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We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a
novel string model implied by the simplest string bit models. These bit models produce a light-cone world
sheet which supports s integer moded Grassmann fields. In the generalization we supplement this
Grassmann world-sheet system with d = 24 — s transverse coordinate world-sheet fields. The protostring
corresponds to s = 24 and the bosonic string to s = 0. The interaction vertex is a simple overlap with no
operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering
amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and
applying Mandelstam’s interacting string formalism to a system of s/2 compactified and d uncompactified
bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for
closed strings with no oscillator excitations and zero winding number. We then study in detail some simple
special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We
also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these
models are not covariant under the full Lorentz group O(d + 1, 1). The exceptions are the bosonic string
whose Lorentz group is O(25,1) and the protostring whose Lorentz group is O(1,1). The models in

between only enjoy an O(1, 1) x O(d) spacetime symmetry.

DOI: 10.1103/PhysRevD.94.106009

I. INTRODUCTION

Recent studies of string bit models [1-3] have motivated
the serious consideration of some novel string theories.
String bits are hypothetical fundamental constituents of
string. However, just which string theories they describe
depends on their detailed structure. For example, the
superstring bit [3] underlying IIB superstring is created
by an operator (]ﬁ[al...ak](x), where a; =1, ..., 8 are spinor
indices, and k =0, ..., 8. The vector variable x gives the
location of the bit in the eight-dimensional transverse space
of light-cone quantized string theory [4,5]. These creation
operators are also N x N matrices in “color,” the indices of
which we suppress. In the large N limit [6] the color singlet
composites of M string bits are closed chains which
approximate continuous closed strings for very large bit
number M. On these long chains fluctuations in the spinor
degrees of freedom lead to the eight Grassmann world-
sheet fields 6% ; (), and fluctuations in the coordinates lead
to the eight transverse coordinate world-sheet fields x(o).
In this interpretation a longitudinal coordinate x~ arises as
the conjugate to a longitudinal momentum identified with
bit number P™ = Mm. Each string bit carries one unit m of
P*. In this way holography [7] was realized by these
models in its narrowest sense: formulating d + 1 dimen-
sional physics in one dimension less. These early string bit
models, which naturally describe type IIB superstring
theory, inspired other matrix model proposals, including
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the matrix model of M theory [8] and the matrix string
model of type ITA superstring theory [9].

However, since the strings are simply large bit number
composites, the same string theory can arise from a string
bit with considerably less structure. A possibility proposed
in [10-13] is to replace each transverse coordinate x* of a
string bit with a two-valued index whose fluctuations on
long chains of bits simulate the transverse space. In such
string bit models all of space, both longitudinal x~ and
transverse x, is initially absent but emerges dynamically in
describing the physics of composites of string bits. But the
string bit concept can be realized in more general ways not
necessarily tied to the known string models. Nonetheless,
certain general constraints should still apply. In particular,
the constraint that 1/N corrections lead to finite scattering
amplitudes typically constrains the size of the world-sheet
field system. This is just the critical dimension constraint in
bosonic string (D = 26) and superstring (D = 10) theory.
In the latter case supersymmetry further links the spinor
dimensionality to the coordinate dimensionality.

In [10-13] we studied, initially as a warmup exercise, the
simplest string bit model with only spinor degrees of
freedom. The bit creation operator carries only the spinor
indices: g;ﬁa].“ak. Here we let k =0,...,sand a; =1, ..., s,
with the integer s to be determined. These operators are
bosonic if k is even and fermionic if k is odd. They are also
antisymmetric under the interchange of any pair of the a;.
As explained in [13], the large N limit of these models
predicts a world-sheet system of s left-right pairs of
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Grassmann world-sheet fields. Also, the 1/N corrections
are described in string language as a simple overlap of
three-string states, without the operator prefactor familiar in
the superstring vertex. It was found that this overlap
amplitude is finite in the continuum limit only if s = 24.
This is a novel string theory. In a sense it is more like the
bosonic string than the superstring because of the absence
of prefactors in the three-string vertex. On the other hand,
the degree of freedom count of world-sheet fields matches
that of the superstring: bosonize 16 of the Grassmann
dimensions to match the 8 transverse coordinates, and one
is left with the 8 Grassmann dimensions of the superstring.
Unlike the bosonic string which has tachyons, this emer-
gent string, which moves in one emergent space dimension
X7, has none: in fact, there is a mass gap. We call this string
a protostring since it has the primitive simplicity (but not
the instability) of the bosonic string, and it also evokes
intimations of superstring. For this reason, we believe that
the protostring is well worth serious study in its own right.

The purpose of this article is to explore the protostring’s
physical properties further by determining its scattering
amplitudes. We stress that the calculations we do are pure
string theory calculations: the fact that the protostring was
the outcome of a simple string bit model will play no role.!
We only need to faithfully apply Mandelstam’s interacting
light-cone string formalism [14—16].

The protostring can be succinctly characterized as the
string model in which each of the 24 transverse coordinates
of the light-cone bosonic string is replaced by a spinor-
valued integer moded Grassmann world-sheet field. Here
we consider a slight generalization of the protostring in
which only s bosonic dimensions are replaced in this way,
with the remaining d = 24 — s left as transverse coordi-
nates. In all of these models the string interaction is a
simple overlap without operator insertions at the join/break
point. The condition s + d = 24 ensures the finite con-
tinuum limit of the string bit overlap. With the continuum
scattering amplitude written in the form M. |p; |~"/2,
this finiteness condition means that M is 1nvar1ant
under the scale transformation p;” — Ap; . In other words,
invariance under the subgroup SO(1,1) of the Lorentz
group in d + 1 space dimensions SO(d + 1,1) is main-
tained. For the protostring (s = 24 or d = 0), this is the
entire Lorentz group, but for s < 24, with the exception of
the bosonic string (s = 0), the Lorentz group is broken to
SO(1,1) x SO(d).

In Sec. II we explain the process of bosonization, which
is needed in the rest of the paper. Then in Sec. III we apply
Mandelstam’s interacting string formalism to the bosonized
generalized protostring and calculate scattering amplitudes

'However, the underlying string bit physics may justify the use
of analytic continuation to define the integral representations of
amplitudes which typically diverge for physical values of the
momenta.
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for any number of external strings in states with zero
winding number and no oscillator excitations. Section IV
discusses amplitudes in special simplifying circumstances.
Section V analyzes high energy scattering in the 2-to-2
case. Concluding comments are in Sec. VI. The appendixes
review the necessary measure calculations needed for the
processes discussed in the main text.

II. BOSONIZATION

Hereafter, we assume that s is even, which allows us to
approach the calculation of scattering amplitudes by
bosonizing each pair of the s Grassmann dimensions.
Then we apply Mandelstam’s light-cone interacting string
formalism for the bosonic string [14] to calculate the
scattering amplitudes. When bosonized, the Grassmann
system is equivalent to s /2 compactified boson world-sheet
fields ¢“ in which the Kaluza-Klein (KK) momenta &
assume half-odd-integer multiples of the inverse compac-
tification radius, which is fixed by the nature of the
Grassmann system.

The bosonization procedure works only in the con-
tinuum limit, M — oco. At finite M, in the notation of [13],

M-
Si =—=+—= F,e~ ! cos —
k= + Z ( e cos i

+F eTionl gin 2M> 27nkn/M (1)

. 7n
el gin —

5 1 M—1
Si=—2—i—N (F,
UM \/M,“( 2M

b4
_ F +iw,t 2mkn/M’ 2
e cos 2M> (2)
{FuFr} = 28,00m:  {Bo.Bo} =0,
- 2T nr
B2 = B2 = 1’ = —0 i _— . 3
0 0 ©n m SlnM ( )

In the continuum limit M — oo with mM = P fixed, finite
energy excitations have either n or M — n finite. The world-
sheet coordinate ¢ ~ km and the above formulas read

2 & ,
Pk 0 = —2inn(Tyt—oc)/P*
VR AR D

+ fjle+2izm(TOz—a)/P+ ), (4)

Sk BO 2 Oy —2izn(Tyt+o)/PT
Vi~ e e 20

+ }Ile+2in'n(T0t+a)/P+)’ (5)
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Fn 7 -FM—n
fn = s fn =-1 s
V2 V2
{fus S} = {Fufn} = Sn- (6)

We see that in the continuum limit, S describes right-

moving and S describes left-moving waves along the string.

