles θ12, θ23, θ13, with

the latter being measured in the last few years only [5,6].
An analysis of the present data reveals that the absolute
neutrino masses, although not determined, are much
smaller than their charged counterparts. Similarly, ordering
of neutrino mass eigenstates is also not clear, one may have
either the normal mass ordering (NO) or the inverted mass
ordering (IO) [7].
In the absence of any deep theoretical understanding of

fermion masses and mixings, the “smallness” of neutrino
masses is best understood in terms of the seesaw mecha-
nism [8]. This can simply be realized in the standard model
(SM) by the addition of three heavy right handed neutrinos,
e.g., an effective neutrino mass matrix is generated through
type I seesaw formula

Mν ¼ −MT
νDM

−1
R MνD; ð1Þ

withMν,MνD, andMR corresponding to the light Majorana
neutrino mass matrix, the Dirac neutrino mass matrix, and
the heavy right handed Majorana neutrino mass matrix,
respectively. In this context, a smoking gun signature for
establishing Majorana nature of neutrinos is expected to be
provided by the observation of neutrinoless double beta

decay (NDBD) [9], measured in terms of the effective
Majorana mass mee expressed as

jmeej ¼ jm1U2
e1 þm2U2

e2 þm3U2
e3j; ð2Þ

where m1, m2, m3 are the absolute neutrino masses and
Ue1, Ue2, Ue3 are the elements of the Pontecorvo Maki
Nakagawa Sakata (PMNS) matrix [10]. In terms of the
standard parametrization [11] of PMNS matrix, the param-
eter mee can be rewritten as

jmeej ¼ jm1c212c
2
13 þm2s212c

2
13e

2iη1 þm3s213e
2iη2 j; ð3Þ

with η1, η2 representing the Majorana phases and c12, s12,
etc. corresponding to the cosine and sine of the leptonic
mixing angles, respectively. Noting that the mixing angles
are quite well determined, even in the absence of knowl-
edge of the phases η1 and η2, one can obtain constraints on
the parameter mee provided one has information about the
absolute neutrino masses. Since, at present, neither the
absolute neutrino masses nor the parameter mee are well
determined, therefore any constraints on either of these
would have mutual implications.
On both the phenomenological as well as experimental

fronts, a good deal of effort has been made to find
constraints on mee. On the phenomenological front, most
of the attempts have been model dependent [12] within the
“top-down” as well as “bottom-up” approach. In the case of
the bottom-up approach, emphasis has mostly been on the
texture zero approach [13], with most of the attempts made
by considering the mass matrices to be in the “flavor basis”
[14], wherein the charged lepton mass matrix Ml is
considered to be diagonal while a texture is imposed on
the Majorana neutrino matrix Mν. Along with these, some*gulsheen@pu.ac.in
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attempts have also been carried out in the “nonflavor basis”
[15] wherein it is usual to impose texture on the charged
lepton mass matrix Ml and on the Dirac neutrino mass
matrix MνD. Equation (1) can then be used to obtain the
Majorana neutrino matrix Mν which along with the matrix
Ml allows the construction of the PMNS matrix for
examining the viability of the mass matrices and conse-
quently for obtaining constraints on parameter mee.
On the experimental front, again large amount of

efforts have been devoted in constraining the parameter
mee, in particular, the data provides an upper bound [16],
mee < 0.1–0.25 eV, expected to be refined largely by
several next generation NDBD experiments [9] aiming
to achieve a sensitivity up to 0.01 eV for mee in the near
future. The measurement of mee would not only establish
the Majorana nature of neutrinos, but would also pave the
way for obtaining useful constraints on absolute neutrino
masses through the relation given in Eq. (2). Therefore,
fruitful constraints on absolute neutrino masses may be
obtained by combining information from bounds on mee as
well as the results obtained from the Planck Satellite [17]
and the direct neutrino mass measurements [18]. In light of
the above discussion, one can conclude that determination
of mee would have far reaching implications for having a
deeper understanding of the neutrino oscillation phenom-
enology. In this context, it would be interesting to obtain
bounds on mee starting with general mass matrices within
the framework of SM which would be useful for both
phenomenologists as well as experimentalists.
It is perhaps desirable to mention that recently [19] in the

