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Off-shell higher spin N = 2 supermultiplets in three spacetime dimensions (3D) are presented in this
paper. We propose gauge prepotentials for higher spin superconformal gravity and construct the
corresponding gauge-invariant field strengths, which are proved to be conformal primary superfields.
These field strengths are higher spin generalizations of the (linearized) A = 2 super-Cotton tensor, which
controls the superspace geometry of conformal supergravity. We also construct the higher spin extensions
of the linearized N =2 conformal supergravity action. We provide two dually equivalent off-shell
formulations for massless higher spin A/ = 2 supermultiplets. They involve one and the same super-
conformal prepotential but differ in the compensators used. For the lowest superspin value 3 /2, these higher
spin series terminate at the linearized actions for the (1,1) minimal and w = —1 nonminimal N = 2
Poincaré supergravity theories constructed in S. M. Kuzenko and G. Tartaglino-Mazzucchelli,
arXiv:1109.0496. Similar to the pure 3D supergravity actions, their higher spin counterparts propagate
no degrees of freedom. However, the massless higher spin supermultiplets are used to construct off-shell
massive N = 2 supermultiplets by combining the massless actions with those describing higher spin
extensions of the linearized N = 2 conformal supergravity. We also demonstrate that every higher spin
super-Cotton tensor can be represented as a linear superposition of the equations of motion for the
corresponding massless higher spin supermultiplet, with the coefficients being higher-derivative linear

operators.
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I. INTRODUCTION

In supersymmetric field theory, it is of interest to
construct off-shell supersymmetric extensions in diverse
dimensions of the (Fang-)Fronsdal actions for massless
higher spin fields in Minkowski [1,2] and anti-de
Sitter [3,4] spacetimes. In four spacetime dimensions
(4D), this problem was solved in the early 1990s. In the
N =1 super-Poincaré case, the off-shell formulations
for massless higher spin supermultiplets were developed
in [5,6]. For each superspin1 s > 1, half-integer [5]
and integer [6], these publications provided two dually
equivalent off-shell realizations in A =1 Minkowski
superspace. At the component level, each of the two
superspin-s actions [5,6] reduces, upon imposing a
Wess-Zumino-type gauge and eliminating the auxiliary
fields, to a sum of the spin-s and spin-(s+ 1/2)
actions [1,2]. The off-shell higher spin supermultiplets
of [5,6] were generalized to the case of anti-de Sitter
supersymmetry in [7]. Making use of the A/ = 1 super-
multiplets constructed in [5-7], off-shell formulations
for 4D N =2 massless higher spin supermultiplets
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'In four dimensions, the massless multiplet of superspin s
describes two fields of spin s and s +%; it is often denoted

(s, —|—%)
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were presented in (8,917 A pedagogical review of the
supersymmetric higher spin models proposed in [5,6] is
given in Sec. VL. 9 of [11]1° A comprehensive review of
the results of [5-7], including a detailed analysis of the
component structure of the models constructed, is given
in [12].

In this paper, we present off-shell A/ = 2 supersymmet-
ric generalizations of the 3D (Fang-)Fronsdal actions and
derive their massive deformations. In principle, one may
construct all 3D N = 2 massless higher spin supermultip-
lets by applying an off-shell version of dimensional
reduction d = 4 — d = 3 to the 4D N = 1 supermultiplets
5,6]]. Such a procedure has been carried out in [13] to
obtain one of the four off-shell actions (given in [13]) for
linearized 3D N = 2 supergravity (superspin s = 3/2). In

’An important by-product of the higher spin construction
given in [9] was the explicit description of the infinite dimen-
sional superalgebra of Killing tensor superfields of 4D N =1
anti-de Sitter superspace. This superalgebra corresponds to
the rigid symmetries of the generating action for the massless
supermultiplets of arbitrary superspin in 4D AN =1 anti-de
Sitter superspace, which was constructed in [9]. A generaliza-
tion of the concept of Killing tensor superfields given in [9]
recently appeared in [10].

Section 6.9 of [11] also contains a pedagogical review of the
(Fang-)Fronsdal actions for free massless higher spin fields in 4D
Minkowski space [1,2], including a direct proof of the fact that
the massless spin-s action describes two helicity states =s.
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practice, however, naive dimensional reduction is not quite
efficient to deal with in the case of higher spin super-
multiplets. The point is that its application to a 4D super-
spin-s multiplet, with s > 3/2, leads to a superposition of
several 3D multiplets, one of which carries superspin s and the
others correspond to lower superspin values.* Some work is
required in order to disentangle the superspin-s multiplet from
the lower-superspin ones, which is actually quite nontrivial. It
proves to be more efficient to recast the 4D gauge principle of
[5,6] in a 3D form and use it to construct gauge-invariant
actions. This is our approach in the present paper.

In three dimensions, the massless spin-s actions of [1,2]
are known to propagate no local degrees of freedoms for
s > 1.7 Of course, this is consistent with the fact that the
notion of 3D spin is well defined only in the massive case
[14]. When speaking of a 3D massless spin-s theory, we
will refer to the kinematic structure of the field variables,
their gauge transformation laws, and the gauge-invariant
action. One reason to study such a theory is that it may be
deformed (say, by including auxiliary lower-spin fields and
adding mass terms) to result in a model describing a
massive spin-s field.

There have appeared two different constructions of
Lagrangian models for 3D massive higher spin fields
[15,16]. The approach of [16] has been used to formulate
on-shell models for massive N' =1 higher spin super-
multiplets [17]. In this paper we will pursue an alternative
approach to address the problem of constructing off-shell
massive N = 2 higher spin supermultiplets. Our approach
will be based on deriving a higher spin generalization of the
N = 2 super-Cotton tensor’ [18,20] that can be used to
write down a topological mass term.

An important feature of 3D gauge theories is the
possibility to generate the mass for gauge fields of different
spin by adding to the massless action a gauge-invariant
Chern-Simons-type term of topological origin. This idea
has been used to construct topologically massive electro-
dynamics [21-23], topologically massive gravity [23], and
topologically massive N =1 supergravity [24,25]. The
latter theory admits generalizations with N > 1, including
the off-shell topologically massive supergravity theories
with NV = 2 [26]and V' = 3 and N = 4 [27]. In the case of
3D supergravity theories, the topological mass term may be

“In the case of a half-integer superspin s = n + 1/2, with
n=2,3,..., one of the 4D dynamical variables [5] is a real
unconstrained superfield Hy, 4 4,. .6, =H(q,..a,)@...4,)- 1ts di-
mensional reduction d=4 — d=3 leads to a family of uncon-
strained symmetric superfields Hy o, » Hq . a, ,» "'+ H, Of
which only H, ,, is required to describe a massless
3D supermultiplet. In the supergravity case, s = 3/2, dimensional
reduction d=4— d=3 leads to two multiplets, an off-shell /" = 2
supergravity multiplet and an Abelian vector multiplet [13].

’See Appendix B for a direct proof.

6Upon fixing the super-Weyl and local U(1), symmetries, the
super-Cotton tensor derived in [18] reduces to that introduced
earlier by Zupnik and Pak [19].
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interpreted as an action for conformal supergravity (see [28]
forareview of 4D conformal supergravity theories). The off-
shell actions for N -extended conformal supergravity theo-
ries were constructed in [29] for ' = 1, [30] for N = 2,
[31] for V' = 3, 4, 5, and [32,33] for N = 6.” An arbitrary
variation of such an action with respect to a supergravity
prepotential is given in terms of the N -extended super-
Cotton tensor [20]. This means that a linearized supergravity
action is determined by the linearized super-Cotton tensor,
W(H). The corresponding Lagrangian is symbolically
Lesg = H-W(H), where H is the linearized conformal
supergravity prepotential. The super-Cotton tensor W(H) is
a unique field strength being superconformal primary and
invariant under the linearized gauge transformations of
conformal supergravity.

Our construction of the linearized higher spin super-
conformal actions is analogous to that of the 3D higher spin
conformal gravity actions derived by Pope and Townsend
[34] (the 3D analogs of the conformal higher spin actions
pioneered by Fradkin and Tseytlin [28]). The Pope-
Townsend conformal action for the spin-s field makes
use of the linearized spin-s Cotton tensor (which can be
read off from the action (31) in [34]). The s = 3 case was
studied earlier in [35]. For recent discussions of the
linearized higher spin Cotton tensors [34] and their gen-
eralizations, see [36,37] and references therein.

This paper is organized as follows. Section II is devoted
to general properties of transverse and longitudinal linear
superfields. Section III is concerned with on-shell massive
fields and N =2 superfields. Two series of off-shell
actions for massless half-integer superspin multiplets are
introduced in Sec. IV. Section V is devoted to a brief
discussion of the component reduction of the models
presented in Sec. IV. In Sec. VI we present N =2
superconformal higher spin actions and derive a higher
spin extension of the linearized N = 2 super-Cotton tensor.
Off-shell actions for massive higher spin supermultiplets
are presented in Sec. VII. Concluding comments are given
in Sec. VIII. The main body of the paper is accompanied by
four appendixes. Appendix A summarizes our notation and
conventions. Appendix B is devoted to the 3D (Fang-)
Fronsdal massless actions in the two-component notation.
The component structure of the massless superspin-(s + 1)
model (4.9) is studied in Appendix C. Appendix D is
devoted to the proof of two fundamental properties of the
superconformal field strength (6.22).