Labeling a pair of such Grassmann variables 1, 2, the
bosonization formula for right-moving waves (see, for
example, Appendix A in [17]) is

B}

\[fz +fn7+ kaf

Z (fllchnJrk + fil'tJrkfiT)’

k=1
i .
ay = 53533 —|—1Z (U=, a,=a, (8)
k=1

[an’ am] = nén,—m (9)

and similar formulas with tildes for the left-moving waves
a,. The square of the zero mode part of a, or a, is 1/4,
showing that the lowest energy state has values £1/2 for a
and ay. The sum a( + a, and difference a, — a, have the
interpretation of KK momentum and winding number,
respectively. We see that they have opposite parity: if
one is even, the other is odd and vice versa. We calculate
scattering amplitudes for zero winding number strings
(ap = agp), in which case the KK momentum is an odd
integer multiple of some scale.

It is sometimes convenient to express bosonization in
terms of the fermion operators of definite helicity, i.e.,
eigenoperators of a:

by

(By + iBj), b, T(fn_l'lfz)

l\)\'—

T(fn if2), (10)

{b,.br} = {d,.di} = {by. b} = 1. (11)

with all other anticommutators vanishing. In terms of these
the boson operators are

n—1

= d,by + de nete + Dby + Z (bibusk = didyir)s
k= k=

n>0, (12)

= =73 + bgbo + ; (byby — dldk%

a_, = aj. (13)

In this article we discuss scattering amplitudes for external
strings in states with zero winding number and no oscillator
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excitations, which means they are in states annihilated by
a,, a,, n > 0, but for which ay = a, can have any allowed
value. Since [ag,a,] = [ag, a,] =0, these states are the
lowest energy states with the given value of helicity. Define
|0) to be the lowest energy helicity —1/2 state, which
means that (b, b,,d,)|0) = 0. States with helicity ay =
k —1/2 are obtained by applying n d'’s and m b'’s, with
m — n = k, to the state |0). Clearly, the lowest energy states
of definite helicity are

didy_y -+ d[0),

ay=—-k-1/2,  k=0,1,2,...,

(14)

bi b} _,---bi0),  ag=k—1/2,  k=1,2,...

(15)

In Fermi language the energy of a state is the total mode
number plus 2/24. The total mode numbers of these lowest
energy states in each helicity sector are > ¢ I=k(k+1)/2
and > %=1 I = k(k — 1)/2. In both cases the mode number
is a3/2 — 1/8. Adding on 2/24 shows that the energy of
these states is precisely a3/2 — 1/24, as the quantization of
the bosonic string requires.

III. SCATTERING AMPLITUDES
A. World-sheet path integral

As we have seen, for strings of even winding number
there is a minimum nonzero momentum magnitude which
we call y. Then the KK momenta assume odd integer
multiples of y, # = £(2k + 1)y, k = 0, 1,2, .... The world-
sheet path integral will be over n, =d + s/2 =24 —5/2
bosonic fields. In bosonized language, a nonzero three-
vertex will require an insertion of the form e*7¢() for each
¢ at the join/break point. In other words, the KK
momentum z¥ will not be conserved, with violation of
up to =(N —2)y for the N point function. Also, for
hermiticity reasons, we require a Hermitian linear combi-
nation of the insertion factors with + in the exponent;
for example, we can take the insertion to be
et 4 e~ir? = 2 cos(yg). We call the d = 24 — s coordi-
nate fields x*, the momenta p of which will be continuous
and exactly conserved. Thus, in the evaluation of the
scattering amplitude, we allow a different (binary for each
of the s/2 bosonized Grassmann dimensions) choice at
each vertex: we write the insertion at the rth vertex as
[1,(e7%ar) 4 e=irdaler)). After expanding the vertex fac-
tors, one has a collection of terms with a single exponential
i) with y¢ = +y. Then, the momentum conservation
law following from Neumann boundary conditions for each
such term takes the form
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N N-2 N
Z”k+ZYr:07 Zpk:()v (16)
k=1 r=1 k=1

for the bosonized Grassmann fields and regular coordinate
fields, respectively.

It is convenient to collect the p;, &, of the kth string
participating in the scattering process together in an n,
component transverse momentum P, = (py, ;). We also
denote the “Minkowski” (n;, + 2)-vector with upper case
Roman type, P, = (p;,p;.P:), and the Minkowski
(d + 2)-vector with lower case Roman type, p; =
(pi, Pipi)- The interacting string formalism automati-
cally imposes the mass shell condition for an unexcited
string:

22 =1-2= Open strin
L D ()
€e=4-5 osed string.

These conditions reduce to the familiar 1 and 4 for the
bosonic string (s = 0). Hereafter, we choose units so that
o = (2zT,)~! = 1. Note that since 7> > sy*/2, the “ordi-
nary” momentum p satisfies p-p <1 —s(1 + 24y?)/48
or p-p<4—s((1+6y*)/12, respectively. As we
shall see, y> = 1/8,1/2, respectively, so the theories with
s > 12 have a mass gap.

The contribution of each field ¢“ to the Boltzmann factor
in the world-sheet path integrand for the N string scattering
amplitude is

B(@) =exp - o [ T2 + il

Ty
22ﬂ|p;|/d0k¢(6k’71‘)}' (18)

The contribution of each component of x is similar, except
that there are no y terms, and the external momenta p; are
continuous. The last term converts the description of the
initial and final strings from coordinate space to momentum
space. Because we assume no oscillator excitations of the N
strings, it suffices to specify a constant momentum density
on each string at initial and final times. The o for the kth
string ranges over an interval of ¢ of length 27| p; |. Here, to

conform with Mandelstam’s conventions, we have chosen
the world-sheet spatial coordinate ¢ of a single string so that
on a given external string 0 < 6} — 60 < 27p]” = wa;. We
also introduce the complex world-sheet coordinate
p =1+ io. In the complex plane the integral in the last
term can be viewed as a closed line integral,

. o . )
l;m/d%éﬁ(ﬁk,%) = fd J(p)p(p), (19)

where J(p) = 0 on any horizontal boundaries and J(p) =
m/(2x|p{7]) on the vertical boundaries where strings enter
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or leave the diagram. Our convention is that the z;, p; will
always be taken as incoming momenta, and p;,a; are
positive for incoming strings and negative for outgoing
strings. With this convention the absolute value signs in
|p{| can be removed by reversing the o; integral for
outgoing external strings as in [14].