case of quarks, starting with general quark mass matrices,
following the texture zero approach and coupling it with the
facility of weak basis (WB) transformations [20,21], a finite
set of texture four zero mass matrices was arrived at as a
unique viable option for the description of quark mixing
data. Keeping in mind the quark lepton universality, as
advocated by Smirnov [22] as well as required by most
of the grand unified theories (GUTs), it becomes desirable
to examine the implications of the corresponding matrices
in the leptonic sector in order to obtain bounds on the
parameter mee.
Working in the nonflavor basis, the purpose of the

present manuscript, therefore, is to start with general
Dirac lepton mass matrices MνD and Ml within the
framework of SM and consider these to be texture specific
mass matrices by using WB transformations without
any further input. Using the matrices Ml and Mν, the
latter obtained using Eq. (1), the elements of the PMNS
matrix are then constructed, allowing us to obtain bounds
for mee. For both normal and inverted neutrino mass
orderings, the dependence of these bounds on the lightest
neutrino mass have been examined. Further, as discussed
above, an analysis of texture four zero lepton mass
matrices has also been carried out to obtain bounds for
the parameter mee.

The plan of the paper is as follows. In Sec. II, within the
framework of SM, we first start with general lepton mass
matrices MνD and Ml and following WB transformations
we consider these as texture two zero lepton mass matrices.
Some essential details pertaining to the construction of
the corresponding PMNS matrix have been presented in
Sec. III. Using inputs given in Sec. IVand keeping focus on
the parameter mee, the results pertaining to the analyses of
texture two zero and texture four zero lepton mass matrices
for the different neutrino mass orderings have been pre-
sented in Secs. VA and V B, respectively. Finally, Sec. VI
summarizes our conclusions.

II. GENERAL LEPTON MASS MATRICES
IN THE SM

In order to construct matrix Mν using Eq. (1), we begin
with the Dirac lepton mass matrices, which, within the
framework of SM, arise from the Higgs-fermion couplings
characterized by

LYukawa ¼ Yl
ijLLiHlRj þ Yν

ijLLiHcνRj þ H:c:;

i; j ¼ 1; 2; 3; ð4Þ

where LL ≡ ð lLνL Þ, H and Hc correspond to the left-handed

lepton doublet, the Higgs field, and its charge conjugate,
respectively. The charged lepton and the Dirac neutrino
mass matrices Ml and MνD are related to the Yukawa
couplings Yij’s as

Ml ¼
υffiffiffi
2

p Yl
ij; MνD ¼ υffiffiffi

2
p YνD

ij ; ð5Þ

with υ corresponding to the vacuum expectation value of
the Higgs field. Within the SM and some of its extensions,
without loss of parameter space, the general 3 × 3 complex
mass matrices Ml and MνD can be considered to be
Hermitian [13] and in general expressed as

Mk ¼

0
B@

Ck Ak Fk

A�
k Dk Bk

F�
k B�

k Ek

1
CA ðk ¼ l; νDÞ: ð6Þ

It may be pointed out that SM and its extensions wherein
the right-handed fermions remain singlets have the facility
of carrying out transformations, without loss of their
generality, in the above mass matrices known as the weak
basis (WB) transformations [20]. In particular, this implies
making unitary transformations, e.g.,

ν0L ¼ WLνL; l0L ¼ WLlL;

l0R ¼ WRlR; ν0R ¼ WRνR; ð7Þ
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where WL and WR are unitary matrices. Under these
transformations, the gauge currents

LW ¼ gffiffiffi
2

p l̄LγμνLWμ þ H:c:; ð8Þ

remain real and diagonal, but the matrices Ml and MνD
transform as

M0
l ¼ W†

LMlWR; M0
νD ¼ W†

LMνDWL: ð9Þ
Using this facility, the above mass matrices M0

l and M0
νD

can be reduced to [20]

Ml ¼

0
B@

Cl Al 0

A�
l Dl Bl

0 B�
l El

1
CA; MνD¼

0
B@
CνD AνD 0

A�
νD DνD BνD

0 B�
νD EνD

1
CA:

ð10Þ

It may be reemphasized that there is no loss of generality of
the mass matrices as we reduce the ones given in Eq. (6) to
the ones mentioned above. Apart from the form of the
lepton mass matrices given above, other equivalent forms
of matrices based on WB transformations have also been
proposed in the literature [21], however for the present
analysis, we have considered the form mentioned above
since it corresponds to a parallel texture structure for the
charged lepton and the neutrino sector, in consonance with
some classes of family symmetries and grand unified
theories (GUTs). In the language of texture specific mass
matrices, these matrices are texture one zero type with
AlðνDÞ ¼ jAlðνDÞjeiαlðνDÞ and BlðνDÞ ¼ jBlðνDÞjeiβlðνDÞ , together
these are considered as texture two zero lepton mass

matrices. Further, using the matrix MνD and the right
handed Majorana neutrino mass matrix MR, the Majorana
neutrino matrixMν can also be obtained through Eq. (1). It
may be emphasized that the matrices Ml and MνD are
considered as texture two zero lepton mass matrices,
however, no texture has been imposed on the matrix Mν.

