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We study closed photon orbits in spherically symmetric static solutions of supergravity theories, a
Horndeski theory, and a theory of quintessence. These orbits lie in what we shall call a photon sphere
(antiphoton sphere) if the orbit is unstable (stable). We show that in all the asymptotically flat solutions we
examine that admit a regular event horizon, and whose energy-momentum tensor satisfies the strong energy
condition, there is one and only one photon sphere outside the event horizon. We give an example of a
Horndeski theory black hole (whose energy-momentum tensor violates the strong energy condition) whose
metric admits both a photon sphere and an antiphoton sphere. The uniqueness and nonexistence also holds
for asymptotically anti–de Sitter solutions in gauged supergravity. The latter also exhibits the projective
symmetry that was first discovered for the Schwarzschild–de Sitter metrics: the unparametrized null
geodesics are the same as when the cosmological or gauge coupling constant vanishes. We also study the
closely related problem of accretion flows by perfect fluids in these metrics. For a radiation fluid, Bondi’s
sonic horizon coincides with the photon sphere. For a general polytropic equation of state this is not the
case. Finally we exhibit counterexamples to a conjecture of Hod’s.
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I. INTRODUCTION

By Fermat’s principle, the study of null geodesics in a
static (dþ 1)-dimensional spacetime with metric

ds2dþ1 ¼ −e2UðxÞdt2 þ gijdxidxj ð1:1Þ

may be reduced to the study of the geodesics of the spatial
manifold equipped with the conformally rescaled “optical
metric”

ds2opt ¼ γijdxidxj ¼ e−2Ugijdxidxj: ð1:2Þ

The optical metric encodes more physical information than
just the optical properties of the spacetime. As we shall
show later, it is relevant to stability questions and to the
existence of York-Hawking-Page-type phase transitions.
Much more is known and is accessible in the spherically
symmetric case than for a general metric, and that is the
situation we shall consider in this paper. A great many
spherically symmetric static solutions of Einstein’s equa-
tions are known, including those describing black holes. In
particular, in recent years there has been a great deal of

activity constructing exact solutions of the supergravity and
related equations of motion for spatial dimensions d ¼ 3
and higher. Since their stress-energy tensors, at least
without cosmological terms, satisfy the weak, dominant,
and strong energy conditions, one is assured that the
properties of such solutions are not artifacts of the matter
content being unphysical.
The motivations for our study include
(i) In the spherically symmetric case it is well known

that unstable circular null geodesics are possible,
and that these circular null geodesics lie on a
“photon sphere.” In principle “antiphoton spheres,”
are also possible.1 In such cases, the circular
null geodesics are stable. These are much less
familiar, and to our knowledge there are no known

1At an early stage of the work reported here we were
accustomed to referring to a sphere of stable geodesics as a
“whispering gallery.” However the analogy with more mundane
whispering galleries is not that close. As pointed out to us by
Claude Warnick, the term whispering gallery is more appropri-
ately applied to the conformal boundary of anti–de Sitter
spacetime.
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asymptotically flat examples that are regular outside
a regular event horizon and with matter content
satisfying all of the three energy conditions men-
tioned above. Examples are known, however, in
cases where naked singularities are present [1]. It has
been suggested that the existence of an antiphoton
sphere is an indication that the solution may be
unstable [2,3].

(ii) A less obvious aspect of photon spheres and anti-
photon spheres is that they signal the possibility of a
York-Hawking-Page phase transition [4–6]. This
occurs because the Dirichlet boundary-value prob-
lem in Euclidean quantum gravity may have multi-
ple solutions that jump in number when the
boundary passes through a photon sphere or an
antiphoton sphere [7].

(iii) A number of conjectures have been made about
photon spheres, and it is of interest to check them
against our examples. In particular, we found that a
conjecture of Hod [8] concerning a lower bound on
the optical radius of a photon sphere is violated for
dilatonic black holes with the dilaton coupling
a2 > 1 and for STU black holes with fewer than
two charges turned on. On the other hand, a theorem
of Hod [9] concerning an upper bound on the area-
coordinate radius of a photon sphere is confirmed
both for the STU black holes and dilatonic
black holes.

(iv) It has been known for some time that the existence of
photon spheres affects the optical appearance of
collapsing stars [10], and gives rise to shadows [11].
It is also known that the optical radius governs the
high-frequency behavior of the photon absorption
cross section, and the high-frequency spectrum of
quasinormal modes [12,13].

(v) While the optical metric governs the behavior of null
geodesics parametrized by optical length, it may
happen that two different metrics admit the same
unparametrized null geodesics. This “projective
equivalence” actually occurs for the Schwarzs-
child–de Sitter or Kottler metric. The unparame-
trized null geodesics are independent of the
cosmological constant [14–16]. Surprisingly, we
find that this phenomenon is a rather general feature
of the solutions we study.

(vi) In the spherically symmetric case, each geodesic lies
in a reflection-symmetric equatorial surface. The
behavior of the geodesics is heavily influenced
by the sign of the Gauss curvature of this surface
[17–19], and in the asymptotically flat case this
allows a rapid evaluation of the light deflection at
large impact parameter [17,18]. The Gauss curvature
also determines the shape, and indeed the very
possibility of isometrically embedding the surface
into Euclidean space as a surface of revolution so as

to provide an analogue model of black holes [20,21].
There is a close connection between the sign of the
Gauss curvature and the existence of photon and
antiphoton spheres.

(vii) In the spherically symmetric case the steady radial
accretion or emission of a test perfect fluid must
make a transition from subsonic to supersonic flow
through a so-called Bondi surface [20]. For a
radiation fluid for which the pressure is one-third
of the energy density, the Bondi surface and photon
surface coincide. As we shall show in the Appendix,
for an equation of state of the form P ¼ wρ where w
is a constant, the Bondi radius is located at a

stationary point of ð−gttðRÞÞ
p−1

R2 , wherew ¼ 1
2p−1. If p ¼

2 then w ¼ 3 and this gives the same condition for
the existence of a photon sphere.