I1. LINEAR SUPERFIELDS

A symmetric rank-n spinor superfield, I'y ..., =T'(4,...q,)>
is called transverse linear if it obeys the constraint

"The component actions for A" = 1, 2 conformal supergrav-
ities [29,30] have been rederived within the universal superspace
setting of [31].
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Dﬂrﬂal_”a”_l = 0, n>0. (218)

A symmetric rank-n spinor superfield, G, ..., = G(4,..a,)>

is called longitudinal linear if it obeys the constraint
(2.1b)

D(alG )y = 0,

.. Oy

which for n = 0 is equivalent to the chirality condition

D,G =0. (2.2)
The constraints (2.1a) and (2.1b) imply that I, .., and
G, ..., are linear superfields in the usual sense:

DTy ..o =0, (2.3a)

DzGal...an =0. (2.3b)
In the case n = 0, the transverse constraint (2.1a) is not
defined, but its corollary (2.3a) can be used. In four
dimensions, the transverse and longitudinal linear super-
fields were introduced for the first time by Ivanov and Sorin
[38] (who built on the earlier results by Salam and Strathdee
[39] and Sokatchev [40] in the super-Poincaré case) as a
means to realize the irreducible representations of the
N =1 anti-de Sitter supersymmetry. As dynamical varia-
bles, such superfields were used for the first time in [5-7].

We assume that I, .., and G, .., are complex and the
differential conditions (2.1a) and (2.1b) are the only
constraints these superfields obey. The constraints
(2.1a) and (2.1b) can be solved in terms of complex
unconstrained prepotentials &y o = &(4y..q,,,) and

Carorany = Slar.ans) according to the rules
Fal‘..an = Dﬂgﬂal‘..a,,’ (243)
Gal...a,, = D(al CaQ.‘.an)' (24b)

There is a natural arbitrariness in the choice of the
prepotentials & and ¢, namely,

65(11 O Fal AR (258')

5Ca|...an,1 = Gal~'~an 1°

(2.5b)

Here, the gauge parameter [y, ) is a transverse linear
superfield, and G,_) is a longitudinal linear one. As a
result, there emerge the transverse and longitudinal gauge
hierarchies:

Fa(n) - 1—‘oz(n-&-l) - F[l(l‘l+2)"" (268')

Ga(n) - Ga(n—l) - Ga(n—2)“' - G. (26b)
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Thus, in accordance with the terminology of gauge theories
with linearly dependent generators [41], any Lagrangian
theory described by a transverse (longitudinal) linear
superfield Iy, (G, . 4,) can be considered as the theory
of an unconstrained prepotential &, 4 | (Cq,..q, ,) With an
additional gauge invariance of an infinite (finite) stage of
reducibility.

Suppose we are given a supersymmetric field theory
described by a transverse linear superfield I',(,) and its
conjugate 'y, for n >0, with an action functional
S[[,T]. Such a theory possesses a dual formulation,
Sp|G, G|, described in terms of a longitudinal linear
superfield G,(,) and its conjugate Ga(n). The latter theory
is obtained by introducing a first-order action of the form

S[V,V.G,G] = S[V, V] + / d*xd?0d’0(Va Gy,

+ (_l)n‘_/a(n)éa(n))’ (27)
where the symmetric rank-n spinor V) is a complex
unconstrained superfield. The first term in the action,
S[V,V], is obtained from S[[,T] by the replacement
LCan) = V). Varying (2.7) with respect to Gg,) gives
Va(n) = an), and then the second term in (2.7) drops out,
due to the identity

/ dPPxd?0d20r*" G,y = 0. (2.8)

As aresult, the first-order action reduces to the original one,
S[T",T7]. On the other hand, we can consider the equation of
motion for Ve,

S
syan)

S[v, V} + Gyn) =0, (2.9)
and the conjugate equation. We assume that these equations
are uniquely solved to give V) as a functional of G,
and G (). Substituting this solution back into (2.7), we end
up with the dual action Sp[G, GJ.

A real transverse linear superfield T, ..,
characterized by the properties

= T(al"'an) iS

T(ll"'(ln = Tal"'an’ DﬂTﬁfll”'a;H =0& D/}T/}al"'an—l =0.
(2.10)

The second-order differential operator
A :%D"Da (2.11)

acts on the space of such superfields. Indeed, AT, .., is
real and one may check that
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DPATgy . =0,  DPATgy o =0. (2.12)

III. MASSIVE (SUPER)FIELDS

In this section we discuss on-shell (super)fields
which realize the massive representations of the (super-)
Poincaré group.

A. Massive fields

Let P, and J_,, = —J,, be the generators of the 3D
Poincaré group. The Pauli-Lubanski scalar

1 1
W= Ee“b"Panc =- EPaﬁJaﬁ (3.1)
commutes with the generators P, and J,. Irreducible
unitary representations of the Poincaré group are labeled by
two parameters, mass m and helicity 4, which are associated
with the Casimir operators,

PP, = —m*1, W = mal. (3.2)
One defines || to be the spin.
In the case of field representations, it holds that
1
where the action of M5 = My, onafield ¢, .., = ¢,,..,)
is defined by
Mopy,..y, = Zeyi(a¢ﬂ)rl-~f;---7n’ (34)
i=1
where the hatted index of ¢, ..., ,, 1S omitted.
For n > 1, a massive field, ¢y, .., = éﬁa],,,an = D(aa)>

is a real symmetric rank-n spinor field which obeys the
differential conditions [15] (see also [42])

aﬁ7¢ﬁyal-~-an_z =0, (35&)

aﬂ(a]qjaz..,an)ﬂ = mod)al,,.a”’ o= =*l. (35b)
In the spinor case, n = 1, Eq. (3.5a) is absent, and it is the
Dirac equation (3.5b) which defines a massive field. It is
easy to see that (3.5a) and (3.5b) imply the mass-shell
equation

(O- mz)qﬁal...an =0, (3.6)
which is the first equation in (3.2). In the case n =1,
Eq. (3.6) follows from the Dirac equation (3.5b). The
second relation in (3.2) also holds, with

The equations (3.5) and (3.6) proves to be equivalent to the
3D Fierz-Pauli field equations [43].
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/1220.

: (3.7)

B. Massive superfields

Let P,, J,, = —Jp, O, and Q, be the generators of the
3D N =2 super-Poincaré group. The supersymmetric
extension of the Pauli-Lubanski scalar (3.1) is the following
operator [44]

i ary 1 abc i ar
Z_W_ZQ Q(z_ig Pa']bc_ZQ Qw (38)
which commutes with the supercharges,
2.0 = [2.04] = 0. (3.9)

Irreducible unitary representations of the super-Poincaré
group are labeled by two parameters, mass m and super-
helicity «, which are associated with the Casimir operators,
PP, = —m?1, Z = mxl1. (3.10)
Our definition of the superhelicity agrees with [44]. It is
instructive to compare the operator Z, Eq. (3.8), with the 4D
N =1 superhelicity operator introduced in [11]. The
massive representation of superhelicity « is a direct sum
of four massive representations of the Poincaré group with
helicity values (k —3.x.k.x+3%). The parameter || is
referred to as superspin [44].
In the case of superfield representations, the super-
helicity operator may be expressed in the following
manifestly supersymmetric form:

1 1
ZziaaﬂMaﬁ +—A,

5 (3.11)

where the operator A is given by (2.11). .
For n>0, a massive superfield, &, .., =E&q o =

E(ay-a,)> 15 @ real symmetric rank-n spinor which obeys
the differential conditions [45]

Dﬂgﬂal'“au—l = Dﬂgﬂal'“an—l =0= aﬂygﬂ}’aw-an—z =0,

(3.12a)
A&y o =m6Eq 4 o= =l1. (3.12b)
Due to the identity
0= a2 +11—6{D2,D2}, (3.13)
Egs. (3.12) lead to the mass-shell equation
(O- mz)é'al_“an =0. (3.14)
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One may also check that

AE:a]“-an - aﬂ(algaz...an)ﬁa (315)

as a consequence of (3.12a). We conclude that £, , is an
eigenvector of the superhelicity operator (3.11),

ZE4, .. a, (n+1)o. (3.16)

Nl*—‘

=mkEyq,  a,» K=

For completeness, we also consider massive scalar
superfields. The massive multiplet of superhelicity «,
j:é = éo is described by a real scalar superfield G, = g,,,
which is constrained by

AG, = mog,, (3.17)

with m > 0 the mass parameter. This equation implies that
G, is linear, D>G, = D*G, = 0. It follows from (3.17)
that ZG, = mk,G,,.

Constraint (3.17) is the equation of motion for a super-
symmetric Chern-Simons theory with action

1 _
Scs[V] = —2/ d3xd29d29{g2 - mng}, g = AV,
(3.18)
with V the gauge prepotential of the vector multiplet.
The superhelicity x = 0 multiplet is described by a chiral
superfield ®, D,® = 0, constrained by

1 _
—;D*® + md =0. (3.19)

This is the equation of motion for the model

S[®, D] = / d3xd?0d%6 ¢ @ +%{ / dxd?09? + c.c.}.

(3.20)

IV. MASSLESS HALF-INTEGER SUPERSPIN
MULTIPLETS

We fix an integer s > 1 and consider two sets of
superfield dynamical variables:

L= {H(I(ZS) ’ 1—‘(Jz(2s—2) ’ 1:‘(1(23'—2)};

-2)» Ga(Zs—2) }

(4.1)

V” = {H(l(2S>’ Ga(2s (42)

In both cases H,(sy) = H(q,....a,,) 18 an unconstrained real
superfield. The complex superfields ['yo52) = [y, a5, ,)
and Gy25-2) = G(q,...ay, ,) are transverse and longitudinal,
respectively.

PHYSICAL REVIEW D 94, 106010 (2016)

We postulate the following linearized gauge transforma-
tions for the dynamical superfields introduced:

= D(G’]Laz» ) D(alz‘az -ay) (43)

61—‘(1(2s—2) - mDﬁl D/z'ga(z‘ ) (2)

1. -
- _ZDﬁDzLﬁ(X(ZS—Z)’ (44)
0Gg(25-2) = T lDﬁ 1D g0 0(25-2) + 1507 gi)a(25-2)
1.
= —ZDzDﬂ Lga(25-2)

+ i(s - 1>8ﬁ]ﬂ2D(alLaz-»-azs—z)ﬂlﬁz' (45)

Here the complex gauge parameter g,(25) = Y(q,...a,,) 1S a0
arbitrary longitudinal linear superfield. It can be expressed
in terms of an unconstrained complex parameter L o,_1) =

L4, ,) by the rule

o

Ga(2s) = V(o L (46)

ag...ap)

The two sets of dynamical variables, V- and V!, give rise
to two gauge-invariant actions, transverse and longitudinal
ones, which are dual to each other.

