
Jet flavor classification in high-energy physics with deep neural networks

Daniel Guest,1 Julian Collado,2 Pierre Baldi,2 Shih-Chieh Hsu,3 Gregor Urban,2 and Daniel Whiteson1
1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

2Department of Computer Science, University of California, Irvine, California 92697, USA
3Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 24 August 2016; published 2 December 2016)

Classification of jets as originating from light-flavor or heavy-flavor quarks is an important task for
inferring the nature of particles produced in high-energy collisions. The large and variable dimensionality of
the data provided by the tracking detectors makes this task difficult. The current state-of-the-art tools require
expert data reduction to convert the data into a fixed low-dimensional form that can be effectivelymanaged by
shallow classifiers.We study the application of deep networks to this task, attempting classification at several
levels of data, starting from a raw list of tracks. We find that the highest-level lowest-dimensionality expert
information sacrifices information needed for classification, that the performance of current state-of-the-art
taggers can be matched or slightly exceeded by deep-network-based taggers using only track and vertex
information, that classification using only lowest-level highest-dimensionality tracking information remains
a difficult task for deep networks, and that adding lower-level track and vertex information to the classifiers
provides a significant boost in performance compared to the state of the art.

DOI: 10.1103/PhysRevD.94.112002

I. INTRODUCTION

The search for new particles and interactions at the
energy frontier is a rich program with enormous discovery
potential. The power to discover this hypothetical new
physics relies crucially on the ability to infer the nature of
the interaction and the particles produced from the data
provided by the detectors which surround the point of
collision. One critical element is jet flavor classification, the
distinction between hadronic jets produced from light-
flavor (u, d, and s) and heavy-flavor (c and b) quarks.
Such classification plays a central role in identifying heavy-
flavor signals and reducing the enormous backgrounds
from light-flavor processes [1,2].
Jets originating from heavy-flavor quarks tend to pro-

duce longer-lived particles than those found in jets from
light-flavor quarks; these long-lived particles have decays
which are displaced from the primary vertex.To identify such
vertices, the central tracking chamber measures the trajecto-
ries of charged particles which allows for the reconstruction
of vertex locations.The large and varying number of particles
in a jet leads to a difficult classification problem with large
and variable dimensionality without a natural ordering. The
first step in typical approaches involves vertex-finding
algorithms [3], which transform the task into one of reduced,
but still variable, dimensionality. Finally, most state-of-the-
art jet flavor classification tools used by experiments [4,5]
rely heavily on expert-designed features which fix and
further reduce the dimensionality before applying shallow
machine-learning techniques. Such techniques have excel-
lent performance, but are primarily motivated by historical
limitations in the ability of shallow learning methods to
handle high- and variable-dimensionality data sets.

Recent applications of deep learning to similar problems in
high-energy physics [6–9], combined with the lack of a clear
analytical theory to provide dimensional reduction without
loss of information, suggests that deep learning techniques
applied to the lower-level higher-dimensional data could
yield improvements in the performance of jet flavor classi-
fication algorithms. General methods for designing and
applying recurrent and recursive neural networks to problems
with data of variable size or structure have been developed in
Refs. [10–14], and applied systematically to a variety of
problems ranging from natural language processing [15], to
protein structure prediction [16–19] to prediction of molecu-
lar properties [20,21] and to the game of go [22]; previous
studies have discussed the extension of such strategies to
tasks involving tracks in high energy physics [23,24].
In this paper, we apply several deep learning techniques

to this problem using a structured data set with features at
three levels of processing (tracks, vertices, expert), each of
which is a strict function of the previous level(s). The data
at the highest level of processing, with smallest dimension-
ality, is intended to mirror the typical approach used
currently by experimental collaborations. The multilayered
structure of the data set allows us to draw conclusions about
the information loss at each stage of processing, and to
gauge the ability of machine learning tools to find solutions
in the lower- and higher-dimensional levels. These lessons
can guide the design of flavor-tagging algorithms used by
experiments.

II. CLASSIFICATION AND DIMENSIONALITY

The task of the machine learning (ML) algorithm is to
identify a function fðx̄Þ∶IRN → IR1 whose domain is the

PHYSICAL REVIEW D 94, 112002 (2016)

2470-0010=2016=94(11)=112002(12) 112002-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.112002
http://dx.doi.org/10.1103/PhysRevD.94.112002
http://dx.doi.org/10.1103/PhysRevD.94.112002
http://dx.doi.org/10.1103/PhysRevD.94.112002


observed data at some level of processing (with potentially
very large dimensionalityN) andwhich evaluates to a single
real value that contains the information necessary to perform
the classification. Perfect classification is not expected;
instead, the upper bound is performance which matches
classification provided by the true likelihood ratio between
bottom (b) and light-flavor quarks (q): Pðx̄jbÞ=Pðx̄jqÞ
evaluated in the high-dimensional domain.
Thoughwe lack knowledge of an analytical expression for

the likelihood, in principle one could recover such a function
from labeled data sets with trivial algorithms, by estimating
the likelihood directly in the original high-dimensional
space. In practice, this requires an enormous amount of
data, making it impractical for problems with anything but
the smallest dimensionality in their feature space.
Machine learning plays a critical role in approximating

the function fðx̄Þ which reduces the dimensionality of the
space to unity by finding the critical information needed
to perform the classification task. Such a function may
disregard some of the information from the higher-
dimensional space if it is not pertinent to the task at hand.
However, for very high-dimensional spaces (greater than
≈50), the task remains very difficult, and until the recent
advent of deep learning it appeared to be overwhelming,
though it can still require the generation of large samples of
training data.
It would be very powerful to compare the performance of