The plan of the paper is as follows.
In Sec. II we review in outline the general theory of the

optical metric of a static spherically symmetric spacetime
and its applications. Much, but not all, of this can be found
scattered in the existing literature but we thought it helpful
to assemble in one place and we have used this opportunity
to establish our notation. In particular there appears to be no
consensus on what to call what we shall refer to as the
photon sphere and antiphoton sphere and so we have
spelled out in detail the usage adopted here.
In Sec. III we discuss in detail the static spherically

symmetric solutions of four-dimensional gauged and unga-
uged STU supergravity theory. After giving the metrics in a
standard radial coordinate r we introduce, in the ungauged
case, an isotropic coordinate ρ which allows us to assign
them an effective refractive index nðρÞ. In the nonextremal
case, when there is an event horizon, we are able to locate
their unique photon sphere and establish that its location in
the coordinate r does not depend upon the gauge coupling
constant. We also verify that for nonextremal black holes
that the theorem of Hod’s [9] is satisfied, while Hod’s
conjecture [8] is violated if fewer than two charges are
turned on. In the ultraextremal case, which has naked
singularities, we found that for a range of charges there is
both a photon sphere and an antiphoton sphere. We then
investigate, by introducing an appropriate Binet-type coor-
dinate u, analogous to that used in the central orbit
problems of elementary nonrelativistic dynamics, that the
projective properties of the optical metric, i.e. its unpar-
ametrized geodesics, do not depend on the gauge coupling
constant g. This result is confirmed at a more covariant
level by calculating the Weyl projective tensor and finding
it to be independent of g. We conclude Sec. III by showing
that similar results hold for a class of dyonic solutions of
gauged supergravity theories.
In Sec. IV we extend these results to static spherically

symmetric solutions of Einstein-Maxwell-dilaton theory in
four spacetime dimensions, which depend upon an arbi-
trary Maxwell-dilaton coupling constant a. These theories
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may be thought of as having a spacetime-dependent electric
permittivity ϵ ¼ expð−2aϕÞ, where ϕ is the dilaton field,
while preserving local Lorentz invariance. These solutions
permit a check that the conjecture of Hod in [8] is violated
for a2 > 1, while Hod’s theorem [9] is obeyed.
In Sec. V we consider the static spherically symmetric

solutions of a particularly simple Horndeski theory in
which a metric gμν is coupled to a scalar χ. For certain
values of the constants entering the solution we find that the
optical geometry of the metric gμν admits both a photon
sphere and an antiphoton sphere outside its Killing horizon.
In Sec. VI we treat a class of quintessence black holes

due to Kiselev. They admit both a black-hole horizon and
an analogue of the cosmological horizon that occurs in de
Sitter spacetime. We find that, just as in the case of de Sitter
black holes, there is just a single photon sphere between the
two horizons.
In Sec. VII we provide a brief discussion of some static

hyperspherically symmetric solutions of gauged super-
gravity theories in five and seven spacetime dimensions.
As in four spacetime dimensions we find at most a single
photon hypersphere whose location is independent of the
gauged coupling constant g.
Finally in the Appendix we outline a formalism for

irrotational perfect fluids using a velocity potential ψ ,
which may be regarded as k essence. Using this we are
able to give a novel treatment of accretion onto black holes,
and to use it to locate the sonic or Bondi radius, which is the
acoustic analogue of a photon surface.

II. GENERAL THEORY

A. Notation and basic formulas

In what follows we shall find it convenient to express the
optical metric in terms of various different radial variables.
We shall use r for a generic radial variable, but reserve r⋆
for the radial optical distance or Regge-Wheeler tortoise
coordinate, and Ropt, with Copt ¼ 2πRopt, such that the
optical metric (1.2) becomes

ds2opt ¼ dr2⋆ þ R2
optdΩ2

d−1; ð2:1Þ

where dΩ2
d−1 is the unit metric on Sd−1. Therefore

Ropt ¼ e−UR; ð2:2Þ

where R is the “area distance,” such that the area of a 2-
sphere measured in the physical spacetime metric is 4πR2.
Restricting (2.1) to an equatorial 2-surface gives

ds2optj ¼ dr2⋆ þ R2
optdϕ2; 0 ≤ ϕ < 2π: ð2:3Þ

The Gauss curvature is

Kopt ¼ −
1

Ropt

d2Ropt

dr2⋆
: ð2:4Þ

Any spherically symmetric metric is conformally flat, and
so one may also introduce an isotropic coordinate ρ such
that

ds2opt ¼ n2ðρÞðdρ2 þ ρ2dΩ2
d−1Þ: ð2:5Þ

The quantity n may be interpreted in the language of
elementary optics in Euclidean space as the refractive index
or slowness, so that the “speed of light” v ¼ dρ

dt in the
coordinates ðt; ρÞ is given by v ¼ 1

n. Thus we have

Ropt ¼ nρ ¼ ρ

v
: ð2:6Þ

If dw ¼ − dr⋆
R2
opt
¼ − dρ

nρ2, then, as we shall see in detail later,

unparametrized geodesics of the optical metric satisfy an
equation similar to Binet’s equation for central orbits,

d2w
dϕ2

¼ −
1

2

d
dw

1

R2
opt

: ð2:7Þ

Circular geodesics therefore correspond to extremals of the
optical circumference at points r ¼ r̄, i.e. for which