III. TEXTURE TWO ZERO MASS MATRICES AND
CONSTRUCTION OF THE PMNS MATRIX

As a next step, construction of the PMNS matrix is
carried out in terms of the diagonalization transformations
of the matrices Ml and that of Mν which is expressed in
terms of the diagonalizing transformation of MνD. In this
context, the Hermitian mass matrices Ml and MνD can be
expressed as

Mk ¼ P†
kM

r
kPk k ¼ l; νD; ð11Þ

where Mr
k is a real symmetric matrix with real eigenvalues

and Pk is a diagonal phase matrix. In general, the real
matrixMr

k is diagonalized by the orthogonal transformation
Ok, yielding

Mk ¼ P†
kOkξkM

diag
k OT

kPk: ð12Þ

A diagonal phase matrix ξk defined as diagð1; eiπ; 1Þ for the
case of normal mass ordering and as diagð1; eiπ; eiπÞ for the
case of inverted mass ordering has been introduced to
facilitate the construction of diagonalization transforma-
tions for different neutrino mass orderings [13].
The elements of the transformation Ok corresponding to

the mass matrices given in Eq. (10) are

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−m1ÞðDkþEk−m1−m2ÞðDkþEk−m1−m3Þ
ðDkþ2Ek−m1−m2−m3Þðm1−m2Þðm1−m3Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−m2Þðm3−CkÞðm1−CkÞ
ðEk−CkÞðm1−m2Þðm3−m2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−Ckþm1Þð−Ekþm3ÞðCk−m2Þ
ðm1−m3Þðm3−m2ÞðCk−EkÞ

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1−CkÞðm1−EkÞ
ðm1−m2Þðm1−m3Þ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−m2ÞðCk−m2Þ
ðm1−m2Þðm3−m2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−m3−CkÞðEk−m3Þ
ðm1−m3Þðm3−m2Þ

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−m2ÞðEk−m3Þðm1−CkÞ
ðm1−m2Þðm1−m3ÞðEk−CkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−Ekþm1ÞðCk−m2ÞðEk−m3Þ
ðm1−m2Þðm2−m3ÞðEk−CkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−m1ÞðEk−m2Þðm3−CkÞ
ðCk−EkÞðm1−m3Þðm3−m2Þ

q

1
CCCCCCA
; ð13Þ

with m1, −m2, m3 being the eigenvalues of Mk, negative
sign with m2 is to facilitate construction of the trans-
formationOk. In the case of charged leptons, because of the
strong hierarchy me ≪ mμ ≪ mτ, the mass eigenstates can
be approximated respectively to the flavor eigenstates, as is
usually considered [14].
For the case of neutrinos, in analogy with Eq. (12), we

can express MνD as

MνD ¼ P†
νDOνDξνDM

diag
νD OT

νDPνD: ð14Þ

Substituting the above value ofMνD in Eq. (1), one obtains

Mν ¼ −ðP†
νDOνDξνDM

diag
νD OT

νDPνDÞTðMRÞ−1
× ðP†

νDOνDξνDM
diag
νD OT

νDPνDÞ: ð15Þ
On using PT

νD ¼ PνD, the above equation can further be
written as

Mν ¼ −PνDOνDM
diag
νD ξνDOT

νDðP†
νDÞTðMRÞ−1

× P†
νDOνDξνDM

diag
νD OT

νDPνD: ð16Þ
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To simplify calculations, the phase matrices ðP†
νDÞT and

P†
νD along with −MR can be taken as mRdiagð1; 1; 1Þ [15]

as well as using the unitarity of ξνD and orthogonality of
OνD, the above equation can be expressed as

Mν ¼ PνDOνD
ðMdiag

νD Þ2
ðmRÞ

OT
νDPνD: ð17Þ

From the above equation, it is immediately clear that matrix
Mν can be diagonalized in terms of the diagonalizing
transformation of MνD. The corresponding lepton mixing
matrix is expressed as

UPMNS ¼ ðP†
l OlξlÞ†ðPνDOνDÞ: ð18Þ

Eliminating the phase matrix ξl by redefinition of the
charged lepton phases, the above equation becomes

UPMNS ¼ O†
l PlPνDOνD; ð19Þ

where PlPνD, without loss of generality, can be taken as
ðeiϕ1 ; 1; eiϕ2Þ, ϕ1 and ϕ2 are related to the phases of mass
matrices as ϕ1 ¼ ανD − αl, ϕ2 ¼ βνD − βl and can be
treated as free parameters.

