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Strong evidence for dual superconformal symmetry inN ¼ 6 superconformal Chern-Simons theory has
fueled expectations that the AdS=CFT dual geometry AdS4 × CP3 is self-dual under T duality. We revisit
the problem to identify commuting bosonic and fermionic isometries in a systematic fashion and show that
fermionic T duality, a symmetry originally proposed by Berkovits and Maldacena, inevitably leads to a
singularity in the dilaton transformation. We show that TsT deformations commute with fermionic T
duality and comment on T duality in the corresponding sigma model. Our results rule out self-duality based
on fermionic T duality for AdS4 × CP3 or its TsT deformations but leave the door open for new
possibilities.
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I. INTRODUCTION

The AdS=CFT correspondence is best understood as an
equivalence between N ¼ 4 super Yang-Mills (sYM)
and type IIB string theory on AdS5 × S5 [1]. New ideas
incubated in this unique setting quickly percolate to less
familiar forms of the duality, where generality may be
tested. A duality between superconformal N ¼ 6 Chern-
Simons (ABJM) theory and type IIA superstrings on
AdS4 × CP3 [2] represents the first challenge.
For AdS5=CFT4, it is well known that integrability is

present in the planar limit of N ¼ 4 sYM and also strings
on AdS5 × S5 [3,4], allowing one to connect perturbative
regimes of both descriptions. Integrability is believed to
play a substantial rôle in relations between scattering
amplitudes and Wilson loops [5–8], as well as the emer-
gence of a hidden superconformal symmetry [9], whose
closure with the original superconformal symmetry leads at
tree level to Yangian symmetry [10,11], a recognizable
integrable structure. Moreover, this so-called “dual super-
conformal symmetry” can be traced back to a self-mapping
of the geometry AdS5 × S5 under a combination of bosonic
and fermionic T dualities [12–14].
Subsequent developments for ABJM theory largely

parallel N ¼ 4 sYM. Integrability is again a feature of
the planar limit [15,16] and string theory on AdS4 × CP3

[17–20]. Moreover, perturbative calculations provide
convincing evidence for amplitude/Wilson loop duality
[21,22], dual superconformal [23–26] and Yangian sym-
metry [27,28]. The similarities between AdS5=CFT4 and
AdS4=CFT3 duality are striking and led to the hope that
a self-dual mapping of the geometry AdS4 × CP3 under a
combination of bosonic and fermionic T dualities could
also account for the observed perturbative symmetries in
ABJM theory. In this article, we show that the Berkovits-
Maldacena transformation [13] inevitably leads to a

singularity in the dilaton shift, so self-duality based on
fermionic T duality cannot work for AdS4 × CP3.
This result may come as no great surprise, since we

have witnessed a number of no-go results of varying rigor
[29–34]. Despite this, none are completely satisfactory.
Earlier statements, e.g. [29,30], fail to take account of the
chirality and the results of Ref. [32], whose approach we
follow, fail to be comprehensive in exploring all combi-
nations. Finally, Ref. [34], which may be viewed as the
most robust result, provides only a set of criteria that are
sufficient for self-duality. Over the last year we have
become aware of geometries based on exceptional super-
groups that violate these criteria, but yet are self-dual
[35,36]. The goal of this article is to revisit AdS4 × CP3

self-duality in the light of this recent result.
As stated, our approach mirrors Ref. [32], but we strive

to be more transparent. In contrast, we make no assumption
about the nature of internal bosonic T dualities required for
self-duality and will instead drill down on fermionic T
duality in the supergravity limit [13], where we know six
commuting fermionic T dualities are required. We will
show that regardless how the requisite T dualities are
selected, the dilaton shift resulting from the combined
fermionic T dualities is inevitably singular. One may add
undetermined constants to remove the singularity, but there
will be a mismatch in the scaling of the AdS4 radial
direction required for self-duality. We further demonstrate
that deformations based on TsT [37] do not change this
result. This eliminates an immediate and obvious loophole.
Finally, although our findings are confined to the super-

gravity description, we comment on self-duality based on T
duality from the perspective of the sigma model represen-
tation of AdS4 × CP3. We first write down the AdS4 × CP3

coset action in the fashion suitable for T duality: this is
common to all sigma models with OSp symmetry; indeed,
it is analogous to the one used in [35] to show self-duality
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of AdS2 × S2 × S2 and AdS3 × S3 × S3. This way, we
demonstrate that the singularities affecting the duality
transformation have a group theoretical interpretation.
Then, we notice that AdS4 × CP3 is a submanifold of
AdS4 ×G2ðR8Þ, where the Grassmannian G2ðR8Þ is the
space of all planes in R8 passing through the origin. As
we shall see, AdS4 ×G2ðR8Þ is a coset model self dual
under Buscher procedure, implying that the duality trans-
formation links together different AdS4 × CP3 slices of
AdS4 ×G2ðR8Þ. However, such a transformation has a
nontrivial super-Jacobian, and it is unclear whether it can
be identified as a quantum symmetry of the submodel
AdS4 × CP3.

II. METHODOLOGY

We follow parallels with geometries AdSp × Sp, p ¼ 2,
3, 5 [13,14,34,38], and AdSq × Sq × Sq, q ¼ 2, 3 [35,36],
which are known to be self-dual under a combination of
bosonic and fermionic T dualities. We can map AdS4 back
into itself by choosing a Poincaré metric,

ds2 ¼ ημνdxμdxν þ dr2

r2
; μ ¼ 0; 1; 2; ð1Þ

performing Abelian bosonic T dualities along the flat
coordinates xμ, before finally inverting the radial coordinate
r → r−1. Note that, in performing an odd number of
bosonic T dualities, we have switched the chirality of the
theory from IIA to IIB, so self-duality requires at least one
additional T duality along CP3. We return to this point in
due course.
One direct consequence of employing the Buscher

procedure [39] is the dilaton Φ wanders,

δΦ ¼ 3 log r; ð2Þ
with the raison d’être of fermionic T duality being to
reverse this shift, while at the same time restoring the
Ramond-Ramond sector to it original incarnation. In the
supergravity description, this feat fermionic T duality
accomplishes by inducing a compensating dilaton shift
[13],

δΦ ¼ 1

2
log detC; ð3Þ

where Cij is a matrix satisfying

∂μCij ¼ ϵ̄iΓμΓ11ϵj; ð4Þ
with ϵ̄i ≡ ϵTi Γ0 and ϵi denoting Killing spinors. To ensure
that the fermionic isometries commute, the Killing spinors
are subject to the constraint [13]:

ϵ̄iΓμϵj ¼ 0 ∀ i; j: ð5Þ

It is worth noting that in the Majorana-Weyl representation
for the gamma matrices, where Killing spinors should be
real, the bilinear ϵ̄iΓμϵj reduces to ϵ†i ϵj ¼ 0 and a solution
only exists when the real Killing spinors are complexified.
The usual rule of thumb is that if the original geometry
preserves 2n Killing spinors, we can construct n fermionic
isometries through complexification. We are not aware of
any exceptions. In this article, we will show that this
transformation, applied to AdS4 × CP3, results in a singu-
larity regardless of how the fermionic directions are chosen.
It is now well documented how T duality, both Abelian

and non-Abelian, affects supersymmetry at the level
of supergravity. It can be shown, e.g. [40], that supersym-
metry breaking is encoded in the Kosmann spinorial Lie
derivative [41],