a given solution to the theoretical upper limit on perfor-
mance, provided by the true likelihood. Unfortunately,
without knowledge of the true likelihood, it is difficult to
assess howwell theMLalgorithmhas captured the necessary
information. For this reason, in the studies presented here
and in earlier work [6,7,9], we built structured data sets with
at least two levels of dimensionality: an initial sample with
lower-level data at high dimensionality and a reduced sample
with expert features at lower dimensionality. Importantly, the
expert features are a strict function of the lower-level features,
so that they contain a subset of the information. The expertise
lies solely in the design of the dimensionality-reducing
function, without providing any new information.
This structure allows us to draw revealing conclusions

about the information content of the intermediate and
expert-level information and the power of classifiers to
extract it. Since the higher-level data contains a subset of
the information and benefits from expert knowledge, it can
provide the basis for a performance benchmark for the tools
using lower-level data in place of the unknown true
likelihood. Therefore, if the performance of tools using
lower-level data fails to match that of tools using the
higher-level data (or a combination of both kinds of data),
then we may conclude that the tools using the lower-level
data have failed to extract the complete information. On the
other hand, if the performance of tools using lower-level
data exceeds that of tools using the higher-level data, then
we may conclude that the higher-level data does not contain

all of the information relevant to the classification task, or
that it has transformed the problem into a more difficult
learning task for the algorithms considered. Regardless of
the reason, in this case the transformation to the higher-
level lower-dimensional data has failed in its goal.

III. DATA

Training samples were produced with realistic simula-
tion tools widely used in particle physics. Samples were
generated for three classes of jet:

(i) light-flavor: jets from u, d, s quarks or gluons;
(ii) charm: jets from c quarks;
(iii) bottom: jets from b quarks.
Collisions and immediate decays were generated with

MADGRAPH5_AMC@NLO [25] v2.2.3, showering and
hadronization simulated with PYTHIA [26] v6.428, and
response of the detectors simulated with DELPHES [27]
v3.2.0. Studies with additional pp interactions (pileup)
are reserved for future work; here we assume that pileup
effects will not alter the relative performance of the different
methods, and are not likely to have a large impact at
luminosities recorded to date, given effective techniques
to isolate pileup tracks and vertices from the vertices of
interest to this study.
These simulated samples are meant to model real particle

collisions, but the simulation is not perfectly faithful. To
account for mismodeling, experimental applications gen-
erate simulated samples using several closely related
models and measure the differences between simulation
and data with designated calibration samples in which the
b, c, or light-jet content is enriched [28,29]. This allows for
the tuning and selection of the models to match the data. In
the studies presented here no such comparison is possible,
as no experimental data is available. Further, the focus of
the studies here is on the amount of information lost in the
several layers of processing, rather than the absolute level
of performance, so the fidelity of the sample is less
important. This approach is in line with the machine-
learning-based flavor tagging used by both both CMS [30]
and ATLAS [31].
The DELPHES detector simulation was augmented with a

simple tracking model that smears truth particles to yield
tracks similar to those expected at ATLAS [32]. Tracks
follow helical paths in a perfectly homogeneous 2T mag-
netic field. No attempt was made to account for material
interactions or remove strange hadrons. As a result the
trackingmodel lacks the sophistication ofmodels developed
by LHC collaborations while retaining enough realism to
run vertex reconstruction and compare the relative perfor-
mance of various machine learning approaches.
Jets are reconstructed from calorimeter energy deposits

with the anti-kT clustering algorithm [33] as implemented
in FASTJET [34], with a distance parameter of R ¼ 0.4.
Tracks are assigned to jets by requiring that they be within a
cone of ΔR≡ ðΔη2 þ Δϕ2Þ1=2 < 0.4 of the jet axis. Jets

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-2



are labeled by matching to partons within a cone of
ΔR < 0.5. If a b or c quark is found within this cone
the jet is labeled bottom or charm flavor respectively, with b
taking precedence if both are found. Otherwise the jet is
labeled light flavor.
To reconstruct secondary vertices, we use the adaptive

vertex reconstruction algorithm implemented in RAVE

v6.24 [3,35]. The algorithm begins by fitting a primary
vertex to the event and removing all compatible tracks. For
each jet, secondary vertices are then reconstructed iter-
atively: a vertex is fit to a point that minimizes χ2 with
respect to all tracks in the jet, less compatible tracks are
down-weighted, and the vertex fit is repeated until the fit
stabilizes.
Since a b-hadron decay typically cascades through a c-

hadron, jets may include multiple secondary vertices. To
account for this, tracks with large weights in the secondary
vertex fit are removed and the fit is repeated with the
remaining tracks. The process repeats until all tracks are
assigned to a secondary vertex.
As described earlier, we organize the information in

three levels of decreasing dimensionality and increasing
preprocessing using expert knowledge where each level
is a strict function of the lower-level information. The
classification is done per jet rather than per event, and at
every level the transverse momentum and pseudorapidity of
the jet is included.
The lowest-level information considered is the list of

reconstructed tracks. Each helical track has five parameters
in addition to a 5 × 5 symmetric covariance matrix with 15
independent entries. In the case of flavor tagging, two of the
five track parameters are of particular importance: the track
d0, defined as distance between the primary vertex and the
track at perigee, projected into the plane transverse to the
beam; and the track z0, the analogous quantity projected
parallel to the beam. The number of tracks varies from 1 to
33 in these samples, with a mean of 4.
The intermediate-level information comes from the out-

put of the vertexing algorithm. The features are the vertex
mass, number of tracks associated to the vertex, the fraction
of the total energy in jet tracks which is associated to those
tracks, vertex displacement, vertex displacement signifi-
cance, and angular separation in Δη and Δϕ with respect to
the jet axis for each vertex. In cases where both low and
intermediate level features are used the track to vertex
association weight is also included. The number of vertices
varies from 1 to 13 in these samples, with a mean of 1.5.
The highest-level information is designed to model the

typical features used as shallow network or boosted
decision tree inputs in current experimental applications;
see Fig. 1 for distributions of these features for each jet
class. There are fourteen such features:

(i) The d0 and z0 significance of the second and
third tracks attached to a vertex, ordered by d0
significance.