Let us introduce unconstrained prepotentials, y(4-1)
and {,(24-3), for the constrained superfields Iy, and
Ga(2s-2) according to the rule (2.4). The gauge trans-
formations of I'p,_5) and G, p_5) are induced by the
following variations of the prepotentials:

1
55(1(2&—1) = _ZD L a(2s—1)» (47)

1
5§a(2s—3) = _EDﬁD La(ZS 3)/3}’ (S - l)aﬁ}’L (25=3)pr

(4.8)

In what follows, we will use the notation d3z7 =
d3xd?0d?6 for the full superspace measure.

A. Transverse formulation

The transverse formulation for a massless superspin-
(s + 1) multiplet is described by the action

106010-5
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_ 1\* 1 _
Sir%[H, I, F} = <_E) /d3|4z{gHa(ZS)DﬁDZDﬁHa(ZS)

+ H()l(zs)(Da] Dagray..azx - DOZ]DO'ZI:I“}W“%)
25 + 1
N

25— 1.
+ 20y

(r.r+f.f)}.
(4.9)

It may be shown that the action is invariant under the gauge

transformations (4.3) and (4.4). The requirement of gauge

invariance fixes this action uniquely up to a constant.
Consider an arbitrary variation of the action

1\ s ! _
535%% — (_ 5) /d34Z{5Ha(2A)Ei(2S) _ 55(1(2? I)Fa(Zs—])

— 8 (1) F¥>71Y, (4.10)

where we have introduced the gauge-invariant field
strengths

Eyy) =~ DPD2DyH o) + Dy DT
a2s) T 4 pa2s) + D@ Doyl ;. )

- D(a] Dazra3...azs) s

(4.11a)
|

1
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| . 5 2s —1 - _
FU’(ZS—I) = _ED D Ha(25—1)ﬂ + —D(alraz-“az.s—l)

25+ 1 -
D(a]ra2~--a2x—l)'

+ (4.11b)

The field strengths are related to each other by the Bianchi
identity

1

DPEj o) = zDzF a(2s-1)- (4.12)
The equations of motion for the theory are
Ei(lv) =0, Fa(Zs—l) =0. (413)

B. Longitudinal formulation

In accordance with our general discussion in Sec. II,
the theory with action (4.9) possesses a dual formulation.
It is obtained by considering the following first-order
action:

_ _ _ 2 s -
S[H,G,G,V,V] =S85 ,[H,V,V]-= (— 5) /d3|4z{G- V+G-V}
N 3 Ky

1\ 1 _ — - -
= <— —> /d34Z{§Ha(zs)DyD2DVHa(25) + Ha(zs)(Dm Daz Vaz‘..aZS - DalDazvaa..‘azs)

2

2s — 1 -

25+ 1
oyt

+

(V2+V?)

Here V0,5 is an unconstrained complex superfield,
while the Lagrange multiplier G,z_5) 1s constrained to
be a complex longitudinal linear superfield. With the
normalization of the Lagrange multiplier chosen, the action
(4.14) proves to be invariant under the gauge transforma-
tions (4.3) and (4.5) accompanied by

1~ _
5Va(23—2) = _ZDﬂDzLﬁa(h—Z)' (415)

Varying (4.14) with respect t0 Gy25-2) gives Vy,_0) =
[g(24-2)> and then (4.14) reduces to the transverse action
(4.9). On the other hand, we can first consider the equation
of motion for V,,_2) and its conjugate, which imply

1 _ i
Va(2s—2) = - g [Dﬁ’ Dy]Hﬁya] g E saﬂyHﬂyal Qg

25 +1
2 G —
+ ds a(2s=2)

2s — 1
Ga(2s—2)'

(4.16)

2(G-V+G-V)}.

s

(4.14)

Using this and the conjugate relation, we can express the
action (4.14) in terms of the dynamical variables H ),

G(2s—2) and Gy(p5_o). The result is

I e
s!,|[H.G.G]

1\* 1 a(2s D

1
16

+ % (a/}]/}ZH/}lﬁza(zS_z))aylYZH

([D/;, , D/}Z]HﬁlﬁzaQS—Z)) [Dh , Dy2]Hy|y2(1(2.v—2)

71720(25-2)

2s—1 ~ .
T 2s (G - G)a(zs Z)aﬁ]ﬁzHﬁlﬁza(25—2)
2s — 1 - 2s+1 o
G-G- G-G+G-G) . 4.17

This action is invariant under the gauge transformations
(4.3) and (4.5). It defines the longitudinal formulation of
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the theory. By construction, the transverse and longitudinal
formulations, (4.9) and (4.17), are dual to each other.

Computing the first variational derivatives of the action
(4.17) with respect to the prepotentials, we obtain the
following gauge-invariant field strengths:

Eyy = %Dﬂ D*DyHqqay)
- % [D(a,» Do, |[DP', D21 H .y,
= 50", Ha,. a0 p12)
—~ izsz—;la(al(,z((; =Gy )
Bos—3) =i 2s2; DI H,
%22; DG = G) ios ). (4.18)

They are related to each other by the Bianchi identity

= 1 _
Bl _ .
D’ Eﬂ“(ZS—l) o ED(alDazBazu-az;—l) - 1(S - 1)6(a1a23a3...a2x_1)-
(4.19)
The equations of motion are
El(zs) =0, By(25-3) = 0. (4.20)

C. Linearized supergravity models

For the case s = 1, the longitudinal action (4.17) takes
the form

_ 1 1 -
Sg/z [H.G,G] = _5/ d34z{§HaﬁDyD2DrHaﬂ

1 - 1
TR ([Dm Dﬂ]Haﬂ)z + E <8aﬂHaﬂ)2

_ 1 -
+ (G—G)@aﬁH“ﬂ+§GG}, (4.21)

N e —

where the compensator G is chiral, D,G = 0. This action
proves to coincide with the linearized action for type I
supergravity [13] upon rescaling 3G = o. The action is
invariant under the gauge transformations

OH 3 = Yop + Jup = D(aL/i) - D(al_f/}), (4.22a)

1 _ 1.
8G =3 DDV g +10P P gy = =7 D*DPLy,  (4.22b)

where g,5 = D(,Lg) and the spinor gauge parameter L, is
an unconstrained complex superfield.
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Varying the action (4.21) with respect to the gravitational
superfield H%, one obtains the gauge-invariant field
strength

Bl —Llppp —l[D D)D", D°|H
o =] rHap =2 1D@Dp)[ID7, 7

— 9,,0°H 5 — 2 8,,(G - G). 423
f 2 D) 3

Since every chiral or antichiral superfield is annihilated by
the operator A, Eq. (2.11), from (4.23) we derive the
descendant

1 _ _
Wap(#) = =AY, = A 28%% + DDy D D

+ 8,,/;875Hy5} , (4.24)

which is constructed solely in terms of the gravitational
superfield H ,3. The gauge-invariant superfield W4 proves
to be a linearized form of the N/ = 2 super-Cotton tensor
[18,19]. The linearized expression (4.24) was recently
given in [46]. Our analysis shows that the gauge-invariant
field strength W, naturally follows from the results of the
earlier work [13].

In the supergravity framework, the super-Cotton tensor
transforms homogeneously under the super-Weyl trans-
formations [18] (see also [20] for a more general super-
gravity formulation). A direct consequence of this result is
that the linearized version of the super-Cotton tensor W,
given by Eq. (4.24), is a primary superfield with respect to
the superconformal group.

It is an instructive exercise to show that

1
AE(”!/? = _EA{DH(I/J + 8aya/}5Hy5 + ZA({)}/((IH/,’)Y}. (425)

Using this relation gives an alternative expression for the
field strength (4.24).

Direct calculations show that W is transverse linear,

DPW 5 = DPW 5 = 0. (4.26)

This relation is a linearized form of the Bianchi identity for

the N = 2 super-Cotton tensor [20]. It follows from (4.26)
that the functional

Scsg = / dHZHPW 5 (H) (4.27)

is invariant under the gauge transformation (4.22a). This
functional is a linearized version [46] of the N =2
conformal supergravity action [30,31].

Let us now look at the transverse formulation for the
s = 1 case. It is given by the following action:

106010-7



SERGEI M. KUZENKO and DANIEL X. OGBURN
_ 1 1 i,
S3plH.T.T] = =3 / d3|4z{§H“ﬁD7D2DyHaﬁ

+ H?(D,DyU" — D,DgI") + IT

3 _
+5(r2 +r2)}, (4.28)
which is invariant under the following gauge
transformations:
6H o5 = Gup + Jup = DaLp) — D(oLp). (4.29a)
1 - [IPyRee
o' = gD D ga/)’ = —ZD D Lﬂ (429b)

The functional (4.28) coincides with the linearized action
for w = —1 nonminimal A/ = 2 supergravity [13].