We can extract the y,, 7, p; dependence of the path
integral by completing the square in the usual way: shift
¢ — ¢ + ¢ and choose ¢ to cancel the linear terms:

Ve = 27:1'2)/,5(,0 —px

d,cly = 27id,  (20)

B+
In————= B(p 2 Zys

|o
d , 21
2”|Pk|/ UkC Ok Tk ( )

The answer can be expressed in terms of the Neumann
function

=V2N(p.p') = =2z8(p - p'),
9.N(p.p")|peo = f(p). (22)

Then, applying Green’s theorem we have
. . T

,0/> = _lzer P\Xy pl) - ZZ ¥

r k 2ﬂ:| k

1 .
+3 [ doteh )l 23)

| / doN(p,p')

The last term, independent of p’, drops out of In B/B, by
momentum conservation:

E 7YsN
d:
E ———F [ doyN ,
+ o yr2ﬂ|p2»|/ O-k (p<xr) pk)

1 / Ty
E doydo;—s——N(pi. p1).
; 47 |pf /|

(24)

lnB<¢+ c

p(x:), p(x5))

The Neumann function for the light-cone world sheet p can
be related to that for the whole or half complex plane by the
conformal mapping p(z) [14] reviewed in Appendix A. For
closed string amplitudes we map from the whole plane, for
which the Neumann function is

N(z,7)=In|z=7|. (25)

In this case

106009-4



PROTOSTRING SCATTERING AMPLITUDES

¢+c
IHBS(— _Zyﬂ/sln|xr xs|+zyr k1n|xr Zk|
r#S

Zﬂkﬂzln|2k -Z + Zln|xr x|

k#:l
2

T
+= do,do,—*—N(p,.p,), Closed,
2;/ k k4772p1j2 (Pk Pk)

(26)

where p(x,) are the break/join points of the light-cone
diagram and p(Z,) are the locations of the incoming and
outgoing strings.

In contrast, for open string amplitudes we need the

Neumann function for the upper half-plane,
N(z,Z)=In|z=Z|+In|z=7"| = 2In|z -2, (27)

when one or both z’s are on the real axis. Then, we find

¢+c
=> 77sIn|x, - s|+227rﬂklnlx —Z
r#s
Zﬂkﬂlln|Zk—Z1|+yZZln|x
k#l
/ ﬂ% /
+§§k:/d6kd0k4ﬂzipk+2N(‘0k,pk), Open.
(28)

Note that Z,, which we have set to co, appears on the right
side of (26) or (28) in the combination

N—-1
2y (Zy +y nk> InZy = =273 InZy, (29)
r k=1

so the terms involving Zy will enter, just as with the
ordinary transverse dimensions, into the terms that imple-
ment the mass shell condition and wave function on the Nth
leg [14].

B. Self-contractions

The self-contractions on the last line of (26) or (28) need
further discussion. Those in the last term are of the same
form for all d + 5/2 bosonic fields and, combined, give the
mass shell condition. Consulting the mapping function
(A1) or (A23), for z near Z;, we find

2= Zi~ e[ [ (2= 2yl (30)
I#k
Infz = 2| ~Inje? — |+ In|Z, — Z [/, (31)
I#k

The contribution of the first term to the ¢ insertion is part
of the external wave function that is to be amputated,
whereas the second term provides the factors
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[112. - zirieie = [[12, - zfretesiain (32)
k1 k<l

for the open string, or

_ —ma/(2a) — _ —ma/(2w) -/ (2a;)
|Z = Z)| 1Z = Z)|
] k<l

(33)

for the closed string. The exponents in these factors
contribute the m;-dependent parts of p, in the scalar
product,

Py Py =py-p+ 77— pi Py — PPl

=Dpi- P+ @7y, (34)

which are the eventual powers in the Koba-Nielsen factors
[Leci|Zi = Z/|?"" or [Ty Zi = Z)|""" in the open and
closed string integrands, respectively. The light-cone mass
shell condition for an open or closed string with no
oscillator excitations reads

pi Py =Py Pr—m -1 =pi —2pipy
s s s
=1-—— 2 _ s _= 2’
48~ k=TT of
S S S
. R 2 _ s _= 2'
Pk " Pk 12 T = 12 27

The left side of this equation is the Minkowski scalar
product py, ph in d +2 =26 — s space-time dimensions.
The inequality follows because each component of ¥ is an
odd multiple of y.

Next we give our interpretation of the self-contractions at
the interaction points. Infinities in these contractions can be
absorbed into the coupling constant, provided they are
independent of the geometry of the world sheet. Since the
light-cone world sheet is the fundamental starting point, we
should set any regulator cutoffs in the p coordinate. The
same mapping function is used for open and closed strings,
except for a factor of 2. Let us examine p(z) near z = x,,
the break/join point where dp/dz = 0. For the open string
case, we expand

1d%p

p(z) = p(x,) + 242 .

(c=x P+ 0z =x,)). (35)
Then, use (A3) for the second derivative and solve (35),

ZXNJv77—T

Hk X —Zk) 1/2
oLt —x)] = 9

12(p)—z(p)|

~V2(p—p(x,))

Hk V ’xr_zk| )
\/laN|Hx;ér \/‘xr_xs|
(37)

)=V/2(p' —p(x
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We then interpret the self-contraction as

Hr,k'xr - Zkl |:| (38)

|aN|N_2Hs#:r‘xr - X

ol Tk ff -
Hk 1 |ak| Hs;érlx s|Hk#:l|Zk_

where we have let 6 be a measure of the cutoff regularization on the light-cone world sheet. We used the identity (B3) to
arrive at the last line, which gives our interpretation of the self-contractions at the interaction points.

22111 X, — x,| = r [(N —2)In(26) +In

- %2 [(N —2)In(26) + In

C. Amplitudes

Having taken care of the terms involving Zy and the self-contractions at the external states, what remains of the
contribution of the boundary data to the open string path integrand including all s/2 compactified bosonic dimensions, and
d = 24 — s ordinary uncompactified bosonic dimensions, is

o= oy Tkl 70 ]l
[T kenlxr = Zy|2mer=sr 2T (o

% H|Zk _ Zl|2Pk-P,—syz/Z—Pia,/ak—P,zak/a,. (40)
k<l

For the closed string, the factor of 2 in the mapping function leads to some minor modifications:

(45) s(N=2)y?/8 Hr#xlx — X 1s/2751° /8 |: |aN| :|Sy2/8
Hr,k<N|xr - Zkl_ﬂ:A 7174 Hi\/z—ll |ak|
% H|Zk _ Zl|Pk.P,—syz/4—P£a1/(2ak)—P%ak/(2a1)' (41)
k<l

The boundary data for one of the x fields contribute the same but with no y terms.
The Jacobian and determinant factors [see (B4) and (B5) in Appendix B] will have n, =d+ s/2 =24 — 5/2.
Combining these with the I factors gives, for the open string,

N s
[10 OT) eg-amsr2)2 vz)} ! {Hmm] /32{Hr<z|xr—xr|Hm<z|Zz—Zm|] /48
oz (L awl IT,1Z - x|

Ts—sy? Pr—gy2
x (28)s(N-2)r/4 [Hr<3|xr =%, 1T Pyl Zi = Z PP 2
Hr,k<N|xr - Zk|_2”ky'_s}/2/2

open k=1 \ak

] . (42)

In string bit models, the factor within the first set of square brackets would scale as MY~ where M is the bit number. So a
finite continuum limit requires y> = 1/8, in which case

N 2, 7,-5/24 o [2PP—s/24
{10 O aer-eesrin - VZ)] = (25232 ! [Hmlxr —x, 1P Lyl Zi = Zi PP } @3)
0z open =1V o [T kanlx, = Z|27rms/24
Applying parallel considerations to the closed string leads to
N —
1] G aerer) HL Mol /s RS FAAR
oz closed a |aN| Hl,r|Zl - xr|
w —ey2 D2
x (45)s(N—2)y2/8 Hr<s|xr — X YrYs—SY /4Hk<l<N|Zk _ ZI|P" P—sy= /4 (44)
Hr,k<N|xr - Zk|_ﬂ.k.yr_w2/4 '
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and a smooth continuum limit in the closed case requires y> = 1/2:

oT
0Z

2

’ det—(24 5/2) /2( v2)

closed

N
— (45)5(1\/—2)/16 H L |:Hr<s|xr — X
k=1 |ak|

7"7“_N/12Hk<l<N|Zk = Z)|PrPi=s/12

Hr.k<N|xr - Zk|_”k'7r_5/12

(45)

Notice how the power of |Z, — Z;| combined in the simplification:

2PkPl—S/16+S/48—

for open and closed strings, respectively. In these formulas
each component of y, is +y = 41/(2v/2) for the open
string and +y = 41/+/2 for the closed string. And of
course each component of x; is an odd integer multiple
of .