R0
optjr¼r̄ ¼ 0: ð2:8Þ

We have an unstable photon sphere if R00
optjr¼r̄ > 0, and a

stable photon sphere, where light propagation is analogous
to the acoustic propagation in a sound fixing and ranging
(SOFAR) channel, if R00

optjr¼r̄ < 0.2

In the case of an asymptotically flat black hole, Ropt goes
to infinity both at infinity and also at a regular horizon, and
so there is always at least one photon sphere. In general one
might expect that there should be one more minimum than
there are maxima, that the outer and inner extrema should
be minima, and that the inner extrema have k maxima
alternating with k − 1 minima, there being 2kþ 1 extrema
in all. From (2.6) it follows that (2.8) is equivalent to

dv
dρ

¼ v
ρ
: ð2:9Þ

Thus if we plot the speed v ¼ 1
n against ρ then photon and

antiphoton spheres correspond to points on the graph at
which a straight line through the origin is tangent to it. If the
straight line touches the graph from above we have a

2A SOFAR channel arises in a horizontal layer in the ocean
where the speed of sound attains a local maximum. This acts like
an acoustic waveguide, in which low-frequency sound waves can
travel large distances with little attenuation [22–24].
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photon sphere. If it touches it from below, an antiphoton
sphere. The slope at those points ρ ¼ ρ̄ then equals the
inverse optical radius, Roptðρ̄Þ−1.

B. Gauss curvature

In the usual case that there is just one photon sphere and
the metric is asymptotically flat, we expect the graph of
Roptðr⋆Þ to be convex, in which case from (2.4) we see that
the Gauss curvature Kopt is negative. This allows a
qualitative analysis of the geodesics using the Gauss-
Bonnet theorem [17,18]. It also has implications for
boundary rigidity and the related inverse problem, which
in turn connects with holography and the AdS/CFT
correspondence, as was observed in [25]. Our situation
relates to what geometers call lens rigidity, a subject which
also arises in connection with invisibility cloaks, and
related devices. The strongest general mathematical result
in this area is directly applicable to our present work.

1. Lens rigidity and holography

The basic idea is to idealize a static optical lensing device
as a compact connected n-dimensional Riemannian mani-
fold fM; gg with a, not necessarily connected, boundary
∂M, with light rays described as geodesics in the optical
metric g. If ν is the inward pointing normal, we define the
(2d − 2)-dimensional space Uþ∂M as the set of positions
x ∈ ∂M and inward pointing unit vectors v such that
gðν; vÞ ≥ 0, and U−∂M as the set of positions x ∈ ∂M
and outward pointing unit vectors v such that gðν; vÞ ≠ 0.
Then for all geodesics with initial tangent vector v ∈
Uþ∂M which after a finite time τ > 0 first arrive at ∂M,
we get a map S∶ Uþ∂M → U−∂M called the scattering
map or scattering data. Note that the scattering map is not
defined if τ ¼ ∞, in which case we say that the geodesic is
trapped and may be defined as the identity if τ ¼ 0. The
scattering map S and the time function τ∶ Uþ∂M → Rþ
are referred to as the lens data. There is an obvious notion
of equivalence, under diffeomorphism of the boundary, of
the notions of the scattering map and lens data. The optical
device is said to be scattering rigid or lens rigid if the
scattering data or lens data determine the Riemannian
manifold fM; gg up diffeomorphism. The freedom to make
such diffeomorphisms is the essential principle behind the
construction of optical cloaking devices. Lens rigidity, if it
holds, is the statement that is the only freedom.
Various theorems have been proved that demonstrate

lens rigidity under the restrictive assumption that the
Riemannian manifold fM; gg is simple; that is, the boun-
dary ∂M is strictly convex and for all x ∈ M the expo-
nential map expx∶ exp−1x ðMÞ → M is a diffeomorphism.
However if trapping takes place, then the simplicity
assumption does not hold. There are comparatively few
results in that case. Since trapping typically takes place for
light rays around black holes, this is an important gap if one

wishes to apply these results to the optical metrics of static
spacetimes. However, recently an important advance has
been made by Croke and Herreros [26] (see also [27]), who
show that lens rigidity holds if

(i) d ¼ 2,
(ii) topologically M ≡ S1 × I, where I is the unit

interval,
(iii) the boundary ∂M is convex,
(iv) the Gauss curvature K of M is negative.

2. Isometric embedding

Near a horizon one has [19] Kopt ¼ κ, where κ is the
surface gravity of the horizon, which is of course a constant
over the horizon. This has consequences for the popular
way of visualizing the geometry of a two-dimensional
Riemannian manifold. This is to isometrically embed the
metric into Euclidean space. If the metric is invariant under
a circle action, one may attempt to embed it as a surface of
revolution. If the embedding is

ðr⋆;ϕÞ → ðx; y; zÞ ¼ ðRoptðr⋆Þ cosϕ; Roptðr⋆Þ sinϕ; zðr⋆ÞÞ;
ð2:10Þ

then zðr⋆Þ satisfies the ordinary differential equation:

�
dz
dr⋆

�
2

¼ 1 −
�
Ropt

dr⋆

�
2

: ð2:11Þ

A solution will exist as long as

�
Ropt

dr⋆

�
2

≤ 1: ð2:12Þ

For the Schwarzschild solution, this will be true as long
as [20]

R ≥
9

8
M: ð2:13Þ

In [21], the obstruction (2.12) was shown to apply to
analogue models of black holes constructed from graphene
sheets. In terms of the isotropic coordinate ρ and the ray
velocity v, (2.12) becomes

�
1 −

ρ

v
dv
dρ

�
2

≤ 1: ð2:14Þ

3. Energy conditions and monotonicity of redshift

The weak energy condition implies

Tt̂ t̂ ≥ 0: ð2:15Þ
If the weak energy condition holds, then the Misner-Sharp
mass MðRÞ is nondecreasing and bounded above by the
ADM mass MADM ¼ Mð∞Þ:
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MðRÞ ≤ MADM: ð2:16Þ