Associated with the action (4.28) are the gauge-invariant
field strengths

1 _ o
1l
Eyp = ;D'D*DyHop + D@Dyl = DDyl (4.302)

1. o
F,=— EDZD/’H(I/J +D,([T +3I), (4.30b)

in terms of which the equations of motion are Ej =0 and
F, = 0. The linearized super-Cotton tensor (4.24) can be
expressed in terms of the field strengths (4.30) as follows:

1 i _ _
Waﬁ — EAEiﬁ + ﬁ [D(a’ Dﬂ)](DyFy + DVF},)

1 _
~ 5 up(D'F, = D'F). (4.31)

V. COMPONENT ANALYSIS

The linearized gauge transformations (4.3)—(4.5) make
use of the longitudinal linear parameter g, (), given by
Eq. (4.6), and its conjugate s, The most general
expression for g, as a power series in the Grassmann

variables 0 and 6, is

ga(25)<9» é) = 't {gal...aZS + é(algaz...azly)
+ Qﬂval...azyﬂ + 02far]...oczJ

+ Qﬁé(allaz---azs)sﬂ + gzé(alzaz---azs)}’ (51)

where
Ho = 0(") g0, = 00,5 = p0,5. p =00V,
(5.2)

All component fields in (5.1) are complex and symmetric in
their a-indices. The components T, ,, 5 and dq, 4, 5
are not required to have any symmetry property relating
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their @ and f indices, which is indicated by a coma. In other
words, Y4 (y) 4 belongs to the tensor product (2s +1) ® 2
of two SL(2, R) representations.

As follows from the gauge transformation (4.3),
the component gauge parameters g5, Ya(0)p and
Sa(2s) In (5.1) can be used to choose a Wess-Zumino gauge
of the form

Ha] Oy (9’ é) = ieéDa]...aZS + H(ﬂéy)Ea]...ags.ﬂy
+ PPV, o 5 — O°OPT
+ 020A,, g -

ay...ay.p

(5.3)

where the composite scalar 80 = 6%6, is imaginary. All
bosonic fields in (5.3) are real. So far no gauge condition
has been imposed on I, ,, . To preserve the gauge
condition (5.3), some of the gauge parameters contained in
(5.1) must be constrained as follows:

i _
Jay..a0, = _Eé‘al‘..azg Ca(Zs) = ga(Zs)’ (543)
faar, =0, (5.4b)
Doy ar p = TE(ey Eaz...ah)- (540)

The first term in the third line of (5.1) can be
represented as

1 - 25 +1
E 99‘/\(1] Qo +—"—

2s — 1
_2—sp(0!10!2A03---025)’

9/}9((1[/1(12..4(12‘\)./3 = pﬁ(al A

... 0f3)

(5.5)

where we have introduced two irreducible components of
/10!1,.,0(2&_1”5 by the rule

A A A

ay...ax 2.

(5.6)

Q... "

ay...q = /?'(al--ﬂz.;f],az.;)’

We recall that the composite p? is defined by (5.2). It is
clear from (4.3), (5.1), (5.3), and (5.5) that the imaginary
part of A,y can be used to gauge away the component
field D,y thus arriving at the stronger Wess-Zumino
gauge

Hal...ah (9’ é) = e(ﬁéy)Eal...aZS,ﬂy + ézgﬂqla]...ah,ﬂ

=00V, o 5+ 0°A, . (5.7)

in which the residual A-invariance is described by a real
parameter,

106010-8



OFF-SHELL HIGHER SPIN N =2 ...

Aa(Zs) (5 8)

- Aa(2s) = la(ZS)-

The real bosonic field E,  ,, s transforms in the
representation (2s +1) ® 3 of SL(2,R), while the com-
plex fermionic field ¥, _,, 4 belongs to the (25 +1) ® 2.
The field E,(,y) 4, is a higher spin analog of the linearized
vielbein (or frame field), which becomes obvious if we
convert the spinor indies of Ey(»,) 4, into vector ones by the
standard rule

a...a 1y ap\aja ag\as_ 10, Py
Em Beefs 3= _5 (7/ )l (}, “) - “(Ym) Ea]...azl\.,/}y'

(5.9)

Here E,,“% is symmetric and traceless with respect to
the indices aj,...,a,. This interpretation is confirmed
by the fact that the gauge transformation associated with
the parameter (5.4a) acts on E,, _,, 5, as follows:
OE,, . py = 98,80, ar, & OE, 1% = 0,014, (5.10)
The gauge transformation generated by the parameter
(5.8) acts on E, 4, s, as a higher spin counterpart of
the linearized local Lorentz transformation. Therefore the
tensor structure of E,,* % and its gauge freedom corre-
spond to the 3D massless spin-(s + 1) gauge field, see e.g.,
[47]. In the framelike formulation for massless higher spin
fields [47], one introduces two independent gauge fields,
one of which is E,,“ % and the other is a higher spin
analogue of the Lorentz connection. The latter is expressed
in terms of E,,% % on the equations of motion. However, in
the off-shell formulations for supergravity, no independent
Lorentz connection appears. And its higher spin analog
never appears in the framework of the off-shell higher spin
supermultiplets introduced in [5-7].

Recalling the gauge transformation law of 45,
Eq. (4.4), one may see that the gauge freedom associated
with the parameters A,y in (5.5) and Z,(,_) in (5.1)
allows us to bring [’y to the following form:

Loy (0.0) = P%[0Pw o+ 000, Vo, 0y )
+ 0By, a0, + PO U g 0
+0P0F . ) + OO0y r, )]
(5.1 1)

The fermionic fields W, ., 4 in (5.7) and V¥, ,
appearing in I_“O,l_.o,z_gi2 constitute a complex version of
the massless spin-(s + %) field reviewed in Appendix B 2.
The complex fermionic fields wy(25—1) and pg(a,—1) in (5.11)
turn out to be auxiliary for the theory with action (4.9) in
the standard sense that they become functions of the other
fermionic fields on the mass shell. The real bosonic field
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Ag2s) 10 (5.7) and the complex bosonic fields B2,
Uq2s) and Fyp4_9) in (5.11) are auxiliary for the theory
with action (4.9).

Now we can argue that, upon elimination of
the auxiliary fields, the theory with action (4.9) is equivalent
to a sum of two massless (Fang-)Fronsdal models, one
of which is the bosonic spin-(s + 1) model described
in Appendix (B1) and the other corresponds to two
identical fermionic spin-(s + 1/2) models described in
Appendix (B2). Equivalently, the fermionic sector
describes a complex massless spin-(s 4 1/2) gauge field.
Indeed, consider the frame field in (5.7). It can be repre-
sented as the sum of three irreducible components,

p/}yEa, sy pﬁyhal oy + pﬂ((z] M, ..ay,)p

+ Py Nay...ar,) (5.12)
where the irreducible components of E, ., 5 are
defined by

h“l---“z:ﬂ = E(al»~-02x~025+10‘2x+2)’ (51321)
2s +1
Moy = = (@.anp’s  (5.13b)
2s — 1
hf’ll--(lz.\--z = m (11...(12\._2/};/,/}1/- (5130)

The field mg ) may be algebraically gauged away by the
generalized Lorentz transformation described by the
parameter (5.8). The remaining bosonic fields h,42)
and h,(5,_9) correspond to the dynamical variables of the
Fronsdal spin-(s + 1) model reviewed in Appendix (B1).
As follows from (5.10), their gauge freedom is equivalent to
that of the massless spin-(s + 1) gauge field, see Eqs. (B2).
Since the requirement of gauge invariance fixes the
Fronsdal action modulo an overall numerical factor, we
are confident the theory (4.9) leads to the Fronsdal spin-
(s + 1) model even without explicit calculation of the
component bosonic action. Such a calculation may be
carried out in complete analogy with the 4D case described
in [7]; itis given in Appendix C. Let us turn to the fermionic
sector and represent the higher-spin gravitino W, ,, 5 in
(5.7) as the sum of two irreducible components,

\Ilal...az‘?,/i = \Ila]“.azl‘/)’ + Ep(ay \Ilazu.azl‘)’ (514)
where the irreducible components are defined by
\I/al...aZSﬁ = \P(al...azl‘,ﬂ), (5153.)
2s
\Ilal...ah_l = 2S—+1 al--»a2s—1ﬂ~ﬂ' (SISb)

These complex fermionic fields W5, 1), Wy(25-1) as well as
W (25-3) sitting in 1_“(1(2S_2) constitute a complex version of

106010-9



SERGEI M. KUZENKO and DANIEL X. OGBURN

the massless spin-(s + 1) field reviewed in Appendix (B2).
Under the fermionic local symmetry generated by the
complex parameter £,(>,_1) in (5.1), the gauge transforma-
tion law of these fields is equivalent to the complex version
of the transformation (B13) which corresponds to the
massless spin-(s 4+ 1/2) field. Since the requirement of
gauge invariance fixes the Fang-Fronsdal action modulo an
overall numerical factor, we are confident the theory (4.9)
leads to the massless spin-(s + 1/2) model even without
explicit calculation of the component fermionic action. The
explicit calculation is carried out in Appendix C.

Instead of dealing with the gauge (5.7) and (5.11),
sometimes it is more convenient to work with an alternative
Wess-Zumino gauge defined by

Hal---“z; (0’ é) = eﬂéyh(ﬂ}’al--ﬂh) + ézeﬁ\p(ﬂalmazs)
— PPV sy, ) + PP A, 4. (5.16)

D) — 000
Fal.‘.ah_Q (9’ 9) =¢ 0% [hal...aZS_Q + 9ﬁ\1]<
+ 9(“1 \I]az~~-a2s—z) + QﬂT(
+ 6By, 4, +0POU

+ 000, F

pay...ax )
pay...ax )
Pray...ax )

+ 2929ﬁp(

Pay ~~0!2s—2)] ’

(5.16b)

ay...o5 )

with

i
- Z aﬁ(a] l//(l2~ua2:—l )ﬁ

palu-flzs—l = pa]mazs—l
i
- Z a(a]azl//(lz.“(lz\.,])- (516(:)
Here the bosonic fields 1,(5), fg(25-2) and Ay(o,) are real,
and the fields By(25-2), Uyas) and Fy(o4_2) are complex.

VI. SUPERCONFORMAL HIGHER SPIN
MULTIPLETS

In this section we develop a superspace setting for
linearized higher spin conformal supergravity. We start
with a review of the conformal Killing supervector fields of
3D N =2 Minkowski superspace [48,49], which are
defined in complete analogy with the 4D N = 1 case [11].