IV. INPUTS USED FOR THE ANALYSIS

Summarizing essentials of various inputs, the results of
the latest global three neutrino oscillation analyses [23]
have been presented in Table I. Further, for ready reference,
we present the following 3σ C.L. ranges of the PMNS
matrix elements given by Garcia et al. [23]

UPMNS ¼

0
B@
0.801− 0.845 0.514− 0.580 0.137− 0.158

0.225− 0.517 0.441− 0.699 0.614− 0.793

0.246− 0.529 0.464− 0.713 0.590− 0.776

1
CA:

ð20Þ

While carrying out our analysis, the magnitudes of solar
and atmospheric neutrino mass squared differences are
given variation within their 3σ ranges mentioned in Table I.
The lightest neutrino mass, m1 for the case of NO and m3

for the case of IO, is considered as a free parameter while

the other two masses are obtained using the following
relations

NO∶ m2
2 ¼ Δm2

sol þm2
1; m2

3 ¼ Δm2
atm þ ðm2

1 þm2
2Þ

2
;

ð21Þ

IO∶ m2
2 ¼

2ðm2
3 þ Δm2

atmÞ þ Δm2
sol

2
;

m2
1 ¼

2ðm2
3 þ Δm2

atmÞ − Δm2
sol

2
: ð22Þ

For both the mass orderings of neutrinos, in the absence of
any lower bound on the lightest neutrino mass, its range has
been explored from 0 eV − 10−1 eV. The phases ϕ1, ϕ2

have also been considered to be free parameters and given
full variation from 0 to 2π. Further, the mass matrix
elements Dl;νD and Cl;νD have been constrained such that
diagonalizing transformations Ol and Oν always remain
real, ensuring the mass matrices to be “natural” as advo-
cated by Peccei and Wang [24]. Incorporating these
constraints on the input parameters and using the usual
methodology, detailed in Ref. [13], one can easily repro-
duce the PMNS matrix elements.

V. RESULTS AND DISCUSSION

A. Texture two zero lepton mass matrices

Coming to the results of the analysis, we have presented
the results corresponding to the normal and inverted
neutrino mass orderings, those for the degenerate scenario
can be derived from these. It may be mentioned that we
have focused our attention on the parameter mee and its
implications on the lightest neutrino mass.

1. Inverted ordering of neutrino masses

For the IO case, to begin with, the magnitudes of the
PMNS matrix elements are given by

UIO
PMNS¼

0
B@
0.034−0.859 0.0867−0.593 0.135−0.996

0.250−0.971 0.068−0.812 0.043−0.808

0.103−0.621 0.395−0.822 0.088−0.810

1
CA:

ð23Þ

It is immediately clear that the ranges of the matrix
elements obtained by Garcia et al., given in Eq. (20),
are inclusive in the ranges found above, therefore, estab-
lishing the viability of texture two zero mass matrices for
the IO case. As a next step, we examine the constraints
obtained for the parameter mee. To this end, in Fig. 1 we
present the plots showing mass mee versus the phases ϕ1

and ϕ2, these being related to the phases of the mass
matrices. While plotting these figures, all the three mixing
angles have been constrained by their 3σ experimental
bounds given in Table I, while the Majorana phases η1 and

TABLE I. Current data for neutrino mixing parameters from the
latest global fits [23].