The dominant energy condition implies that

Tt̂ t̂ − jTR̂ R̂j ≥ 0; ð2:17Þ

which implies the weak energy condition, as well as

Tt̂ t̂ þ TR̂ R̂ ≥ 0: ð2:18Þ

The strong energy condition implies

Tt̂ t̂ þ TR̂ R̂ þ T θ̂ θ̂ þ Tϕ̂ ϕ̂ ≥ 0: ð2:19Þ

The positive radial pressure condition implies

TR̂ R̂ ≥ 0: ð2:20Þ

The positive or negative trace conditions are

T ≥ 0 or T ≤ 0; respectively: ð2:21Þ

Any static solution of the Einstein equations coupled to
scalars and vectors, and with nonpositive potentials for the
scalars and a negative cosmological term, satisfies the
negative trace condition.
The Rt̂ t̂ orthonormal Ricci-tensor component of the

d-dimensional static metric

ds2 ¼ −Φ2dt2 þ gijdxidxj; ð2:22Þ

where Φ and gij are independent of t, is given by

Rt̂ t̂ ¼ Φ−1∇2
gΦ; ð2:23Þ

where ∇2
g is the Laplace-Beltrami operator for the spatial

metric gij. From this, it follows that the Einstein equations
Rμν − 1

2
Rgμν ¼ 8πTμν imply (generalizing the d ¼ 4 result

of Ref. [28])

∇2
gΦ ¼ 8πΦ

d − 2

�
d − 4

d − 2
Tt̂ t̂ þ

�
Tt̂ t̂ þ

X
i

Tî î

��
: ð2:24Þ

(As a check on signs, note that in the Newtonian limit,
where we ignore Tî î, then Φ ¼ eU ≈ 1þU þ � � � where U
is the Newtonian potential and we recover the Poisson
equation.)
In the case of a four-dimensional metric with spherical

symmetry this gives

1ffiffiffi
g

p d
dr

� ffiffiffi
g

p
grr

dΦ
dr

�
¼ 4πΦðTt̂ t̂ þ Tr̂ r̂ þ T θ̂ θ̂ þ Tϕ̂ ϕ̂Þ;

ð2:25Þ

where g ¼ det gij. Thus

ffiffiffi
g

p
grr

dΦ
dr

¼ κAH

4π
þ
Z

r

rH

4πΦðTt̂ t̂þTr̂ r̂þT θ̂ θ̂ þTϕ̂ ϕ̂Þ
ffiffiffi
g

p
dr;

ð2:26Þ

where AH is the area and κ the surface gravity of the
horizon. By the strong energy condition, the integral on the
right-hand side is non-negative, and hence jgttj is mono-
tonically increasing. Note that if there is a negative
cosmological constant, the same conclusion, a fortiori,
follows. If we take the limit of (2.26) as r → ∞ we obtain a
form of the Smarr formula.

C. Hod’s theorem and a conjecture

In this subsection, we shall mainly use the area coor-
dinate R as the radial variable. As in the earlier discussion,
we shall denote with a bar the value of the radial coordinate
that corresponds to a stationary point of the optical radius;
i.e. a photon sphere or antiphoton sphere.
We consider the static metric

ds2 ¼ −e2γðRÞ
�
1 −

2MðRÞ
R

�
dt2 þ dR2

ð1 − 2MðRÞ
r Þ

þ R2ðdθ2 þ sin2 θdϕ2Þ;

¼ −e2Udt2 þ dR2

ð1 − 2MðRÞ
r Þ

þ R2ðdθ2 þ sin2 θdϕ2Þ;

ð2:27Þ

where MðRÞ is the Misner-Sharp mass. It satisfies

dM
dR

¼ 4πR2Tt̂ t̂; ð2:28Þ

dγ
dR

¼ 4πR
ðTt̂ t̂ þ TR̂ R̂Þ
ð1 − 2MðRÞ

R Þ
; ð2:29Þ

dðR4TR̂ R̂Þ
dR

¼ −
F

ð1 − 2
MðRÞ
R Þ

ðTt̂ t̂ þ TR̂ R̂Þ þ RT; ð2:30Þ

where

T ¼ Tμ
μ ¼ −Tt̂ t̂ þ TR̂ R̂ þ T θ̂ θ̂ þ Tϕ̂ ϕ̂ ð2:31Þ

and

F ¼ 3MðRÞ − Rþ 4πR2TR̂ R̂: ð2:32Þ

In the case of an isotropic fluid we have

Tt̂ t̂ ¼ ρ; TR̂ R̂ ¼ T θ̂θ ¼ Tϕ̂ ϕ̂ ¼ P; ð2:33Þ
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where ρ is the energy density and P is the pressure. Our
equations then reduce to the Tolman-Oppenheimer-Volkov
equations

dP
dR

¼ −ðρþ PÞMðRÞ þ 4πR3P

R2ð1 − 2MðRÞ
R Þ

; ð2:34Þ

dU
dR

¼ MðRÞ þ 4πR3P

R2ð1 − 2MðRÞ
R Þ

ð2:35Þ

whence

dU ¼ −
dP

ρþ P
: ð2:36Þ

1. Hod’s photon sphere theorems

In the coordinates we are using, the optical radius for the
metric (2.27) is given by

RoptðRÞ ¼ Re−U ¼ Re−γ
�
1 −

2MðRÞ
R

�
−1
2

: ð2:37Þ

It follows from (2.28) and (2.29) that

dðR−2
optÞ

dR
¼ 2

R4
e2γF; ð2:38Þ

where F is defined in Eq. (2.32). At either a photon sphere

or an antiphoton sphere, we have dRopt

dR ¼ 0 and hence

F ¼ 0;⇒ R̄ ¼ 3MðR̄Þ þ 4πR̄3TR̂ R̂ðR̄Þ: ð2:39Þ
It is perhaps worth remarking that for an isotropic

medium for which the Tolman-Oppenheimer-Volkov equa-
tions hold, Eq. (2.39) follows directly from (2.35), by
noting from Ropt ¼ Re−U that dRopt=dR ¼ 0 implies

1

R̄
¼ dU

dR

����
R¼R̄

: ð2:40Þ

Returning to the general nonisotropic case, and consid-
ering a black hole, then at the horizon R ¼ RH the
component TR̂ R̂ of the energy-momentum tensor vanishes,

TR̂ R̂ðRHÞ ¼ 0; ð2:41Þ
and Ropt blows up:

lim
R↓RH

RoptðRÞ ¼ ∞: ð2:42Þ

Thus F is negative near the horizon [9]. On the other hand
F is positive near infinity. Thus there must be at least one
value of R ¼ R̄ for which FðR̄Þ ¼ 0. Moreover the smallest
such value R̄min must be a local minimum, which corre-
sponds to an unstable photon sphere rather than a stable
antiphoton sphere. Thus F is negative for RH < R < R̄min.

