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The strong coupling dynamics of a 2þ 1 dimensional U(1) gauge theory coupled to charged matter is
holographically modeled via a top-down construction with intersecting D3- and D5-branes. We explore the
resulting phase diagram at finite temperature and charge density using correlation functions of monopole
operators, dual to magnetically charged particles in the higher-dimensional bulk theory, as a diagnostic.
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I. INTRODUCTION

Gauge/gravity duality provides an interesting setting for
the study of compressible quantum phases, where strongly
correlated quantum dynamics is encoded into spacetime
geometry in a gravitational dual description. The best
understood cases all involve supersymmetric Yang-Mills
theories in a large N limit, which are rather exotic from
the point of view of many-body physics. Emergent gauge
fields are known to arise in various quantum critical
systems but these are almost exclusively U(1) fields and
do not immediately lend themselves to a large N treatment.
Gauge/gravity duality does, however, offer a rare glimpse
into strongly coupled dynamics in a setting where explicit
computations are relatively straightforward and some
aspects of the dynamics, in particular at finite temperature
and density, may be generic to more general strongly
coupled field theories.
Motivated by recent work of Iqbal [1], we apply the

formalism of gauge/gravity duality to map out the phase
diagram of a 2þ 1-dimensional many-body system with a
conserved U(1) current at finite temperature and charge
density. We use correlation functions of suitably defined
magnetic monopole operators to probe the relevant physics
[1,2]. The fact that magnetic monopoles can strongly
influence the infrared behavior of gauge theories is well
known. For instance, the key role of monopoles in
precipitating confinement in 2þ 1 dimensional gauge
dynamics was emphasized in the pioneering work of
Polyakov [3]. In a condensed matter context, monopoles
provide an order parameter for the transition from anti-
ferromagnetic order to valence bond solid in a gauge
theory description of certain two-dimensional lattice anti-
ferromagnets [4]. The phase transition is continuous and

described by a CPN model with monopoles condensing at
the critical point, which has motivated the computation of
monopole correlation functions in the CPN model in a 1=N
expansion [5].1

In a 2þ 1-dimensional gauge theory, a magnetic mono-
pole operator, MðxmÞ, corresponds to a localized defect
where amagnetic flux is inserted. Such operators belong to a
more general class of topological disorder operators [7].
Their construction in terms of singular boundary conditions
in a path integral formalism is outlined in [1]. Due to flux
quantization, monopole operators are intrinsically nonper-
turbative and difficult to handle using conventional field
theory techniques. In holography, on the other hand,
correlation functions of monopole operators have a straight-
forward geometric representation and can be numerically
evaluated using relatively simple methods.
The holographic description of magnetic monopole

operators, in terms of intersecting D-branes, that we will
be using was developed in [1,8].2 The starting point for the
construction is a well-known top-down model for a 2þ 1-
dimensional field theory living on the intersection of a single
D5-brane and a large number N of coincident D3-branes
[10]. In this model, the D5-brane is treated as a probe brane
in the AdS5 × S5 background geometry sourced by the
D3-branes. The embedding of the D5-brane into the
D3-brane geometry is obtained by minimizing the Dirac-
Born-Infeld (DBI) action of the D5-brane in an AdS5 × S5

background (we review the calculation in Sec. II A). There
exists a solution where the D5-brane wraps an S2 of fixed
radius inside the S5 and extends along an AdS4 subspace of
the AdS5. This corresponds to a conformally invariant state
in the dual 2þ 1-dimensional boundary theory. There are
other solutions where the D5-brane embedding caps off
at a finite radial coordinate, corresponding to a deformation
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1See [6] for a study of monopole operators by means of
4 − ϵ expansion.

2For other works related to holographic monopoles, see
e.g. [9].
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away from criticality and a mass gap in the 2þ 1-
dimensional theory.
Open strings stretching between the D3- and D5-branes

give rise to matter fields in the fundamental representation
of the SUðNÞ gauge group that are localized on the 2þ 1-
dimensional intersection. The boundary theory also has a
conserved global U(1) current, which corresponds under
gauge/gravity duality to a bulk U(1) gauge field living in
AdS4. In general, a monopole operator inserted at the
2þ 1-dimensional boundary corresponds to a bulk field
carrying magnetic charge under the bulk gauge field
[11,12]. In the top-down construction of [1] the monopoles
are realized as a probe D3-brane, oriented in such a way as
to appear as a one-dimensional curve in AdS4, with the
remaining world-volume coordinates filling (at most) half
an S3 in S5 and ending on the S2 wrapped by the D5-brane.
A Dðp − 2Þ-brane ending on a Dp-brane carries magnetic
charge in the Dp world-volume [13] and thus the probe
D3-brane represents a magnetically charged particle in
AdS4. If the D3 curve reaches the AdS4 boundary at a point
xm, it corresponds to an insertion of a magnetic flux at that
point, i.e. a boundary monopole operator. We review the
construction in more detail in Sec. II B and extend it to
finite temperature backgrounds.
In the large N limit, the two-point function of boundary

monopole operators is given by the on-shell D3 action,

hMðΔxÞM†ð0Þi ∼ e−SD3½Δx�: ð1:1Þ

The D3-brane action consists of the usual DBI term and a
magnetic coupling term. The DBI term is proportional to
the length of the curve in AdS4 traced out by the D3-brane,
in a metric that depends on the D5-brane embedding, while
the remaining term involves the integral of the magnetic
dual of the world-volume gauge field along the same
curve. The magnetic coupling will play a key role when
we consider backgrounds at finite charge density.
In a charge gapped phase monopoles are expected to

condense at large enough separation, that is their equal-time
two-point function is expected to saturate with distance
between the monopole insertion points [11]. In a Fermi-
liquid phase (a compressible phase with nonzero charge
density and no broken symmetries), field theory compu-
tations become rather involved due to the nonperturbative
nature of the monopoles but [14] predicted a faster than
power-law falloff for the monopole equal-time two-point
function. This behavior was indeed found in the holo-
graphic computation in [1], which gave a constant value
for the monopole correlation as a function of distance
in a charge gapped case, and a Gaussian falloff at large
separation in a compressible phase.
Our goal is to understand how turning on a nonzero

temperature affects monopole correlation functions. In
particular, we wish to determine whether the spatial
dependence of the monopole equal-time two-point function

can still serve as an order parameter for phase transitions at
finite T. Our starting point is the holographic model
employed in [1], except now the D3-brane background
is an AdS5-Schwarzschild × S5 black brane, and we inves-
tigate the behavior of monopole correlation functions
across the rather rich phase diagram spanned by temper-
ature and charge density. Similar questions can in principle
be addressed in other holographic models, including
various phenomenologically motivated bottom-up models.
It would be interesting to pursue this in future work but for
now we will take advantage of the higher-dimensional
geometric perspective provided by the specific top-down
construction of [1].
The paper is organized as follows. In Sec. II we review

the D3/D5-brane construction at finite temperature. We
then introduce a monopole D3-brane and compute the
D3-brane action that gives the monopole two-point func-
tion. In Sec. III we turn to the Fermi-liquid phase at finite
charge density. After briefly introducing the relevant back-
ground D3/D5-brane solutions, we proceed to the D3-brane
action, and map out the corresponding phase diagram. We
conclude with a brief discussion in Sec. IV. Our conven-
tions and definitions of the action functionals governing the
probe D-brane dynamics studied in the paper are collected
in Appendix A. This is followed in Appendix B by a short
discussion of the boundary counterterms that are required
for the regularization of the D5-brane free energy. A
detailed examination of the on-shell D3-brane action at
finite charge density and temperature is carried out in
Appendix C and referred to in the main text. In Appendix D
we consider asymptotic limits of model parameters, where
analytic results can be obtained. This complements the
numerical investigation in the rest of the paper and provides
a useful check on the numerics.

II. MONOPOLE CORRELATORS
AT FINITE TEMPERATURE

A. Probe D5-brane in a black 3-brane background

Throughout the paper we consider probe D-branes in the
finite temperature near-horizon geometry of N D3-branes,

ds2 ¼ u2

L2
½−hðuÞdt2 þ dx2 þ dy2 þ dx2⊥�

þ L2

u2

�
du2

hðuÞ þ u2ðdψ2 þ sin2ψdΩ2
2 þ cos2ψd ~Ω2

2Þ
�
;

ð2:1Þ

where hðuÞ ¼ 1 − ðu0=uÞ4, dΩ2
2¼dθ2þsin2θdϕ2, d ~Ω2

2 ¼
d~θ2 þ sin2 ~θd ~ϕ2, and L is a characteristic length scale. In
these coordinates there is an event horizon at u ¼ u0 and
the asymptotic AdS5 boundary is at u → ∞. The Hawking
temperature is
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T ¼ u0
πL2

; ð2:2Þ

and we note that a rescaling of T can be absorbed by a
rescaling of the u coordinate. We work in the supergravity
limit, so in particular at very large N, and insert a probe D5-
brane with an AdS4-Schwarzschild × S2 embedding.3 In
the static gauge the D5-brane world-volume coordinates are
ðt; x; y; uÞ ∈ AdS4-Schwarzschild ⊂ AdS5-Schwarzschild
and ðθ;ϕÞ ∈ S2 ⊂ S5, as indicated in Table I. The D5-brane
profile is described by two functions, x⊥ðuÞ and ψðuÞ, that,
due to translation and rotation symmetries in the world-
volume directions, only depend on the radial coordinate u.
We set x⊥ ¼ 0 throughout and focus on the angle ψðuÞ,
which controls the size of the 2-sphere wrapped by the
probe D5-brane.4 The D5-brane introduces matter fields
in the fundamental representation of SUðNÞ, charged
under a global Uð1ÞB (baryon number), and localized in
(2þ 1)-dimensions. This is the field theory we have in
mind throughout the paper.
For numerical computations, we find it convenient

to introduce a dimensionless radial coordinate υ as
follows [19]:

ðu0υÞ2 ¼ u2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u40

q
: ð2:3Þ

The horizon is at υ ¼ 1 and the background metric (2.1)
becomes

ds2 ¼ 1

2

�
u0υ
L

�
2
�
−
f2

~f
dt2 þ ~fðdx2 þ dy2 þ dx2⊥Þ

�

þ L2

υ2
ðdυ2 þ υ2dΩ2

5Þ; ð2:4Þ

where fðυÞ ¼ 1 − 1=υ4 and ~fðυÞ ¼ 1þ 1=υ4. The AdS
boundary is at υ → ∞.
Writing χðυÞ≡ cosψðυÞ, the induced metric on the

D5-brane is given by

ds2 ¼ 1

2

�
u0υ
L

�
2
�
−
f2

~f
dt2 þ ~fðdx2 þ dy2Þ

�

þ L2

υ2

�
1 − χ2 þ υ2 _χ2

1 − χ2

�
dυ2 þ L2ð1 − χ2ÞdΩ2

2;