(ii) The number of tracks with d0 significance greater
than 1.8σ.

(iii) The JETPROB [36] light jet probability, calculated as
the product over all tracks in the jet of the probability
for a given track to have come from a light-quark jet.

(iv) The width of the jet in η and ϕ, calculated for η as�P
ipTiΔη2iP

ipTi

�
1=2

and analogously for ϕ.
(v) The combined vertex significance,P

idi=σ
2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i1=σ
2
i

p ;

where d is the vertex displacement and σ is the
uncertainty in vertex position along the displace-
ment axis.

(vi) The number of secondary vertices.
(vii) The number of secondary-vertex tracks.
(viii) The angular distance ΔR between the jet and vertex.
(ix) The decay chain mass, calculated as the sum of the

invariant masses of all reconstructed vertices, where
particles are assigned the pion mass.

(x) The fraction of the total track energy in the jet
associated to secondary vertices.1

The data set consists of ten million labeled simulated
jets. The corresponding target labels are light-flavor, charm,
and bottom. The data contains 44, 11, 45 percent of each
class respectively. This data is available from the UCI
Machine Learning in Physics Web portal [37].

IV. METHODS

When training neural nets, we typically use eight million
jets for training, one million for validation, and one million
for testing. Since there are three labels but we are interested
in the study of signal vs background and classification, the
labels are converted to binary by mapping bottom quark to
one, and both charm and light quark to zero. We study the
light-quark and charm-quark rejection separately.

A. Machine learning approaches

To each simulated collision is attached a set of tracks and
a set of vertices. This poses challenges for a machine
learning approach in that the size of these sets is variable as
seen in Fig. 2 and the sets are unordered, although as usual
an arbitrary order is often used to list their elements. To
address and explore these challenges we use three different
deep learning approaches: feedforward neural networks,
recurrent neural networks with long short term memory
(LSTM) units, and outer recursive neural networks.

1The vertex energy fraction is not a strict fraction; it can be
greater than unity if tracks are assigned to multiple vertices.

JET FLAVOR CLASSIFICATION IN HIGH-ENERGY … PHYSICAL REVIEW D 94, 112002 (2016)

112002-3



1. Feedforward neural networks

The track feature set and the vertex feature set have
variable size for a given collision. However, the structure of
feedforward networks requires a fixed-size input to make
predictions. Thus the use of feedforward neural networks
requires first an arbitrary ordering and then a capping of the
size of the input set, with zero padding for sets that are
smaller than the capped size. To resolve the arbitrary
ordering the tracks were sorted by decreasing absolute
d0 significance. This ordering also ensures that tracks from
a secondary vertex, which typically have large d0, are
unlikely to be removed by the capping. Random ordering

before adding the padding was also tested but the perfor-
mance was lower than using the absolute d0 significance
ordering.
To create a fixed size input, the number of tracks was

limited to 15, from a maximum of 33. Using 15 as the
cutoff value ensures that 99.97% of the samples preserve
all their original tracks; see Fig. 2. Tracks are associated
to vertices by concatenating the track parameters with
those from the associated vertex. Before training, the
samples are preprocessed by shifting and scaling such
that each feature has a mean of zero and a standard
deviation of one. Jets with fewer than 15 tracks are zero

 [GeV]
T

Jet p
0 50 100 150 200 250 300

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

-110
b-quark

c-quark

Light Flavor

Jet Pseudorapidity
-3 -2 -1 0 1 2 3

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.005

0.01

0.015

0.02

0.025

0.03

b-quark

c-quark

Light Flavor

Track 2 d0 signif.
0 0.5 1 1.5 2 2.5

F
ra

ct
io

n 
of

 E
ve

nt
s

-210

b-quark

c-quark

Light Flavor

Track 3 d0 signif.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 E
ve

nt
s

-210

b-quark

c-quark

Light Flavor

 signif.Track 2 z0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 E
ve

nt
s

-210

b-quark

c-quark

Light Flavor

 signif.Track 3 z0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 E
ve

nt
s

-210

b-quark

c-quark

Light Flavor

 thresholdNumber of tracks over d0

0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 E
ve

nt
s

-310

-210

-110

b-quark

c-quark

Light Flavor

Jet prob.
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

F
ra

ct
io

n 
of

 E
ve

nt
s

-310

-210

-110

1
b-quark

c-quark

Light Flavor

ηJet width 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

b-quark

c-quark

Light Flavor

φJet width 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

b-quark

c-quark

Light Flavor

Vertex signif.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

b-quark

c-quark

Light Flavor

Number of secondary vertices
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

-110

b-quark

c-quark

Light Flavor

Number of secondary vertex tracks
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 E
ve

nt
s

-110

b-quark

c-quark

Light Flavor

R to vertexΔ
0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

-110

b-quark

c-quark

Light Flavor

Vertex mass [GeV]
0 5 10 15 20 25

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

-110 b-quark

c-quark

Light Flavor

Vertex Energy Fraction
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 E
ve

nt
s

-510

-410

-310

-210

-110
b-quark

c-quark

Light Flavor

FIG. 1. Distributions in simulated samples of high-level jet flavor variables widely used to discriminate between jets from light-flavor
and heavy-flavor quarks.