Now if we assume the negative trace condition, it follows
from (2.30) that

TR̂ R̂ðR̄minÞ < 0; ð2:43Þ
and hence from (2.39), we have

RH < R̄min ≤ 3MðR̄minÞ ≤ 3MADM: ð2:44Þ
In particular, this implies Hod’s theorem [9], namely, that
provided the trace of the energy-momentum tensor is
negative, and that the dominant energy condition holds,
then

R̄min ≤ 3MADM: ð2:45Þ
A generalization of (2.45) to higher dimensions has been
given in [29].
A further inequality proved by Hod in [9] is as follows.

Assuming the dominant energy condition, it follows from
(2.29) that dγ=dR ≥ 0, and hence, since γ ¼ 0 at infinity,
γ ≤ 0. Thus, from (2.37), we have

Ropt ≥ R

�
1 −

2MðRÞ
R

�
−1=2

: ð2:46Þ

From (2.44) we have R̄min ≤ 3MðR̄minÞ, and hence

RoptðR̄Þ ≥
ffiffiffi
3

p
R̄: ð2:47Þ

The question of whether the closed photon orbit is stable
or unstable is governed by the sign of the second derivative
of Ropt at the radius of the orbit. Using (2.28)–(2.30), it
follows, after imposing the condition (2.39) that determines
the orbital radius, that on the orbit we shall have

d2R−2
opt

dR2
¼ 2e2γ

R4
F0; ð2:48Þ

with

F0 ≡ dF
dR

¼ −1þ 4πR2ð2Tt̂ t̂ þ T θ̂ θ̂ þ Tϕ̂ ϕ̂Þ; ð2:49Þ

which is to be evaluated at the photon radius R ¼ R̄. The
orbit is unstable (a photon sphere) if F0 is negative, and
stable (an antiphoton sphere) if F0 is positive.
As we show in later sections, in the case of theories such

as supergravities, where the energy-momentum tensors
satisfy all the relevant energy conditions, we find that
there is always exactly one closed photon orbit outside the
horizon of a regular black hole, and it is always unstable,
corresponding to a photon sphere. However, it does not
appear to be obvious on general grounds from (2.49) that
the energy conditions are in themselves sufficient to
guarantee the negativity of F0 at the photon orbit. We
show also that in the case of ultraextremal black holes
(where there is a naked singularity), there can be more than
one photon orbit, with stable as well as unstable orbits. We
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also study other examples with more exotic matter that does
not obey all the usual energy conditions, and we show that
in such cases there can exist multiple photon orbits outside
a horizon.

2. Hod’s conjecture

Hod [8,30] has made some conjectures about photon
surfaces in spherically symmetric geometries, and circular
null geodesics in stationary spacetimes. A special case of a
conjecture in [8] is that the optical radius Ropt of a photon
surface in an asymptotically flat spacetime with ADMmass
MADM satisfies

Ropt ≥ 2MADM: ð2:50Þ

Both of Hod’s theorems (2.45) and (2.47), and the
conjecture (2.50) may be tested by the methods of this
paper. Unsurprisingly, the theorems hold in all the exam-
ples satisfying the assumptions under which they were
derived. We find that the conjecture (2.50) is in fact violated
in some circumstances. As we shall discuss later, we find
that in the four-charge black holes of four-dimensional STU
supergravity, the conjecture holds for the case where all the
charges are equal (Reissner-Nordström), and for pairwise
equal charges (string theory case, a2 ¼ 1). However, the
conjectured inequality (2.50) is not obeyed in the case
where only one charge is nonvanishing (Kaluza-Klein,
a ¼ 3). In Sec. IV 4 we show that it is violated also in
Einstein-Maxwell-dilaton theories with a2 > 1.

D. Geodesics and projective symmetry

The geodesics of the optical metric have two constants of
the motion:

angular momentum R2
opt

dϕ
dsopt

¼ h; ð2:51Þ

energy

�
dr⋆
dsopt

�
2

þ R2
opt

�
dϕ
dsopt

�
2

¼ 1; ð2:52Þ

whence

�
dr⋆

R2
optdϕ

�
2

þ 1

R2
opt

¼ 1

h2
¼

�
dw
dϕ

�
2

þ 1

R2
opt

: ð2:53Þ

If one differentiates (2.53) with respect to w one obtains the
Binet-type equation (2.7).
An alternative procedure is to adopt isotropic coordi-

nates, in which case the geodesic equations may be cast into
the standard form for a central orbit problem. Thus we
make the standard redefinition u ¼ 1

ρ, and find that (2.53)
becomes

�
du
dϕ

�
2

þ u2 ¼ n2

h2
; ð2:54Þ

so that

d2u
dϕ2

þ u ¼ P
h2u2

ð2:55Þ

with

P ¼ −
1

2

∂n2
∂ρ ; ð2:56Þ

and where P is the acceleration of the particle towards the
origin. Equation (2.55) is the standard form of Binet’s
equation for central orbits.

1. Projective symmetry

Differentiating (2.53) with respect to u yields (2.7), from
which it follows that two metrics for which 1

R2
opt
differ by a

constant have the same unparametrized geodesics and are
thus projectively equivalent, as explained in [15] where it
was shown that the Weyl projective tensors of two such
optical metrics are the same.
A projective symmetry of this type was first noticed for

the Kottler metric, but not in this language in [14]. We shall
see later that, rather remarkably, all the gauged supergravity
models that we study admit a projective symmetry of
this type.