A. Conformal Killing supervector fields

Consider a real supervector field & on Minkowski
superspace,

E=EBDp =0, + & Dy + E;DP

1 .
— —Eéﬂyc’)ﬂﬁéﬂDﬁ%ﬁDﬂ. (6.1)

It is called a conformal Killing supervector field if it obeys
the equation
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£+ K"My,.D,| 4+ 6,D, =0 &

£+ KP"My,,D,| +6,D, =0, (6.2)

for some Lorentz (K7 = K"? = KPr) and super-Weyl (p)

parameters. We recall that the Lorentz generator M, acts
on a spinor y, by the rule

1
Mﬁyl//(l = 8(1(/}Wy) = 5 (gaﬁl//y + 6'(1],1///})- (63)

The super-Weyl transformation of the covariant derivatives
is defined according to [13]

§,D, = % (3p —p)D, + (D'p)M,,,  (6.4a)
6,D0 =5 (3p =)D, + (Dp)My. (6.40)
where the parameter p is chiral,
D,p = 0. (6.4¢)
Equation (6.2) can be rewritten in the form [49]
E.D] =KDy 43 (p=3)D0 (65)

The equation (6.2), or its equivalent form (6.5), implies

D& +4i6PE) = 0 & D& —4isle) =0, (6.6)
and therefore the spinor components £ and &, of & are
determined in terms of the vector ones,

1= - 1
&= —gDﬁfaﬂ, $a = —gDﬂfaﬂ, (6.7)
and the vector component &% = &P« = £ is longitudinal
linear,
Deghr) = 0,

Dlagh) — 0, (6.8)

and therefore &% is an ordinary conformal Killing vector,

oPgrd) =, (6.9)

These relations imply that D?¢% = D?&% = 0, and there-
fore &% is chiral,

D& =0. (6.10)

It follows from (6.2), or its equivalent form (6.5), that the

Lorentz and super-Weyl parameters, K,; and p, are

uniquely expressed in terms of the components of the
conformal Killing supervector field as follows:
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Kaﬂ = D(aéﬂ) = _D(aéﬂ)7 (6118_)

1 _
p =< (D" +3D%,).

. (6.11b)

We also deduce from (6.2) that the Lorentz and super-Weyl
parameters are related to each other as

D KPr = §,8D")p. (6.12)

Using the properties (6.5)—(6.10), one can explicitly check
that p defined by (6.11b) is chiral.

B. Primary linear superfields
A symmetric rank-n spinor superfield ®, , is said to
be primary of dimension § (x + y) if its superconformal
transformation is

6§<I)a1...a,, = gq)al...a,, + nKﬂ(a] q>a2...a,,)ﬂ + (X/) + y/_))q)al...a,,

(6.13)

for some real parameters x and y. The R-charge of @, is
proportional to § (x —y).

Let G, . 4 be a longitudinal linear superfield con-
strained by (2.1b). Requiring G, ,, to be primary fixes
one of the superconformal parameters in (6.13),

§§G(ll...an = éGal..Aan + nK/}(al Gaz...a,,)/i

n_
=+ (X/) - EP) Gal...a,,‘

Let Iy, ,, be a transverse linear superfield constrained by
(2.1a). Requiring I'y , to be primary fixes one of the
superconformal parameters in (6.13),

(6.14)

55Fal---an = gral“-an + nKﬂ(alFaz-“an)ﬂ

+ (xp+ (1 +g)p>r (6.15)

An analysis of constrained primary superfields was given
by Park [48].

Now, let us come back to the gauge transformation law
(4.3). We postulate that the real gauge prepotential H sy
and the right-hand side of (4.3) are primary. Then it follows
from (6.14) that the superconformal transformation of
H a(2s) is

6H = 5H0‘1~~~0¢2x + 2SKﬁ(a] Hllzuﬂzs)ﬁ

- S(p +'[_))H(11-~~(12.\-’

aj...0

(6.16)

and the dimension of H, ;) is equal to (—s).
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Let Wy, ,, be areal transverse linear superfield,

D'Wyy o =DWgy, . =0. (6.17)

Requiring it to be primary, we deduce from (6.15) that the
superconformal transformation of W, is

5W{1| sa, gwal ., + nKﬂ(a] Waz.,,an)/}

(6.18)

n _
+ (1 +§> (p +p)Wa]...anv

and the dimension of Wy, is equal to (1 + n/2).

C. Linearized higher spin conformal supergravity

Consider an action of the form

S —in / d3\4ZHa|...{1,, Wal...(l,,’ (619)

where H,,) is a real symmetric rank-n spinor superfield
with the superconformal transformation

n _
5Ha]...an = §H{z]...an + Kﬂ(alHaz...an)ﬂ - 5 (p +p)Ha,...a,,7
(6.20)

which coincides with (6.16) for n = 2s. The action (6.19) is
invariant under the superconformal transformations (6.18)
and (6.20). Moreover, it is also invariant under gauge
transformations of the form

5Ha(n) = YGa(n) + ga(n)v 5Wa1...a,, =0,

Yay...a, — D(alLaz...a,,)7 (621)

where the complex gauge parameter g,,) is an arbitrary
longitudinal linear superfield. The gauge invariance follows
from (6.17). This gauge transformation law reduces to (4.3)
for n = 2s. We would like to realize W, as a gauge-
invariant field strength, Wy, (H), constructed from the
prepotential H ). Then (6.19) may be interpreted as a
higher spin extension of the linearized conformal super-
gravity action (4.27).

Given a prepotential Hy,(,) = H,,. 4, Wwith the super-
conformal transformation law (6.16) and the gauge trans-
formation (6.21), we associate with it a gauge-invariant real
field strength W, (H) defined by
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n
W011~~-an <H) = on—1 Z { (2]) ADJa(alﬂl . '8ai172\/ﬂ”72‘]Han—2.l+l--'an>ﬂl---ﬂn—21

n 3 o
+ <2J + ]) AZDJa(”l[l " 'a(ln—zj—lﬂ” 7 IH’ln—zjn-(ln)/)’l Puaro }’

where | x| denotes the floor (also known as the integer part)
of a number x. One may check that

[zt ) = [ @ nw, (),
(6.23)

for arbitrary superfields H ,(,) and H a(n) that are bosonic for

even n and fermionic for odd n. The field strength obeys the
Bianchi identities

DﬂWﬂal.A.an,l = O, DﬂW/}al.“a - 0

n—1

(6.24)
J

1
223Wa(2s) = 58((,]/’1 .. ..8(,2&2/32%

s—1
2s
— § p Pos—as1 [ FL
2 <2J+ 1)8(0!1 l“'aah—2l—l 221 Eazd._y..‘aZJ.)ﬂ(Qs—2J—l)'

This gauge-invariant field strength is a higher spin exten-
sion of the linearized super-Cotton tensor (4.24).

VII. MASSIVE HALF-INTEGER SUPERSPIN
MODELS

We now consider a gauge-invariant deformation of the
transverse action (4.9)

A

St = p>'st [H,T,T) ‘l‘ESCS[H}v

s+%

(7.1)

where Scg[H| denotes the Chern-Simons-type supercon-
formal term

1\ ,
Scslf] = (=3) [ @t W), (72

with the field strength W, s (H) given by (6.22). The
coupling constant 4 in (7.1) is dimensionless. In accordance
with (6.16), the dimension of H ., is equal to (—s). To
make the action dimensionless, the first term in (7.1) is
rescaled by an overall factor u>~! with the positive
parameter y of unit mass dimension.

(6.22)

|
These Bianchi identities are compatible only with the
superconformal transformation law (6.18), and thus
W@ 1s a primary superfield. In Appendix D, we
prove (i) invariance of the field strength (6.22) under
the gauge transformation (6.21); and (ii) the Bianchi
identies (6.24).

In the case of the half-integer superspin transverse
formulation, the superconformal field strength W) can
be expressed in terms of the gauge-invariant field strengths
(4.11) as follows:

_ 1/2s
O 0) (DT Fypos2) = D' Fra52)) =5 < >3(al” By By a5

2

. [2s
- E J-1 P Pas—2r L
(2]) Al a(a] O =20 JE“zs-—zH] —0ty)f(25-2)

(6.25)

In the s = 1 case, the action (7.1) coincides with the
linearized action for topologically massive A/ = 2 super-
gravity in the nonminimal w = —1 formulation [26].

Since Scs[H] does not involve the compensating super-
field [yp5—) and its conjugate, it follows that the corre-
sponding equations of motion are the same for both the
massive (7.1) and massless theories (4.9):
=0.

Fa(Zs—l) - O = DﬂEl (73)

Pa(2s—1)
However, the addition of the Chern-Simons term results in
the following modification to the H ,(,,) equation of motion
for the massive theory:

/,tzs_lEi‘(zs) + /1Wa(2s) =0. (74)

This is a gauge-invariant higher-derivative superfield
equation.

°As demonstrated in [42], the general second-order 3D
massive field equations for positive integer spin, and their
“self-dual” limit to first-order equations, are equivalent to
gauge-invariant higher-derivative equations.
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Once the equation of motion (7.3) holds, one can obtain
a simplified expression for Wy(,,). It is

Wa(2s) = A 'EL (75)

a(2s)"
Using this result, we can extract a ‘“higher-superspin”
analog of the Klein-Gordon equation from the equation
of motion (7.4) as follows. First note that

25— L
0=m>""E,

(25) TAWa(2s) =p>! Ei(zs) —AADP! Ei(zs) =

0:”25—1 AE#(Zs) —2005-! AzEﬁ(zx) — <'u2s—l A—2ﬂDS)Ei(2s)'
(7.6)
This leads to
25—1 N2yl = #
(@t = (B =0, me=ry. (017

By making use of the Fourier transform of Ei(m, we
deduce from (7.7) the ordinary Klein-Gordon equation

(O0- mz)Ej(zs) =0. (7.8)
It then follows from (7.4) that
AEL. = moEL _ A 7.9
a(2s) mo a(2s)’ o= m ( : a)
It remains to recall that
D/}E/f’a(lv—l) = D/}E/)L’(I(ZA'—I) =0. (79b)

The equations (7.9a) and (7.9b) tell us that Eo%(%) is a

massive superfield of superhelicity k = (s + 3)o, in accor-
dance with the analysis given in Sec. III B.