LKη ¼ Kμ∇μηþ
1

8
ðdKÞμνΓμνη; ð6Þ

where K is the Killing vector, corresponding to the
isometry on which we T-dualize, and η denotes the
Killing spinor. Where LKη ¼ 0 is a good projection
condition, some supersymmetry survives, otherwise all
supersymmetry is broken. Employing this result, we see
that T duality on the xμ coordinates breaks supersymme-
tries dependent on xμ, leaving only the so-called
Poincaré Killing spinors, which depend only on the radial
coordinate [42].
The Poincaré Killing spinor is schematically η ∼ r−

1
2 ~η,

where ~η depends on the internal coordinates. From (4), we
recognize that the components of the matrix C scale as
Cij ∼ r−1, so that δΦ ∼ − n

2
log r, where n is the number of

fermionic T dualities one performs. This determines the
number of fermionic T dualities that one should perform,
notably six in the case of type II AdS4 geometries.
One final complication in the self-duality of AdS4 × CP3

is that an odd number of bosonic T dualities will change the
chirality of the theory [43], so to ensure the final result is a
solution to Type IIA supergravity, we require at least one
internal bosonic T duality along CP3. As we have just
remarked, any additional T dualities will further break
supersymmetry. Therefore, our approach is simple. CP3

possesses fifteen Killing isometries, which one can poten-
tially T-dualize. For each isometry, we will enumerate the
number of preserved supersymmetries with a view to
finding candidate sets of six commuting fermionic iso-
metries that can undo the shift in the dilaton (2). Where we
find the requisite number of fermionic isometries, we will
determine the matrix Cij.
We note that this approach was initially adopted in

Ref. [32], although only three commuting isometries were
examined and a singularity was encountered, but other
possibilities were not explored. We will be more system-
atic. To facilitate easy comparison, we will use the same
parametrization of CP3, but will opt to solve the Killing
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spinors directly in ten dimensions. In contrast to Ref. [32],
we find in each case that the determinant of C only vanishes
through a cancellation involving the components Cij.

III. INTERNAL T DUALITIES

As touched upon earlier, we are required to perform
internal bosonic T dualities in order to preserve the chirality
of the theory. Before proceeding to the analysis of
AdS4 × CP3, here we digress with a view to highlighting
the utility of the Kosmann derivative when identifying the
appropriate internal isometries on which we can T-dualize
and preserve supersymmetry. We recall that as advocated in
Ref. [13], in the case of spheres one should analytically
continue the sphere to de Sitter and T-dualize along the flat
directions, which have obvious shift symmetries. When
these isometries are analytically continued back to the
original sphere, one notes that the directions are complex.
We will now show that one can recover this unusual choice
of isometries directly from the Kosmann derivative in the
concrete setting of the type IIB solution AdS3 × S3 × T4,
where we parametrize the three-sphere in nested coordi-
nates,

ds2ðS3Þ ¼ dθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2: ð7Þ

As usual, the three-sphere possesses six Killing directions:

P1 ¼ ∂ψ ; P2 ¼ − cosϕ∂θ þ sinϕ cot θ∂ϕ;

P3 þ iP4 ¼ eiψ ðsinϕ∂θ þ cosϕ cot θ∂ϕ þ i cot θ cscϕ∂ψÞ;
P5 þ iP6 ¼ eiψ ð∂ϕ þ i cotϕ∂ψ Þ: ð8Þ

Making use of the Kosmann derivative (6) and the
Poincaré Killing spinors for the geometry [38],

η ¼ r−
1
2e−

θ
2
Γ45σ1e

ϕ
2
Γ34

e
ψ
2
Γ45

η0; ð9Þ

where η0 is a constant spinor, a short calculation reveals that

LP5
η ¼ 1

2
e−

θ
2
Γ45σ1e

ϕ
2
Γ34

e
ψ
2
Γ45Γ34η0;

LP6
η ¼ 1

2
e−

θ
2
Γ45σ1e

ϕ
2
Γ34

e
ψ
2
Γ45Γ35η0; ð10Þ

where we have omitted LPi
η; i ¼ 1;…; 4 for brevity.

It is evident that none of the above Kosmann derivatives
correspond to a good projection condition on their own, yet
we can complexify them, P5 þ iP6, so that LP5þiP6η ¼
0 ⇒ ðΓ45 − iÞη0 ¼ 0 is a good projection condition. This
ensures that half the supersymmetry of the original Killing
spinor (9) is preserved. We note that we recover the same
projection condition from the combination P3 þ iP4. Taken
together, P3 þ iP4 and P5 þ iP6 correspond to two com-
plex Killing directions that preserve the same

supersymmetries. It can be checked that these are indeed
the commuting Killing vectors that result when one
analytically continues the three-sphere [38].
In the next section, we will transplant this analysis to the

space CP3. In contrast to the sphere, one striking difference
is that CP3 is already complex. One can attempt to identify
the correct isometry directions by rewriting CP3 so as to
make commuting isometries manifest. This approach was
adopted in Ref. [32], but we will eschew this approach in
favor of a direct analysis of the Kosmann derivative for all
the isometries of CP3.

AdS4 × CP3

In order to fix normalizations, we start from the maximally
supersymmetric AdS4 × S7 solution to 11D supergravity,
where we write the S7 as a Hopf-fibration over CP3. We
next perform a Zk quotient on the Hopf-fibre, which breaks
supersymmetry, before reducing to type IIA supergravity.
The resulting solution is [2]

ds2 ¼ R3

k

�
1

4
ds2ðAdS4Þ þ ds2ðCP3Þ

�
;

e2Φ ¼ R3

k3
;

F4 ¼
3

8
R3volðAdS4Þ; F2 ¼ kdA; ð11Þ

where R and k are constants, ds2ðCP3Þ denotes the
standard Fubini-Study metric and the one-form potential is

A ¼ i
2

ðzαdz̄α − z̄αdzαÞ
ð1þ jzj2Þ : ð12Þ

Following [44], we introduce real coordinates,

z1 ¼ tan μ sin α sin
θ

2
e

i
2
ðψ−ϕþχÞ;

z2 ¼ tan μ cos αe
i
2
χ ;

z3 ¼ tan μ sin α cos
θ

2
e

i
2
ðψþϕþχÞ; ð13Þ

where the ranges of the new coordinates are 0 ≤ μ, α ≤ π
2
,

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ψ , χ ≤ 4π. Through the
above rewriting, the metric is recast in the form

ds2ðCP3Þ ¼ dμ2þ sin2μ

�
dα2þ1

4
sin2α

�
τ21þ τ22þ cos2ατ23

�

þ1

4
cos2μðdχþ sin2ατ3Þ2

�
; ð14Þ

where we have introduced the left-invariant one-forms,
dτa ¼ 1

2
ϵa

bcτb∧τc. The one-form potential becomes
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A ¼ 1