2. Shadows

For any curve, the angle δ made with the radial direction
satisfies

cot δ ¼ 1

Ropt

dr⋆
dϕ

: ð2:57Þ

For a geodesic it follows from (2.53) that

sin δ ¼ h
Ropt

¼ h
nρ

; ð2:58Þ

which may be recognized as Snell’s law for a radially
stratified medium.
For a geodesic that spirals around a photon sphere or an

antiphoton sphere we have from (2.53) that h ¼ Roptðr̄Þ,
whence for such geodesics

sin δðrÞ ¼ Roptðr̄Þ
RoptðrÞ

: ð2:59Þ

If r > r̄max, where r̄max is the position of the outermost
photon sphere, then (2.59) gives the angle subtended by the
shadow cast by this photon sphere [11]. For the Kottler
metric one has
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sin δ ¼ 3M
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R − 1
3
ΛR2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
− 3ΛM2

q ; ð2:60Þ

and so δ ¼ π
2
at R ¼ 3M (the photon sphere), independent

of Λ as expected. However the variation of δ with radius
definitely does depend upon Λ, since it is not a projectively
invariant observable [15,31].

3. Cross sections and quasinormal modes

If the metric is asymptotically flat then Roptðr̄maxÞ is the
critical impact parameter such that light rays with smaller
impact parameter cannot return to infinity. Thus the high-
energy limit of the absorption cross section is given by

σ ¼ πR2
optðr̄maxÞ: ð2:61Þ

For the Schwarzschild solution, the photon sphere is at
R ¼ 3M and thus

Roptðr̄maxÞ ¼
ffiffiffiffiffi
27

p
M; σ ¼ 27πM2: ð2:62Þ

Modes of oscillation of fields around black holes can
become trapped near photon spheres, and give rise to long-
lived quasinormal modes [12]. Following [13], one may
estimate that in the large l limit, the real part of the
frequency behaves like

ω ≈
lþ 1

2

Roptðr̄minÞ
: ð2:63Þ

E. York-Hawking-Page phase transition

We conclude this brief review of the physics of photon
spheres by noting its connection with the York-Hawking-
Page phase transition. The York-Hawking-Page phase
transition [4–6] plays a role when we wish to count
solutions of the Dirichlet problem for the Riemannian
Einstein equations [4,7]. The geometries must be matched
properly at the boundary. Thus, in the spherically sym-
metric case we must match the circumference Cβ (or the
local inverse temperature) of the Uð1Þ thermal circle, and
the circumference CS of the boundary sphere which we
assume to be situated at R ¼ Rb. Now

Cβ ¼
2π

κ
eUðRbÞ; ð2:64Þ

and

CS ¼ 2πRb ð2:65Þ

where κ, the surface gravity, is a function of the parameters
defining the solution. For example for the Kottler solution

e2U ¼
�
1 −

2MAD

R
þ g2R2

�
; ð2:66Þ

where MAD is the Abbot-Deser mass, g2 ¼ − Λ
3
, and κ ¼

κðMAD; gÞ is given by eliminating rH from the equations

MAD

R2
H

þ g2RH ¼ κ; ð2:67Þ

1 −
2MAD

RH
þ g2R2

H ¼ 0: ð2:68Þ

Thus any saddle point of the path integral must satisfy

κCS

Cβ
¼ RoptðRbÞ; ð2:69Þ

where RoptðRbÞ is the optical radius of the boundary. If we
plot the graph of Ropt against Rb, the allowed values of rb
correspond to the intersection of the curve with the
horizontal line determined by the left-hand side of (2.69).
As the left-hand side of (2.69) varies, solutions will

appear or disappear in pairs, at values of Rb for which

dRopt

dRb
¼ 0: ð2:70Þ

That is, the number of solutions will jump when the
boundary is a photon or an antiphoton sphere.
Naively these values correspond to phase transitions.

More accurately, they signal jumps in the minimum values
of the Helmholtz free energy of the system. It is a general
feature that the location of the boundary values Rb for
which the saddle points jump in number is independent of
the cosmological constant.

III. STATIC SPHERICALLY SYMMETRIC
STU BLACK HOLES IN FOUR DIMENSIONS

In this section we shall explore in detail the properties of
photon spheres for static black holes in four-dimensional
(gauged) supergravity theories. The prototypes are black
holes of maximally supersymmetric (gauged) supergravity
theory supported by four Abelian gauge potentials and
three scalar axion-dilaton pairs. These fields in fact
comprise a consistent truncation of the maximal gauged
supergravity to the N ¼ 2 supersymmetric gauged STU
supergravity theory. Furthermore, since we are focusing
solely on static solutions, only the three dilaton fields and
the four electric gauge potentials are turned on.

A. Static four-charge STU black holes

For the static spherically symmetric solutions of the
(maximally supersymmetric) STU gauged supergravity the
black-hole metrics are given by [32,33]
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ds2 ¼ −ðH1H2H3H4Þ−1
2fdt2

þ ðH1H2H3H4Þ12
�
dr2

f
þ r2dΩ2

2

�
; ð3:1Þ

with

f ¼ 1 −
2m
r

þ g2r2H1H2H3H4; ð3:2Þ

and the harmonic functions Hi are given by

Hi ¼ 1þ qi
r
; i ¼ 1; 2; 3; 4: ð3:3Þ

The ADM mass and the physical charges are determined in
terms of m and qi as

MADM ¼
X4
i¼1

Mi; Mi ¼
1

4
ðmþ qiÞ;

Q2
i ¼ qiðqi þ 2mÞ; i ¼ 1; 2; 3; 4: ð3:4Þ

For m ≥ 0 and qi ¼ 2m sinh2 δi ≥ 0, the solutions have a
regular horizon, and

MADM ¼ 1

4
m
X4
i¼1

ðsinh2δi þ cosh2δiÞ ≥ 0;