The massive theory (7.1) possesses a dual formulation. It
is described by the action

A

sl — ,ﬂs—ls's'% [H,G,G] + 5 Ses[H]. (7.10)

with the longitudinal action SL' i [H,G,G] given by
Eq. (4.17). Since Scg[H| does not invélve the compensating
superfield Gg,_7) and its conjugate, the equation of
motion for G,,_2) is the same as in massless theory,
Eq. (4.20). Due to the Bianchi identity (4.19), we obtain

Ba(2s—3) =0= DﬁE”

a(25-1) = 0. (7.11)

However, the equation of motion for H,,, becomes

pETUEDL )+ AWy = 0. (7.12)
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This demonstrates that the massive models (7.1) and (7.10)
possess equivalent dynamics.

In the s = 1 case, the action (7.10) coincides with the
linearized action for topologically massive A" = 2 super-
gravity in the minimal (1,1) formulation [26].

VIII. CONCLUDING COMMENTS

The main results of this paper are as follows. In Sec. IV
we constructed the two dually equivalent off-shell formu-
lations for the massless superspin-(s + 1/2) multiplet, with
s > 1, as 3D analogs of the off-shell 4D N = 1 massless
multiplets of half-integer superspin [5]. In Sec. VI we
presented the linearized higher spin super-Cotton tensors
and the linearized actions for higher spin conformal super-
gravity. In Sec. VII we constructed the off-shell formulation
for massive superspin-(s + 1/2) multiplets, with s > 1, as
higher-spin extensions of the off-shell topologically mas-
sive N/ = 2 supergravity theories [26].

This paper does not include any 3D analogs of the off-
shell 4D N = 1 massless multiplets of integer superspin
[6]. We have constructed such extensions. However, they
do not admit massive deformation of the type described in
Sec. VII. That is why we will discuss these models
elsewhere. This paper does not include any 3D analogs
of the off-shell 4D N = 1 higher spin supermultiplets in
anti-de Sitter space [7]. We have constructed such exten-
sions. They will be discussed elsewhere.

To the best of our knowledge, no off-shell 3D N =1
massive higher spin supermultiplet have appeared in the
literature. They can be derived by carrying out the plain
superspace reduction N'=2 - N =1 to the models
presented in Sec. VII. This is an interesting technical
problem to work out.

Our results on the linearized higher spin super-Cotton
tensors provide necessary prerequisites for developing a
superspace approach to higher spin A/ =2 conformal
supergravity. We recall that the most general formulation'’
for 3D NV -extended conformal supergravity is the conformal
superspace of [20], which is a 3D analog of the 4D
conformal superspace formulations initiated by Butter
[52,53]. In this approach, it is the N -extended super-
Cotton tensor which fully determines the superspace geom-
etry of conformal supergravity. It is necessary to mention
that the program of constructing a superconformal theory of
massless higher spin fields in (2 4 1) spacetime dimensions
was put forward long ago by Fradkin and Linetsky [54] in
the component setting. However, it appears that superspace
techniques may offer new insights.

A explained in [20], the conventional formulation for 3D
N -extended conformal supergravity [50,51] is obtained from that
given in [20] by partially fixing the gauge freedom. In this sense,
3D N -extended conformal superspace of [20] is the most general
formulation for 3D A -extended conformal supergravity.
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Our approach to constructing higher spin massive
supermultiplets is a generalization of topologically massive
(super)gravity. Recently, there appeared a conceptually
different way to generate 3D massive (super)gravity
theories—new massive (super)gravity theories [55-58]
and their generalizations; see [45,59] and references therein.
We believe that our results may be used to construct higher
spin analogs of these massive theories.

Our massive transverse supermultiplet (7.1) can be
coupled to an external source [J,p,) using an action
functional of the form

_ A
p>mISEL[H DT + ESCS [H]
2

1 N
+ <—§> /d3|4ZHa(2S)ja(25).

In order for such an action to be invariant under the gauge
transformations (4.3) and (4.4), the real source J (o5) must
be conserved, that is

(8.1)

Dﬂjﬂal...azj_l = Dﬁjﬁal...aZS_l =0. (82)

Such higher spin conserved current multiplets were con-
sidered in [60]. In 3D N = 2 superconformal field theory,
J op describes the supercurrent multiplet [13,61]."" The
theory with action (8.1) possesses a dual longitudinal
formulation. It is described by the action

_. A
/42S_ISIS|+ [H.G.G| + ESCS [H]

1
2

1\*
’ <_2> / PEH T o),

where the longitudinal action SIS| o [H,G,G] is given
2
by Eq. (4.17).

(8.3)
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APPENDIX A: NOTATION AND CONVENTIONS

Our 3D notation and conventions correspond to those
introduced in [49,51].

"The two- and three-point functions of the A" =2 super-
current were computed in [62].
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The spinor covariant derivatives have the form

o .
Da = % + lﬁﬂ(}/ )aﬂaa = 80 + 19ﬂ8aﬂ, (Ala)
_ a . 5 .
D, = ~55% 100 (") gpOa = =0, —10°0,5  (AlD)
and obey the anti-commutation relations
{Da’Dﬂ} = {Da’Dﬂ} - 0, {Da’Dﬂ} - _218aﬂ (A2)

The generators of supersymmetry transformations are

Oy =10, + P05, 0, =—i0, —070,5.  (A3)
We make use of the definitions
D?> = DD, D?> = D,D* (A4)

such that the complex conjugate of D?V is D>V, for any
superfield V.

Most tensor (super)fields encountered in this paper are
completely symmetric with respect to their spinor indices.
We use the rules introduced in [47] and adopted in [7].

Va(n) = Val...a,, = v(al...a,,)’ (Asa)
Ve Uatm) = Va0, U ae): (ASD)
V-U=VU,y =Va-ay, ..  (A5c)
Vi Upm) = Viay...a,Up,.. p,)- (Asd)

Parentheses denote symmetrization of indices. Indices
sandwiched between vertical bars (e.g., |y|) are not subject
to symmetrization. Throughout the entire paper, we assume
that (super)fields carrying an even number of spinor indices
correspond to bosons, whereas (super)fields carrying an
odd number of spinor indices correspond to fermions.

APPENDIX B: MASSLESS HIGHER SPIN
ACTIONS IN THREE DIMENSIONS

In this appendix we briefly review the (Fang-)Fronsdal
actions for massless higher spin fields in three dimensions
[1,2]. We also show that these models describe no propa-
gating degrees of freedom, as a simple extension of the 4D
analysis in Sec. 6.9 of [11].

1. Integer spin

Given an integer s > 1, we consider the following set of
real bosonic fields:

(pi = {ha(Zs)v ha(2s—4)} (Bl)
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defined modulo gauge transformations

5h(l(2S) = a((ll{lz Z:(l:;“.(lzl\)’ (Bza)

1

5ha(2s—4) = —_1 aﬁyCﬂJ’al 05y

5 (B2b)

where the gauge parameter (,o,_5) is real. It may be
checked that the following action

1 1\*

—(s—1)(25-3) {ha(zs“‘)@ﬁ D hy ) 2)at2s-a)

h/} 2)a(2s5-2) )2

s—1
+4—( - )h“(23‘4)Dha<25_4>

F5 =09 ?| | (B3)

is gauge invariant. The requirement of gauge invariance
determines the action uniquely modulo an overall constant.
The theory admits a formal limit to the case of three-
dimensional Maxwell’s electrodynamics. It is obtained by
setting s = 1, removing the second field in (B1), and
switching off all the terms in the second through fourth
lines of the action (B3).
The equations of motion are

1
Uhgas) + > 507202 ho(as-2)p02)
1
3 (5 = 1)(25 = 3)0a2)Ou2) Pa(2s—4) = 0, (B4a)
PO D hy0), 0)a(25-4) + 8( D Oy
+ (s —2)(2s = 5)0/?@ aaz(z) a2s-6)p2) = 0. (B4b)

We now show that the model under consideration has no
propagating degrees of freedom.

The gauge freedom (B2) allows us to gauge away the
field ha(23_4>,

ha(2x—4) =0. (BS)

In this gauge, there still remains a residual gauge freedom.
In accordance with (B2b), the gauge parameter is now
constrained by

"Iy 0 a(25-4) = 0. (B6)

In the gauge (BS), the equation of motion (B4b)
reduces o PP hyo) 004054y =0 and tells us that
o) «(25-2)p(2) 18 divergenceless. In general, it holds that
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2
3ﬁ<2>5h{,(2s_2)/1(2) =73 Ul a(2s-2)
(s —1)(2s —3)
S 2 P00 S aas—a)p(2)-

s(2s=1)
(B7)

Under the two conditions that (i) the gauge parameter is
constrained as in (B6), and (i) 0’ hyo, 02 is diver-
genceless, we are able to impose the gauge condition
PP hyas-2)p2) = 0, (B8)
in addition to (BS5). The residual gauge freedom, which
respects the conditions (B5) and (BS), is generated by a
gauge parameter constrained by
aﬂ(z)g/}(Z)a(Zs—@ =0, DC(z(Z&'—Z) =0. (B9)
Due to (B5) and (B8), the equation of motion (B4a) turns
into

Ohg(ay) = 0. (B10)

Since both the field /(54 (x) and the gauge parameter
Ca(25-2) (x) are on-shell, it is useful to switch to momentum
space, by replacing hy(a,)(X) = hg(a5) (P) and ya5-2)(x) =
Ca(25-2)(P), where the three-momentum p“ is lightlike,
p"/j Pap = 0. For a given three-momentum, we can choose a
frame in which the only nonzero component of p* =
(p', p'? = p*', p¥) is p** = py;. Then, the conditions
P’ (2>ha(2s—2)[3(2)(p) =0 and p/ (Z)Ca(Zs—él)ﬁ(Z)(p) =0 are
equivalent to