ð2:5Þ

where the dot denotes a derivative with respect to υ.
The Euclidean DBI action for the probe D5-brane
(see Appendix A) reduces to

ID5 ¼ KT2

Z
dυ υ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~fð1 − χ2Þð1 − χ2 þ υ2 _χ2Þ

q
; ð2:6Þ

with the constant K given in (A10).
The field equation for χ,

χ̈ þ υð3υ8 þ 2υ4 þ 3Þ_χ3
ðυ8 − 1Þð1 − χ2Þ þ 3χ _χ2

1 − χ2

þ 2ð2υ8 þ υ4 þ 1Þ_χ
υðυ8 − 1Þ þ 2χ

υ2
¼ 0; ð2:7Þ

can be solved numerically using standard methods. There
are two classes of solutions with a nontrivial χðυÞ profile
depending on whether the probe D5-brane extends all the
way to the horizon at υ ¼ 1 or caps off outside the horizon.
The former are referred to as “black hole embedding”
(BHE) solutions and the latter are so-called “Minkowski
embedding” (ME) solutions [20,21]. A one-parameter
family of black hole embedding solutions, with 0 ≤
χ0 ≤ 1, is obtained by numerically integrating the field
equation (2.7) from υ ¼ 1 outwards using the initial values
χð1Þ ¼ χ0, _χð1Þ ¼ 0. The condition on _χð1Þ comes from
requiring the field equation to be nonsingular at the
horizon.
For the Minkowski embedding solutions, the numerical

evaluation is streamlined by a further change of variables.
By viewing υ and ψ as polar coordinates, the metric on S5

may be rewritten as follows:

dυ2 þ υ2dΩ2
5 ¼ dυ2 þ υ2ðdψ2 þ sin2ψdΩ2

2 þ cos2ψd ~Ω2
2Þ

¼ dr2 þ r2dΩ2
2 þ dR2 þ R2d ~Ω2

2; ð2:8Þ

with

υ2 ¼ r2 þ R2; r ¼ υ sinψ ; R ¼ υ cosψ : ð2:9Þ
In the new coordinates the D5-brane profile is described by
a function RðrÞ and a Minkowski embedding solution caps
off at r ¼ 0. The field equation (2.7) becomes

R00 þ 2ðR02 þ 1Þ
�
R0

r
þ ðrR0 − RÞððr2 þ R2Þ2 þ 3Þ

ðr2 þ R2Þððr2 þ R2Þ4 − 1Þ
�

¼ 0;

ð2:10Þ

TABLE I. Background D-brane construction.

t x y x⊥ u ψ θ ϕ ~θ ~ϕ

N D3-branes (background) × × × ×
D5-brane (probe) × × × × × ×

3D3/D5 systems at finite temperature and at finite chemical
potential have been widely employed in applied holography
[15,16]. For reviews see [17].

4In Sec. III we consider a D5-brane carrying nonvanishing
charge density. The ansatz x⊥ ¼ 0 remains consistent in this case
as well, as long as the charge density is uniform. The stability of
the configuration was studied in [18].
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where prime denotes a derivative with respect to r. We
obtain a one-parameter family of Minkowski embedding
solutions by integrating (2.10) using the initial values
Rð0Þ ¼ R0 > 1 and R0ð0Þ ¼ 0. The initial condition on
R0 comes from requiring the field equation to be non-
singular at r ¼ 0.
Figure 1 shows two D5-brane profiles. One is a

Minkowski embedding that ends at r ¼ 0 with R0 > 1,
while the other is a black hole embedding that extends to
the horizon at υ ¼ 1. From the figure it is clear that there
exists a borderline solution that belongs to both embedding
classes. It can either be viewed as a black hole embedding
solution with χ0 ¼ 1 that enters the horizon at a vanishing
angle, or equivalently as a Minkowski embedding solution
with R0 ¼ 1 that caps off at the horizon.
Each D5-brane solution is characterized by two con-

stants, m and c, that can be read off from the asymptotic
behavior at the boundary,

χðυÞ ∼m
υ
þ c
υ2

þ � � � ; υ → ∞; BHE;

RðrÞ ∼mþ c
r
þ � � � ; r → ∞; ME: ð2:11Þ

They represent the boundary mass Mb and the condensate
hObi of Uð1ÞB flavor charged degrees of freedom in the
dual field theory [20–22],

Mb ¼
u0

2
ffiffiffi
2

p
πl2

s

m; hObi ¼ −
ð4πlsÞ2ffiffiffi

2
p T5u20c: ð2:12Þ

Note that our definition of the boundary mass Mb differs

from that in [1] by a factor of
ffiffi
λ

p
2π . By using (2.2) and (A2),

we see that the mass parameter m read off from our
numerical solutions is proportional to the scale invariant
ratio of the boundary mass and the temperature,

m ¼ 2
ffiffiffi
2

pffiffiffi
λ

p Mb

T
≡ M̄

T
: ð2:13Þ

In the following, we will usem as a measure of the (inverse)
temperature at fixed M̄. Note that the trivial constant
profile, χðυÞ ¼ 0 (ψ ¼ π=2), is a solution of the field
equation (2.7) at any temperature and corresponds to
m ¼ 0.
In order to determine the thermodynamically stable

D5-brane solution at a given temperature, we compare
the regularized free energy of the different solutions. We
review the main points of the regularization procedure
worked out in [23] in Appendix B and the resulting free
energies are shown in Fig. 2. The low-temperature phase,
i.e. low T=M̄, corresponds to a Minkowski embedding
(or “gapped”) solution, where the two-sphere shrinks down
at a finite distance away from the horizon [Rð0Þ > 1] and the
spectrum of “quark-antiquark” bound states has a mass
gap [20,21,24]. At high T=M̄ the D5-tension can no longer
balance the gravitational attraction of the background

FIG. 1. The embedding angle for the Minkowski embedding
solution (dashed green curve) and the black hole embedding
solution (solid blue curve). The dashed black curve is the horizon
at υ ¼ 1.

FIG. 2. Regularized free energy for a D5-brane in D3-branes background. The dashed green (solid blue) curves correspond to
Minkowski (black hole) embeddings. The figure on the right shows an expanded view of the region near the phase transition. The dotted
vertical red line indicates the critical temperature Tc=M̄ ¼ 0.611.
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D3-branes and the favored solution is a black hole embedding
solution, dual to a gapless meson spectrum in the boundary
field theory. There is a phase transition between the two
types of embeddings. The right-hand plot in Fig. 2 zooms
in on the region near the critical temperature and reveals the
characteristic swallow tail of a first-order transition. This
is a universal feature of all Dp-Dq systems [20,21].
The free energy shown in Fig. 2 is obtained from

numerical solutions of the field equations (2.7) and
(2.10) at different temperatures. In Appendix D we con-
sider its high and low temperature limits, where the field
equations simplify and analytic results can be obtained.

B. Monopole two-point function

In order to calculate the two-point correlation function of
monopole operators in the dual field theory we consider a
probe D3-brane on top of the background D3-D5-brane
system. The probe D3-brane ends on the D5-brane and
thus appears as a magnetically charged object in the D5
world volume [13]. Furthermore, the D3-brane is
embedded in AdS5-Schwarzschild × S5 in such a way that
it wraps the same S2 ⊂ S5 as the D5-brane does and extends
along a one-dimensional curve in AdS4-Schwarzschild ⊂
AdS5-Schwarzschild with end points at the AdS4 boundary.
This accounts for three out of four of the D3 world volume
directions. The remaining world volume direction is trans-
verse to the D5-brane, along ψ in the parametrization (2.1),
from ψ ¼ 0 to ψðuÞ where the D3-brane ends on the D5-
brane. The probe D3-brane thus appears as a particle in
AdS4-Schwarzschild and is magnetically charged under the
D5 world-volume gauge field A, i.e. it models a bulk
magnetic monopole [1].
The D3-brane fills part of the S3 ⊂ S5 described by

ðψ ; θ;ϕÞ in (2.1). The fraction of the S3 volume that is filled
depends on the D5 embedding. At the boundary, the
D5-brane is at ψ ¼ π

2
and the D3-brane fills half of the

S3. The curve connecting the insertion points on the AdS4
boundary extends into the AdS4-Schwarzschild bulk,
where the D5-brane generically moves away from ψ ¼ π

2

and the D3-brane occupies a smaller fraction of the S3

volume. In particular, if the curve extends to where the
D5-brane caps off in a Minkowski embedding then the
volume of the D3-brane shrinks to zero at that point.
Computing the two-point boundary monopole correla-

tion function in the large N-limit amounts to evaluating
the corresponding on-shell D3-brane action as a function of
the separation between the brane end points on the AdS4
boundary. In Sec. III we present results from a numerical
evaluation of the equal time two-point monopole correlator
at finite temperature and background charge density,
generalizing the zero-temperature results obtained in [1].
We begin, however, with the simpler case of vanishing
charge density at finite temperature.
We find it convenient to use D3-brane world-volume

coordinates ðs; χ; θ;ϕÞ that match the coordinates we used

for the D5-brane embedding in Sec. II A. Here s para-
metrizes the curve fυðsÞ; xðsÞ; yðsÞg traced out by the
probe D3-brane in the AdS4-Schwarzschild part of the
background geometry (2.4). This curve is spacelike when
we consider a two-point function of monopole operators
inserted at equal time on the boundary.5 The variable
χ ¼ cosψ is restricted to the range χD5 ≤ χ ≤ 1, where
χD5 ¼ χðυðsÞÞ corresponds to the intersection between the
D5- and D3-brane world volumes.
In the charge neutral case, the action (A20) for a probe

D3-brane only contains the DBI term. Upon integrating
over the coordinates ðχ; θ;ϕÞ the DBI action reduces to that
of a point particle,

SD3 ¼ N
Z
C
dsmbðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxxð_xðsÞ2 þ _yðsÞ2Þ þGυυ _υðsÞ2

q
;

ð2:14Þ

where GIJ is the pull-back of the ten-dimensional space-
time metric to the D3-brane world volume, a dot indicates a
derivative with respect to s, and mbðυÞ is a position
dependent mass given by

mbðυÞ≡ μbðυÞ
L

≡ 2

πL

Z
1

χD5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
dχ: ð2:15Þ

We refer to the dimensionless quantity μbðυÞ as the
effective mass of the bulk monopole.6 It follows that the
dynamics of the probe D3-brane depends on the embedding
of the D5-brane it ends on. In a Minkowski embedding
μbðυÞ shrinks to zero at the point where the D5 caps off,
while in a black hole embedding μbðυÞ remains nonzero all
the way to the horizon. This is clearly visible in Fig. 3(a),
which shows μb as a function of position at different
temperatures.
For the actual computation, it is convenient to absorb the

effective mass into the induced metric as a conformal factor
and define a rescaled metric [1],

~GIJ ¼ m2
bðυÞGIJ: ð2:16Þ

The on-shell D3-brane action is then given by the length of
a geodesic in the rescaled metric connecting the monopole
operator insertion points at the AdS4 boundary, which can
without loss of generality be assumed to lie on the x-axis.
The geodesic extends along fυðsÞ; xðsÞg and intersects the
boundary at υ → ∞, x → � Δx

2
. It has a turning point at

x ¼ 0, υ ¼ υ�, where dυ
ds ¼ 0.