The scattering amplitudes are obtained by integrating the
expression (43) or (45) over the unfixed Z;. In the case of
the open string, the Z; are on the real axis satisfying

Z1=0<Zy,<---<Zyor<Zy_;=1. In the -case
of the closed string the Z; for k = 2, ...N — 2 are integrated
over the whole complex plane. In both cases

Z1=0,Zy_1 =1,Zy = 0. We remind the reader that
for physical values of the momenta, the resulting
integrals are plagued with divergences. To handle these
divergences, one starts with (unphysical) values of the
momenta for which the integrals converge, and then one
analytically continues to the physical values. For open
string amplitudes one can do this, keeping the range
of the Z integrations complete. But for closed string
amplitudes one is forced to divide the integration region
up into cells, with separate analytic continuations in

(P% —nb/24)a,/ak -
Pk-Pl—s/8—|—s/24—(P%—nb/6)al/(2ak)—

(Plz—nb/24)ak/al :2Pk'Pl—S/24,
(Plz—nb/6)ak/(2al) :Pk-Pl—s/IZ,

IV. SCATTERING AMPLITUDES
IN SPECIAL CASES

A. External strings of minimal mass

The scattering amplitudes obtained in the previous
section described N external strings, all with zero winding
number and no oscillator excitations. However, the com-
pactified momenta x; could have components with any odd
multiple of +y. To specialize to external strings of minimal
mass, each component of each x;, should be +-y. In that case
the mass squared of each string is —p - p = s/12 — 1 for
the open string, or s/3 — 4 for the closed string. There are,
altogether, N + N —2 =2(N — 1) y’s and ’s, so to satisfy
the conservation law, N — 1 should have a value 4y and the
9
to do this for each of the s/2 compactified bosonic fields.

A dramatic simplification occurs when there is maximal
helicity violation. For instance, choose all components of the
first N—1 &, to have the value —y. Then, necessarily all
components of zy; and of eachy, have the value +y. In this case
Yoy =M =—y,-m=5y>/2fork, | # N and 7y, does not
appear in the formula. Then, for the open case (y>=1/8) the

remaining should have a value —y. There are ( ) ways

each cell. contribution to the integrand of the scattering amplitude is
or N 1 xr_xz Z_z2s/24
10 aZ det—(24 5/2) /2( vz)open €Y(N—2)/32 |:Hr<s| s| Hk<l<£/| 2k l| :| |Zk _ Zl|p,\,p,’ (46)
o1V ol Hr,k<N|xr —-Z
N s(N=1)/12 _ o |8/12
-, es(N-2)/32 1 Jay]* _ IT <)% — x4 | 12} \Z, — Z,|Per, (47)
o] Teewlanl”™ Tkcienl Ze = 217
where we made use of (B3) to arrive at the last line. With this simple choice the scattering amplitude is then
O en 1 |a | s(V-1)/12
e = g2 H — 7 [ a2z [ = sl T] 122 - zipreresiv (48)
|ak| Hk<N|ak| r<s k<I<N

Making the same simplifications for the case of the closed string leads to
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1 |a | (N=1)/6

2(N-2) P27y Ty,
H -l Hk<N|ak|S/6/
X H|xr — x|/ H |Zy, — Zy|Pers/®, (49)

r<s k<I<N

Closed _
AN

If desired, one can replace 2p; - p; by (px + p))*> =2+
5/6 in the open case and by (p; + p;)*> — 8 + 25/3 in the
closed case. Keep in mind that this simpler expression only
applies for a very special choice for the #’s and y’s. In
particular, even for a particular set of the m;, the full
insertion factor at each vertex is 2 cos(y¢), which is to be
implemented by summing the amplitudes over each com-
ponent of each y, assuming both possible values +y.

B. Three-string amplitudes
In the case N = 3 the three Z’s are fixed at 0, 1, co. The
relevant conformal map is
p=alnz+aIn(z-1) (50)

which determines x = a,/(a; + @) and 1-x=aq;/
(a; + a,). Then, the open string amplitude (43) for this
case reduces to

(Z+ D) +a+ozZ+\((Z+1) +ay +03Z)? +daja,Z

PHYSICAL REVIEW D 94, 106009 (2016)

These formulas are valid only if all three strings are on shell.
Putting each p; = (p? + m?)/a, the on-shell condition is
py + p3 + p3 =0, which leads to a quadratic equation
determining the variable x = a,/a,. The condition that x is
real and 0 < x < 1, which must hold if @; and a, have the
same sign, requires that the mass of particle 3 is greater than
the sum of masses 1 and 2 or m3 > (m; + m,)% This is just
the requirement that the decay of particle 3 into particles 1
and 2 is energetically allowed.

The squared mass of a string in the unexcited states,
which we are considering, is given by z> + s/48 — 1 for
the open string and by &> + s/12 — 4 for the closed string.
For example, the decay into equal masses requires, in the
case of open strings,

2, 5 >, 5
——=1>4 ——4, 53
which is easily satisfied if y, &y, 7, are sufficiently aligned.

C. Four-string amplitudes

First, we specialize the conformal mapping from z to p to
four external strings,

p=alnz+ahn(z-—2Z)+aln(z-1). (54)

Then, the two interaction points are determined by
dp/dz = 0, which implies the quadratic equation

0= (ay+a+a3)x* + (1 (Z+1) -y —3Z)x + 0, Z

with solutions

1 a 27, y+s/24 a 27,y +s/24
—_— | = — (51)
V0|aap,| | a2 ap
The corresponding three closed string vertex is
1 a, Ty y+s/12 a; w0y y+s/12
— = — (52)
| | arn a2
|
Xy =

which lead to

2

aglxy —x_[P =a,(1 - Z) + a5 Z - a3 Z(1-2Z)  (56)

where ay; = a;, + a;.

Since the x, enter the integrand of the scattering
amplitude, their behaviors as Z — 0, 1, which control the
pole locations in the variables (p, + p,)? and (p, + p3)?,
is relevant. We find

(—(0’1 +a)/ay

) for Z~0
Za/ap,

Xy (57)

< —/a > for Z~1
1= (Z-1Das/ay

As long as a;, and a,3 are both nonzero, we only need to
pay attention to the factors x_ and Z — x_ when analyzing
Z~0, and to the factors 1 —x_ and Z—x_ when
Z~1.

2(01 + ar + a3)

(55)

|

Putting N =4 in (48) we find the four open string
amplitude in the special case y, =y = 1/V/8, 1, = —y =
—1/+/8 for k < 4:

open _ g H / d |a4|_¥/4|x2 - X |s/12
) =1V |kl Jo a3/ 12
x Z(Pr4p2)=245/12(] _ Z)(prtps)*=2+4s/12, (58)

It is not hard to check that the pole singularities in (p; +
p»)? and (p, + p3)? are where they should be as long as @/,
and a,3 are nonzero. This is reasonable since excluding these
values of the a’s guarantees that the dynamical singularities
are all due to the long-time propagation of protostring mass
eigenstates. If, for example, ay =0, a(x, —x)*~
dajo(1 —Z) as Z — 1, so the poles in (p, + p3)? are
shifted by an amount s /24. When a,3 = 0 these singularities
are due to the collision of the interaction points on the world
sheet and not the long-time propagation of a particle state.
This nonuniformity of singularity structure is absent for the
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bosonic and superstring because the amplitude integrands
then turn out to be independent of the x,.
The four closed string amplitude (49) in the case N = 4

andy, =y =1/V2, np = —y = —1/y/2 for k < 4 is

4 1 s/2

AClosed — g4 ‘0{4|
! k=1 || |0‘10!20!3|S/6

x /cFZ|x2 _xl|S/6|Z|(171+P2)2/2—4+S/6

X |1 — Z|(P2+P3)2/2—4+s/6. (59)