2
½sin2μðdχ þ sin2ατ3Þ�: ð15Þ

The Killing vectors on CP3 take the form [45]

Ka ¼ ∂za þ z̄az̄b∂ z̄b ; K̄a ¼ ∂ z̄a þ zazb∂zb ;

Kab ¼ za∂zb − z̄b∂ z̄a ; ð16Þ
where a, b ¼ 1, 2, 3 and repeated indices are summed. We
note that various vectors are related through complex
conjugation, e.g. K̄a ¼ ðKaÞ�, Kab ¼ −ðKbaÞ�, so we only
need to later determine the Kosmann derivatives forK1,K2,
K3, K11, K22, K33, K12, K23 and K31, since the remaining
derivatives follow through complex conjugation.
In order to solve the Killing spinor equations, we adopt

the supersymmetry conventions from Ref. [40] and intro-
duce a natural orthonormal frame for CP3:

eμ ¼
ffiffiffiffiffiffi
R3

k

r
1

2

dxμ

r
; e3 ¼

ffiffiffiffiffiffi
R3

k

r
1

2

dr
r
;

e4 ¼
ffiffiffiffiffiffi
R3

k

r
dμ; e5 ¼

ffiffiffiffiffiffi
R3

k

r
sin μdα;

e6 ¼
ffiffiffiffiffiffi
R3

k

r
1

2
sin μ sin ατ1; e7 ¼

ffiffiffiffiffiffi
R3

k

r
1

2
sin μ sin ατ2;

e8 ¼
ffiffiffiffiffiffi
R3

k

r
1

2
sin μ sin α cos ατ3;

e9 ¼
ffiffiffiffiffiffi
R3

k

r
1

2
sin μ cos μðdχ þ sin2ατ3Þ: ð17Þ

Since the bosonic T dualities along AdS4 will break the
superconformal supersymmetries, we need only concern
ourselves with their Poincaré counterparts. To isolate these,
we impose the projection condition

Γ012σ1η ¼ η; ð18Þ
where η is a Majorana-Weyl spinor

η ¼
�
ϵþ
ϵ−

�
; ð19Þ

with Pauli matrices acting on ϵ�. From the dilatino
variation, we identify an additional projection condition
on the spinors:

ðΓ49 þ Γ58 þ Γ67Þiσ2η ¼ Γ3η: ð20Þ

Together the two projection conditions (18) and (20)
preserve twelve supersymmetries. Recalling our earlier
rule of thumb, this suggests that we should be able to
construct six fermionic isometries.
Solving the remaining differential Killing spinor equa-

tion coming from the vanishing of the gravitino variation,
we identify the explicit form of the Killing spinor:

η ¼ r−
1
2e

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þe

χ
4
ðΓ67þΓ58þΓ49Þ

× e
ψ
4
ðΓ58−Γ67Þe−θ

4
ðΓ65þΓ78Þe

ϕ
4
ðΓ58−Γ67Þη0; ð21Þ

where η0 is a constant spinor satisfying (18) and (20). It
should be noted that the condition (20) commutes through
all the exponentials and therefore can be taken to act
directly on the constant spinor η0.

IV. FERMIONIC ISOMETRIES

In this section, we enumerate the possibilities for picking
commuting fermionic isometries. In the supergravity
description, this boils down to isolating Killing spinors
that satisfy the condition (5). To this end, we decompose
the constant Killing spinor appearing in (21) as

η0 ¼ ξþ−− þ ξ−þ− þ ξ−−þ þ ξ−þþ þ ξþ−þ þ ξþþ−; ð22Þ

where

0 ¼ ðΓ49 ∓ iÞξ�ab ¼ ðΓ58 ∓ iÞξa�b ¼ ðΓ67 ∓ iÞξab�:
ð23Þ

It is worth noting that each of these basis spinors corre-
sponds to two complex supersymmetries [46], allowing a
possibility of 12 fermionic isometry directions before we
consider the constraint (5). We also remark that the basis
spinors ξþ−− and ξ−þþ, etc. are, modulo overall coeffi-
cients, related via complex conjugation.
Slotting these eigenspinors into the Killing spinor, we

arrive at a final expression for η:

η ¼ r−
1
2e−

i
4
χ

�
ðcos αþ sin αΓ45e−μΓ

43Þξþ−− þ e
i
2
ϕ

�
cos

θ

2
e

i
2
ψ ðcos αeμΓ43 þ sin αΓ45Þ þ sin

θ

2
e−

i
2
ψΓ56eμΓ

43

�
ξ−þ−

þ e−
i
2
ϕ

�
cos

θ

2
e−

i
2
ψeμΓ

43 þ sin
θ

2
e

i
2
ψΓ56ðcos αeμΓ43 − sin αΓ45Þ

�
ξ−−þ

�

þ r−
1
2e

i
4
χ

�
ðcos αþ sin αΓ45e−μΓ

43Þξ−þþ þ e−
i
2
ϕ

�
cos

θ

2
e−

i
2
ψðcos αeμΓ43 þ sin αΓ45Þ þ sin

θ

2
e

i
2
ψΓ56eμΓ

43

�
ξþ−þ

þ e
i
2
ϕ

�
cos

θ

2
e

i
2
ψeμΓ

43 þ sin
θ

2
e−

i
2
ψΓ56ðcos αeμΓ43 − sin αΓ45Þ

�
ξþþ−

�
: ð24Þ
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Making use of the explicit expression for η and the
Kosmann derivatives in the appendix, we can identify
various isometries of CP3 that can be T-dualized, while
still preserving supersymmetry. The result of this analysis is
summarized in Table I.
We remark that the combinations Kaa � Kbb, b ≠ a are

pure imaginary, so modulo an overall factor, they corre-
spond to real bosonic isometries. As a result, we infer from
our table that one can generate supersymmetric AdS4
solutions to type IIB supergravity by T-dualizing on these
directions. The solutions will preserve eight and sixteen
supersymmetries, but it is easy to see they will be singular
as one T-dualizes on a vanishing cycle.
As emphasized previously, we are committed to perform-

ing six fermionic T dualities in order to undo the dilaton shift.
This entails choosing six complex Killing spinors. We note
that the requirement that the fermionic isometries commute
(5) has a preference for choosing a spinor, but not its complex
conjugate. For example, if one considers a linear combina-
tion ϵ ¼ ξþ−− þ ξ−þþ, where one allows for arbitrary com-
plex coefficients in the base spinors, we remark that one can
only solve the condition (5) when one of ξþ−− or ξ−þþ
vanishes. This constraint is consistent with our expectation
that the Killing spinors appearing in the fermionic T duality
must remain complex [13].
Based on this observation, natural choices for the six

commuting fermionic isometries involve choosing constant
Killing spinors, denoted η0, which satisfy the projection
conditions in Table II. Using the results from Table I, we
can also list the bosonic isometries of CP3 that preserve
these Killing spinors under T duality. We omit projection
conditions with the opposite signs, which are related
through complex conjugation.
We observe that for each choice of six Killing spinors,