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-4



padded after preprocessing. After the cut on the number of
tracks, the maximum number of vertices is 12 with an
average of 1.5; see Fig. 2.
The feedforward neural networks were trained on eight

million training jets with one million more for validation
using stochastic gradient descent with minibatches of
100 samples. They were trained for 100 epochs and the
best model was chosen based on the validation error.
Momentum for the weights updated was used and linearly
increased from zero to a final value over a specified number
of epochs. Learning rate decayed linearly from 0.01 to a
final value starting and finishing at a specified number of
epochs. Dropout (in which nodes are removed during
training) with values of p from 0.0 to 0.5 were used at
several combinations of layers to add regularization
[38,39]. These networks had nine fully connected hidden
layers with rectified linear units [40,41].
Shared weights for each track object were used at the

first layer to preserve information about the structure of the
data; see Fig 3. When adding the vertex and high level

variables to the tracks, these were also included within the
set of variables with shared weights. The weights for all but
the last layer were initialized from a uniform distribution
between ½− ffiffiffiffiffiffiffiffiffi

6=C
p

;
ffiffiffiffiffiffiffiffiffi
6=C

p � where C is the total number
of incoming and outgoing connections [42]. The weights
for the last layer were initialized from a uniform distribu-
tion between −0.05 and 0.05. A manual optimization was
performed over all the hyperparameters to find the best
model.

2. LSTM networks

A natural approach to handling variable-sized input is to
use recursive neural networks. Broadly speaking, there are
two classes of approaches for designing such architectures,
the inner approach and the outer approach [43]. In the inner
approach, neural networks are used inside the data graphs
to crawl the corresponding edges and compute the final
output. This process requires the data graphs to be directed
and acyclic. Since here the data consists of a set of vertices
and tracks, we first convert the data into a sequence by
ordering the vertices and tracks as described previously and
then use recursive neural networks for sequences, in
combination with long short term memory units [44,45]

FIG. 4. Architecture of the long short term memory networks as
described in the text.

FIG. 3. Feedforward neural network architecture. In the first
layer, connections of the same color represent the same value of
the shared weight. The others layers are fully connected without
shared weights.

FIG. 2. Top: Distribution of the number of tracks associated to a
jet in simulated samples. Bottom: Distribution of the number of
vertices associated to a jet in simulated samples, before and after
removing tracks which exceed the maximum allowed value of 15.

JET FLAVOR CLASSIFICATION IN HIGH-ENERGY … PHYSICAL REVIEW D 94, 112002 (2016)

112002-5



to better capture long range dependencies. In the under-
lying acyclic graph, the variables associated with each node
are a function of the variables associated with the parent
nodes. Each such function can be parametrized by a neural
network. Because the directed acyclic graph has a regular
structure, the same network can be applied at different
locations of the graph, ultimately producing the LSTM grid
network in Fig. 4.

We follow the standard implementation of LSTMs with
three gates (input, forget, output) and initialize the con-
nections to random orthonormal matrices. The input data
consists of a sequence of concatenated track, vertex, and
expert features (or different subcombinations thereof)
which are sorted by their absolute d0 significance, as
was the case with the fully connected models. The
main difference is that we do not need zero padding as
the LSTM networks can handle sequences of arbitrary
length, though we retain the samemaximum of 15 tracks for
comparability.2 The final model consists of one LSTM layer
comprising between 50 and 500 neurons, and a feedforward
neural network with one to four hidden layers that
receives its input from the LSTM network and produces the
final predictions (where each layer has between 50 and
500 units).We add dropout layers in between the LSTM and
each hidden fully connected layer. For hyperparameter

Signal efficiency
0.4 0.5 0.6 0.7 0.8 0.9 1

Li
gh

t-
qu

ar
k 

R
ej

ec
tio

n

1

10

210

310

410
Tracks+Vertices+Expert

Vertices+Expert
Tracks+Expert

Expert
Tracks+Vertices
Vertices

Tracks

Signal efficiency

0.4 0.5 0.6 0.7 0.8 0.9 1

C
ha

rm
-q

ua
rk

 R
ej

ec
tio

n

1

10

210

Tracks+Vertices+Expert

Vertices+Expert
Tracks+Expert

Expert
Tracks+Vertices
Vertices

Tracks

FIG. 6. Signal efficiency versus background rejection (inverse
of efficiency) for deep networks trained on track-level, vertex-
level or expert-level features. The top panel shows the perfor-
mance for b-quarks versus light-flavor quarks, the bottom panel
for b-quarks versus c-quarks.

TABLE I. Performance results for networks using track-level,
vertex-level or expert-level information. In each case the jetpT and
pseudorapidity are also used. Shown for each method is the AUC,
the integral of the background efficiency versus signal efficiency,
which has a statistical uncertainty of 0.001 or less. Signal
efficiency and background rejections are shown in Figs. 6–10.

Inputs

Tracks Vertices Expert Technique AUC

✓ Feedforward 0.916
✓ LSTM 0.917
✓ Outer 0.915

✓ Feedforward 0.912
✓ LSTM 0.911
✓ Outer 0.911

✓ ✓ Feedforward 0.929
✓ ✓ LSTM 0.929
✓ ✓ Outer 0.928

✓ Feedforward 0.924
✓ LSTM 0.925
✓ Outer 0.924

✓ ✓ Feedforward 0.937
✓ ✓ LSTM 0.937
✓ ✓ Outer 0.936

✓ ✓ Feedforward 0.931
✓ ✓ LSTM 0.930
✓ ✓ Outer 0.929

✓ ✓ ✓ Feedforward 0.939
✓ ✓ ✓ LSTM 0.939
✓ ✓ ✓ Outer 0.937

FIG. 5. Architecture of the outer recursive networks as de-
scribed in the text.

2Since only one in roughly 3000 jets will be truncated by the
15 track maximum this should have a negligible effect on the area
under the curve (AUC).