D. Four-protostring amplitude

In the case of the protostring (s = 24), space is only one
dimensional. This puts severe limits on the kinematics:
scattering can be only forward (a,; = 0) or backward
(a3 = 0). To evaluate protostring open string amplitudes,
we keep s < 24 as a regulator but restrict the kinematics to
two space-time dimensions. Thus, we set all the p;, = 0, but
|

a2370 1 |a1 |2

4
e 1

r( s+ 1)I(3)

PHYSICAL REVIEW D 94, 106009 (2016)

keep the general s mass values m7 = (s — 12)/12. Then the

Mandelstam invariants are

at, s—12

S=- 2= , 60
(p1 + p2) wa 12 (60)
0 ay3 = 0
s ={ o | (61)
2 3 s 312_ S a3 =0,
O a3 = 0
o= * ()
1 3 212_ S ay; = 0’
and we have
) 2 a%z(l —Z)2+4ala22(1 —Z) a3 =0
aglx, —x_[°= >
a12 - 40]022 a3 = 0
(63)

The maximal helicity-violating four-point function of the
preceding section becomes, for forward scattering and by
setting s = 24,

2H\/|a_k|a2|4/dz[a%2(1— 2) + daya,2)2-5(1 - 2)!

H |al| [
i1 Vol |a2|4

20:12

4 oy, TS 2)r(2)}

-S+4) I'(-S+4)

Ty |l Ll ~85)(2-53B-S)

daja, ] (64)

2-93-95)]

In doing these integrals, we begin with S < 0 so that the integrals converge. One can then continue S to S > 4 to reach

physical scattering.

For backward scattering, we temporarily keep s # 24 in the powers of Z and 1 —Z

SN |

H Vo] aj

(113:0
A4

]a1a2| aj  T(2-5/6)

In this case there is no value of S for which there is
convergence at both Z = 0 and Z = 1, so we refrained from
setting s = 24 in the powers as a regulator. When we
attempt to set s = 24, the denominators of both terms blow
up, suggesting that there is no backward scattering in this
process. Of course, it is a very special process, correspond-
ing to maximal helicity violation.

Although the kinematics of these special four-string
processes do not correspond to fully elastic forward
scattering, since the internal state of string 3 is not identical
to that of string 2, it does reflect the high energy behavior of
forward scattering discussed in the next section for truly
elastic scattering process.

g3 [alzr( S—1+s/12)

/dZ ()(12 4a1a2z]z—s—2+s/12(1 _ Z)S—S/4+2

@ T(=S +5/12)

af T(3-5/6) rs-

s/4+3). (65)

[
V. HIGH ENERGY FOUR-STRING SCATTERING

There is a general argument, based on the light-cone
world-sheet description [18], that the forward elastic open
string scattering probability amplitude2 goes to a constant at
high energies. In this argument high energy scattering is
reached by taking p; — co at fixed p, and fixed
Py +p3 =—pf —pi. Itis also assumed that the internal
state of string 1 is identical to the internal state of string 4,

In Lorentz covariant theories the probability amplitude is
obtained by dividing the covariant Feynman amplitude by

[k v 2Pk+-
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so that the “large” string is elastic. Then, (p; + p;)~ ~
m?/p3 stays finite. When p| — oo the light-cone world
sheet becomes very large, while the effect of the interaction
is limited to a region of size of order 1. Since the speed of
sound is finite, the amplitude must approach a constant as
p{ — oo. In a Lorentz invariant theory, the amplitude is

M/+/p\ps p;ps, where M is the invariant Feynman
amplitude. Since S = —(p; + p,)? ~m?p|/p5, it follows
that M o § at large S, corresponding to a leading Regge
trajectory of intercept 1.

But this result is a consequence of the light-cone para-
metrization of the world sheet, whether or not Lorentz
invariance is met. It is instructive to check this for general s.
For the Lorentz invariant bosonic open string scattering
amplitude (s = 0), the limit —S = (p; + p,)?> = o is
evaluated by changing variables Z = e™*,

M /mdue_”(_s_”(l —e ) T2 (=S = 1)1 (=1 = 1),
0

S — —co, (66)

where —t = (p, + p3)? is the momentum transfer (= 0 in
the forward direction).

When the Grassmann dimension s > 0, the analysis is
complicated by the dependence of the integrand on x_.. The
high energy behavior is still controlled by Z~1, so
consulting (57) we find, holding a3 = —a4 # 0,

1
x+~—3—;, x_~1, x+—x_~—a—1{al(zl4}, (67)
1 1 lajayy
—-X ~ — S
* a ay
1
lmx ~m—(1-2) B e o 2 [0 (68)
a4 ay a4

PHYSICAL REVIEW D 94, 106009 (2016)

1
Z—x,~— [010’14} ’

ap ay
1
z—L~a-a£Lw_Pﬂ§r (69)
ap ap Ayq
The limit @,; — 0 is not uniform. Indeed, setting a3 = —a,

from the beginning, we find

w= 1 [l @)1 -2)

+ \/4051052(1 —Z) + (ay — a)(1 — 2)2}, (70)

1
Nl+—[—alui\/4alazu+a%u2}, (71)
20:1

from which we conclude

1
I —xy N2Tzl [a,u F \/4oyau —I—a%uQ}, (72)
! 2.2
Z—xy ~2—a1[—a1u F \/4ajaou + aju ] (73)
L1y 2.2
x+—x_~a—[ 4ala2u+a1u] (74)
1

Since the important region of integration at high energy is
1-Z~u=0(S") and we are keeping a,/S fixed, the
factors in square brackets are of order 1, for both cases, in
the dominant integration region. We see that in this region
x:~O0(l) and 1 —Z, 1 —xy, Z—xg, and x, —x_ all
scale as al‘l. Now referring back to (43) for the case N = 4,
we read off the total power of aj!:

27172 —5/24 + 2Py - P3 — 5/24 + 2(7y + 73) - (y1 +72) +5/6

N
:(}'1+72)2—§+(P2+P3)2—2<1—

N

S
48) +2(m, +73) - (71 +72) +E

=1 +72)+ (Py+P3)? —242(m +m;3) - (71 +72)

= (p2+p3)* =2+ (m +7y)*

We conclude that the high energy behavior of the scattering
amplitude is

11— (7))
Ay~

’

t=—(py+p3)*. (76)
in accordance with the general argument for # = 0 provided
that -, = —m;, i.e., provided that the internal states of the

“long” strings are identical.

(75)

We close with a simple example of a fully elastic
scattering amplitude. We choose x4 = —-m; and
73 = —m,. Necessarily then, we must have y, = —y;.
Let y be the s/2 vector with each component equal to y =
1/+/8 for the open string. Then, a simple example of elastic
scattering would be

=M=y, m=my=-y, V1=-"r==xy. (77)

106009-10



PROTOSTRING SCATTERING AMPLITUDES PHYSICAL REVIEW D 94, 106009 (2016)

The integrand of the scattering amplitude formula becomes

|Z|—S—2+S/4|1 _ Z|—t—2|xl _ x2|—s/6
N DL A e R e

78
oy [/ 12 [0 = oy [0 = o |72 Z = x| 2| Z = iy |6 for g = =y (78)

The second case just interchanges x; <> x,.