Ca(zs—4)22<P) =0. (B11)

ha(zs—z)zz (p) =0,
We see that /() has only two independent components,
which are h; ; and h;_i,, and similar for the gauge
parameter {,,—4). The gauge transformation law (B2a)
now amounts to 6h; ;& py¢y. y and 6y 13 « p1ily. -
As aresult, the field (o) can be completely gauged away
for s > 1. The case s = 1 is special. Here the field /4 has
again two components, h;; and hy,, while the gauge
parameter is a scalar, {. The latter allows us to gauge
away hy;, since its gauge transformation is 6h;; « p;C.
The other component, &,,, describes a propagating degree
of freedom. In the gauge h;; = 0, it is proportional to a
single nonzero component of the gauge-invariant field
strength F* = 1e®4F,., where F,, = 0,h, — O,h,

2. Half-integer spin

Given an integer s > 1, we consider the following set of
real fermionic fields:
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¢j = {l//a(Zs-H)’ Va(2s-1)s Wa(23—3)} (B12)

defined modulo gauge transformations of the form

6W(1(2.Y+1) = a(a] a 5(13 i) (B 1 321)

25 — 1
5ll/a(2s 1) = 2——1-16 (aléaz‘..ak_l)ﬁ, (B13b)
51;”(1(2‘\‘—3) = 8/31/5(11 g3y (B13C)

where the gauge parameter &yp,_1)
checked that the following action

i 1.\'
I I L

+2W(l 2s l 8[)’ l//ﬂ ) (2;—)

is real. It may be

2P O W ya(25-2)

+2s—1
—-1)(2 1
(s )(S+)( a(2s-3) gp(2 ¢ﬂ a(253)

s(2s = 1)

2s 3 o

is gauge invariant. The field y,(,_3) is not defined in the
case s = 1 which corresponds to the massless gravitino.
However, the last two lines in (B14), which contain all the
dependence on v, (5,_3), does not contribute in the case, due
to the overall factor of (s — 1). Thus the gravitino action
follows from (B14) by deleting the last two lines and then
setting s = 1.
The equations of motion are

(B14)

8ﬂalp(z(2s)/3 - 8(Jz(2)l//a(2s—l) =0, (Blsa)
pYe) Py
Va(25-1)p(2) +ﬁ W a(25-2)p
s—1)2s+1
- % 3{1(2)11111(2#3)} =0, (B15b)
25 —3
a/}(z)l//(z(2s—3)//’(2) - a/}al//a(Zs—é‘v)//’ =0. (BISC)

2s + 1

We now show that the model under consideration has no
propagating degrees of freedom.
The gauge freedom (B13c) allows us to gauge away the

field Ya(2s-3)>

Ya(2s-3) = 0. (Bl6)
In this gauge, there still remains a residual gauge freedom.
In accordance with (B13c), the gauge parameter is now
constrained by
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gﬂ a(2s=3) — =0. (B17)

In the gauge (B16), the equation (B15c) reduces to

aﬁ(2>l//11(2x—3)/}(2) =0, (B18)
which is preserved by the residual gauge transformations,
as a consequence of (B17). Due to (B17) and (B18), it
follows from the gauge transformation (B 13b) that the field
Wa(2s—1) May be gauged away,
Ya(2s-1) = 0. (Blg)
Under this gauge condition, there still remains some
residual gauge freedom. It is described by an on-shell
parameter &y(,o_1), Which is constrained by
aﬂalgaz...aZS,lﬂ =0= Dga(%—l) =0, (B20)
in addition to (B17). Under the gauge conditions (B16) and
(B19), the equations of motion (B15) amount to

0= 9/

aﬂall»(/az...azﬁlﬂ Ya(2s-1)p2) = =0,

Dl//a(Zerl) =0. (B21)

Since both the field 5,1y (x) and the gauge parameter
Ea(2s-1)(x) are on-shell, it is useful to switch to momentum
space, by replacing Yz 1)(x) = Yoz (p) and
Ea25-1)(X) = &4(25-1)(p), where the three-momentum p*
is lightlike, p* Pap = 0. Asin the bosonic case studied in the
previous subsection, we can choose a frame in which the
only nonzero component of p® = (p'!, p'2 = p?' p?)is
p* = p11. Then, the conditions p”, y,, 4, s(p) =0and
PP oan...ar,p(P) = 0 are equivalent to
(B22)

Wa(2s)2(p) =0, 5a(2s—2)2(p) =0.

Thus the only nonzero components of we(.i1)(P)

and 5a(2x—1)(17) are yy_1(p) and &_(p). The residual
gauge freedom, Sy (p) « p;i&. 1 allows us to gauge
away the field w,(2,11) completely. A minor modifica-
tion of the above analysis can be wused in
the case s =1 to show that the massless gravitino
action does not describe any propagating degrees of
freedom.

APPENDIX C: COMPONENT REDUCTION

Here we shall elaborate on the component structure of
the massless superspin-(s —l—%) model in the transverse
formulation (4.9). The longitudinal action (4.17) can be
reduced to components in a similar fashion. Our approach
to the component reduction of (4.9) will be similar to that
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used in [5-7] for the off-shell higher spin A/ = 1 super-
multiplets in four dimensions.'?

It is useful to define the components fields of a superfield
using the standard bar-projection

Ul = U(x.0.0)]g—5— (C1)

for any superfield U(z). Our definition of the component
fields of H, () and 'y will be consistent with the
Wess-Zumino gauge (5.16).

In the Wess-Zumino gauge (5.16), the component fields
of Hy o) are

1 - _
ha(25+2) = 5 [D(al ’ Daz]Hasu-az.wz)' = D(alDazHa@...aZHz) ’
(C2a)
1, 1,
\Ila(25+1> = _ZD D(‘ZIH02~-02.:+1)| = _ZD(alD Haz»--az.sH) ’
(C2b)
1 _
Aa(ZS) = ﬁ {Dz’ DZ}Ha(Zs) | (CZC)
The component fields of I'y,_5) are
Ya(2s-2) = 1—‘05(25—2)| - 70{(25—2)7 (C3a)
\IIU’QS—I) = +D(a1raz»~az.:—1) ’ (C3b)
- 2s —2
a(2s=3) =~ 25— 1 DﬂFa(Zs—3)ﬂ ’ (C3C)
Ya(Zs—l) = D((xlraQ...aQS_l) ’ (C3d)
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1
Ba(2s—2) == Z DzFa(Zx—Z) |’ (C3e)
1 _
Ua(2s) =+ E [D(m s D(lz]l—‘(lg.‘.(lzl\) ‘ ’ (C3f)
2s—1
Fa(25—2) = 2 DﬁDﬂFa(Zs—2)|s (C3g)
|
Pa(2s-1) = gD D(alrazu.azly,l)|' (C3h)
Introducing the superfield Lagrangian E;_l for the
transverse action (4.9), ’
L Fl— 34, L
SH%[H, 0= / d’! Ly, (C4)

the component Lagrangian L is defined by

1L
Ss +%

_ 1 _
[H,T.T] :E/d%DZDinﬂ = /d3xL. (C5)

The component Lagrangian naturally splits into its bosonic
and fermionic parts:
L = Lyos + Lierm- (C6)

Below we analyze separately the bosonic and fermionic
sectors of L.

1. Bosonic sector

For the bosonic Lagrangian we obtain

1\ s 1 1 _
Lpos = <—§> {2A -A~|—§(8~h)2—Zh‘f(ZS*z)Dha(sz) +A-(U+D)

1. _ 1
+ 11(3 “h)-(U-U) - 3 (0-0-h)* @Dy n)

252 =55 +1 (s=1)(2s=3)(4s—1) 1 _
2 27 ja(2s-2) — 5(2) 2____ ~  F.
) 4 DYa(Zs—2) 742 (25‘ — 1) (a }/a(2s—4)ﬂ(2)) 2(2S — 1) F-F
Ss=1 o - (2s+1) R
—i—y (2 3)P8pﬂ(F—F)a(2s_3)/}+44(2S_1) (F-F+F-F)}, (C7)

where the dot notation F - F and 0 h stands for the contraction of spinor indices, for instance: F*®=2F ., ) and

8/"(2>h(,(25.) 5(2)- Integrating out the auxiliary fields Fop5_2), Ug(25-2)> Aa(2s) and Bga), We arrive at the following Lagrangian:

“Further aspects of the component structure of the off-shell higher spin models proposed in [5,6] were studied in [63].
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A 1\¢ 1 ) s+ 1 2s
Lyos = <_ ) {_4h(l(2‘3+2)|:|ha(2s+2) + 8 (8 : h)2 ) (a 9- h)a (2s= y(l(ZY -2)

2
%7 N P Uéii;: )1()2s =3 o. 7)2}- (C8)

The gauge transformations of the component fields /45, 2) and 74,5 can be read from the gauge transformations of
the H (54 and I'yo_5) superfields, respectively, in terms of the 10ng1tud1nal linear gauge parameter g,(»y). In the Wess-

Zumino gauge, we have

5ha(2s+2) = a(alazgay‘.azﬁz)v
S

Y a(25-2) = maﬂ "Co(25-2)py- (C9)

We recall that the real gauge parameter () (x) originates as gy (25)| = zé’a 25); see Eq. (5.4a).

We now compare (C8) with the Lagrangian corresponding to the massless action given in Sec. B 1 with spin s replaced
with s + 1:

LN [ i)
Ser1 = AU d’x{ h Dha(zwz) -

s 1
_ S(ZS _ 1) l:ha(Zs—Z)aﬂ(Z)67(2)hﬂ(2)y(2>a(25_4) + 4S+—1h0‘(23_2)Dha<25_2) + 5 (S — 1)(2S - )(8ﬁ a(2s— 4)ﬂ(2))2:| }

1
(PP hya)aas))?