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-6



optimization we performed a random search over these
parameters as well as the individual dropout rates that are
part of the model. We trained the LSTM networks for 100
epochs using stochastic gradient descent with a momentum
of 0.9 and decay the step-size parameter from initially
2 × 10−3 down to 10−4 over the course of training.

3. Outer recursive networks

Alternatively, to handle inputs of variable size, we can
use an outer recursive approach, where neural networks are
built in a direction perpendicular to the original data graph,
with horizontal weight sharing. The outer approach can be
used to build more symmetric deep architectures; see
Fig. 5. For instance, in our case the input consists of up
to 15 tracks, from which we can sample all possible pairs of
tracks and use a shared neural network that processes these
in the first layer of the outer approach. In this case, there are
at most ð15

2
Þ ¼ 105 unordered pairs, or 210 ordered pairs,

which is manageable especially considering that there is a
single network shared by all pairs. Using ordered pairs
would yield the most symmetric overall network. At the

next level of the architecture, one can for instance use a
network for each track ti that combines the outputs of all
the networks from the first layer associated with pairs
containing ti, and so forth. In the second level of the outer
architecture, for simplicity here we use a fully connected
feedforward network that computes the final output using
the outputs of all the pair networks. More specifically, for
each data sample we compute the list of stacked track
features for all 210 pairs and process each pair with a
shared nonlinear hidden layer (with 5 to 20 neurons). The
resulting outputs for all pairs are then concatenated and fed
into a multilayer perceptron as was the case for the LSTM
models, with one to four hidden layers containing between
100 and 600 hidden units. We again use dropout layers in
between the hidden layers and optimize the dropout rates
and network depth and size using random search.

B. Hardware and software implementations

All computations were performed using machines with
16 Intel Xeon cores, NVIDIA Titan graphics processors,
and 64 GBmemory. All neural networks were trained using

Jet Minimum Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
ffi

ci
en

cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tracks+Vertices+Expert

Expert

Light-quark rej=10

Light-quark rej=50

Jet Minimum Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
ffi

ci
en

cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tracks+Vertices+Expert

Expert

c-quark rej=10

c-quark rej=50

FIG. 8. Signal efficiency versus minimum jet pseudorapidity
relative to light quarks (top) or charm quarks (bottom). In each
case, efficiency is shown for fixed values of background rejection
for networks trained with only expert features or networks trained
with all features (tracks, vertices and expert features).

 [GeV]
T

Jet p
20 30 40 50 60 70 80 90 100

E
ffi

ci
en

cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tracks+Vertices+Expert

Expert

Light-quark rej=10

Light-quark rej=50

 [GeV]
T

Jet p
20 30 40 50 60 70 80 90 100

E
ffi

ci
en

cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tracks+Vertices+Expert

Expert

c-quark rej=10

c-quark rej=50

FIG. 7. Signal efficiency versus minimum jet pT relative to
light quarks (top) or charm quarks (bottom). In each case,
efficiency is shown for fixed values of background rejection
for networks trained with only expert features or networks trained
with all features (tracks, vertices and expert features).

JET FLAVOR CLASSIFICATION IN HIGH-ENERGY … PHYSICAL REVIEW D 94, 112002 (2016)

112002-7



the GPU-accelerated THEANO software library [46] and, for
the feedforward neural networks, also the KERAS software
library [47].

V. RESULTS

The best feedforward neural networks have nine fully
connected hidden layers with 400 rectified linear units and
a single sigmoid unit at the end. On the first layer the
networks have shared weights. The first five tracks have
one set of shared weights per track, tracks 6 to 10 have a
second set of shared weights per track and the last five
tracks have a third set of shared weights per track. They
have a momentum term of 0 which starts to linearly
increase at the first epoch and reaches its final value of
0.5 at epoch 100. Initially, the learning rate is set at 0.01
and, starting at epoch 80, it is linearly decreased to a
final value of 0.001 at epoch 100. Dropout was used in
the first two layers with a value of p ¼ 0.3. The same
architecture was used across all the combinations of
features except in the case of using only high level features,

in which case the first layer is fully connected without any
shared weights.
We found that the main characteristic of the best LSTM

models is a relatively small size of the hidden state
representation of the LSTM module (about 70 units), while
the size of the multi layer perceptron, which is sitting on top
of it, is of secondary importance for overall performance of
the model. The best models using the outer recursive
approach contain between two and three hidden layers
on top of the shared-weight layer (which operates on all
paired tracks) and those contain 17 or more neurons.
Final results are shown in Table I. The metric used is the

AUC, calculated in signal efficiency versus background
efficiency, where a larger AUC indicates better perfor-
mance. In Fig. 6, the signal efficiency is shown versus
background rejection, the inverse of background efficiency.
Figures 7 and 8 show the efficiency versus jet pT and
pseudorapidity for fixed values of background rejection.
Figures 9 and 10 show the rejection versus jet pT and
pseudorapidity for fixed values of signal efficiency.
The results can be analyzed to draw conclusions regard-

ing the power of the learning algorithms to extract

Jet Minimum Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Li
gh

t-
qu

ar
k 

R
ej

ec
tio

n

1

10

210

310

410

Tracks+Vertices+Expert

Expert

Eff=0.75

Eff=0.60

Jet Minimum Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

c-
qu

ar
k 

R
ej

ec
tio

n

1

10

210

Tracks+Vertices+Expert

Expert

Eff=0.75

Eff=0.60

FIG. 10. Rejection of light quarks (top) or charm quarks
(bottom) versus minimum jet pseudorapidity. In each case,
rejection is shown for fixed values of signal efficiency for
networks trained with only expert features or networks trained
with all features (tracks, vertices and expert features).