one can identify three commuting bosonic Killing direc-
tions, as shown in Table II, yet the determinant of the
induced metric is always zero. As a direct consequence, we
remark that bosonic T duality with respect to these
directions will also result in a singularity in the dilaton

shift. However, before we turn our attention to this
singularity, we are confronted with a singularity in the
fermionic T duality. This singularity is deeply troubling,
since we require the matrix Cij to be invertible so that the
transformation of the RR sector bispinor, tailored to our IIA
conventions [47],

i
16

e ~Φ ~F ¼ i
16

eΦF þ C−1
ij ϵi ⊗ ϵj; ð25Þ

may be executed [48].
We will now give explicit expressions for the compo-

nents of the matrix Cij for the various cases highlighted in
Table II. We will show in each case that the determinant of
C is zero. Contrary to Ref. [32], we find that determinant is
not zero irrespective of the values of the components, but in
fact depends on the cancellation in the components.
Before proceeding, we make some comments on nota-

tion, before presenting results. Recall that there are 12
complex basis spinors (22), which are determined up to
overall complex constants, ai; bi ∈ C i ¼ 1;…; 6. We label
the constants corresponding to the spinors, ξþ−−, ξ−þ−,
ξ−−þ, ξ−þþ, ξþ−þ, ξþþ− as a1; b;a2; b2;…; a6; b6, respec-
tively. The explicit basis spinors can be found in the
Appendix.
We start by imposing the first projection condition from

Table II, namely Γ3σ2η0 ¼ η0, which preserves the spinors
ξþ−−, ξ−þ−, ξ−−þ, so the only nonzero complex coefficients
are a1, b1, a2, b2, a3, b3. With this choice, it is easy to
check that (5) is trivially satisfied, so it imposes no further
constraint. Modulo an additive constant, which we will
comment on soon, one may integrate (4) to identify the
nonzero components of the matrix:

C13¼−

ffiffiffiffiffiffi
R3

k

r
16a1a2iz̄1
rð1þjzj2Þ ; C16¼

ffiffiffiffiffiffi
R3

k

r
16a1b3iz̄3
rð1þjzj2Þ ;

C24¼−

ffiffiffiffiffiffi
R3

k

r
16b1b2iz̄1
rð1þjzj2Þ ; C25¼−

ffiffiffiffiffiffi
R3

k

r
16b1a3iz̄3
rð1þjzj2Þ ;

C35¼
ffiffiffiffiffiffi
R3

k

r
16a2a3iz̄2
rð1þjzj2Þ ; C46¼

ffiffiffiffiffiffi
R3

k

r
16b2b3iz̄2
rð1þjzj2Þ ; ð26Þ

TABLE I. Supersymmetries preserved under CP3 bosonic T
duality.

T-duality isometry Preserved supersymmetry

K1 ξþ−−, ξ−þ−, ξ−−þ, ξþþ−
K2 ξþ−−, ξ−þ−, ξ−−þ, ξ−þþ
K3 ξþ−−, ξ−þ−, ξ−−þ, ξþ−þ
K11 þ K22 ξþ−−, ξ−−þ, ξ−þþ, ξþþ−
K11 − K22 ξ−þ−, ξþ−þ
K22 þ K33 ξþ−−, ξ−þ−, ξ−þþ, ξþ−þ
K22 − K33 ξ−−þ, ξþþ−
K33 þ K11 ξ−þ−, ξ−þ−, ξþ−þ, ξþþ−
K33 − K11 ξþ−−, ξ−þþ
K12 ξ−−þ, ξ−þ−, ξ−þþ, ξþ−þ
K23 ξ−−þ, ξþ−−, ξþþ−, ξþ−þ
K31 ξþ−−, ξ−þþ, ξ−þ−, ξþþ−

TABLE II. Neglecting complex conjugates, there are four
natural sets of six Killing spinors, which are picked out by the
above projection conditions. For each set of six Killing spinors,
one can identify 3 commuting Killing vectors that may be T-
dualized without breaking the supersymmetries. However, re-
gardless of the choice, the determinant of the induced metric is
zero, resulting in a singularity in the dilaton shift under T duality.

Projection CP3 isometries

ðΓ49 þ Γ58 þ Γ67Þη0 ¼ −iη0 K1, K2, K3

Γ49η0 ¼ iη0 K21, K�
2, K23

Γ58η0 ¼ iη0 K32, K�
3, K31

Γ67η0 ¼ iη0 K13, K�
1, K12
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where we have reexpressed the result in terms of the
original Fubini-Study coordinates through (13).
We observe that the determinant of this matrix,

detC ¼ −ðC16C24C35 þ C13C25C46Þ2; ð27Þ
is zero once evaluated, in line with the findings of Ref. [32].
However, in contrast to Ref. [32] we do not find that the
matrix C is trivially zero, namely cancellation occurs once
the components are evaluated. Although we have picked
our spinors to coincide with the basis spinors, it is
straightforward to check that the determinant is zero for
more general linear combinations. It is also obvious that the
result for the projection condition with the opposite sign,
i.e. Γ3σ2η0 ¼ −η0 follows immediately from complex
conjugation and the determinant will be again zero.
Before moving on, it is important to make one final

comment. We have dropped additive constants when
evaluating the determinant. Once these constants are
reintroduced, the determinant will no longer be zero, but
will no longer scale as detC ∼ r−6, as required to cancel the
dilaton shift (2). Therefore, it is easy to see that additive
constants, while they will contribute to a nonzero deter-
minant, cannot help compensate the shift in the dilaton
since the contribution from fermionic T duality will appear
with the wrong power of the AdS4 radial direction.
One can repeat the exercise for the other projection

conditions. To retain the Killing spinors corresponding to
the projector Γ49η0 ¼ iη0, we retain a1, b1, a5, b5, a6, b6
nonzero. Once again the constraint (5) is trivially satisfied.
The nonzero components of C are

C13 ¼
ffiffiffiffiffiffi
R3

k

r
16a1a5iz2z̄3
rð1þ jzj2Þ ; C16 ¼

ffiffiffiffiffiffi
R3

k

r
16a1b6iz2z̄1
rð1þ jzj2Þ ;

C24 ¼
ffiffiffiffiffiffi
R3

k

r
16b1b5iz2z̄3
rð1þ jzj2Þ ; C25 ¼ −

ffiffiffiffiffiffi
R3

k

r
16a6b1iz2z̄1
rð1þ jzj2Þ ;

C35 ¼ −

ffiffiffiffiffiffi
R3

k

r
16a5a6iz2
rð1þ jzj2Þ ; C46 ¼ −

ffiffiffiffiffiffi
R3

k

r
16b5b6iz2
rð1þ jzj2Þ ;

ð28Þ
and referring to (27) it is once again easy to confirm that
detC ¼ 0. For the basis spinors corresponding to the pro-
jection condition Γ58η0 ¼ iη0, we identify the components,

C13 ¼−

ffiffiffiffiffiffi
R3

k

r
16a2a4iz3z̄2
rð1þjzj2Þ ; C15 ¼−

ffiffiffiffiffiffi
R3

k

r
16a2a6iz3z̄1
rð1þjzj2Þ ;