As shown in Appendix C, the D3-brane action (2.14) can
be reexpressed as

5In this case the probe D3-brane is strictly speaking a
D3-instanton.

6Note that our normalization convention for μb differs from
that of [1] by a factor of N.
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SD3 ¼ 2N
Z

∞

υ�
dυ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Gυυ

1 − P2 ~Gxx

s

¼ 2N
Z

∞

υ�
dυ

μ2bðυÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q ; ð2:17Þ

where P is the conserved charge associated with translation
invariance along the spatial x-direction, and P̄ is the
corresponding dimensionless variable,

P≡ _x ~Gxx; P̄ ¼ P
πT

:

The separation of the D3 end points at the boundary is
given by

Δx ¼ 2

Z
∞

υ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Gυυ

1 − P2 ~Gxx

s
~GxxPdυ; ð2:18Þ

which can in turn be expressed in terms of dimensionless
quantities as

ΔxM̄ ¼ 4m
π

Z
∞

υ�

dυ

υ2 ~fðυÞ
P̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ
q : ð2:19Þ

In our numerical computation, P̄ is an input parameter
and we evaluate both the D3-brane action and the end
point separation as a function of P̄ for a given D5-brane
embedding solution.
The location of the turning point, υ ¼ υ� of a geodesic

with P̄ ≠ 0 depends on the D5-brane embedding. The
condition for having a turning point is

~Gxxðυ�Þ ¼ P2; ð2:20Þ

or equivalently

υ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄2

μ2bðυ�Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄4

μ4bðυ�Þ
− 1

svuut : ð2:21Þ

A real valued solution requires jP̄j ≥ μbðυ�Þ. In a
Minkowski embedding, this condition is always satisfied
for some value of υ� on the D5-brane because μbðυÞ goes to
zero as the D5-brane caps off. In addition to geodesics with
turning points, the Minkowski embedding supports a P̄ ¼ 0
geodesic that extends “vertically” from the boundary to the
point where the D5-brane caps off, depending on the
type of D5-brane embedding. A pair of such vertical
D3-branes turns out to be the thermodynamically favored

(a)

(b)

FIG. 3. (a) Bulk monopole effective mass for Minkowski (black hole) embeddings on the left (right) at different temperatures.
(b) Regularized D3-brane action versus Δx for Minkowski (black hole) embeddings on the left (right) at T=M̄ ¼ 0.1ð0.68Þ. The dashed
vertical line in the left panel indicates the critical end point separation marking the transition from a single “hanging” geodesic to two
disconnected vertical geodesics in a Minkowski embedding.
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configuration at sufficiently large end point separation
when the probe D5-brane is in a Minkowski embedding.
In a black hole embedding, on the other hand, the

geodesic may reach the horizon at υ ¼ 1 before the turning
point condition (2.21) is satisfied. In this case, the geodesic
instead turns around at the horizon. This is not immediately
apparent in the υ coordinate, because the coordinate
transformation (2.3) is degenerate at the horizon, but by
going back to the original u coordinate it is straightforward
to show that the geodesic is quadratic in x near the horizon,

uðxÞ
u0

¼ 1þ
�
μ2b;h
P̄2

− 1

�
u20x

2

L4
þOðx4Þ; ð2:22Þ

when jP̄j < μb;h, where μb;h is μbðυÞ evaluated at the
horizon υ ¼ 1. This behavior is also apparent in numerical
solutions of the geodesic equation at sufficiently low P̄.
The D3-brane action SD3 is in fact divergent for all the

geodesic curves we have described. The divergence comes
from the region near the boundary υ → ∞. We regularize it
by introducing an upper cutoff at υ ¼ υmax ≫ 1 in (2.17)
and subtracting the action of a geodesic in the P̄ → 0 limit,

S0D3 ¼ 2N
Z

υmax

υmin

dυ
ffiffiffiffiffiffiffi
~Gυυ

q
¼ 2N

Z
υmax

υmin

dυ
μbðυÞ
υ

; ð2:23Þ

where υmin depends on the D5-brane embedding. For a
black hole embedding it is at the horizon, υmin ¼ 1, while
for a Minkowski embedding it is where the D5-brane caps
off. In this case, we can use the coordinates fr; Rg
introduced in (2.9) and set the lower limit of the radial
variable in the integral to rmin ¼ 0. By this convention, a
disconnected configuration in Minkowski embedding,
where two separate vertical D3-branes extend from the
boundary, has vanishing regularized action.
In Fig. 3(b) we plot the regularized action,

SD3;reg ≡ SD3 − S0D3; ð2:24Þ

obtained by numerically evaluating the integrals in (2.17)
and (2.23) for different values of the dimensionless
parameter P̄, against the end point separation Δx obtained
at the same value of P̄. For a Minkowski embedding the
system undergoes a first order phase transition, similar to
the zero-temperature case studied in [1], at a critical value
of the end point separation, indicated by a dashed vertical
line in the figure. At small values of the end point
separation Δx, the thermodynamically stable branch con-
sists of connected solutions with large jP̄j, for which the
turning point is located far from the cap of the D5-brane.
Following this branch towards smaller jP̄j, the turning point
moves deeper into the bulk geometry while both the end
point separation Δx and the regularized free energy (2.24)
increase. Eventually the free energy becomes positive and

this branch is disfavored compared to a disconnected
branch with two separate vertical D3-branes. The critical
end point separation is indicated by a dashed vertical line in
the figure.
Following the (nowunstable) connected branch to smaller

jP̄j, the end point separation Δx increases towards a local
maximum, which marks the end point of this branch of
solutions. Even smaller values of jP̄j give rise to a third
branch of solutionswhere the end point separation decreases
from its local maximum and eventually approaches zero in
the limit of vanishing jP̄j. On this branch the turning point
continues to move deeper into the bulk as jP̄j is decreased
and touches the cap of theD5-brane preciselywhen jP̄j ¼ 0.
The small jP̄j branch of solutions is always disfavored
compared to the other two branches. This is apparent from
our numerical results but can also be seen by expanding the
integrands in (2.17) and (2.19) in powers of P̄ for very low P̄.
The end point separation is a linear function of P̄, while the
regularized action is a quadratic function of P̄, and thus of
Δx. It follows that the regularized action is always positive
on this branch.7

For a black hole embedding the story is rather different.
In this case the turning point of a hanging geodesic can be
either outside the black hole or exactly at the horizon
υ ¼ 1. The two possibilities give rise to two branches of
D3-brane solutions and the branch that is thermodynami-
cally stable at all values of the end point separation Δx
turns out to be the one where the turning point is outside
the horizon.8

The right panel in Fig. 3(b) shows our numerical results
for the regularized D3-brane action as a function of the end
point separation in a black hole embedding. Following the
stable branch towards larger Δx one finds a critical value of
the conserved charge jP̄j ¼ μb;h for which the geodesic
touches the horizon at the turning point. At the critical
value of jP̄j theOðx2Þ term in (2.22) vanishes. The unstable
branch corresponds to jP̄j below the critical value and
geodesics that turn around at the horizon.
Both the stable and unstable branches extend to infinite

end point separation. To see this, consider the integrals in
(2.17) and (2.19) precisely at the critical value jP̄j ¼ μb;h. It
is straightforward to establish that both integrals diverge
logarithmically in this case, with the divergence coming
from the low end of the υ integration, near the horizon. The
divergence can, for instance, be regulated by introducing a

7Such a low momentum expansion is explicitly carried out
for the more general case with nonzero background charge
density in Appendix D 2 b.

8In a black hole embedding there is no analog of the
disconnected branch, with separate D3-brane segments extending
from the boundary to where the D5-brane caps off, which
dominates at large end point separation in a Minkowski embed-
ding. If a D3-brane were to end at the horizon its boundary would
include an S2 of finite area that is not inside the D5-brane world
volume.
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cutoff at υ ¼ 1þ ϵ and in the limit of ϵ ≪ 1 one easily
finds that9

SD3;reg
N

≈ πTμb;hΔx ⟶
T→∞ π

2
TΔx: ð2:25Þ

The monopole two-point function (1.1) at high temperature
is thus exponentially suppressed at large spatial separation
with a characteristic length scale that scales inversely with
temperature. This is the expected behavior of a thermally
screened system. At low temperatures, on the other hand,
the D5-brane is in a Minkowski embedding and the favored
D3-brane configuration at large end point separation is a
pair of disconnected vertical segments, for which the
monopole two-point function is a constant independent
of Δx. This signals the condensation of monopoles at low
temperatures in this system. The critical end point sepa-
ration, at which the disconnected configuration becomes
dominant in the low-temperature Minkowski embedding
phase, has a weak temperature dependence shown in Fig. 4.

III. FINITE CHARGE DENSITY PHASE

A. Thermodynamics of charged D5-branes

By turning on a U(1) gauge field on the D5-brane we
can generalize the results of the previous section to
study monopole correlation functions in a compressible
Fermi-liquid phase at finite charge density. We begin
by giving a quick overview of the resulting charged

D5-brane thermodynamics before turning our attention
to the monopole correlators. Our discussion of D5-brane
thermodynamics parallels that of [22], which considered
charged D7-branes in a D3-brane background.
The Euclidean action for D5-brane at finite charge

density is worked out in Appendix A. For convenience,
we repeat the final expression (A9) here:

ID5 ¼ KT2

Z
dυ υ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~fð1 − χ2Þð1 − χ2 þ υ2 _χ2Þ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

~f2υ4ð1 − χ2Þ2 þ 1

s
: ð3:1Þ

The induced metric on the D5-brane is still parametrized
as in (2.5) and the finite charge density enters via the
dimensionless parameter Q in the action (see Appendix A
for details). The field equation for χ, obtained by varying
(3.1), can be solved numerically using the same methods as
employed for the charge-neutral case in Sec. II A. In the
absence of explicit bulk sources, electric field lines ema-
nating from the AdS4 boundary have nowhere to end if the
D5-brane caps off before the horizon [22]. The Minkowski
embedding solutions are therefore unphysical at finite
charge density and the only consistent solutions are black
hole embeddings.
The relevant variables when it comes to the physical

interpretation and presentation of our results are the
temperature T and the charge density ρ in the boundary
theory.10 We fix the overall scale by working at a fixed
boundary mass M̄ and express our results in terms of
dimensionless combinations,

m ¼ M̄
T
; ρ̄ ¼ ρ

NM̄2
: ð3:2Þ

The phase diagram of the model is mapped out by
separately varying ρ̄ and m. In particular, if we keep ρ̄
fixed and consider very high temperature we expect thermal
effects to swamp any effect of the charge density while in
the limit of low temperature the finite charge density should
dominate. This is readily apparent in our numerical results,
but we also demonstrate it explicitly by considering the
different asymptotic limits of parameters in Appendix D.
Numerical solutions for χ are obtained by integrating the

field equation outwards from the horizon, with the charge
density Q and the boundary value at the horizon χ0 ¼ χð1Þ
as dimensionless input parameters. For given values of
the input parameters in the range 0 ≤ χ0 ≤ 1 andQ ≥ 0, the
inverse temperature mðχ0; QÞ can be read off from the
asymptotic behavior of the numerical solution as in (2.11).