 [GeV]
T

Jet p
20 30 40 50 60 70 80 90 100

Li
gh

t-
qu

ar
k 

R
ej

ec
tio

n

1

10

210

310

410

Tracks+Vertices+Expert

Expert

Eff=0.75

Eff=0.60

 [GeV]
T

Jet p
20 30 40 50 60 70 80 90 100

c-
qu

ar
k 

R
ej

ec
tio

n

1

10

210

Tracks+Vertices+Expert

Expert

Eff=0.75

Eff=0.60

FIG. 9. Rejection of light quarks (top) or charm quarks
(bottom) versus minimum jet pT. In each case, rejection is
shown for fixed values of signal efficiency for networks trained
with only expert features or networks trained with all features
(tracks, vertices and expert features).

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-8



information at different levels of preprocessing, and to
compare the three learning approaches.
The state-of-the-art performance is represented by the

networkswhich use only the expert-level features. Networks
using only tracking or vertexing features do not match this
performance, though networks using both tracking and
vertexing do slightly exceed it. In addition, networks which
combine expert-level information with track and/or vertex
information outperform the expert-only benchmark, in some
cases by a significant margin.
For any given set of features, the feedforward deep

networks most often give the best performance, though in
some cases by a smallmargin over the LSTMapproach. This

may be somewhat unexpected since LSTMs were created
to handle variable sized input data as is the case here. We
must note, however, that unlike truly sequential data like
speech or text there is no natural order in the data that we are
working on. The tracks have been ordered by absolute d0
significance, which tends to cluster tracks belonging to the
same vertex, but a sequential model with this ordering may
not be superior to processing tracks in parallel, as in the
connected deep neural network with tied weights.
While one cannot probe the strategy of theML algorithm,

it is possible to compare distributions of events categorized
as signal-like by the different algorithms in order to under-
stand how the classification is being accomplished.

 [GeV]
T

Jet p
0 50 100 150 200 250 300

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Jet Pseudorapidity
-3 -2 -1 0 1 2 3 4

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05

0.06
b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Track 2 d0 signif. Track 3 d0 signif.
0 0.5 1 1.5 2 2.5 3 3.5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Track 2 z0 signif.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Track 3 z0 signif.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Number of tracks over d0 threshold
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Jet prob.
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-310

-210

-110

1
b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

ηJet width 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110
b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

φJet width 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Vertex signif.
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Number of secondary vertices
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Number of secondary vertex tracks
0 2 4 6 8 10 12 14

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

R to vertexΔ
0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110

b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Vertex mass [GeV]
0 5 10 15 20 25

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110
b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

Vertex Energy Fraction
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

-410

-310

-210

-110
b-quark

Quark, rej=50 (expert)

Quark, rej=50 (LL+expert)

Quark, rej=10 (expert)

Quark, rej=10 (LL+expert)

Quark

FIG. 11. Distributions of expert-level features for heavy-flavor and light-flavor classes. Also shown are distributions of light-flavor
and charm jets surviving network threshold selections chosen to given rejection of 10 and 50, for networks using only expert information
and networks using expert information in addition to lower-level information.

JET FLAVOR CLASSIFICATION IN HIGH-ENERGY … PHYSICAL REVIEW D 94, 112002 (2016)

112002-9



To compare distributions between different algorithms, we
study simulated events with equivalent background rejec-
tion, see Fig. 11 for a comparison of the selected regions in
the expert features for classifiers with andwithout the lower-
level information.

VI. DISCUSSION

Our results support four conclusions.
The existing expert strategies for dimensional reduction

sacrifice or distort useful information.—Networks which
include lower-level information outperform networks using
exclusively higher-level information. For example, if the
vertex-level information contained all of the classification
power of the track-level information but with lower
dimensionality, one would expect the vertex-only network
to match the performance of the tracks-and-vertex network,
as the lower-dimensional problem should be simpler to
learn. Instead, networks using tracks and vertices outper-
form those which use only vertices. Similarly, networks
using tracks and expert features outperform those with only
expert features. We note that these conclusions apply to the
expert strategies considered here, and in the case of the
simulated environment we have studied; however, we feel
that both are representative of the current state of the art.
The task remains a challenge for deep networks.—

Networks which use only the lower-level information do
not match the performance of networks which use the
higher-level information. Since the higher-level features are
strict functions of the lower-level features, the lower-level
features are a superset of the information contained in
the high-level features. The performance of the networks
which use the high-level features then provides a baseline
against which to measure the ability of the network to
extract the relevant information in the more difficult higher-
dimensional space of lower-level features. Networks using
only track information do not match the performance of
those which use only the high-level features (but note that
track-only networks outperform vertex-only networks,
giving a clue as to the area of difficulty).
Networks using track and vertex information outperform

those with expert features.—Networks trained with track
and vertex information but without the benefit of expert-
level guidance and dimensional reduction manage to

achieve better performance than those which use only
expert-level features. This is remarkable, as the dimension-
ality of the tracksþvertices features is very large and expert-
only networks represent the current state of the art. Note,
however, that for high signal efficiency (>75%) the expert-
only networks outperform the networks using tracksþ
vertices.
Networks which combine expert features with low-level

information have the best performance.—Combining the
lowest-level information for completeness with the low-
dimensional hints from expert features significantly out-
performs the state-of-the-art networks which use only
expert features. While in principle all of the information
exists in the lowest-level features and it should be possible
to train a network which matches or exceeds this perfor-
mance without expert knowledge, this is neither necessary
nor desirable. Expert knowledge exists and is well estab-
lished, and there is no reason to discard it.
In addition, this expert guidance encourages the

network to identify discrimination strategies based on well-
understood properties of the jet flavor problem and
decreases the likelihood of relying on learning strategies
based on spurious or poorly modeled corners of the space.
We note that the use of high-dimensional lower-level data
will require careful validation of the simulation models;
reasonable strategies exist, such as a combination of the
validation of individual features in one-dimensional pro-
jections with validation of the network output in control
samples, which probes the use of information in multi-
feature correlations.
These improvements in the performance of the tagger

can give important boosts to physics studies which rely on
the identification of jet flavor.