C24 ¼−

ffiffiffiffiffiffi
R3

k

r
16b2b4iz3z̄2
rð1þjzj2Þ ; C26 ¼−

ffiffiffiffiffiffi
R3

k

r
16b2b6iz3z̄1
rð1þjzj2Þ ;

C36 ¼−

ffiffiffiffiffiffi
R3

k

r
16a4b6iz3
rð1þjzj2Þ ; C45 ¼

ffiffiffiffiffiffi
R3

k

r
16a6b4iz3
rð1þ jzj2Þ ;

ð29Þ

while for the spinors corresponding to Γ67η0 ¼ iη0, we find
the following components:

C14 ¼
ffiffiffiffiffiffi
R3

k

r
16a3b4iz1z̄2
rð1þ jzj2Þ ; C15 ¼

ffiffiffiffiffiffi
R3

k

r
16a3a5iz1z̄3
rð1þ jzj2Þ ;

C23 ¼ −

ffiffiffiffiffiffi
R3

k

r
16a4b3iz1z̄2
rð1þ jzj2Þ ; C26 ¼

ffiffiffiffiffiffi
R3

k

r
16b3b5iz1z̄3
rð1þ jzj2Þ

C35 ¼
ffiffiffiffiffiffi
R3

k

r
16a4a5iz1
rð1þ jzj2Þ ; C46 ¼

ffiffiffiffiffiffi
R3

k

r
16b4b5iz1
rð1þ jzj2Þ :

ð30Þ

A short calculation reveals that both determinants are
zero.

V. EFFECT OF TST

It has been suggested that a TsT transformation [37] may
be employed to exorcise the singularity in the dilaton shift
[32]. This idea has considerable merit since it allows one to
both deform the geometry, while at the same time, trans-
form the supersymmetries. Moreover, we noted earlier that
once we pick the fermionic isometries, there will be bosonic
directions that are independent of the preserved supersym-
metry, thus making these natural candidates for TsT
transformation. In this section, we will demonstrate the
action of a TsT transformation on the Killing spinors. We
are not aware of an existing treatment in the literature.
We consider a ten-dimensional spacetime with

Uð1Þ ×Uð1Þ isometry,

ds210 ¼ ds28 þ e2C1Dφ2
1 þ e2C2Dφ2

2; ð31Þ

where we have defined the covariant derivatives,
Dφi ¼ dφi þAi. Here Ci denote scalar warp factors,
and Ai represent gauge fields, all of which depend on
the eight-dimensional spacetime. We will assume for
simplicity that the Killing spinors do not depend on the
isometries and we will also drop the RR sector. It is
straightforward, e.g. [40], to generalize the analysis pre-
sented here. The NS sector suffices to identify the trans-
formation on the spinors.
We allow for an initial dilaton Φ and NS two-form B,

B ¼ B2 þ B1∧dφ1 þ B2∧dφ2; ð32Þ

where we have defined an additional two-form, B2 and 2
one-forms, Bi, which depend on the transverse eight-
dimensional spacetime.
Performing a T duality on φ1, a constant shift

φ2 → φ2 þ λφ1, and a second T duality with respect to
φ1, we find the resulting NS sector:
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d~s210 ¼ ds28 þ
e2C1

½1þ λ2e2C1þ2C2 � ½ðDφ1 þ λB2Þ2 þ ðDφ2 − λB1Þ2�;

~B ¼ B2 þ B1∧dφ1 þ B2∧dφ2 þ λB1∧B2 −
λe2C1þ2C2

½1þ λ2e2C1þ2C2 � ðDφ1 þ λB2Þ∧ðDφ2 − λB1Þ;

~Φ ¼ Φ −
1

2
lnð1þ λ2e2C1þ2C2Þ: ð33Þ

Inserting these expressions (33) into the gravitino supersymmetry variation along the transverse eight-dimensional
spacetime,

δΨμ ¼ ∇μη −
1

8
HμρσΓρσσ3η; ð34Þ

we find

δ ~Ψμ ¼
�
∇μ −

eC1

4
ffiffiffiffi
Δ

p ðF 1
μν þ λG2

μνÞΓφ1

ν −
eC2

4
ffiffiffiffi
Δ

p ðF 2
μν − λG1

μνÞΓφ2

ν −
1

8
HμρσΓρσσ3 þ λ

2Δ
∂μðC1 þ C2ÞeC1þC2Γφ1φ2σ3

þ λe2C1þC2

4
ffiffiffiffi
Δ

p ðF 1
μν þ λG2

μνÞΓνφ2σ3 −
λeC1þ2C2

4
ffiffiffiffi
Δ

p ðF 2
μν − λG1

μνÞΓνφ1σ3 −
e−C1

ffiffiffiffi
Δ

p

4
G1
μνΓνφ1σ3 −

e−C2

ffiffiffiffi
Δ

p

4
G2
μνΓνφ2σ3

�
~η;

ð35Þ
where we have defined

F i ¼ dAi; Gi ¼ dBi; H ¼ dB2 − G1∧A1 − G2∧A2;

Δ ¼ 1þ λ2e2C1þ2C2 : ð36Þ

We can now redefine

~η ¼ e−Xη; e2X ¼ 1ffiffiffiffi
Δ

p ð1þ λeC1þC2Γφ1φ2σ3Þ; ð37Þ

to recast the supersymmetry variation in terms of the
original variation:

δΨμ ¼ eXδ ~Ψμ: ð38Þ

The transformation on the Killing spinor under a TsT
transformation is given by (37). We will now see how
this transformation affects fermionic T duality. This will
allow us to show that given a geometry with a global
Uð1Þ ×Uð1Þ symmetry, a deformation based on TsT,
provided it does not break supersymmetry, does not affect
the determination of the matrix Cij. As a result, we can
conclude that TsT transformations, assuming they can be
performed, can not remove a singularity we encounter in
the dilaton shift.
To do so, we replace σ3 with Γ11, which makes the

notation consistent with (4) and (5). We next define
θ ¼ cos−1ð1= ffiffiffiffi

Δ
p Þ, so that

~η ¼ e−
θ
2
Γφ1φ2

Γ11η: ð39Þ

It then follows that

0 ¼ η̄iΓμηj; ∂μCij ¼ ϵ̄iΓμΓ11ϵj; ð40Þ

0 ¼ cos θη̄iΓφkηj − ϵkl sin θη̄iΓφlΓ11ηj; ð41Þ

∂φkCij ¼ ϵ̄iΓφkΓ11ηj − ϵkl sin θη̄iΓφlηj; ð42Þ

where ϵ12 ¼ 1 and μ ≠ φi. It is clear from (40) that the
transformation has not affected the determination of the
matrix Cij in the transverse eight-dimensional spacetime.
To see that it also does not affect Cij in the φi directions, we
can combine the equations (41) and (42) to get

∂φkCij ¼
ffiffiffiffi
Δ

p
η̄iΓφkΓ11ηj: ð43Þ

Taking into account the factor of
ffiffiffiffi
Δ

p
in the deformed

metric (33), we come to the conclusion that the equations to
be solved to determine Cij are invariant under TsT.