FIG. 4. Temperature dependence of Δx�, the critical separation
between D3-brane end points in a Minkowski embedding,
beyond which the thermodynamically favored configuration
consists of two separate segments extending vertically to where
the D5-brane caps off. Above the critical temperature Tc=M̄ ¼
0.611 (indicated by the dotted vertical line) the D5 brane is in a
black hole embedding where there is no disconnected D3-brane
configuration.

9A detailed analysis of these divergences, including the more
general case at nonvanishing charge density, is presented in
Appendix D 2 a.

10The physical charge density ρ is related to the temperature
and the dimensionless parameter Q appearing in the action
through (A6).
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The charge density ρ̄ðχ0; QÞ is then easily determined using
the relation ρ̄m2 ¼ Q=2. This procedure uniquely deter-
mines the physical variables m and ρ̄ as functions of the
numerical input parameters χ0 and Q. The inverse mapping
ðm; ρ̄Þ → ðχ0; QÞ is not single valued, however, and this
leads to phase transitions as was already seen in the zero-
charge case in Sec. II A. The constant χ ¼ 0 solution is also
present and can be viewed as the high-temperature limit of a
black hole embedding, as is apparent in Fig. 5.
In order to decipher the phase diagram, we compare the

on-shell free energy density (3.1) on different branches of
solutions. The UV divergence encountered as the D5-brane
approaches the AdS boundary is regulated by introducing
boundary counterterms, as outlined in Appendix B.
Numerical results for the regularized D5-brane free energy
are shown in Fig. 6(a) for different values of ρ̄. At low
charge densities, ρ̄ < ρ̄� ¼ 0.0145, we find a first order
phase transition between two branches of black hole
embedding solutions. The left- and right-hand panels in
Fig. 6(b) showcase the different behavior of the D5-brane
free energy at ρ̄ < ρ̄� and ρ̄ > ρ̄�, respectively. Figure 6(c)
plots ρ̄ against the critical temperature of the phase
transition and shows how the critical line in the T − ρ̄
plane terminates at ρ̄ ¼ ρ̄�.
The low-ρ̄ phase transition connects to the phase

transition between the black hole embedding and
Minkowski embedding solutions at zero charge density.
We note, in particular, that as ρ̄ → 0 the critical temperature
of the phase transition between the different black hole
embedding branches approaches Tc=M̄ ¼ 0.611, which is
the critical temperature found in Sec. II A at zero charge
density. Furthermore, the stable black hole embedding
solution at low temperature and low charge density
approaches a Minkowski embedding solution. It almost
caps off at a finite radial distance outside the black hole,
leaving a narrow throat that extends all the way to the
horizon to accommodate the electric field lines emanating
from the black hole. In the ρ̄ → 0 limit the throat

degenerates and the solution takes the form of a
Minkowski embedding solution. The onset of this low-
temperature behavior can be seen on the left in Fig. 5 even
if the D5-brane profiles in the figure are for a ρ̄ value
somewhat above ρ�.
A similar phase diagram, involving charged D7-branes

in the finite temperature background of a black 3-brane,
was worked out in [22]. There it was argued that the
favored low-temperature configuration at charge densities
below the analog of ρ̄� in the D7-brane system may in fact
be unstable. In the present paper we are mainly concerned
with evaluating two-point correlation functions of monop-
ole operators in the presence of the probe D5-brane and
how they depend on the transverse spatial separation
between the monopole insertions on the boundary. As it
turns out, we can determine this spatial dependence without
having to rely on D5-brane solutions at very low ρ̄. In what
follows, we therefore restrict our attention to charged
D5-branes with ρ̄ > ρ̄�, where there is only one branch
of solutions and the question of an instability, analogous to
the one discussed in [22], does not arise.

B. Monopole two-point function at finite charge density

We now proceed to compute the action of a probe
D3-brane ending on the charged D5-brane, which, under
holographic duality, determines the two-point correlation
function of monopole operators in a compressible finite
charge density phase of the 2þ 1-dimensional defect field
theory [1]. The calculation is a straightforward generali-
zation from the charge-neutral case that was presented in
Sec. II B. The main new ingredient is the magnetic coupling
between the probe D3-brane and the nonvanishing gauge
field on the D5-brane world volume. This means that the
second term in the D3-brane action (A20) in Appendix A
comes into play and the spacelike curve C traced out by the
probe D3-brane in the AdS4-Schwarzschild part of the bulk
geometry is no longer a geodesic in the rescaled metric
(2.16). The end points at the AdS4 boundary can still be

(a) (b)

FIG. 5. D5-brane solutions at constant charge density ρ̄ ¼ 0.02 for different temperatures. The red line represents constant embedding
while the blue lines describe the BH embeddings for (a) T=M̄ ¼ 0.1, 0.02, 0.006 and (b) T=M̄ ¼ 6.323, 2, 0.577 from top to bottom.
The dashed black line indicates the horizon at υ ¼ 1.
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taken to be at υ → ∞, x → � Δx
2
, y → 0, but at intermediate

points the curve extends in the y-direction and lies along
fυðηÞ; xðηÞ; yðηÞg. We refer the reader to Appendix C for
the derivation of the shape of C and the regularized on-shell
action of the probe D3-brane at finite charge density. The
main focus of the present section will instead be on
presenting our numerical results and exploring the behavior
of the monopole equal-time two-point function as a
function of spatial separation at different temperatures
and charge densities.
The Euclidean action of a D3-brane ending on a charged

D5-brane isworked out inAppendixCbelow and is givenby

SD3 ¼ 2N
Z

∞

υ�
dυ

μ2bðυÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q
−
πNP̄2

Q

�
ωηe −

1

2
sinh ð2ωηeÞ

�
; ð3:3Þ

where

ωηe ¼
2Q
π

Z
∞

υ�
dυ

1

υ2 ~fðυÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q ; ð3:4Þ

(a)

(b)

(c)

FIG. 6. (a) Regularized free energy of charged D5-branes with ρ̄ ¼ 0.001, 0.1, 0.4, 0.8, 2, 4 (from left to right). (b) Left panel: A close-
up of the phase transition at low charge density (ρ̄ ¼ 0.001). Right panel: Phase transition is absent at high charge density (ρ̄ ¼ 0.015).
(c) Charge density vs critical temperature of phase transition at ρ̄ < ρ̄� ¼ 0.0145.
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and η → �ηe at the end points of C at the AdS4 boundary.
The frequencyω, defined in (C3), is the analog of a cyclotron
frequency for a magnetic monopole in a background electric
field. The curve has a turning point at η ¼ 0 at the radial
coordinate υ ¼ υ�. The dimensionless constant of integra-
tion P̄ is a measure of transverse momentum in the
x-direction. It plays the same role as the parameter P̄ in
Sec. II B and it is straightforward to see that P̄ → P̄ as
Q → 0 (seeAppendixC for details). In fact, the turning point
analysis for a D3-brane ending on a D5-brane with a black
hole embedding goes through unchanged, with P̄ replaced
by P̄. When P̄ > μb;h, the curve C turns around at some
υ ¼ υ� > 1 outside the horizon and returns to the boundary.
On the other hand, for any P̄ ≤ μb;h, the curve turns around at
the horizon.

The first term in (3.3) comes from the geometric DBI
action of the D3-brane and reduces to (2.17) for the
uncharged case. The second term, which arises from the
magnetic coupling between the probe D3- and D5-branes,
vanishes in theQ → 0 limit. A regularized D3-brane action
is obtained as before, by subtracting the action (2.23) of a
P̄ ¼ 0 curve. This cancels the divergence coming from the
near boundary region υ → ∞.
In order to determine how the monopole two-point

function behaves as a function of the end point separation,
we plot the result of a numerical evaluation of the
regularized action against Δx for different values of P̄ at
fixed temperature and charge density. In Appendix C we
obtain the following expression for the end point separation
in terms of dimensionless input parameters,

(a)

(b)

FIG. 7. Euclidean D3-brane action against ΔxM̄ at (a) ρ̄ ¼ 0.02 and (b) ρ̄ ¼ 10. Each curve corresponds to a given temperature as
indicated. The unstable P̄ < μb;h branch is indicated by dashed lines in the middle and bottom right plots, but omitted from the others to
avoid clutter.
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ΔxM̄ ¼ 2mP̄
Q

sinh ðωηeÞ; ð3:5Þ

which can easily be evaluated numerically.
The graphs in Fig. 7 show our results for the regularized

D3-brane action as a function of Δx for several temper-
atures at two values of the charge density: ρ̄ ¼ 0.02 in
Fig. 7(a) and ρ̄ ¼ 10 in Fig. 7(b). At low charge density
(ρ̄≲ 0.1) and low temperature (T ≲ 0.6M̄ at ρ̄ ¼ 0.02)
we see evidence for a first-order transition between two
D3-branes that have different values of P̄. Both have
P̄ > μb;h and thus the turning point is outside the horizon
on both branches.11 In the limit of vanishing charge density,
this transition reduces to the transition between connected
and disconnected D3-brane configurations that we saw for
D5-branes in Minkowski embedding in the charge-neutral
case in Sec. II B. This is evident in Fig. 8, which plots the
critical end point separation Δx� as a function of temper-
ature at low charge density (ρ̄ ¼ 0.02) and compares it to
that of the connected-disconnected transition.
The graphs showing the regularized action of a con-

nected D3-brane in Fig. 7 share a common feature in that
they all become convex at sufficiently largeΔx. This can be
traced to the magnetic term being dominant over the
geometric DBI term in (3.3) at large end point separation
while the DBI term governs the short-distance behavior. A
detailed analysis carried out in Appendix D 2 a shows that

the regularized D3-brane action always depends quadrati-
cally on Δx in the “magnetic regime” at sufficiently large
Δx. This, in turn, leads to Gaussian suppression of the
equal-time two-point correlation function of monopole
operators as a function of the distance between the operator
insertion points on the boundary.
The significance of the Gaussian suppression depends,

however, on the value of the charge density in relation to the
temperature. At high ρ̄ or low T=M̄ the Gaussian behavior
sets in at relatively short distances, as can for instance be
seen in Fig. 7(b). This matches the zero temperature results
of [1] where the monopole two-point function was found to
be Gaussian suppressed with distance at finite charge
density. At low ρ̄ or high T=M̄, on the other hand, the
Gaussian behavior only sets in at such long distances that
the monopole two-point function is already vanishingly
small due to the exponential suppression from thermal
screening discussed at the end of Sec. II B.
Our results for the monopole two-point function at finite

ρ̄ and T thus interpolate nicely between Gaussian suppres-
sion obtained when the charge density dominates over the
temperature and exponential thermal screening found at
low charge density.