Qi ¼ 2m sinh δi cosh δi ≥ 0: ð3:5Þ
The solution can be uniquely parametrized in terms of
physical charges Qi chosen, without loss of generality, to
be positive, and the positive Arnowitt-Deser-Misner
(ADM) mass MADM satisfying a Bogomol’nyi-Prasad-
Sommerfield (BPS) bound (of N ¼ 8 supergravity):

MADM ≥
1

4

X4
i¼1

Qi: ð3:6Þ

We shall refer to these solutions as nonextremal ones.
If any of the qi ≡ −pi parameters is chosen to be

negative, the solution has a naked singularity at
r ¼ pimax. These solutions have mass below the BPS
bound, and we shall refer to them as “ultraextremal.”
Note from the expression for Q2

i in (3.4) that we must
have pi ≥ 2m in order that Qi be real.

1. Isotropic coordinates and index of refraction

In [34], the static nonextremal STU black holes of the
ungauged supergravity (g2 ¼ 0) [35,36] were rewritten in
terms of isotropic coordinates. Defining an isotropic radial
coordinate ρ by r ¼ ρþmþ m2

4ρ, it follows that

dr2

1− 2m
r

þ r2ðdθ2þ sin2θdϕ2Þ ¼
�
1þ m

2ρ

�
4

fdρ2þ ρ2dΩ2g:

ð3:7Þ

It now follows that
�
1þ m

2ρ

�
2

Hi ¼ CiDi; ð3:8Þ

where Ci and Di are spherically symmetric harmonic
functions:

Ci ¼ 1þme2δi

2ρ
; Di ¼ 1þme−2δi

2ρ
: ð3:9Þ

Note that Ci and Di, unlike the functions Hi themselves,
are harmonic in the flat transverse 3-metric dρ2 þ ρ2dΩ2.
In terms of the isotropic radial coordinate, the metric

(3.1) becomes

ds2 ¼ −Π−1=2f2þf2−dt2 þ Π1=2ðdρ2 þ ρ2dΩ2Þ; ð3:10Þ
where we have defined

Π ¼
Y
1≤I≤4

CiDi; f� ¼ 1� m
2ρ

: ð3:11Þ

The scalar fields and gauge potentials can be written as

Xi ¼
Π1=4

CiDi
; Ai

μdxμ ¼
�
−

1

Ci
þ 1

Di

�
dt: ð3:12Þ

Here we also provide the explicit parametrization for
ultraextremal solutions with one or more qi ≡ −pi ≤ 0. For
m > 0, the condition Q2

i ≥ 0 on the charges implies that
pi ≥ 2m. The metric still takes the form (3.10), with the
harmonic functions written as

Ci ¼ 1þ αi
2ρ

; Di ¼ 1þ βi
2ρ

; ð3:13Þ

where

αi ¼ mþ qi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ qiÞ2 −m2

q
;

βi ¼ mþ qi −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ qiÞ2 −m2

q
: ð3:14Þ

Note that these harmonic functions are well defined both
for qi ≥ 0 [and reduce for qi ¼ 2m sinh2 δi to (3.9)], as well
as for qi ≡ −pi, as long as pi ≥ 2m. Again, the latter case
corresponds to ultraextremal solutions with a naked singu-
larity at ρ ¼ − βi

2
.

Note that the index of refraction is simply obtained from
the form (3.10) as

nðρÞ ¼ Π1
2

fþf−
: ð3:15Þ

While the index of refraction for nonextremal solutions
blows up at the outer horizon ρ ¼ m

2
, for the ultraextremal

solutions it blows up at the naked singularity ρ ¼ − βi
2
.
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B. Photon spheres

In this subsection we analyze the properties of the photon
spheres for these metrics. The radius of the photon sphere is
simply determined from (3.1) as

1

R2
opt

¼ 1

r2H1H2H3H4

�
1 −

2m
r

�
þ g2: ð3:16Þ

As argued in Sec. II, one may note that the existence and
location of any circular geodesic r⋆min or r⋆max is inde-
pendent of g2, but the optical radius of any photon
Roptðr⋆minÞ or antiphoton surface Roptðr⋆maxÞ will depend
upon g2, as do the quasinormal modes, and also the angle of
any shadow. In the present case, the optical circumference
is an extremum when

2ðr − 3mÞ
ðr − 2mÞ ¼

X4
i¼1

qi
ðrþ qiÞ

: ð3:17Þ

1. Nonextremal solutions

The nonextremal solutions are parametrized by the
positive quantity m and the four positive quantities
qi ¼ 2m sinh2 δi ≥ 0. By analyzing (3.17), it is straightfor-
ward to show that outside the outer horizon at r ¼ rþ, there
is only one extremum, which is located at r ¼ r̄ > 3m.3

Namely, the left-hand side of (3.17) is a monotonically
increasing function of r, with a negative pole at r → 2mþ,
zero at r ¼ 3m, and approaching 2 as r → ∞. On the other
hand, the right-hand side is a monotonically decreasing
function of r, with a positive finite value at r ¼ 2m and
approaching 0 as r → ∞. Thus there is only one common
solution in this domain, at r ¼ r̄ > 3m. It is straightforward
to show that the extremum is a minimum, and so it gives a
single unstable circular null geodesic.
In the following we shall also address the theorem (2.45)

and the conjecture (2.50) of Hod [8,9].
We can also show that for the case of fewer than two

charges turned on, the conjecture (2.50) of Hod [8] is
violated. For concreteness we take only q1 ¼ q2 ≠ 0. In
this case we have the ratio

Roptðr̄Þ2
4M2

ADM
¼ 1

16

ð3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8~qþ 9

p þ 4~qÞ2ð3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8~qþ 9

p Þ
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8~qþ 9
p Þð ~qþ 1Þ2Þ ≥ 1;

ð3:18Þ

where ~q≡ q
2m. The equality is attained in the limit δ → ∞.