VI. T DUALITY AND THE SIGMA MODEL

We conclude with a few remarks concerning self-duality
of AdS4 × CP3 in its sigma model representation. The
AdS4 × CP3 background can be described by the super-
coset [17–19]:

OSpð6j2; 2Þ
SOð1; 3Þ × Uð3Þ ¼ AdS4 × CP3 þ 24 ferm: ð44Þ

If n ∈ N�, a basis of ospð2nj2; 2Þ convenient for T duality
is ospð2nj2; 2Þ ¼ spanfPαβ; Kαβ; D; Jαβ; L�

AB; RABjQAα;
Q̄Aα; SAα; S̄Aαg, α;β¼ 1;2; A;B¼ 1;…;n. The generators

A REQUIEM FOR AdS4 × CP3 FERMIONIC … PHYSICAL REVIEW D 94, 106006 (2016)

106006-7



above satisfy the graded commutation relations reported in
the Appendix and are such that

Pαβ ¼ PðαβÞ → 3 components;

Kαβ ¼ KðαβÞ → 3 components;

Jαα ¼ 0 → 3 components;

D → 1 component;

RAB → n2 components;

Lþ
AB ¼ Lþ

½AB� → nðn − 1Þ=2 components;

L−
AB ¼ L−

½AB� → nðn − 1Þ=2 components;

QAα; SAα; Q̄Aα; S̄Aα → 2n components each: ð45Þ

As a consequence, Pαβ, Kαβ, D, Jαβ, respectively, encode
translations, special conformal transformations, dilatations
and Lorentz rotations on the three-dimensional conformal
boundary of AdS4. Furthermore, L�

AB, RAB span the SO(2n)
R-symmetry of ospð2nj4Þ, while Q, S, Q̄, S̄ are the super-
charges related to the N ¼ 2n supersymmetry of the
boundary theory. Specifically, the case n ¼ 3 corresponds
to ABJM theory.
Writing the coset action requires an order-four auto-

morphism of g ¼ ospð2nj2; 2Þ, Ω, providing the projectors

PðkÞ ¼
1

4
ð1þ i3kΩþ i2kΩ2þ ikΩ3Þ; k¼ 0;…;3: ð46Þ

Such projectors split the superalgebra g into the direct sum
of Ω eigenspaces:

g ¼ ⨁
3

k¼0

gðkÞ; gðkÞ ≔ fJ ∈ g∶ΩðJÞ ¼ ikJg;

½gðkÞ; gðlÞg ⊂ gðkþlÞ mod 4; ð47Þ

where ½·; ·g is the graded Lie bracket of g. The eigenspace
gð0Þ is a closed subalgebra of g and the desired coset is the
quotient of the exponential maps of g and gð0Þ, namely
ExpðgÞ=Expðgð0ÞÞ. The lagrangian of the model is obtained
by picking up a coset representative g∶ Σ → ExpðgÞ, where
Σ is the string worldsheet, and decomposing the related
Cartan-Maurer one-form j ¼ g−1dg according to the Z4

grading:

j ¼ g−1dg ¼ jð0Þ þ jð1Þ þ jð2Þ þ jð3Þ; jðkÞ ∈ gðkÞ: ð48Þ

Finally, the action of the ExpðgÞ=Expðgð0ÞÞ sigma model
reads

S ¼ −ðT=2Þ
Z
Σ
jð2Þ∧ � jð2Þ þ κjð1Þ∧jð3Þ; ð49Þ

with T being the string tension and κ the kappa-symmetry
parameter [51].
In general, the automorphism Ω acts on the supercharges

as [52]

ΩðQAαÞ ¼ iSBβωBAσβα; ΩðSAαÞ ¼ iQBβωBAσβα; ð50Þ

and similarly for Q̄, S̄. The matrix ωAB ¼ ω½AB� and σαβ ¼
σ½αβ� fulfill

ωACωBC ¼ δAB; σαγσβγ ¼ δαβ; ð51Þ

and the corresponding projections of the supercharges read

Q1;3
Aα ≔ P1;3QAα ¼

1

4
ðQAα � SBβωBAσβαÞ;

Q̄1;3
Aα ≔ P1;3Q̄Aα ¼

1

4
ðQ̄Aα � S̄BβωBAσβαÞ: ð52Þ

The complete Z4 grading of g is

g0 ¼ hδABPαβ þ σαγKγδσδβ; Jαβ; L
þ
ADωDB þ L−

BDωDA;ωCðBRAÞCi
g1 ¼ hQAα þ SBβωBAσβα; Q̄Aα þ S̄BβωBAσβαi
g2 ¼ hδABPαβ − σαγKγδσδβ; D; Lþ

ADωDB − L−
BDωDA;ωC½BRA�Ci

g3 ¼ hQAα − SBβωBAσβα; Q̄Aα − S̄BβωBAσβαi: ð53Þ

If n ¼ 3, g ¼ OSpð6j2; 2Þ, g0 ¼ soð1; 3Þ ⊕ uð3Þ and
the coset is

OSpð6j2; 2Þ
SOð1; 3Þ × Uð3Þ ¼

Spð2; 2Þ
SOð1; 3Þ ×

SOð6Þ
Uð3Þ þ 24 ferm; ð54Þ

which is exactly (44). Therefore, one chooses the coset
representative

g ¼ eXβαPαβþλBAL
þ
ABþθAαQAα

× e−θ̄AαQ̄Aα−ξ̄AαS̄Aαe−D logY−ρBARABe−ξAαSAα ; ð55Þ

finds the current components (48) and the action (49). T
duality for backgrounds with isometry supergroup of OSp
type [35] requires to apply Buscher rules on Pαβ, L

þ
AB,QAα,

which are three bosonic directions along the conformal
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boundary of AdS4, three bosonic directions along CP3 and
six fermionic directions, respectively. T duality maps these
as follows:

hPαβ; L
þ
AB;QAαi → hKαβ; L−

AB; SAαi: ð56Þ

In particular, T duality along θ and λ inverts the metrics
of the corresponding kinetic terms. Unfortunately, these
metrics contain the matrix ωAB, which for OSpð6j2; 2Þ is a
3 × 3 skew-symmetric matrix and, as such, is not invertible.
This is a direct consequence of the fact that OSpð6j2; 2Þ
does not admit a nonsingular outer automorphism of order
four [17,19].
On the other hand, AdS4 × CP3 can be embedded

into a bigger system. Indeed, if n ¼ 4, g ¼ OSpð8j2; 2Þ,
g0 ¼ soð1; 3Þ ⊕ uð4Þ, and the coset becomes

OSpð8j2; 2Þ
SOð1; 3Þ × Uð4Þ ¼

Spð2; 2Þ
SOð1; 3Þ ×

SOð8Þ
SOð2Þ × SOð6Þ þ 32 ferm:

¼ AdS4 ×G2ðR8Þ þ 32 ferm: ð57Þ

The dimension of the Graßmannian G2ðR8Þ is 12 and the
bosonic dimension of the supercoset (57) is 16. This is not a
string background [53], but it contains AdS4 × CP3 and
can be used to study the action of T duality upon the latter.
Indeed, Buscher rules are not singular for AdS4 × G2ðR8Þ
because the skew-symmetric matrix appearing in the
fermionic kinetic terms, ωAB, is now 4 × 4 and invertible
[55]. The coset given in (57) can therefore be used to map a
AdS4 × CP3 submanifold of (57) into a dual AdS4 × CP3

submanifold. Notice that the Berezinian of the transforma-
tion is nontrivial,

ð2 × #P − #QÞ log r ¼ ð2 × 3 − 8Þ log r ≠ 0: ð58Þ

The super-Jacobian of the transformation is not 1 and the
measure of the corresponding path integral would not be
left unchanged by the Buscher procedure just described. As
a consequence, the mapping between different AdS4 × CP3

slices of AdS4 ×G2ðR8Þ can only be understood as a
classical symmetry of the model, not as a quantum one.
In summary: by writing the AdS4 × CP3 sigma model

action in the patch proper to perform T duality (borrowed
from [35]), we found unavoidable singularities arising from
the kinetic terms of the fermions and of the CP3 coor-
dinates that are affected by Buscher procedure. The reason
for these singularities is group theoretical, as it descends
from the fact that OSpð6j2; 2Þ does not admit an invertible
outer automorphism of order 4. Moreover, we showed that
AdS4 × CP3 can be embedded into AdS4 × G2ðR8Þ, which
is classically self-dual under a combination of T-dualities.
In particular, T duality maps to each other different AdS4 ×
CP3 slices of AdS4 ×G2ðR8Þ. As already mentioned, this
self-duality has a clear interpretation only at the classical

level; thus, it cannot justify the dual superconformal
symmetry of ABJM theory.

VII. CONCLUSIONS

In this article, we have studied commuting bosonic and
fermionic isometries for the geometry AdS4 × CP3 in a
systematic way to address if it is self-dual with respect to a
combination of T dualities. Employing both supergravity
and sigma model analysis, we demonstrated that irrespec-
tive of the chosen isometries, one encounters a singularity
in the dilaton shift. While TsT transformations provide a
natural way to deform the geometry and still preserve
supersymmetry, we show that it commutes with fermionic
T duality, and so will not affect our conclusions.
We remark that fermionic T duality has been derived

from a supergravity ansatz as a special case of a more
general transformation involving Killing spinor bilinears
[56], where Cij may include antisymmetric components.
However, (5) is also a constraint for this generalization, and
as we have worked with the explicit Killing spinors, it is
not clear how Cij may possess an antisymmetric part in
the current setting. Furthermore, one may imagine that the
singularity could be resolved by lifting the problem to
eleven-dimensional supergravity, but it is worth recalling
that the perturbative evidence for self-duality holds in the
IIA regime.
While our results preclude self-duality based on fer-

mionic T duality, the wealth of perturbative results, some of
which are connected to known integrable structures, i.e.
Yangian, suggests that some self-duality transformation
should be at work. In this light, it is important to understand
the connection between integrability and self-duality.
AdS4 × CP3 aside, it is clear that the Berkovits-Maldacena
transformation, since it relies on preserved supersymmetry,
can not be responsible for self-duality for quotients and TsT
deformations of AdS5 × S5, despite the presence of inte-
grability (see for example [57]). As supersymmetry is
decreased, our useful rule of thumb means we can not
find the requisite number of fermionic isometries required
to undo the dilaton shift from the anti–de Sitter T dualities.
In fact, the Lunin-Maldacena solutions [37] are self-dual,

as all one has to do is undo the TsT transformation,
apply self-duality and re-apply TsT. Through this chain
of dualities, it is clear that TsT-deformed AdS5 × S5 can be
self-dual, but there should be a generalistion of fermionic T
duality that holds directly when supersymmetry is broken.
We plan to pursue this in future work in the hope that
it sheds some light on the expected self-duality of
AdS4 × CP3.

VIII. DATA MANAGEMENT

No additional research data beyond the data presented
and cited in this work are needed to validate the research
findings in this work.
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APPENDIX A: GAMMA MATRICES

In this work, we make use of the following real gamma
matrices,

Γ0 ¼ iσ2 ⊗ 116; Γi ¼ σ1 ⊗ γi; ðA1Þ

where

γ1 ¼ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2; γ2 ¼ σ2 ⊗ 12 ⊗ σ1 ⊗ σ2;

γ3 ¼ σ2 ⊗ 12 ⊗ σ3 ⊗ σ2; γ4 ¼ σ2 ⊗ σ1 ⊗ σ2 ⊗ 12;

γ5 ¼ σ2 ⊗ σ3 ⊗ σ2 ⊗ 12; γ6 ¼ σ2 ⊗ σ2 ⊗ 12 ⊗ σ1;

γ7 ¼ σ2 ⊗ σ2 ⊗ 12 ⊗ σ3; γ8 ¼ σ1 ⊗ 12 ⊗ 12 ⊗ 12;

γ9 ¼ σ3 ⊗ 12 ⊗ 12 ⊗ 12: ðA2Þ

Observe with this representation that
Γ11 ≡ Γ0123456789 ¼ σ3 ⊗ 116, Γ0 is antisymmetric, while
Γi are symmetric.

Using the above gamma matrices, we can construct explicit basis spinors (22),

ξþ−− ¼
�
a1
b1

�
⊗

0
BBB@

1

0

0

1

1
CCCA ⊗

0
BBB@

1

i

i

−1

1
CCCAþ

�
b1
−a1

�
⊗

0
BBB@

0

1

−1
0

1
CCCA ⊗

0
BBB@

1

i

−i
1

1
CCCA;

ξ−þ− ¼
�
a2
b2

�
⊗

0
BBB@

1

0

0

1

1
CCCA ⊗

0
BBB@

1

i

−i
1

1
CCCAþ

�
b2
−a2

�
⊗

0
BBB@

0

1

−1
0

1
CCCA ⊗

0
BBB@

1

i

i

−1

1
CCCA;

ξ−−þ ¼
�
a3
b3

�
⊗

0
BBB@

1

0

0

−1

1
CCCA ⊗

0
BBB@

1

−i
i

1

1
CCCAþ

�
b3
−a3

�
⊗

0
BBB@

0

1

1

0

1
CCCA ⊗

0
BBB@

1

−i
−i
−1

1
CCCA;

ξ−þþ ¼
�
a4
b4

�
⊗

0
BBB@

1

0

0

1

1
CCCA ⊗

0
BBB@

1

−i
−i
−1

1
CCCAþ

�
b4
−a4

�
⊗

0
BBB@

0

1

−1
0

1
CCCA ⊗

0
BBB@

1

−i
i

1

1
CCCA;

ξþ−þ ¼
�
a5
b5

�
⊗

0
BBB@

1

0

0

1

1
CCCA ⊗

0
BBB@

1

−i
i

1

1
CCCAþ

�
b5
−a5

�
⊗

0
BBB@

0

1

−1
0

1
CCCA ⊗

0
BBB@

1

−i
−i
−1

1
CCCA;

ξþþ− ¼
�
a6
b6

�
⊗

0
BBB@

1

0

0

−1

1
CCCA ⊗

0
BBB@

1

i

−i
1

1
CCCAþ

�
b6
−a6

�
⊗

0
BBB@

0

1

1

0

1
CCCA ⊗

0
BBB@

1

i

i

−1

1
CCCA; ðA3Þ

where ai, bi are complex constants. Note that the first three and last three spinors are modulo constants, complex
conjugates, as expected.
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APPENDIX B: KOSMANN DERIVATIVES