We first evaluate the high energy limit with a,; # 0, changing integration variables to Z = e~/ and treating v = o(1)
to get

o0
M ~ a%*"/ dve—(—S—1+s/4)1J/a1 U_t_2+s/12|0!14‘_5/6
0

{ 2SSl I or gy =

%

a, _s/6|0‘3|_5/12|az|s/6 fory, = —y

~ /(= 8) 1T (=t = 1 5/12) |

{ |Z_; 5/12|a3|5/6|a2|—s/12

|55y |/ 2 /6 for 7, = 7.

fory, =y (19)

141

Here we see that, with a,; # 0 and fixed, the coefficient of a]"" has poles at t = n + s/12 — 1 which are the mass-squared

eigenvalues of the open protostring. The linear high energy behavior at r = 0 is the product of (—=S)!~*/12 and a‘i/ 12 netting
precisely linear growth in the forward direction.
Contrast this with the high energy limit taken with a,3 = 0 from the beginning:

M ~ al*t /°° dve=(=S=145/9v/a =12 (4 1 | 2]~5/12
0

1 -s/12| 1 s/6
X —[v—\/4azv+vz} —[v+\/4a21}+02]

2 2

1 s/6]1 —s/12
X 5[—1)—\/4azv+1)2} E{—v+\/4a21j+v2}

~ a]1+l /oo dve—(—S—l+‘Y/4)v/al 1}—[—2[4 4 U/az]—s/IZ
0

We stress that the limit taken here is @y, —S — oo at fixed
ratio. The coefficient of the Regge behavior is a function of 7.
Its pole locations are not those of the particles of the theory:
they correspond to a linear Regge trajectory of intercept 1.
Because the formula was obtained assuming oz = —a,, the
high energy behavior comes from the collision of two
interaction points on the light-cone world sheet, and not
from the long-time propagation of a protostring mass
eigenstate as in the first limiting procedure. The mismatch
can be allowed because the Lorentz boost symmetry
generated by M~F is absent: for the protostring, because
there is no transverse space, and for 0 < s < 24, because this
part of the Lorentz symmetry is broken. For the bosonic
string (s = 0), of course, there is no such mismatch.

s/2

LA
4(12 4(12

VI. CONCLUDING REMARKS

This article is devoted to the calculation of scattering
amplitudes for the protostring and a simple generalization
thereof. The three-string amplitude with the strings in
arbitrary excited states was calculated in [13], where the
model was initially proposed. Here the focus has been on
general N string amplitudes, but with the strings in states
with no oscillator excitations. These amplitudes are analo-
gous to the N tachyon amplitudes of the bosonic string.

The scattering amplitudes are presented as integrals over
the Koba-Nielsen variables Z;. The integrand includes
factors |Z, — Z,| raised to momentum-dependent powers,
familiar from the bosonic string. But in addition, there are
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factors |x, — Z;| and |x, — x| raised to powers dependent
on the compactified momentum representing the
Grassmann degrees of freedom. Here the x,(Z) are the
locations in the z plane of the break/join points of the light-
cone world sheet. If p(z) is the conformal map from the z
plane to the light-cone world sheet, the x, are determined
by the order N — 2 polynomial equation dp/dz = 0. The
presence of these other factors complicates the singularity
structure of the integrands.

We studied in detail some simple special cases. We
found significant simplifications for the maximal helicity
(compactified momentum) violating N string amplitudes.
But factors involving |x, — x| remain, which become quite
unwieldy for N > 4. On the other hand, four-string ampli-
tudes are manageable because the x’s solve a quadratic
equation, (x; — x,)? being the discriminant. For the proto-
string case s = 24 this contribution is just a quadratic
polynomial in Z. So the four-point functions are sums of
Euler beta functions. For forward open protostring scatter-
ing (t =0), the S, t amplitude3 is just a sum of a finite
number of poles at § = 1, 2, 3. Curiously, the S, r amplitude
for backward scattering (t = 4 — S) seems to vanish® for the
protostring. This vanishing of backward scattering may be
specific to helicity-violating amplitudes. It would be
interesting to explore whether other protostring amplitudes
vanish.

We analyzed the high energy limit of selected four open
string amplitudes, in both helicity-conserving and helicity-
violating processes. We confirmed that, in the forward
direction, the elastic amplitude is constant at high energy, in
line with the general argument in [18]. In a Lorentz
covariant string theory in three or more dimensions, such
behavior would signal a leading Regge trajectory of unit
intercept, which would imply massless gauge particles in
the theory. The models studied here are noncovariant
for 0 <s <24, depending not only on the Lorentz
invariants p, - p, but also on the + momentum components
py - Instead of the covariant Regge behavior (p; - p2)"*/

Vpipipipl.  we get  (p{)YP(py-py)tT?/
\/P{ P3 pips. Here the Regge trajectory a(t) =1+ 1 —
s/12 reflects the spectrum of the string models of the
present paper: for the protostring (s =24) it is r—1,
implying a mass gap. The constant high energy behavior
when 7 = 0 generally applies [18] when (p; - p,)/p; is
fixed as p; - py — oo. This is how constant high energy
behavior is consistent with a Regge trajectory intercept less
than unity.

There is a lot of work still to be done on these models.
The amplitudes involving more than four strings have been

'With S = —(p; 4+ p2)? and 1 = —(p, + p3)%, the S, ¢ am-
plitude is the one with cyclic ordering 12341. It has poles in the S
and ¢ channels.

“The argument for vanishing backward scattering relies on an
analytic continuation which may be suspect.
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obtained, but their physical properties remain to be inves-
tigated. One should also be able to calculate these ampli-
tudes in the original unbosonized language and compare
results to those of the present paper. This comparison
should clarify issues of Fermi statistics, which the process
of bosonization has obscured.

The protostring (s = 24) moves only in one space
dimension. Thus, the entire Lorentz group is O(1,1),
and this symmetry is maintained in the construction. As
we have said, the protostring is predicted by the simplest of
string bit models. In the string limit, the Grassmann
dimension s effectively interpolates between the bosonic
string s = 0 and the protostring (s = 24). We have noted
that the protostring has the world-sheet field content of the
superstring. This suggests that besides being an interesting
system in its own right, it may also be a stepping stone to a
solid foundation of superstring theory. In its present form,
the eight “transverse coordinates” one obtains by bosoniz-
ing 16 of the protostring’s Grassmann dimensions are all
compactified in a way such that the KK momentum is
quantized in half-odd integers. Perhaps there is a way to
tweak the Hamiltonian of the string bit model underlying
the protostring to shift this quantization to integers. An
additional tweak would be needed to provide a large
compactification radius for at least two of these emergent
transverse coordinates. We leave the pursuit of these goals
to future research.
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APPENDIX A: DETERMINANT FOR THE
LIGHT-CONE WORLD SHEET

1. Open string

In this appendix we review Mandelstam’s calculation of
the determinant and Jacobian factors for the bosonic string
[16]. The quantities Z;, with k = 1 --- (N — 1) and x, with
r=1---(N—=2) are determined by the map from the
upper-half Koba-Nielsen plane (z) to the light-cone world
sheet (p = 7 + io):

N-1
dp
= a,In(z—-2,), — =0, Al
P ; x In( 9] 2z, (A1)
dp _ % _ >t el Lz = Z))
T T4 [I(z=Z)

H (Z _xr)

= —ay T : (A2)
"(z-20)
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d2p _ Hr#s( xr)

) I (A3)

dz =X Hk (xs )

where the last line is true because the factor (z — x;) in the

numerator must be destroyed by the derivative to get a

nonzero contribution. The asymptotic strings at 7 = +oo

are mapped from the Z,. In this notation Zy = o0,Z; = 0.
We next determine the world-sheet determinant. We do

this by executing a conformal transformation from the

Koba-Nielsen plane to the light-cone world sheet. We need

dp N-1 N-2
ZEIH‘—‘ = In|ay| —Zln|z—Zk| +Zln|z—x,|.
dZ k=1 r=1
(A4)

Clearly, 9,Z =0 on the real axis. Since the points z =
Zy, x, are singular, we deform the boundary near those
points into small semicircles, in the upper half-plane, of
radii €, €,, respectively. The radius €, near Z; can be
interpreted in terms of a large time 7', for the asymptotic
string k. From the mapping function we find

e = el |2, - Zy |/,
Ik

(A5)

The string N is asymptotic at large z. If R is the radius of a
large semicircle, we have from the mapping function