IV. DISCUSSION

We have computed equal-time two-point correlation
functions of magnetic monopole operators in a strongly
coupled 2þ 1-dimensional U(1) gauge theory and studied
their spatial dependence. This provides information about
the phase structure of the theory, including possible
monopole condensation in a phase with a charge gap,
and also allows us to probe a compressible phase at finite
U(1) charge density. Our investigation employs a top-down
holographic construction involving intersecting D5- and
D3-branes in AdS5 × S5 spacetime, originally developed
by Iqbal in [1], and extends it to an AdS5-Schwarzschild ×
S5 black hole background in order to include thermal
effects and explore monopole correlators across the ρ − T
phase diagram.
In Sec. II we focused on thermal effects on monopole

correlators in a holographic phase with a charge gap at zero
temperature. The analysis performed in [1] showed that in
this phase the holographic monopole two-point function at
zero temperature saturates to a constant value as the
separation between the operator insertions is increased.
This is the expected behavior when the monopole operator
has condensed. On the gravitational side of the holographic
duality the condensation is attributed to the vanishing of the
bulk monopole effective mass where the D5-brane, on
which the D3-brane representing the bulk monopole ends,
caps off in a Minkowski embedding. We find that the
saturation of the monopole two-point function at long
distances persists at finite temperature, up to the critical
temperature where the D5-brane makes a transition from a

FIG. 8. The dashed red curve shows the critical end point
separation Δx� for the first-order transition between two branches
of solutions, at ρ̄ ¼ 0.02 as a function of temperature. The dashed
green curve (repeated from Fig. 4 for reference) shows the end
point separation at which the disconnected branch of D3-brane
solutions becomes thermodynamically favored in a Minkowski
embedding at ρ̄ ¼ 0.

11As in the charge-neutral case, there is also a branch with
P̄ < μb;h and a turning point on the horizon itself but this branch
is never the most stable one. It is indicated with dashed lines in
some of the graphs in Fig. 7 but is left out of the others to avoid
clutter.
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Minkowski to a black hole embedding. Above the critical
temperature, however, the monopole operator is no longer
condensed and the two-point function is exponentially
suppressed at long distances due to thermal screening.
In Sec. III we turned our attention to thermal effects in a

compressible phase in the presence of a nonzero U(1)
charge density implemented by introducing a gauge field
on the D5-brane world volume. On the one hand, the finite
charge density forces the D5-brane into a black hole
embedding at any nonzero temperature and on the other
hand it gives rise to a direct coupling between the D3-brane
and the magnetic dual of the world-volume gauge field on
the D5-brane. Studying the monopole correlation function
at finite temperature and charge density, we find that the
transition to a disconnected D3-brane configuration at large
separation found at vanishing charge density is replaced by
a transition between different connected D3-brane con-
figurations at low, but nonvanishing, charge densities and
relatively low temperature.
We also observe effects of the interplay at finite temper-

ature and charge density between themagnetic coupling and
the geometric DBI term in the D3-brane action. On the dual
field theory side, this shows up in the dependence of the
monopole operator two-point function on spatial distance.
In particular, at finite charge density and low temperature
the magnetic coupling contribution is the dominant one and
the two-point function has a Gaussian falloff with distance.
This is in line with the zero-temperature findings of [1]. At
high temperature and low charge density, on the other hand,
the monopole two-point function exhibits exponential
falloff due to thermal screening, but eventually crosses
over to Gaussian suppression at very long distances.
In this work we restricted our attention to the combined

effects of finite charge density and temperature on two-
point functions of monopole operators. An interesting and
rather straightforward extension would be to add a nonzero
magnetic field, for instance along the lines of [15]. Another
future direction would be to relax some of the constraints
that are built into the particular top-down holographic
model used here in order to explore more general bulk
monopole embeddings and the corresponding phase dia-
grams. Our treatment involved a probe D3-brane ending on
a probe D5-brane in an AdS5-Schwarzschild × S5 back-
ground. An important question is whether including the
backreaction of the D3/D5-brane system on the background
geometry would stabilize or wash out the features we have
found. Modeling the backreaction may require the added
flexibility of a bottom-up approach, while retaining essen-
tial features of the top-down D-brane construction. At the
same time, the study of monopole dynamics in phenom-
enologically motivated bottom-up models would be of
considerable interest in its own right. Finally, there are
other intersecting D-brane systems which can be used to
model monopole operators in strongly coupled gauge
theory. A D5/D7-brane model might for instance be a

more natural setting to study non-Abelian monopole
correlators.
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APPENDIX A: ACTION FUNCTIONALS
FOR PROBE D-BRANES

In this Appendix we collect some formulas and expres-
sions which are used in the main body of the paper and in
later Appendices. We work out the explicit form of the
D5-brane action in the coordinate system used in the main
text. This is standard material but is included here in order
to have a self-contained presentation. We also obtain an
explicit expression for the probe D3-brane action of a bulk
monopole proposed by Iqbal in [1] in a black 3-brane
background.
The tension of a Dp-brane is given by

Tp ¼ 1

ð2πÞpgsðlsÞpþ1
; ðA1Þ

where gs is the string coupling constant, and ls the string
length, which in turn are related to the ’t Hooft coupling
constant λ, the AdS radius L, and the number of back-
ground D3-branes N as follows [25]:

l2
s ¼ α0; gs ¼

λ

4πN
;

L
ls

¼ λ
1
4: ðA2Þ

1. D5-brane

The world-volume action for the probe D5-brane is

SD5 ¼ T5

Z
D5

2πα0F ∧ C4

− T5

Z
D5

d6σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðγD5 þ 2πα0FÞ

p
; ðA3Þ

where C4 denotes the Ramond-Ramond 4-form field
sourced by the background D3-branes, F ¼ dA the 2-form
field strength of the D5-brane world-volume gauge field,
and γD5 the induced D5 world-volume metric. The first
term in (A3) vanishes for the D5-brane configuration
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investigated in this work. To see this, we choose a gauge
where the 4-form C4 is a sum of two terms, one propor-
tional to the volume form on R4 ⊂ AdS5-Schwarzschild
and the other to the volume form on the product of the two
S2 factors inside S5. The former gives zero when wedged
with the 2-form F while the latter has vanishing pullback to
the D5-brane world volume.
In order to evaluate the remaining DBI term in (A3) we

take γD5 to be the induced metric in static gauge (2.5) and
parametrize the U(1) gauge potential on the D5-brane
world-volume as follows:

AtðυÞ ¼
ffiffiffi
λ

p

2π
atðυÞ: ðA4Þ

After some straightforward algebra the D5-brane action
reduces to

SD5 ¼ −
ffiffiffi
λ

p

4π
NV3T2

Z
dυð1 − χ2Þ

× υ2 ~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _a2t þ

π2T2f2

2 ~f

�
1þ υ2 _χ2

1 − χ2

�s
; ðA5Þ

where N is the number of background D3-branes, V3 is the
(infinite) volume from the integration over the t, x, y
variables, T is the temperature of the background (2.2), and
the dot denotes a derivative with respect to υ. Since the
action (A5) depends only on the derivative of the gauge
potential at, it is convenient to introduce a charge density,

ρ ¼ 1

V3

2πffiffiffi
λ

p δSD5
δ _at

¼ 1

2
NT2Q; ðA6Þ

with

Q≡ _atυ2 ~fð1 − χ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _a2t þ π2T2f2

2 ~f
ð1þ υ2 _χ2

1−χ2Þ
q : ðA7Þ

The equation of motion of the gauge field implies radial
conservation of the charge density,

d
dυ

Q ¼ 0: ðA8Þ

We can take advantage of this by performing a Legendre
transform on (A5) that trades the gauge potential at forQ as
the independent field variable. This leads to an action
functional for χ that includes the conserved charge density
Q as a parameter,

ID5 ¼ KT2

Z
dυ υ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~fð1 − χ2Þð1 − χ2 þ υ2 _χ2Þ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

~f2υ4ð1 − χ2Þ2 þ 1

s
: ðA9Þ

In order to study D5-brane thermodynamics, we have
changed to Euclidean signature and taken Euclidean time
to be periodicwith period 1=T. The temperature dependence
of the constant in front of the action is left explicit and

K≡
ffiffiffi
λ

p
NV2

4
ffiffiffi
2

p ; ðA10Þ

with V2 the transverse area coming from the integral over x
and y.
The free energy of a D5-brane at charge density Q is

given by the on-shell value of the Euclidean action (A9).
The boundary counterterms needed to regularize the free
energy are discussed in Appendix B and numerical results
for the resulting regularized on-shell action are presented in
Sec. III A. Switching off the charge densityQ gives the free
energy of a charge neutral D5-brane,

ID5 ¼ KT2

Z
dυ υ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~fð1 − χ2Þð1 − χ2 þ υ2 _χ2Þ

q
; ðA11Þ

considered in Sec. II A.