Parameter 3σ range

Δm2
sol ½10−5 eV2� (7.02-8.09)

Δm2
atm ½10−3 eV2� (2.317-2.607)(NO); (2.590-2.307)(IO)

sin2θ13 ½10−2� (1.86-2.50)(NO); (1.88-2.51)(IO)
sin2θ12 ½10−1� (2.70-3.44)
sin2θ23 ½10−1� (3.82-6.43)(NO); (3.89-6.44)(IO)
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η2 as well as the other free parameters have been allowed
full variation.
Several interesting points are in order. It is immediately

clear from the graphs that we obtain a lower bound of the
order of 0.08 eV on mee, independent of the values of the
phases ϕ1 and ϕ2. Interestingly, this bound is tantalizingly
close to the likely explored range of mee by the ongoing
experiments [9,16]. Therefore, an absence of a signal of
NDBD by these experiments would have important impli-
cations for the IO scenario.
Further, to examine the dependence of parameter mee on

the lightest neutrino mass m3, in Fig. 2 we have presented
mee versus m3, plotted by giving full variation to other
parameters. As mentioned earlier, the lightest neutrino
mass has been explored within the range 0eV–10−1 eV,
however, the graph has been plotted for m3 from 10−4 eV−
10−1 eV, our conclusions remain unaffected even if the range
is extended below 10−4 eV. From the graph, one finds that
the above mentioned bound on parameter mee looks to be
independent of the range of mass m3 considered here.

2. Normal ordering of neutrino masses

For the NO case, as a first step, we again reproduce the
magnitudes of the PMNS matrix elements, e.g.,

UNO
PMNS ¼

0
B@
0.444− 0.993 0.123− 0.837 0.004− 0.288

0.061− 0.816 0.410− 0.941 0.047− 0.872

0.012− 0.848 0.049− 0.779 0.460− 0.992

1
CA;

ð24Þ
these again being compatible with the ones obtained by
Garcia et al. given in Eq. (20). As a next step, we obtain the
bounds on parameter mee by plotting mee versus phases ϕ1

and ϕ2, shown in Figs. 3(a) and 3(b). While plotting these
figures, the neutrino oscillation parameters and the other
free parameters have been varied in a manner similar to the
IO case. From the graphs, it is clear that parameter mee,
contrary to the IO case, shows substantial dependence on
the phases ϕ1 and ϕ2. Also, it is interesting to note that now
one obtains a lower bound of the order of 0.001 eV for the
parameter mee, this being considerably lower compared
with the bound obtained for IO case.
Further, interesting conclusions can be derived by studying

the variation ofmee with respect to the lightest neutrino mass
m1, shown in Fig. 4. In particular, one notices that form1 from
0.0001 eV–0.01 eV, the bound on parametermee gets further
sharpened and one obtains mee within the band 0.014–
0.042 eV, whereas for m1 > 0.01 eV, the parameter mee
does not remain constrained to the abovementioned band but
instead there is a considerable spreading of the mee values
outside the band. This observation has interesting implica-
tions for the orderings of neutrino masses. For example, in
case the range of parametermee settles around values outside
the band, which is possible in the near future as several
ongoing experiments like GERDA, CUORE, MAJORANA
and EXO are already aiming to approach sensitivity on mee
around these values, then the allowed range of m1 would
correspond to the degenerate scenario of neutrino
masses [13].

B. Texture four zero lepton mass matrices

As mentioned earlier, recently, for the case of quarks it
has been shown [19] that a particular type of texture
structure, i.e. texture four zero mass matrices, emerges
as a unique possibility for the up as well as down sector
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FIG. 1. Parameter mee (in eV) versus (a) ϕ1 and (b) ϕ2 for texture two zero mass matrices (IO).
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FIG. 2. Parameter mee (in eV) versus the lightest neutrino mass
m3 for texture two zero mass matrices (IO).
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mass matrices. Keeping in mind the quark lepton unifica-
tion, as advocated by Smirnov [22] as well as required by
most of the GUTs, it therefore becomes interesting to
investigate the implications of similar type of mass matrices
in the leptonic sector as well, e.g.,

Ml ¼

0
B@

0 Al 0

A�
l Dl Bl

0 B�
l El

1
CA; MνD¼

0
B@

0 AνD 0

A�
νD DνD BνD

0 B�
νD EνD

1
CA:

ð25Þ
Following the methodology discussed earlier for the case of
texture two zero mass matrices, the texture four zero lepton
mass matrices have also been analyzed for the normal as
well as inverted ordering of neutrino masses.

1. Inverted ordering of neutrino masses

Interestingly, the present well-defined data rules out the
mass matrices given in Eq. (25) for the IO case as the PMNS
matrix constructed using these mass matrices is not com-
patiblewith the one constructed by Garcia et al. presented in
Eq. (20). To confirm this conclusion, in Fig. 5, we have

presented the plot showing the parameter space correspond-
ing to the mixing angles s13 and s23. The blank rectangular
region indicates the experimentally allowed 3σ region of the
plotted angles. The graph clearly shows that the plotted
parameter space does not include simultaneously the exper-
imental bounds of the plotted angles, therefore, ruling out
the texture four zero lepton mass matrices for the IO case.