Ty ~—ayInR, R~ e~ Tn/an, (A6)
On the other hand, the radius e; near x, is a temporary
regulator, which maps onto a circular deformation of the
boundary near the corresponding interaction point on the
light-cone world sheet. From the mapping function we see
that the radius of this regulating circle on the world sheet is

given by

6 1 2 dzp _ 1 2 Hr#s‘x | A7
s Ees d - 5 s| | 7 ( )
=Xy Hk|xv k|
25 — ZV?
es — s Hklxs k| ]/2 , (Ag)
|aN| Hrq’:s|x5 - X,|
[Tia|Zi = 2|2
e, = lay [N Tl 2] | /28, sr 2t =2k
U 1;[ 1:[ Hr;és‘xs - xr|1/2
(A9)

To calculate the determinant for the light-cone world sheet,
we start with the determinant for the region in the upper-
half z plane bounded by the real axis, the large radius R
semicircle, and the small radius €; semicircles. Then, we
apply the generalized Kac-McKean-Singer formula [19—
21] to transform to the determinant for the world sheet.
In this case the boundary conditions are either Dirichlet
everywhere or Neumann everywhere. Then, in the limit of
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large R and small €, factorization implies that the z-plane
figure determinant has the behavior

1 5
—ETrln(—Vz) ~—InR+— zk:lnek—l-const, (A10)

©24

where the constant term, representing the determinant for
the upper half-plane with the same boundary conditions
everywhere, has nothing to depend on.

Next, we develop the transformation of the determinant
from this z-plane figure to the light-cone world sheet using
(A4). Clearly, 0,X = —0,,Z = 0 on the real axis. Thus, the
change formula receives contributions from the corners and
semicircles only. For z near Z;, we put z = Z; + re'? and
approximate

N-1 N=2
ln|aN|—lnr—Zln|Zl Zk|+ZIH|Zk
I#k
1
9,5 (A1)
r
Then,
1 I 1
A, = |——— 4
“ [24 12+8}

(|ak|> e
n|— .
€k

(A12)

_ <|aN| 1112k — x| >
12 e 1wl Ze = Zi]

The three terms in square brackets are the f dlx0,X term,
the extrinsic curvature term (negative here), and the two
corners at this semicircle, respectively.

For z = x, + re'”, on the other hand, we have

N-1

Nln|aN|+lnr—Zln|Zl—xs|+Zln
r#s
1
0, X~ ——. (A13)
r
Then,
1 1 26
A, = |-—|T=—-—n=>, Al4
[ 24] 22", (Al4)

Note that in this case, only the [£9,% term contributes
since there is no singularity in the initial surface at z = x;:
the singularity comes only in X, which is determined by the
mapping function.

Finally, for the large semicircle,
0,X~ —1/r, and

= —In(r/|ay|),

111 1R
Ag= |-t —t-|S=—"In—". (Al5
K [24+12+8} sy (A1)

Combining all the contributions, we have
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_ _ lay|\ /6 o\ /12
det 1/2(_v2)p = det 1/2(_v2)z <R 1;[ Tk H

PHYSICAL REVIEW D 94, 106009 (2016)

e, \1/24

N
2 : T || || r25r rxr_Z 1/48l| -

— C|aN‘l/6 exp {_ 24k } |Zk _Zl|ak/24a, |ak|1/12 |:H ( )HkH | k|:| (26,«) 1/24
=1 <% ) i !

N 1/8
— —1/48 ||
=C[](s,)7 k|7|1 PG

r

k#l

If there are n;, bosonic world-sheet dimensions, this entire
factor should be raised to the power n,,.

The world-sheet path integral is this determinant factor
times a factor e’V which arises from removing boundary data
in the path integral by shifting the x by the classical solution
that satisfies those boundary data, as shown in the text.

Among other things, ¢’V includes factors R7°]| ke‘iz in the
limit that the -T,/a; get large. If W.=
> kPN (pi.p1)p1/2 is expressed in terms of a Neumann
function, these factors arise from the diagonal / = k terms.
The rest of these diagonal terms, combined with the factors
|y |'/8, provide a factor of the ground-string wave function
for each external string. The N ground string scattering
amplitude is obtained by amputating these ground-
state wave functions together with the factors

2w Pi=d2Ti/a — D L TWPL from the path integral and
integrating over the interaction times [ dr; - - - dty_,, where
p, = 7, + io, are the locations of the N — 2 interaction points
on the world sheet. By translational invariance in x* the

integrand after amputation will acquire a factor 2% if all
the 7, are translated by a. This means that integrating over one
of the 7, simply produces a P~ -conserving delta function. The
coefficient of this delta function is just the integral over only
N —3ofther,. Notethat Y, a; = 0 by the light-cone world-
sheet construction, and > «Prx = 0 when Neumann condi-
tions are chosen for the x integrals, as explained in Sec. III.
A = / de e dTN_2 [det_”h/z(—v2)peiwc]

amputated’
(A17)

where we have set 7; = 0 and understand that ), P; = 0.

The final result for [e™e], . eq includes the off-
diagonal terms in its Neumann function representation,
together with the parts of ¢, that remain after amputating

2 TPL for the ordinary bosonic coordinates the result is

. _alpi/ak
[elwc}ampulated = H|Zl - Zk|2pkpl (Hk#'Zk - le) .

k<l
(A18)

The amputated determinant drops the exponential depend-
ence on T and the factor [, |a|"/®:

H'Zk _ Zl|ak/24a, |:| 1

|aN|N_2 Hr¢s|xs - 'xr| r

Z,— 7|1/ NooT
5 Hk<1| l k‘:| exp{— k } (A16)
aN| . Hr<s|xs _xr| k=1 2 A

l[det‘"b/z(—vz)p]

amputated

N
1
= CH(zgr)—nbMS le_ﬂzk _ lenbak/24a1
r k=1 ak| k£l

« [ 1 Hk<l|Zl_Zk|:|nb/24
|O‘N|N_3 Hr<s‘xs _xr|

Notice that when the two are combined, the net power of
|Z, — Z,| simplifies nicely:

(A19)

Pk PI=Pi Pi— PLP] — PEP[
=P P1— a(pi —n,/24) /20
- 0‘1(1’% —ny,/24)/20.
It is convenient to change integration variables from the z’s
to the Z’s. Mandelstam’s result for the Jacobian is (taking
Z1,Zn_1,Zy = 0,1, o0, respectively)
7= Ira, - Tv-2) { 1 JhalZ _Zk|]_1

|aN|N_3 Hr<s|xs - xr‘

(Zyr - Zy—)
(A20)

Tldet"/2(~=V2),]

amputated

N
1
= CH(Z(Sr)_VthS HWH'Zk _ Zl|”b!lk/24a,
g i ] o
X { 1 [LalZ - Zk|] (ny—24)/24
o V73 Tl s — %]

so the scattering amplitude for the purely bosonic string
(n, = d) becomes

(A21)

N
1
— —ny, /48
A= C[](2s,)™/ HW / dZ, - dZy_,
r k=1
<TI - e

k<l
11|12 - qu (d-24)/24

1
X
|:|aN|N_3 Hr<s’xs - xr|

The factor raised to the power d — 24 depends on the
Lorentz frames, so the critical dimension D = 26 is
necessary for Lorentz invariance [5], in which case A is

(A22)
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proportional to the N particle dual resonance amplitude. Of
course, factorization implies that C = gV ~2 and §, = 5,
independent of r. Then, [],(26,) = (25)V~2, so § can be
absorbed in the coupling constant.

2. Closed string

For the closed string the map from the whole Koba-
Nielsen plane (z) to the light-cone world sheet (p = 7 + io)
is nearly identical to that for the open string.