2. D3-brane

The action for the probe D3-brane is

SD3 ¼ T3

Z
D3

C4 − T3

Z
D3

d4σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðγD3 þ 2πα0Fð3ÞÞ

q
;

ðA12Þ

where Fð3Þ is the field strength of the D3-brane world-
volume gauge field and γD3 the induced D3-brane world-
volume metric. Gauge invariance of (A3) and (A12) with
respect to the C4 gauge transformation,

δΛC4 ¼ dΛ3; ðA13Þ

requires the presence of additional terms,

SK ¼
Z
D5

K3 ∧ dF þ qm

Z
∂D3

K3; ðA14Þ

involving a 3-form Lagrange multiplier K3 that transforms
as follows under the gauge transformation:

δΛK3 ¼ −2πα0T5Λ3: ðA15Þ

Note that this fixes the value of the coupling constant
qm to be
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qm ¼ T3

2πα0T5

¼ 2π: ðA16Þ

The 3-form K3 provides the magnetic coupling between
the gauge field living on the D5-brane and the edge of the
D3-brane. Indeed, adopting the same ansatz as in [1],

K3 ¼
1

4π
~A ∧ ω2; ðA17Þ

with ω2 the volume form on the two-dimensional unit
sphere that the D5 and D3-branes wrap around inside S5,
the three-dimensional term in (A14) reduces to an integral,

qm

Z
C

~A; ðA18Þ

along the curve C in AdS4-Schwarzschild traced out by the
probe D3-brane.
The field strength of ~A is the magnetic dual of the field

strength of the D5-brane world-volume gauge field A [1].
To see this, we vary the full action with respect to the field
strength of A. Only two terms contribute, i.e. the DBI term
in (A3) and the D5-brane world-volume term in (A14).
Using the definitions (A6) and (A17), we obtain the
following rather simple result:

d ~A ¼ ρdx ∧ dy; ðA19Þ

which is the magnetic dual of the radial electric field
sourced by the charge density ρ. It follows that we can
choose a gauge where ~A ¼ −ρydx.
Finally, we collect the terms that contribute to the bulk

monopole dynamics. Due to the specific D3-brane embed-
ding employed in our analysis, the first term in (A12)
containing the Ramond-Ramond potential C4 vanishes and
the remaining DBI term simplifies because there is no
gauge field on the D3-brane world volume. As explained in
Sec. II B, for equal-time correlation functions the curve
spanned in AdS4-Schwarzschild by the probe D3-brane is
spacelike and therefore the induced metric γ3 has Euclidean
signature. The relevant terms in the Euclidean D3-brane
action are thus [1]

SD3 ¼ T3

Z
D3

d4σ
ffiffiffiffiffiffiffiffiffiffiffi
det γ3

p
þ iqm

Z
C

~A: ðA20Þ

In the charge-neutral case, considered in Sec. II B, the
second term is absent and the DBI term reduces to the
action for a point particle (2.14) with a mass that depends
on the radial position in AdS4-Schwarzschild. In this case,
the on-shell D3-brane action is simply given by the length
of a geodesic in a rescaled metric where the position
dependent mass has been absorbed as a conformal factor, as
discussed in Sec. II B. At finite charge density, on the other
hand, the magnetic term in (A20) is nonvanishing and the

curve C will no longer be a geodesic in the rescaled metric.
This case is considered in detail in Appendix C.

APPENDIX B: BOUNDARY COUNTERTERMS
FOR D5-BRANE

In the main text, we encountered several branches
of D5-brane solutions. When two or more different
solutions exist for the same values of physical parameters
it is important to identify which solution is thermodynami-
cally stable. For this, we need to evaluate the free energy
given by the on-shell Euclidean action of the D5-brane and
compare between different branches of solutions. In the
charge-neutral case this involves a comparison between
Minkowski and black hole embedding solutions, while at
finite charge density we compare the free energy of
different branches of black hole embedding solutions.
As it stands, the D5-brane free energy (A9) is UV

divergent and needs to be regularized by introducing
appropriate counterterms at the AdS4 boundary. We use
a well-established regularization procedure for general
Dp-Dq systems described by DBI actions [23] and spe-
cialize to the system at hand. We take the UV cutoff surface
to be at constant radial coordinate υ ¼ υUV and find that the
following counterterm action will cancel the UV diver-
gence of the bulk D5-brane action,

Sb ¼ −
ffiffiffi
λ

p
N

6π3L3

Z
d3ξ

ffiffiffiffiffi
γb

q �
1 −

3

2
χ2 þ � � �

�����
υ¼υUV

; ðB1Þ

where ξi ¼ ðτ; x; yÞ are boundary coordinates and γbij the
induced metric at υ ¼ υUV. A finite free energy is obtained
by cutting off the integral at υ ¼ υUV in (A9), or in (A11) in
the charge-neutral case, and evaluating the sum

ID5;reg ¼ ID5 þ Sb ðB2Þ

before taking the υUV → ∞ limit. The ellipsis in (B1)
denotes subleading terms that give a vanishing contribu-
tion in the limit. We note that the presence of a gauge
field on the D5-brane world volume does not require
any additional boundary counterterms compared to the
charge-neutral case.
The regularized free energy can now be calculated

numerically as a function of temperature for both black
hole and Minkowski embeddings.12 Results are shown in
Fig. 2 for the charge-neutral case and in Fig. 6 for
D5-branes at finite charge density.

12For efficient numerical evaluation of the free energy of a
Minkowski embedding solution, it is convenient to change to the
ðr; RÞ variables introduced in Sec. II A.
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APPENDIX C: ON-SHELL D3-BRANE ACTION

In this Appendix we generalize the discussion of
monopole two-point functions in Sec. II B to finite charge
density. We obtain integral expressions for the on-shell
D3-brane action and for the end point separation on the
AdS4 boundary, in terms of dimensionless parameters that
characterize the background charge density ρ and the curve
C in AdS4 that connects the two end points. Results from
the numerical evaluation of these expressions are presented
and discussed in Sec. III B of the main text.
Our starting point is the Euclidean D3-brane action

(A20). Using the D3-brane world-volume coordinates
ðs; υ; θ;ϕÞ that were introduced in Sec. II B, the action
reduces to

SD3 ¼ N
Z
C
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Gxxð_xðsÞ2 þ _yðsÞ2Þ þ ~Gυυ _υðsÞ2

q

− iqmρ
Z
C
ds yðsÞ_xðsÞ; ðC1Þ

where ~GIJ are components of the rescaled metric (2.16) and
a dot denotes a derivative with respect to s. The following
Noether charges are conserved along the curve C,

Px ¼ ~Gxx _x − iωy; Py ¼ ~Gxx _yþ iωx; ðC2Þ

where

ω≡ qmρ
N

¼ πT2Q ðC3Þ

is the analog of a cyclotron frequency for a magnetic
monopole in an electric field, and we have simplified the
expression for the charges by using the constraint

~Gxxð_yðsÞ2 þ _xðsÞ2Þ þ ~Gυυ _υðsÞ2 ¼ 1; ðC4Þ

which follows if s is taken to be an affine parametrization
of C.
The change of variables

~Gxx
d
ds

¼ d
dη

ðC5Þ

allows us to reexpress the charges as

Px ¼ x0ðηÞ − iωyðηÞ; Py ¼ y0ðηÞ þ iωxðηÞ; ðC6Þ

where prime denotes a derivative with respect to the new
parameter η. We want to solve this system of first order
differential equations subject to suitable boundary condi-
tions. Without loss of generality, we can assume that the
midpoint of the curve fυðηÞ; xðηÞ; yðηÞg is at η ¼ 0 and the
end points at η ¼ �ηe. The following conditions,

xð0Þ ¼ 0; xð�ηeÞ ¼ �Δx
2

;

yð�ηeÞ ¼ 0; υð�ηeÞ → ∞; ðC7Þ

then ensure that the curve intersects the boundary at
x → � Δx

2
and y → 0. A simple solution of (C6) satisfying

these conditions is given by

xðηÞ ¼ β sinh ðωηÞ;
yðηÞ ¼ iβðcosh ðωηeÞ − cosh ðωηÞÞ; ðC8Þ

where we have used translation symmetry in the x-direction
to set Py ¼ 0 and the parameters β and ηe are determined by
the remaining Noether charge and the end point separation
through

Px ¼ βω cosh ðωηeÞ; Δx ¼ 2β sinh ðωηeÞ: ðC9Þ

By using (C5), we can write the constraint (C4) as

~Gxxω2β2 þ ð ~GxxÞ2 ~Gυυυ
0ðηÞ2 ¼ 1; ðC10Þ

or equivalently

�
dη
dυ

�
2

¼ ð ~GxxÞ2 ~Gυυ

1 − ω2β2 ~Gxx : ðC11Þ

The value of the dimensionless product ωηe at the end point
can then be obtained as an integral over the radial variable,

ωηe ¼
2Q
π

Z
∞

υ�
dυ

1

υ2 ~f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μbðυÞ2 − 2P̄2 ~f−1ðυÞ

q ; ðC12Þ

where υ� ≡ υð0Þ denotes the turning point of the curve
C and

P̄ ≡ ωβ

πT
ðC13Þ

is a dimensionless combination of input parameters. The
D5-brane embedding enters through μbðυÞ, the dimension-
less effective mass of the bulk monopole defined in (2.15).
Similarly, the DBI term in the D3-brane action (C1) can

be written as a radial integral while the magnetic term can
be obtained in closed form in terms of the end point
variable in (C12),

SD3 ¼ 2N
Z

∞

υ�
dυ

μ2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q
−
πNP̄2

Q

�
ωηe −

1

2
sinh ð2ωηeÞ

�
: ðC14Þ

ALHO, PULETTI, POURHASAN, and THORLACIUS PHYSICAL REVIEW D 94, 106012 (2016)

106012-16



We note that the integral in the DBI term is logarithmically
divergent. As discussed in Sec. II B, we regulate the
divergence by introducing an upper cutoff at υ ¼ υmax in
the integral and subtracting, for each boundary insertion
point, the action of a vertical curve with Px ¼ Py ¼ 0,

S0D3 ¼ N
Z

υmax

υ�
dυ

μbðυÞ
υ

: ðC15Þ

The integral in (C12) is finite as it stands and does not
require any regularization.
For given values of the parameters m and Q, that

characterize a D5-brane embedding at a particular temper-
ature and charge density, we evaluate the regularized
D3-brane action numerically for different values of the
dimensionless parameter P̄. The graphs in Fig. 7 are
obtained by plotting the result against the dimensionless
combination

ΔxM̄ ¼ 2mP̄
Q

sinh ðωηeÞ; ðC16Þ

evaluated at the same parameter values using (C12).
In Sec. II B we considered the corresponding calculation

at vanishing charge density. The formulas we used there
can be obtained by taking the Q → 0 limit at fixed
temperature in the formulas in this Appendix. The correct
limit is obtained by letting ω → 0 and β → ∞ in (C13)
while keeping the dimensionless parameter P̄ fixed.
By inspecting (C9), we immediately see that P̄ → P̄ in

this limit, where P̄ is the dimensionless parameter used in
the geodesic calculation in Sec. II B. If we then insert (C12)
into (C16) and take the limit, we obtain

ΔxM̄jQ¼0 ¼
4mP̄
π

Z
∞

υ�
dυ

1

υ2 ~fðυÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q ;

ðC17Þ

which is the same as (2.19) employed in Sec. II B.
We obtain the D3-brane action at vanishing charge

density in a similar fashion. The magnetic term in (C14)
vanishes in the Q → 0 limit, as can easily be seen by
carrying out a small ω expansion inside the parentheses,

−
πNP̄2

Q

�
ωηe −

1

2
sinh ð2ωηeÞ

�
¼ OðQ2Þ; ðC18Þ

and the remaining DBI term reduces to

SD3jQ¼0 ¼ 2N
Z

∞

υ�
dυ

μ2bðυÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2bðυÞ − 2P̄2 ~f−1ðυÞ

q ; ðC19Þ

which is the integral in (2.17) in Sec. II B.