In this section, we record the Kosmann derivatives for various vectors. For the vectors, lengthy but straightforward
calculations reveal:

LK1
η ¼ 1

4
e

i
2
ðϕ−χÞe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þ

�
e

i
2
ψ cos

θ

2
ðiΓ7 − Γ6Þ

þ e−
i
2
ψ sin

θ

2
ðiΓ8 − Γ5Þ

�
½σ2 − Γ3�eα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB1Þ

LK2
η ¼ 1

4
e−

i
2
χe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89ÞðiΓ9 − Γ4Þ½σ2 − Γ3�eα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB2Þ

LK3
η ¼ 1

4
e−

i
2
ðϕþχÞe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þ

�
e−

i
2
ψ cos

θ

2
ðiΓ8 − Γ5Þ

− e
i
2
ψ sin

θ

2
ðiΓ7 − Γ6Þ

�
½σ2 − Γ3�eα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB3Þ

LK11
¼ −

i
2
e
μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þe

χ
4
ðΓ67þΓ58þΓ49Þe

ψ
4
ðΓ58−Γ67Þe−θ

4
ðΓ65þΓ78ÞΓ67

× e
θ
4
ðΓ65þΓ78Þe−

ψ
4
ðΓ58−Γ67Þe−

χ
4
ðΓ67þΓ58þΓ49Þeα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB4Þ

LK22
¼ −

i
2
e
μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þe

χ
4
ðΓ67þΓ58þΓ49Þe

ψ
4
ðΓ58−Γ67Þe−θ

4
ðΓ65þΓ78ÞΓ49

× e
θ
4
ðΓ65þΓ78Þe−

ψ
4
ðΓ58−Γ67Þe−

χ
4
ðΓ67þΓ58þΓ49Þeα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB5Þ

LK33
¼ −

i
2
e
μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þe

χ
4
ðΓ67þΓ58þΓ49Þe

ψ
4
ðΓ58−Γ67Þe−θ

4
ðΓ65þΓ78ÞΓ58

× e
θ
4
ðΓ65þΓ78Þe−

ψ
4
ðΓ58−Γ67Þe−

χ
4
ðΓ67þΓ58þΓ49Þeα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB6Þ

LK31
η ¼ −

1

4
eiϕe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þe

ψ
4
ðΓ58−Γ67Þe−θ

4
ðΓ65þΓ78Þ½Γ78 þ Γ65 þ iðΓ68 þ Γ57Þ�

× e
θ
4
ðΓ65þΓ78Þe−

ψ
4
ðΓ58−Γ67Þeα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB7Þ

LK12
η ¼ 1

4
e

i
2
ðψ−ϕÞe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þ

�
cos

θ

2
e−iψ ½ðΓ79 − Γ46Þ − iðΓ47 þ Γ69Þ�

− sin
θ

2
½Γ45 − Γ89 þ iðΓ59 þ Γ48Þ�

�
e
α
2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη; ðB8Þ

LK23
η ¼ 1

4
e−

i
2
ðψþϕÞe

μ
2
ðΓ9iσ2þΓ43Þe−α

2
ðΓ54þΓ89Þ

�
cos

θ

2
½Γ45 − Γ89 − iðΓ59 þ Γ48Þ�

þ sin
θ

2
eiψ ½Γ79 − Γ46 þ iðΓ47 þ Γ69�eα

2
ðΓ54þΓ89Þe−

μ
2
ðΓ9iσ2þΓ43Þη: ðB9Þ

In terms of angular coordinates, we can re-express the vectors Kaa as

K11 ¼ −ið∂ψ − ∂ϕÞ; K22 ¼ 2ið∂ψ − ∂χÞ;
K33 ¼ −ið∂ψ þ ∂ϕÞ: ðB10Þ
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APPENDIX C: ospð2nj4Þ SUPERCONFORMAL ALGEBRA

The bosonic commutation relations for ospð2nj4Þ are [58]:

½D;Pαβ� ¼ Pαβ; ½D;Kαβ� ¼ −Kαβ; ½Jαβ; Jγδ� ¼ δβγJαδ − δαδJγβ;

½Pαβ; Kγδ� ¼ −4δαðγδδÞβD − 2δγðαJβÞδ − 2δδðαJβÞγ;

½Jαβ; Pγδ� ¼ 2PαðγδδÞβ − δαβPγδ; ½Jαβ; Kγδ� ¼ −2KαðγδδÞβ þ δαβKγδ;

½RAB; L
þ
CD� ¼ 2Lþ

A½DδC�B; ½RAB; L−
CD� ¼ 2L−

B½CδD�A;

½Lþ
AB; L

−
CD� ¼ 2RA½DδC�B − 2RB½DδC�A; ½RAB; RCD� ¼ δBCRAD − δADRCB: ðC1Þ

The fermion-fermion anticommutators read

fQAα; Q̄Bβg ¼ δABPαβ; fSAα; S̄Bβg ¼ δABKαβ

fQAα; SBβg ¼ δABδαβDþ δABJαβ − δαβRAB; fQAα; S̄Bβg ¼ −δαβLþ
AB

fQ̄Aα; S̄Bβg ¼ δABδαβDþ δABJαβ þ δαβRBA; fQ̄Aα; SBβg ¼ −δαβL−
AB: ðC2Þ

The boson-fermion commutators are,

½D;QAα� ¼
1

2
QAα; ½D; SAα� ¼ −

1

2
SAα; ½D; Q̄Aα� ¼

1

2
Q̄Aα; ½D; S̄Aα� ¼ −

1

2
S̄Aα

½Jαβ; QAγ� ¼ δβγQAα −
1

2
δαβQAγ; ½Jαβ; SAγ� ¼ −δαγSAβ þ

1

2
δαβSAγ

½Pαβ; SAγ� ¼ 2Q̄AðαδβÞγ; ½Kαβ; QAγ� ¼ 2S̄AðαδβÞγ
½RAB;QCα� ¼ δBCQAα; ½RAB; SCα� ¼ −δACSBα;

½Lþ
AB; SCα� ¼ 2δC½BS̄A�α; ½L−

AB;QCα� ¼ 2δC½BQ̄A�α; ðC3Þ
and the Killing forms are

strðPαβKγδÞ ¼ −4δαðγδδÞβ; strðDDÞ ¼ 1; strðJαβJγδÞ ¼ 2δαδδβγ − δαβδγδ

strðLþ
ABL

−
CDÞ ¼ 4δA½DδC�B; strðRABRCDÞ ¼ 2δADδBC;

strðQAαSBβÞ ¼ δABδαβ; strðQ̄AαS̄BβÞ ¼ δABδαβ: ðC4Þ

Here, α, β, γ, δ ¼ 1, 2 while A;B; C;D ¼ 1;…; n.
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