(C10)

Clearly, the Lagrangians coincide if we make the identification

Ya(2s=2) = (25‘ + 1)ha(2s—2) . (Cl 1)

In this manner, all terms in the bosonic sector agree with Fronsdal’s action.

2. Fermionic sector

For the fermionic Lagrangian we obtain

(1 = o .
Lferm = 1<_ 2> {\Ija (2s) /}a/}y\lla 28)y (\Ila(zwrl)a(aszm T(l(Zs—l)) + \Ija(2s+l) ’ a(lz.ﬁ»]”ls T(l(z-"—l)))

2s — 1 - e 25 =1 _ o - 2s — 1
2si (pa(zs_l)‘lja(Zs—l) _pa(2s 1)\Ijoz(Zs—l)) + s v @ z)ﬂaﬂp\ya(Zs—Z)p +

2s—1 - - 25 =325 =1 < 2s — 1
—T‘I’ @s-3) (0 ‘I’)a(zs—3) Tos_2 2g Ptz 4>ﬁapﬁ\1/a(25—4)ﬂ -

2s + 1 - (2523
Tsi(pa(% 2 T(l(Z.\'—Z)/} =P @ 2)/}T(1(2s—2)/3)}' (C12)

2s qja(k_l) aazs—l X252 ‘I]a(Zs—3)

T(I(Z‘v—z)ﬁaﬁyTa(Zs—z)y

The fields py(25-1) and Ty, are auxiliary. Integrating them out leads to the following Lagrangian involving only the
dynamical fields Wy 1), Wo2e-1) and Wy(as 3):

A A N s - 25 — (25— 425 = 1) oo -
Lierm = 1<— E) {\IJ (2 )ﬁaﬂy‘l/a(Zs)y - 551 (\I/ (2s-1)p(2) a2s-1)p2) + C.C.) + m\ll (24 2)/faﬁﬂ\1;a<2S_2>p
2s —1 - 25 —32s—1 -
>, (‘I’“ @738 - W) a3 + THE(D - W) 5, 3)) —mT‘I’a(zs_4)ﬂ3pﬁ‘1’a<zs—4>p}- (C13)

It is useful to perform the rescaling
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{\I]a(Zerl)’ \I]a(ZS—l)’ \Pa(25—3)} - {\Ila(25+l)’ _\I/(x(Zs—l)ﬁ

which leads to a massless fermionic action

< : 1y a(2s 2
Sferm:1<_2> /d3 {\II (2s), ﬁa}’ﬁ\I’ (2s)y 2 +1

PHYSICAL REVIEW D 94, 106010 (2016)

2(s—=1)
ﬁ%@s—”}’

8/5 a(2s-1)4(2) + C.C.)

. % S R 2s-3)p(2) +C.C.) = ii — ?% R R }
(C14)
which proves to be invariant under gauge transformations of the form
VWo2541) = OaymySas...an. 1) (Cl15a)
5‘I’a(2s—1) = aﬁ(alfaZ...%_l)ﬁ’ (Cle)
oWy = & a5-3)py (Cl5c)

with £4(0,-1) @ complex gauge parameter.

Note that the action (C14) involving the complex fields { W5, 1), Wy2e-1)» Yy(25-3)} is @ sum of two actions involving

real fields. More precisely, let us define the action

J ::i _l ’ 3 a(28)p qr 2s -1
Sig 2( 2> /dx{ Iy + 235 1?"

2s —3s—1
2s —1 s

s—1

+ ! @(25-3) gp2)
s

(25 3)p2)

which is invariant under the following gauge symmetry:

5l//£(25+1) = 8(010!250:3...112”1)7 (C17a)
Swhnset) = b (C17b)
5w£(2\ - a éa 25=3)pr» (C17C)

with real gauge parameter £,(,,_). Here the label J = 1,2
denotes two identical sets of real fermionic fields,
{w! (2541) ! (25— 1),1// . } Each action (C16) is equiv-
alent to the massless spin-(s + 2) model (B14), and the
precise identification is as follows:

J J 2s +1
l/ja(ZH»l) = Va(2s+1)» l//(l(Zs—l) = ZS—_ll//aQS_l)’
W;{:(Zs—?:) = Va(25-3)- (C]g)
It follows then that
Sem = Sy, + 57 (C19)

a(2s-1) 9h(2)

a(25—4)
. ﬂayﬂl’[/ya(h 4)}

425 - 1)

Ja(2s=2)p
(25 1)p(2) (2S—|— 1)2 o

J
/ﬂl/a(Zs—Z)y

(C16)

[

with the complex fields W related to the real ones y’ by
the rule

1 .2

\/E\I’a(hﬂ) =Vooer1) T Wostn) (C20a)
1 .2

\/E\I’a(%—l) = Vaset) ~ Wooer)r  (C20b)
1 .2

V2o 3) = Wany3) = Wy (C200)

APPENDIX D: PROPERTIES OF THE
SUPERCONFORMAL FIELD STRENGTH

In this appendix we prove (i) invariance of the field
strength (6.22) under the gauge transformation (6.21); and
(i) the Bianchi identies (6.24).

1. Gauge invariance

The superconformal field strength (6.22) is constructed
from the superfields

X! =AY, 110,020,

a(n) 72/‘6”721 HQn—ZH»l —a,)p(n=2J)>

(Dla)
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A2 8 B, 1 (D1) and then impose the condition of gauge invariance.

= N0 0 Oa 7 ot a1 The condition of gauge invariance generates a recursion

(D1b)  relation which is solved to give the binomial coefficients

appearing in (6.22). Alternatively, one can directly show

which form a basis for the field strength. In order to prove  that W, is gauge invariant as follows. First we compute

the gauge invariance of the field strength, it suffices to vary ~ the variations of the basis superfields (D1). The results are
|

J
Zotw)

5. X’

e J 3 =
a(n) "™ Al a(“lﬂl 80!2/2 e ‘a(lnfzjﬂ ¥ 6H(ln—2./+| -y )B(n=27)

J - n/2—J _
_ J n— J n—
A{n/ZD a(alﬂlaazﬂz . 'aanfyﬂ ZJD(IU—ZJJrlL. a)p(n-21) T /2 0 a(alﬂlaazﬂz . '8%72/ ZJD|/3|L/52---/3nzx%zur--%)}

n—2J

J _ _
. 7 - 2 7 - 2
_I{ZD 6(“1ﬂ1602ﬂ2"'8%-2ﬂ1 2jl)ﬂln—2/+1D L,,,an)ﬂ(n—ZJ) o Ollﬂlaolzﬁ2 "8%-21ﬂ 2JDW1D Lﬂz--»ﬂn—uan—2]+1--»an)}’

0<J<|n/2]; (D2a)

8.2’

a(n) = A2 Dja(alﬂl aazﬂz . ‘aa,,,l,yﬂ"ilfzj 5]—]%72‘,“.%)‘&("_1_2])

n—(2J+1) | _
=A { - I’l/2 o+ 8(011ﬂ1 6052ﬂ2 . ‘aanfzjfzﬂ”izjiz Da,,,zj,l Lan—Z./-“an)ﬂ(n_Z]_z)

2J+1

7 s b T
O a(fllﬂ] aaz/z"'aan—y/ 2Jl)|ﬁ1 LﬁZ“’ﬁn—Zlarl—ZJ+]~"an)}

n/2
J n—(Q2J+1) _
= 1{ - n DJ+1 a(a] ﬁl aazﬂz e aa11—21—2/}’172j72 Dan—ZJ—] D2Lan—21< -0y )ﬂ(n_ZJ_Q')
2J +1 -
- Dja(alﬂ' 8a2ﬁ2...8an_zjﬂn—21D|ﬂl DzLﬁrnﬁn—y‘an—zul~~0‘u) }, 0<J< Ijl/ZJ - 1. (D2b)

Note that the generalized binomial coefficient (}) has the following property,

(Z) -0, k>n (D3)

which allows us to take the sum from J = 0 to | ]2 for both basis fields in the field strength expression. Therefore, the
variation of the field strength (6.22) is given by

e O ,
2M6W oy == oX 0z
“ 22{(21) o) 2(2J+1> ““}

[n/2]
n n-2J-1
=i Z { ( > Dla(al/}] ar"2[}2 " 'aan /}n_UDan 2J+1D2L"'an)/j(n_2]) - (2J+ 1) n

X DJ+ ! a(al ﬂ] aaZﬂz e aar1—2.l—2ﬂn72‘/72 Dan—Zl—l Dzllan—z.l -y )ﬂ(n_z']_z)
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n— l ) l ’2
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241 .
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since for any positive integer n the following identities hold:

n 2J 42
2J 42 n 2J +1

n\n—-2J n
2J n 2J +1

20 +1

PHYSICAL REVIEW D 94, 106010 (2016)

(D5a)

—2J—1
)” T=1 o v
n

0, vJ. (D5b)

n

2. Bianchi identities

We now prove that the field strength (6.22) obeys the Bianchi identities (6.24) This amounts to computing the following

relations:
n—2J ~
D'X) oy = i , O0/D*D*d, Pr210, P1...0, , P=-1H 4 \pin-21)
- i% VD2D1 0.0, " H g, )ypin-21)» (D6a)
DYZ;a(n_l) =+ i%i_l O D2D79 o, /1.0, ,, P H o )pn-2i-2)
+ i% O/D*D*d, P10, "1...0, , P H 4 \pin-21)- (D6b)
and then using them to evaluate
/2] [n/2]
2" DIW g1y = ,Z; (;,) D’ X gnyp + ; (21’1 1>Dﬂzi<n_1>ﬂ' (D7)

This leads to essentially the same calculation as (D4), grouping the two independent types of structures that appear and
showing that the coefficients of each type of structure vanish. In particular, we arrive again at the relations (D5).
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