APPENDIX D: ASYMPTOTIC LIMITS

While the main part of the calculations in this work are
numerical, it is nonetheless useful to compare the results to
analytic approximations in the appropriate limits. This is
especially true on limits where either the parameters or the
observables become very large or very small, since it can be
hard to predict a priori at what point this causes a
breakdown of the numerics.
In what follows, we will carry out such approximations

and find that our numerics indeed remains reliable for the
whole range of parameters studied. Along the way, we will
confirm certain asymptotic behaviors that the numerical
calculations already suggest.

1. D5 limits

For the D5 backgrounds, we can complement the
numerics by calculating the free energy analytically at
all corners of the ðT; ρ̄Þ plane. As a matter of fact, the low-
temperature case has two distinct limits: one where we first
take T → 0 while holding ρ̄ constant, in which case
Q → ∞, and another, where ρ̄, or equivalently Q goes
to zero first, and only then do we take T → 0.

a. High T, zero ρ̄

Let us first set ρ̄ ¼ 0. Now the high-temperature limit for
the D5 embedding can be solved semianalytically, as is
done for the D7/D3 system [21]. This is easiest to do in the
original coordinate u=u0, however we present the analysis
in the υ coordinates for consistency. High temperature,
i.e. T

M̄ ≫ 1, means a very small boundary mass m ≪ 1,
cf. (2.13). Thus, we need to expand χðυÞ around χ ¼ 0. The
resulting linearized equation of motion has the solution

χðυÞ ¼ χasðυÞ≡ 1

υ
ffiffiffiffiffiffiffiffiffi
~fðυÞ

q
0
B@2F1

�
1

4
;
1

2
;
3

4
;

4

υ4 ~fðυÞ2
�

−
4

ffiffiffi
2

p
Γð3

4
Þ22F1ð12 ; 34 ; 54 ; 4

υ4 ~fðυÞ2Þ

υ
ffiffiffiffiffiffiffiffiffi
~fðυÞ

q
Γð1

4
Þ2

1
CA ðD1Þ

in terms of the hypergeometric function 2F1.
13 We fixed the

boundary conditions by requiring regularity at the horizon
and unit boundary mass [21], that is

χasðυÞ ∼
1

υ
þ cas

υ2
þ � � � ; υ → ∞: ðD2Þ

The coefficient of the 1
υ2

-term at the boundary is

cas ¼ − 4
ffiffi
2

p
Γð3

4
Þ2

Γð1
4
Þ2 ¼ −0.64622…. To have an asymptotic

13Notice that in terms of the original coordinates u, the

argument in the hypergeometric functions is simply
u4
0

u4.
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solution corresponding to an arbitrary mass we write
χ ¼ mχas. For this solution, c ¼ mcas.
Expanding the regularized free energy (B2) for a BHE

around χ ¼ 0 we get

ID5;reg
KT2

≅
Z

∞

υmin

dυ

�
υ2f

ffiffiffi
~f

q �
1 − χ2 þ 1

2
υ2 _χ2

�
− υ2 þm2

2

	

þ υmin

�
m2

2
−
υ2min

3

�
þmc

¼ m2γ þ vmin
m2

2
− v3min

~f
3
2ðvminÞ
3

þmc; ðD3Þ

where γ is the integral

γ ¼
Z

∞

υmin

dυ

�
υ2f

ffiffiffi
~f

q �
−χ2as þ

1

2
υ2 _χ2as

�
þ 1

2

	
: ðD4Þ

The integral is finite and can be numerically evaluated with
the result γ ¼ 0.4693….
Inserting υmin ¼ 1, c ¼ mcas, and m ¼ M̄

T , we obtain

ID5;reg
KT2

≅ −
2

ffiffiffi
2

p

3
þ
�
M̄
T

�
2
�
γ þ 1

2
þ cas

�
þ � � �

¼ −
2

ffiffiffi
2

p

3
þ 0.323

�
M̄
T

�
2

þ � � � : ðD5Þ

At very high temperature, at leading order the rescaled free
energy is constant, as can also be seen in Fig. 2. Therefore
we see that the leading term has a T2 behavior, as expected
in a conformal field theory [26].

b. Low T, zero ρ̄

We can also obtain the low-temperature limit of the
D5 action at zero charge density. The coordinates (2.1)
are well suited for this calculation. We fix the point um
where the brane caps off, and then simply expand the
equation of motion and action with respect to the horizon
position u0 and around the Minkowski embedding sol-
ution χðuÞ ¼ um=u.
At the leading order, the only contribution comes from

the finite part of the counterterms, and we get

ID5;reg
KT2

¼ −
πT
8M̄

þO

�
T
M̄

�
5

; ðD6Þ

which shows that the free energy of the Minkowski
embedding phase indeed goes smoothly to its T ¼ 0 value.

c. High T, high ρ̄

Let us then consider the limit where both T and ρ̄ are
large. The relevant asymptotic limit is where ρ̄ is of the
same order as T2=M̄2, in which case Q ¼ 2 M̄2

T2 ρ̄ is finite.

In order to compute the regularized free energy to
leading order at large T, we can proceed as before, and
use a weak field expansion, that is χ → 0 (and m → 0).
Hence, the regularized free energy (B2) for high-T,
arbitrary Q, and dropping all terms proportional to m,
becomes

ID5;reg
KT2

¼
Z

∞

1

dυ

8<
:
ðυ4 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

υ4þ1
þ 1

υ4
þ 1

q
υ2

− υ2

9=
;: ðD7Þ

The integral can be evaluated explicitly using the change
of variable fðυÞ=f̄ðυÞ ¼ sin y, with the result

ID5;reg
KT2

¼ 1

3

�
−

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ4

p

−2
ffiffiffiffiffiffi
iQ

p
QF

�
isinh−1

� ffiffiffiffiffiffi
iQ

p ffiffiffi
2

p
�����−1

��
þO

�
M̄2

T2

�
;

T≫ M̄; ðD8Þ

where FðϕjkÞ is the elliptic integral of the first kind, with
the convention that k, not k2, appears in the integrand. The
expression is real valued, despite the presence of the
imaginary unit, and it agrees with the numerical result in
the high-T limit. Figure 9 exhibits the resulting free energy
as a function of 1

2
Q ¼ ρ̄ M̄2

T2 .
Finally, in order to characterize the action as a function

of the bulk charge, let us note that the asymptotic limits
of (D8) are

ID5;reg
KT2

¼ −
2

ffiffiffi
2

p

3
þ Q2

2
ffiffiffi
2

p þOðQ5=2Þ; Q ≪ 1 ðD9Þ

ID5;reg
KT2

∝ Q3=2 þOðQÞ; Q ≫ 1: ðD10Þ

FIG. 9. The regularized free energy of the D5-brane at high-T
as a function of ρ̄ M̄2

T2 .
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We note that (D9) matches the leading order of (D5), as
expected.

d. Low T, finite ρ̄

Finally, we consider the case where T → 0 while ρ̄
remains finite, in which case Q → ∞. Indeed, this limit
needs to be considered since the free energy ID5;reg diverges
at low temperature. The explanation is that the Lorentzian
action changes by a finite amount when we go from zero
temperature, zero charge, to finite charge, while still
keeping temperature zero. However, in ID5;reg, the
Euclidean compactification introduces a factor of 1=T,
and therefore the free energy must indeed diverge as 1=T as
T → 0 at finite charge.
In terms of field configurations, at finite ρ̄, small T, the

solution χðυÞ remains nearly constant up to some finite υ,
and eventually breaks away to its asymptotic m=υþ � � �,
(2.11), behavior. As temperature is further decreased, this
breakaway point moves to larger and larger υ.
We can explicitly compute limT→0TID5;reg, which is

finite, by first changing variables to w ¼ u0ðυ − 1Þ. In
these coordinates, the asymptotic behavior appears at a
finite value of w. The resulting equations of motion have
the large w behavior χðwÞ ¼ m̂=wþ ĉ=w2 þ � � �, and we
see by comparison to (2.11) that m̂ ¼ mu0, ĉ ¼ cu20. Then

ρ ¼ 1=2NM̄2 Q̂
m̂2, where Q̂ ¼ Qu20. Finally, we expand the

free energy with respect to large u0, keeping Q̂ finite, solve
numerically the resulting equations of motion with the
boundary conditions χð0Þ ¼ χ0, χ0ð0Þ ¼ 0, and compute
the value of ρ̄ and the free energy. The boundary condition
χ0 then controls ρ̄, whereas the bulk charge Q̂ becomes
simply a choice of scale, and its actual value is scaled out
by a corresponding change in m̂. Therefore we set Q̂ ¼ 1

without loss of generality. The resulting curve is shown
in Fig. 10.
Considering further the limit ρ̄ → 0, still at zero temper-

ature, which corresponds to χ0 → 1, we see that the
solution tends to almost constant χðwÞ ¼ 1 for small w,
and then turns sharply to its asymptotic behavior χðwÞ ∝
1=w for large w. Indeed, χðwÞ ¼ 1 is an exact solution to
the equation of motion, as is χðwÞ ¼ m̂=w for any m̂. In
order to move toward a global solution satisfying both of
our boundary conditions, let us glue these solutions
together at w ¼ ws. In order to avoid a discontinuity, we
must then choose m̂ ¼ ws. This leaves a discontinuity in the
derivative, with a jump of magnitude 1=ws. Therefore, the
glued function is a (weak) solution in the limit ws → ∞.
Keeping ρ̄ ∝ Q̂=w2

s finite, we take that limit and evaluate
the free energy, with the result

lim
T→0

M̄3T
ID5;reg
K

¼ 2ρ̄; when ρ̄ ≪ 1: ðD11Þ

On the other hand, we can consider the limit ρ̄ ≫ 1 by
expanding the regularized free energy and equations of
motion around χðwÞ ∼ 0. The solution to the equation of
motion to first order in χ0 is

χðwÞ ¼ −
ð−1Þ1=4

ffiffiffiffi
Q̂

p
χ0Fðsin−1ðð−1Þ

3=4wffiffiffî
Q

p Þj − 1Þ
w

; ðD12Þ

where FðϕjkÞ is as in (D8), and again, the expression is
real. After evaluating the regularized free energy on this
solution, we get

FIG. 10. Regularized free energy of charged D5-brane at zero temperature as a function of the boundary charge. The points are
evaluated from the smallest-T point available in the finite temperature calculation, whereas the blue curve is from a calculation where the
zero-T -limit is first evaluated analytically, as described in the main text. The solid orange curve is the small-ρ̄ asymptotic, whereas the
dashed orange curve in the left panel is the large-ρ̄ asymptotic. The right panel shows a closeup of the small-ρ̄ -region.
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lim
T→0

M̄3T
ID5;reg
K

¼ 1

3

ffiffiffi
2

π

r
Γ2

�
1

4

�
ρ̄3=2; when ρ̄ ≫ 1:

ðD13Þ

With these limits we now have analytic control over the
D5 free energy in all four corners of the ðT; ρ̄Þ plane, and
we find that our numerical results match the approxima-
tions in all these cases.