2. Normal ordering of neutrino masses

For the NO case, the viability of texture four zero lepton
mass matrices is quite well established in the literature [25].
For the sake of completion, we present below the magni-
tudes of the corresponding PMNS matrix elements

UNO
PMNS¼

0
B@
0.692−0.995 0.074−0.711 0.028−0.199

0.074−0.701 0.417−0.892 0.185−0.829

0.051−0.593 0.164−0.758 0.554−0.976

1
CA:

ð26Þ

A comparison of this matrix with the one given in Eq. (20)
establishes the viability of mass matrices given in Eq. (25)
for the normal ordering of neutrino masses.
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FIG. 3. Parameter mee (in eV) versus (a) ϕ1 and (b) ϕ2 for texture two zero mass matrices (NO).
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FIG. 4. Parameter mee (in eV) versus the lightest neutrino mass
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Regarding the predictions for bounds on the parameter
mee, the plots of mee versus phases ϕ1 and ϕ2 yield results
similar to the case of texture two zero mass matrices, i.e.,
one obtains a lower bound of the order of 0.001 eV.
However, a plot depicting mass mee versus the lightest
neutrino mass m1, given in Fig. 6, yields results consid-
erably different from those obtained in texture two zero
case. In particular, a careful comparison of the plots
showing parameter mee versus mass m1 for the texture
two zero and texture four zero NO cases, shown in Figs. 4
and 6, respectively, reveals that in the case of latter one
obtains a very limited region of viability. Therefore,
nonzero values of the (1,1) elements in the charged lepton
and neutrino mass matrices as given in Eq. (10) leads to
significantly different predictions as compared to the case
when both of these elements are zero as given in Eq. (25).
This, interestingly, is contrary to the observation in the
quark sector [19] wherein the (1,1) element seems to be
essentially redundant. In particular, the mass matrices
given in Eq. (25) lead to an upper bound of the order
of 0.09 eV for the parameter mee. Further, the range of the
lightest neutrino mass gets severely constrained too, viz.
0.02–0.08 eV. Therefore if, by any theoretical consider-
ations, texture four zero structure turns out to be the only
viable possibility then it would be very easy to rule out or
establish the Majorana nature of neutrinos within the next
few years.

VI. SUMMARY AND CONCLUSIONS

To summarize, without loss of generality, within the
framework of SM, using WB transformations, general

Dirac neutrino mass matrix MνD and the charged lepton
mass matrixMl, can be considered as texture two zero mass
matrices. The Majorana neutrino matrix Mν, with no
texture imposed on it, has then been expressed through
the seesaw formula given in Eq. (1). The construction of the
corresponding PMNS matrix elements allows us to obtain
bounds for mee. For both normal and inverted neutrino
mass orderings, the implications of these bounds have been
examined for the lightest neutrino mass. Further, consid-
ering quark-lepton universality and taking clues from a
particular set of texture four zero quark mass matrices,
shown to be a unique viable option for the description of
quark mixing data, analysis of similar lepton mass matrices
has also been carried out to obtain bounds for the
parameter mee.
It is interesting to note that the bounds for mee obtained

from our analysis are well within the reach of the ongoing
experiments. For example, considering texture two zero
lepton mass matrices, for the inverted ordering of neutrino
masses, we find a lower bound of around 0.08 eV for mee,
therefore, an absence of a signal of NDBD by these
experiments would have important implications for this
mass ordering scenario. One also finds that variation of the
lightest neutrino mass in this case m3 has no implications
for the parameter mee.
For the normal mass ordering case, one obtains a lower

bound of the order of 0.001 eV for the parameter mee, this
being quite lower compared to the bound obtained for the
IO case. Further, on examining the implications for the
lightest neutrino mass, one finds that higher values of m1

are allowed for lower values ofmee and vice versa. If in the
ongoing experiments NO is not ruled out, it would narrow
down the window for the lightest neutrino mass and lead to
the possibility of neutrino masses being degenerate. For
the case of texture four zero matrices, interestingly, the
present data rules out IO, while for the NO case, the
lightest neutrino mass gets constrained in the range
0.02–0.08 eV.
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