ACKNOWLEDGMENTS

We thank David Kirkby, Gordon Watts, Shimon
Whiteson, David Casper, and Kyle Cranmer for useful
comments and helpful discussion. We thank Yuzo
Kanomata for computing support. We also wish to
acknowledge a hardware grant from NVIDIA and NSF
Grant No. IIS-1321053 to P. B. D. G. and D.W. are
supported by the Department of Energy.
D. G. and J. C. contributed equally to this paper.

[1] G. Aad et al., A search for top squarks with R-parity-
violating decays to all-hadronic final states with the
ATLAS detector in

ffiffiffi
s

p ¼ 8 TeV proton-proton collisions,
J High Energy Phys. 06 (2016) 067..

[2] G. Aad et al., Search for single production of a vectorlike
quark via a heavy gluon in the 4b final state with the ATLAS

detector in pp collisions at
ffiffiffi
s

p ¼ 8 TeV, Phys. Lett. B 758,
249 (2016).

[3] W. Waltenberger, W. Mitaroff, F. Moser, B. Pflugfelder, and
H. V. Riedel, The RAVE/VERTIGO vertex reconstruction
toolkit and framework, J. Phys. Conf. Ser. 119, 032037
(2008).

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-10

http://dx.doi.org/10.1007/JHEP06(2016)067
http://dx.doi.org/10.1016/j.physletb.2016.04.061
http://dx.doi.org/10.1016/j.physletb.2016.04.061
http://dx.doi.org/10.1088/1742-6596/119/3/032037
http://dx.doi.org/10.1088/1742-6596/119/3/032037


[4] G. Aad et al., Performance of b-jet identification in the
ATLAS experiment, J. Instrum. 11, P04008 (2016).

[5] S. Chatrchyan et al., Identification of b-quark jets with the
CMS experiment, J. Instrum. 8, P04013 (2013).

[6] P. Baldi, P. Sadowski, and D.Whiteson, Searching for exotic
particles in high-energy physics with deep learning, Nat.
Commun. 5, 4308 (2014).

[7] P. Baldi, P. Sadowski, and D. Whiteson, Enhanced Higgs
Boson to τþτ− Search with Deep Learning, Phys. Rev. Lett.
114, 111801 (2015).

[8] P. Sadowski, J. Collado, D. Whiteson, and P. Baldi, Deep
learning, dark knowledge, and dark matter, J. Mach. Learn.
Res. 42, 81 (2015).

[9] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson,
Jet substructure classification in high-energy physics with
deep neural networks, Phys. Rev. D 93, 094034 (2016).

[10] P. Baldi and Y. Chauvin, Hybrid modeling, hmm/nn
architectures, and protein applications, Neural Comput. 8,
1541 (1996).

[11] C. Goller and A Kuchler, Learning task-dependent distrib-
uted representations by backpropagation through structure,
IEEE Int. Conf. Neural Networks 1, 347 (1996).

[12] P. Frasconi, M. Gori, and A. Sperduti, A general framework
for adaptive processing of data structures, Trans. Neur.
Netw. 9, 768 (1998).

[13] F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to
forget: Continual prediction with lstms, Neural Comput. 12,
2451 (2000).

[14] P. Baldi and G. Pollastri, The principled design of large-
scale recursive neural network architectures—dag-rnns and
the protein structure prediction problem, J. Mach. Learn.
Res. 4, 575 (2003).

[15] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D.
Manning, A. Y. Ng, and C Potts, in Proceedings of the
conference on empirical methods in natural language
processing (2013), Vol. 1631, p. 1642, http://www.aclweb
.org/portal/content/2013‑conference‑empirical‑methods‑
natural‑language‑processing.

[16] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda,
Exploiting the past and the future in protein secondary
structure prediction, Bioinformatics 15, 937 (1999).

[17] A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng, Nncon:
Improved protein contact map prediction using 2d-recursive
neural networks, Nucleic Acids Res. 37, W515 (2009).

[18] P. Di Lena, K. Nagata, and P. Baldi, Deep architectures for
protein contact map prediction, Bioinformatics 28, 2449
(2012).

[19] C. N. Magnan and P. Baldi, Sspro/accpro 5: Almost perfect
prediction of protein secondary structure and relative
solvent accessibility using profiles, machine learning, and
structural similarity, Bioinformatics 30, 2592 (2014).

[20] A. Lusci, G. Pollastri, and P. Baldi, Deep architectures and
deep learning in chemoinformatics: The prediction of
aqueous solubility for drug-like molecules, J. Chem. In-
formation Modeling 53, 1563 (2013).

[21] D. K. Duvenaud, D.Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, Convolutional
networks on graphs for learning molecular fingerprints,
in Advances in Neural Information Processing Systems
28, edited by C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett (Curran Associates, Inc.,
2015), pp. 2215–2223.

[22] L. Wu and P. Baldi, Learning to play go using recursive
neural networks, Neural Netw. 21, 1392 (2008).

[23] L. de Oliveira, https://indico.cern.ch/event/395374/,
DataScience@LHC, 2015.

[24] P. Baldi, https://indico.cern.ch/event/395374/, DataScience@
LHC, 2015.

[25] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M.
Zaro, The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching
to parton shower simulations, J. High Energy Phys. 07
(2014) 079.

[26] T. Sjostrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics
and manual, J. High Energy Phys. 05 (2006) 026.