2. D3 limits

a. Large Δx in the black hole embedding

At the limit P̄ → μb;h the integral in (C12) and the DBI
term in (C14) diverge. Therefore this gives the large-Δx
limit. The limit P̄ → μb;h can be approached along two
branches: from below, where P̄ < μb;h, or from above,
where P̄ > μb;h. In the first case (P̄ < μb;h) the turning
point is at the horizon, and we will consider the following
double limit: first υ → 1 and then P̄ → μb;h. In the second
case, P̄ > μb;h, the turning point is v�, defined in (2.20),
and we will consider the double limit υ → υ� first, and then
υ� → 1, which is equivalent to P̄ → μb;h.
To illustrate the computations of the large Δx limit in the

BH embedding in a common setup, we introduce υt, which
takes value 1 in the P̄ < μb;h branch, and v� in the P̄ > μb;h
branch. In both cases the dangerous integrand can be
separated as

lðυ; P̄Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μbðυÞ2 − 2P̄2 ~f−1ðυÞ

q ; ðD14Þ

allowing us to write the DBI term and the ωηe
integrals as

ωηe ¼
2Q
π

Z
∞

υt

lðυ; P̄Þ
υ2 ~fðυÞ ; ðD15Þ

SD3;DBI
N

¼ 2

Z
∞

υt

μbðυÞ2lðυ; P̄Þ: ðD16Þ

We can further separate the divergent factor by writing

l1ðυ; P̄Þ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2μ2b;t −

2P̄2

~fðυÞ

q ; l2ðυ; P̄Þ≡ lðυ; P̄Þ
l1ðυ; P̄Þ

;

ðD17Þ
where we have defined μb;t ¼ μbðvtÞ. In the limit we
are considering μb;t is approaching μb;h. If we set
P̄ ¼ μb;h, l1ðυ; P̄Þ diverges as 1=ðυ − 1Þ, and therefore
the integral diverges. However, l2ðυ; P̄Þ remains finite even
in this case.14

There is a slight difference in the form of l1ðυ; P̄Þ
between the two cases, P̄ < μb;h and P̄ > μb;h, since in
the latter case P̄ must be written in terms of υ� in order to
capture the behavior of the function at υ�. However, in both
cases an antiderivative of l1ðυ; P̄Þ can be found exactly in
terms of the incomplete elliptic integral of the first kind.
Denoting the antiderivative as

L1ðυ; P̄Þ ¼
Z

dυ l1ðυ; P̄Þ ðD18Þ

for some fixed specific choice of the constant of integration,
we can analyze its divergence at υ ¼ 1 or υ ¼ υ�, respec-
tively, as P̄ → μb;h. We will find in both cases that
L1ðυt; P̄Þ diverges as logðjP̄ − μb;hjÞ. We want to stress
that the divergence in L1 is characteristic of the limit
P̄ → μb;h, υt → 1: when P̄ > μb;h and therefore υ� > 1,
there is a one-over-square-root–divergence at the lower
limit of the integral, which integrates to a finite number.
When P̄ < μb;h, even the integrand itself is finite at υ ¼ 1.
Now we write, for P̄ ≠ μb;h,

ωηe ¼
2Q
π

Z
∞

υt

l2ðυ; P̄Þ
υ2 ~fðυÞ l1ðυ; P̄Þ

¼
�
2Q
π

l2ðυ; P̄Þ
~fðυÞυ2 L1ðυ; P̄Þ

�����∞
υ¼υt

−
2Q
π

Z
∞

υt

d
dυ

�
l2ðυ; P̄Þ
υ2 ~fðυÞ

�
L1ðυ; P̄Þdυ: ðD19Þ

The first term vanishes in the upper limit. Integrating L1

with respect to υ gives a function of P̄ that is bounded at

FIG. 11. Comparison of our numerical results for the D3-brane
action (blue curve) and the approximation (D24) (dashed red
curve) at ρ̄ ≈ 13300 and T

M̄ ≈ 422. These values of ρ̄ and T were
selected to exhibit the crossover between linear and quadratic
dependence on Δx. The constant remainder term Rðμb;hÞ was
fitted to match the largest Δx achieved by our numerics.

14Along the two branches the specific values of l2ðυ; P̄Þ are
actually different.
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υ ¼ υt for all P̄ ≠ μb;h, and the other factors in the integral
are themselves bounded. Hence, in the limit P̄ → μb;h the
second term in (D19) will give a finite result. Denoting such
remaining integral term as 2Q

π ~fðυtÞυ2t
RωηeðP̄Þ, we can solve

l2ðυt; P̄ÞL1ðυt; P̄Þ ¼
π ~fðυtÞυ2t

2Q
ωηe þ RωηeðP̄Þ: ðD20Þ

We do the same integration by parts on SD3;DBI − S0D3 and
use the above to write

SD3;DBI − S0D3
N

¼ μ2b;t
π ~fðυtÞυ2t

Q
ωηe þ 2μ2b;tRωηeðP̄Þ

− RSD3ðP̄Þ: ðD21Þ

We then insert this into (C14), using (C16) to express ωηe
in terms of Δx, to obtain the regularized D3-brane action,

SD3;reg
N

¼ ð ~fðυtÞυ2t μ2b;t − P̄2Þ π
Q
arcsinh

�
QΔxM̄
2mP̄

�

þ πP̄
2m

ΔxM̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2Δx2M̄2

4m2P̄2

s
þRðP̄Þ; ðD22Þ

where

RðP̄Þ ¼ 2μ2b;tRωηeðP̄Þ − RSD3;DBIðP̄Þ: ðD23Þ
This is still an exact result. The key to deriving the large-Δx
limit is to now observe that since L1 has a logarithmic
divergence when P̄ ≈ μb;h, the first terms in (D20) and
(D21) dominate over the integral terms Rωηe and RSD3;DBI ,
which are finite, as explained above. Therefore, at leading
order in the limit P̄ → μb;h, the dependence on P̄ comes
from the terms in (D22) that contain Δx, and we obtain

SD3;reg
N

≈ μb;h
2
π

Q
arcsinh

�
QΔxM̄
2mμb;h

�

þ πμb;h
2m

ΔxM̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2Δx2M̄2

4m2μ2b;h

s
þRðμb;hÞ: ðD24Þ

A comparison of this approximation to the numerical
results is shown in Fig. 11. When ΔxM̄ ≪ mμb;h

Q we get

SD3;reg
N

≈ πTμb;hΔx ⟶
T→∞ π

2
TΔx; ðD25Þ

and when ΔxM̄ ≫ mμb;h
Q ,

SD3;reg
N

≈
πQ
4m2

Δx2M̄2 ¼ π

2
ρ̄Δx2M̄2: ðD26Þ

Note that whenQ is small but nonvanishing, there may be a
long range of Δx where the approximation (D25) is valid

before the system crosses over to its asymptotic behavior
described by (D26). At a given charge density and temper-
ature, the crossover occurs at a distance where the two
terms inside the square root in (D24) are equal,

ΔxcrossoverM̄ ¼ μb;hT
M̄ ρ̄

⟶
T→∞ ¼ T

2M̄ ρ̄
: ðD27Þ

In other words, while the system always asymptotes to a
quadratic behavior at any finite charge, the crossover
distance, where this behavior takes over, diverges as ρ̄
goes to zero.

b. Low-P̄ limit of the D3-brane action

At finite ρ̄ and low temperature, the argument of the sinh
term in Eqs. (C14) and (C16) becomes large due to the
factor 1=T2, and therefore the sinh term itself becomes
extremely large. This means that the most interesting region
for Δx is at extremely small values of P̄, to the extent that
this region is not directly accessible to numerical calcu-
lations using standard tools. In contrast, this region lends
itself very well to an analytic low-P̄ approximation.
Specifically, let us take P̄ ≪ μb;h, and expand ωηe to get

ωηe ¼
Z

∞

1

4ρ̄M̄2

πυ3T2 ~fðυÞμbðυÞ
dυþO

�
P̄2

μ2b;h

�

¼ k
T2

þO

�
P̄2

μ2b;h

�
; ðD28Þ

where we have defined k=T2 as the integral appearing in
(D28). Note that this is independent of P̄, and especially the
sinh term is independent of P̄ in this approximation. Then
we get from (C16) that

P̄ ¼ ρ̄M̄2

T2 sinhð k
T2Þ

Δx: ðD29Þ

We then plug this into (C14), observe that the geometric
part is S0D3=N þ π

2ρ̄M̄2 P̄2k, and simplify to get

SD3;reg ≡ SD3 − S0D3 ¼
πρ̄N
2

Δx2M̄2

sinhð k
T2Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2

�
k
T2

�s
þO

�
P̄2

μ2b;h

�
: ðD30Þ

It is instructive to consider when this limit is valid in terms
of Δx. The ratio of the integrands in the leading and next-
to-leading terms in (D28) is P̄2=ðμ2b ~fυ2Þ. Approximating
μb by μb;h, making the further approximation that the rest of
the integrand can be treated as a constant, integrating,
requiring that this ratio is small, and solving the corre-
spondingΔx from (D29), we get the approximate condition
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ΔxM̄ ≪
T sinhð k

T2Þμb;h
ρ̄

: ðD31Þ

Comparing to numerics at not very low T, we see that
indeed near this value of Δx the approximation starts to
deviate very significantly from the numerical results. We
note that in the region where T is low and numerics
becomes difficult due to the huge sinh term, the range of
validity increases due to that very same term. Therefore we
can trust the approximation to give a very precise picture at
low T and moderate Δx.

Finally, we consider the low-T limit,

SD3;reg ¼
π

2
ρ̄M̄2NΔx2; ðD32Þ

and, on the other hand, the zero-charge limit,

SD3;reg ¼
π

2

T2

k̄
NΔx2; ðD33Þ

where k̄ ¼ k
ρ̄M̄2.
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