2 k=1 ' dz i, ’
dp - 1% X _ ot all Lz = Z))
dz 2{Hz-7 MLz —Zo)
e (A24)
2 Hk(z - Zk) '
dz?| ., 2 TL(x, -2

The quantities Z;, with k=1---(N—1), and x,, with
r=1---(N—=2), can now be anywhere in the complex
plane. The factors of 1/2 on the right are to normalize the
range of ¢ on string k to zay, since the phase of z — Z;
advances by 27 as z encircles Z;. The asymptotic strings at
=200 are mapped from the Z,. In this nota-
tion Zy = o0,Z; = 0.

We next turn to the transformation of the determinant.

> =1In

ay
2

N—-1 N-2
=Y Injz=Z |+ > Infz-x|. (A26)
k=1 r=1

Since the points z = Z;, x, are singular, we cut out small
circular disks of radii ¢;, €, about each of those points,
respectively. The radius €, near Z; can be interpreted in
terms of a large time 7', for the asymptotic string k. From
the mapping function we find

€ = eZTk/akH|Zl _ Zk|—(z,/ak‘
Ik

The string N is asymptotic at large z, so we cut out the
region |Z| > R. We take R large, and referring to the
mapping function,

(A27)

Ty ~ —%Nln R, R~ewlav.  (A28)
On the other hand, the radius e, near x, is a temporary
regulator, which maps onto a circular deformation of the
boundary near the corresponding interaction point on the
light-cone world sheet. From the mapping function we see
that the radius of this regulating circle on the world sheet is

given by

1, d% 1 [Tl — x|
e I L ey

A29
2 a2 [1ilxs = Zk (A29)
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Vo] T, lxs = 2,12
N r#slvs r
_ [TislZ = Z,['
e, = oyl T 2T V3 =
K k K r#Es s r
(A31)

To calculate the determinant for the light-cone world sheet,
we start with the determinant for the region in the z plane
with disks about the Z; removed and bounded by the large
radius R circle. Then, we apply the generalized Kac-
McKean-Singer formula [19-21] to transform to the
determinant for the world sheet.

We take boundary conditions on the circles to be
Dirichlet or Neumann. Then, in the limit of large R and
small €, factorization implies that the z-plane figure
determinant has the behavior

1 1 1
—ETr In(=V?), ~ glnR ~5 z}; Ine; + const, (A32)

where the constant term, representing the determinant for
the whole plane with the same boundary conditions every-
where, has nothing to depend on.

Next, we develop the transformation of the determinant
from this z-plane figure to the light-cone world sheet: the
change formula receives contributions from the circular
boundaries only. For z near Z;, we put z = Z; + re'? and
approximate

N-1 N-2

Z~In|ay| —lnr—ZIn|Z,—Zk| +Zln|Zk_xr,
I#k r=1
1
0, Z~—. (A33)
r
Then,
1 1 1 7,
A = {—}2 ———In <‘“N|H|kx|>
126 12"\ e, TLalZi -2
-1/12
- <M> ' (A34)
€k

The terms in square brackets are the [ d/Xd, X term and the
extrinsic curvature term (negative here).
For z = x, + re'”, on the other hand, we have

N-1

Y ~1n|ay| —|—1nr—Zln|Zl — x| + Zln|xs - x|,
[ r#s
1
0, X~ ——. (A35)
r
Then,
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1 1 Hr;és‘xs - xr|
A = |-—|z=-—1 Alrtss 7 2r
: [ 12] 12“(65"’”' iz x|

1 46
=——In—. A36
2", (A36)
Finally, for the large circle, £ ~ —In(r/|ay|), 0,Z ~ —1/r,
and
1 1 1 1 R
Ap = Y=—3X¥X= 1 A37
K { 12+6] 12 lay|” (A37)
Combining all the contributions, we have
~ ~ lay|\ /12
det™!/2(=V?2), = det 1/2(—v2)z<1§
o[\ ~1/12 45\ ~1/12
) 1;[< €k H €s
_ K|a |1/12R1/12H —1/12H 1/12
X H\a - 1/121'[ (48,)71/12, (A38)

We see that the R, €, €,, and d; dependence of this result is
just the square of the corresponding dependence of the
open string determinant with 6, — 24,:

det_1/2<_v2)closed
det™! (_vz)open (65 - 25s)
A A R RCA G
C2 Jaw P TTelal°TT,(8,)71

K
= Slan Tl = 5 T el

k<N k<N

[6 amputated

-T2~z (T2

k<l

[det—"s/2(=¥2) |

r
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From this we read off from (A16), sending 7,5, —
2Ty, 26, in the square of the open string determinant,

det™1/2(=V2),
H 45 1/241_[ 1/24 X H|Zk -7 |ak/12al
Tl k#l
y [ 1 [Lalz —qu " o {_iﬂ}
|(“‘N|N_3 Hr<s‘xs - xr| k=1 6ak

If there are n,; transverse bosonic dimensions, this entire
factor should be raised to the power n,,.

The construction of scattering amplitudes follows the
same steps as for the open string: one amputates external
string wave functions and exponential 7T factors. In
addition to integrating over interaction times, one also
integrates over the break/join location on the string, so the
amplitude takes the form

A == /dT2d02 tee dTN—2d6N—2 [det_""/z(—vz)ﬂeiwl‘]

amputated’

(A40)

where we have set 7; = 0 and understand that ), P, = 0.
For ordinary bosonic coordinates the relevant expres-
sions are

—ap;/(2a;)
- Z ,

N
! z
=K 45.) /24 7. — 7, |ma/12a
plamputated H( r) ]1:[1 |ak|nb/24 gl k l| |aN‘N_3 Hr<s|xs —

1 Hk<l|Zl -

k| ny/12
| e

To change integration variables from the 7’s to the Z’s, Mandelstam’s result for the Jacobian in the closed string case [16] is

(taking Z1,Zy_1,Zy = 0, 1, o0, respectively)

a(p2’ °"7pN—2) 2

2y, Zn

|
71 Zy_)

|7 *[det™/2(=V?),]

N
1
— —n,/24
plamputated KH(45'") "/ H |0! |n,7/24
r k=1 1%k

- U [halZi = Zi] 2 -
o N3 , ( )
|aN| Hr<x|xs - xr|
H|Zk_Zl‘l‘l;;{lk/12a, |: 1 Hk<l|Zl_Zk|:| (7%—24)/12
(A43)
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so the bosonic string scattering amplitude becomes

N

1 1 7. — 7.1 (m,—24)/12

A=K[J@s,)>]] | |nh/24/d222"'JZZN—2| [1Zi — z)|per L WIS kq b :
v k=1 1%k

The factor raised to the power n;, —24 depends on the
Lorentz frames, so the critical dimension n, =24 is
necessary for Lorentz invariance [5].

APPENDIX B: ALTERNATIVE FORM FOR
THE MEASURE

Inspecting dp/dz [see (A2) and (A24)] we have the
identity

N-1
o [[c-x) =S allc-2z). @)
¥ =1 1k
Putting z = Z,, in this equation, we find
N-1
_aNH(Zm - xr) = ZakH(Zm - Zl)
; =1 Tk
= amH(Zm - Zl)’ <B2)
I#m
N
|aN|NH|Zm - xr| = H |am|H|Zk - Zl|' (B3)
m,r m=1 1#k
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— (A44)
aNlN 3 Hr<s|xs - xrl

|
Using this last equation, the measures can be put in a form
more useful for the protostring scattering amplitudes:

e
0z open
N —
- H|Zk — Z, [/ 240 H 1 [Hk<N|ak|} (24-n)/16
kel i VIwd L lay]
X |:Hr<t|xt - xr|Hm<l|Zl — Zm|:| <24_”h)/24 (B4)
11,121 = x|
and
2
[
oz closed
N —
= []1zc - z/|mess 2 HL {M} (24-n,)/8
Kl worlad L lay]
X |:Hr<t|xt - x"|Hm<l|Zl - Zm|:| (24-n,)/12 (BS)
11,121 = x| :
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