[27] S. Ovyn, X. Rouby, and V. Lemaitre, DELPHES, a
framework for fast simulation of a generic collider experi-
ment, 2009, https://arxiv.org/abs/0903.2225.

[28] Commissioning of the ATLAS b-tagging algorithms
using tt̄ events in early run-2 data, Technical Report
No. ATL-PHYS-PUB-2015-039, CERN, Geneva, 2015.

[29] Identification of c-quark jets at the CMS experiment,
Technical Report No. CMS-PAS-BTV-16-001, CERN,
Geneva, 2016.

[30] Identification of b quark jets at the CMS experiment in the
LHC run 2, Technical Report No. CMS-PAS-BTV-15-001,
CERN, Geneva, 2016.

[31] Optimization of the ATLAS b-tagging performance for the
2016 LHC run, Technical Report No. ATL-PHYS-PUB-
2016-012, CERN, Geneva, 2016.

[32] G. Aad et al., The ATLAS experiment at the CERN Large
Hadron Collider, J. Instrum. 3, S08003 (2008).

[33] M. Cacciari, G. P. Salam, and G. Soyez, Anti-k(t) jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[34] M. Cacciari, G. P. Salam, and G. Soyez, FASTJET User
Manual, Eur. Phys. J. C 72, 1896 (2012).

[35] W. Waltenberger, RAVE: A detector-independent toolkit to
reconstruct vertices, IEEE Trans. Nucl. Sci. 58, 434 (2011).

[36] Impact parameter-based b-tagging algorithms in the 7 TeV
collision data with the ATLAS detector: The TrackCounting
and JetProb algorithms, Technical Report No. ATLAS-
CONF-2010-041, CERN, Geneva, 2010.

[37] http://mlphysics.ics.uci.edu/
[38] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov, Improving neural networks by prevent-
ing co-adaptation of feature detectors, arXiv:1207.0580.

[39] P. Baldi and P. Sadowski, The dropout learning algorithm,
Artif. Intell. 210, 78 (2014).

[40] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier
neural networks, in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics
(AISTATS) (JMLR, Fort Lauderdale, FL, 2011).

[41] K. Jarrett, K.Kavukcuoglu,M.Ranzato, andY. LeCun,What
is the best multistage architecture for object recognition? in
the 2009 IEEE 12th International Conference on Computer
Vision (2009), pp. 2146–2153.

[42] X. Glorot and Y. Bengio, Understanding the difficulty of
training deep feedforward neural networks, in Proceedings
of the International Conference on Artificial Intelligence

JET FLAVOR CLASSIFICATION IN HIGH-ENERGY … PHYSICAL REVIEW D 94, 112002 (2016)

112002-11

http://dx.doi.org/10.1088/1748-0221/11/04/P04008
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1103/PhysRevLett.114.111801
http://dx.doi.org/10.1103/PhysRevLett.114.111801
http://dx.doi.org/10.1103/PhysRevD.93.094034
http://dx.doi.org/10.1162/neco.1996.8.7.1541
http://dx.doi.org/10.1162/neco.1996.8.7.1541
http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1109/72.712151
http://dx.doi.org/10.1109/72.712151
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/153244304773936054
http://dx.doi.org/10.1162/153244304773936054
http://www.aclweb.org/portal/content/2013-conference-empirical-methods-natural-language-processing
http://www.aclweb.org/portal/content/2013-conference-empirical-methods-natural-language-processing
http://www.aclweb.org/portal/content/2013-conference-empirical-methods-natural-language-processing
http://www.aclweb.org/portal/content/2013-conference-empirical-methods-natural-language-processing
http://dx.doi.org/10.1093/bioinformatics/15.11.937
http://dx.doi.org/10.1093/nar/gkp305
http://dx.doi.org/10.1093/bioinformatics/bts475
http://dx.doi.org/10.1093/bioinformatics/bts475
http://dx.doi.org/10.1093/bioinformatics/btu352
http://dx.doi.org/10.1021/ci400187y
http://dx.doi.org/10.1021/ci400187y
http://dx.doi.org/10.1016/j.neunet.2008.02.002
https://indico.cern.ch/event/395374/
https://indico.cern.ch/event/395374/
https://indico.cern.ch/event/395374/
https://indico.cern.ch/event/395374/
https://indico.cern.ch/event/395374/
https://indico.cern.ch/event/395374/
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/0903.2225
https://arxiv.org/abs/0903.2225
https://arxiv.org/abs/0903.2225
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1109/TNS.2011.2119492
http://dx.doi.org/http://mlphysics.ics.uci.edu/
http://dx.doi.org/http://mlphysics.ics.uci.edu/
http://dx.doi.org/http://mlphysics.ics.uci.edu/
http://dx.doi.org/http://mlphysics.ics.uci.edu/
http://arXiv.org/abs/1207.0580
http://dx.doi.org/10.1016/j.artint.2014.02.004


and Statistics (AISTATS10), Society for Artificial Intelli-
gence and Statistics (2010).

[43] P. Baldi, The inner and outer approaches to the design of
recursive neural architectures, 2016.

[44] F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to
forget: Continual prediction with lstm, Neural Comput. 12,
2451 (2000).

[45] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink,
and J. Schmidhuber, Lstm: A search space odyssey,
arXiv:1503.04069.

[46] Theano Development Team, Theano: A python framework
for fast computation of mathematical expressions, arXiv:
1605.02688.

[47] F. Chollet, Keras, GitHub, 2015.

DANIEL GUEST et al. PHYSICAL REVIEW D 94, 112002 (2016)

112002-12

http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://arXiv.org/abs/1503.04069
http://arXiv.org/abs/1605.02688
http://arXiv.org/abs/1605.02688