The analysis of the single charge case (e.g. only q1 ≠ 0)
reveals that the conjecture is violated when
~q1 ≡ q1

2m ≥ 13.94.

It is straightforward to show that Hod’s theorem [9]
given in (2.45) is satisfied. Namely, one can write

R̄ ¼
Y4
i¼1

ðr̄þ qiÞ14 ≤
1

4

X4
i¼1

ðr̄þ qiÞ

¼ 3MADM þ r̄ − 3m −
1

2

X4
i¼1

qi ≤ 3MADM: ð3:19Þ

The first inequality above is due to the inequality of
geometric and arithmetic means. The second inequality
is due to the fact that

r̄ − 3m −
1

2

X4
i¼1

qi ¼ −
1

2

X4
i¼1

qiðqi þ 2mÞ
r̄þ qi

≤ 0; ð3:20Þ

where the first equality is due to (3.17).
One can also show that the inequality in Hod’s theorem

(2.47) is also satisfied.

2. Ultraextremal solutions

The occurrence of photon spheres in extremal black
holes has been extensively studied, for example in [37,38],
and we shall not consider this case further here. Instead, we
move on to a study of the ultraextremal case, where one or
more of the qi parameters is negative. For qi ≡ −pi, with
pi ≥ 2m and i ¼ 1; � � � k, the extremum equation for the
photon radius takes the form:

2ðr − 3mÞ
ðr − 2mÞ ¼

Xk
i¼1

−pi

ðr − piÞ
þ

X4
j¼kþ1

qj
ðrþ qjÞ

: ð3:21Þ

A straightforward analysis shows that a necessary condition
for the above equation to have a solution is that k ¼ 1; i.e.
only one of the qi is negative. To see this, we take
q1 ¼ −pmax and k ≥ 2, so Eq. (3.21) can be written as

2þ rðpmax − 2mÞ
ðr − 2mÞðr − pmaxÞ

þ
Xk
i¼2

pi

ðr − piÞ
¼

X4
j¼kþ1

qj
ðrþ qjÞ

;

ð3:22Þ
where the pi for i ≥ 2 satisfy pi ≤ pmax. The naked
singularity is located at r ¼ pmax. The left-hand side of
(3.22) is manifestly larger than 2 for r ≥ pmax. The
necessary condition for the solution to exist is that the
right-hand side of (3.22) be ≥ 2 for r ¼ pmax. This
condition cannot be satisfied for k ≥ 2, thus demonstrating
that photon spheres can arise for ultraextremal black holes
only if just a single qi is negative.
For k ¼ 1, the left-hand side of (3.22) lacks the final

term, and it remains ≥ 2 for r ≥ pmax. In this case the
necessary condition that the right-hand side be ≥ 2 for
r ¼ pmax reduces to the condition

3For g2 ¼ 0, rþ ¼ 2m, and for g2 > 0, rþ < 2m, and thus the
result of the analysis above applies to both cases.
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Y4
i¼2

qi
pmax

≥
X4
i¼2

qi
pmax

þ 2; ð3:23Þ

which can be satisfied for a range of parameters qi. For the
case q2 ¼ q3 ¼ q4 ≡ q, the above inequality is satisfied
for q ≥ 2pmax.
Further focusing on the latter case, namely, q1 ≡ −p and

q2 ¼ q3 ¼ q4 ≡ q, Eq. (3.22) becomes

2þ ~rð ~p − 1Þ
ð~r − 1Þð~r − ~pÞ ¼

3~q
ð~rþ ~qÞ ; ð3:24Þ

where we have defined

~r≡ r
2m

; ~q ¼ q
2m

; ~p≡ p
2m

: ð3:25Þ

Plotting the left- and right-hand sides one can see that
there will be either two intersections or none, in the region
~r > ~p outside the naked singularity, depending on the
choice of the parameters. The critical intermediate case
occurs if the parameters are such that the left- and right-
hand sides, and also their first derivatives, are equal for
some ~rcrit. These two conditions allow one to derive the
corresponding values of ~pcrit and ~rcrit in terms of ~q. The
result is

~rcrit ¼
1

2

�
4~qþ 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12~q2 þ 12~qþ 9

q 	
;

~pcrit ¼
ð26~q2 þ 27~qþ 9Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12~q2 þ 12~qþ 9

p
− 90~q3 − 138~q2 − 99~q − 27

ð2~qþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12~q2 þ 12~qþ 9

p
− 6~q2 − 6~q − 3

: ð3:26Þ

It is straightforward to show that 2m ≤ pcrit ≤ 1
2
q, and

rcrit ≥ pcrit; i.e., the extremum is located outside the naked
singularity.
In summary, we have shown that for p ≥ pcrit, Eq. (3.21)

has no solution, while for p ≤ pcrit, Eq. (3.21) has two
solutions. In the latter case, the outer solution corresponds
to a minimum, which is stable (an antiphoton sphere) and
the inner solution to a maximum, which is therefore
unstable (a photon sphere).

C. Projective symmetry for the general STU black holes

The optical metric of a static black hole can always be
cast in the form

du2

k2ðuÞ þ
1

kðuÞ dΩ
2
2: ð3:27Þ

It was shown in [15] that the Weyl projective tensor
depends only on k0 and k00. For metrics of the form
(3.27), one can assume that coordinates may be chosen
so that any geodesic lies in the equatorial plane θ ¼ π

2
. The

geodesics then satisfy�
du
dϕ

�
2

þ k ¼ 1

h2
ð3:28Þ

where h is Clairaut’s constant, which may be thought of as
the angular momentum or impact parameter. Differentiating
(3.28) we obtain the second-order equation

d2u
dϕ2

þ 1

2
k0 ¼ 0: ð3:29Þ

The optical metric of the static STU black hole (3.1)
can be cast in the form (3.27), by introducing a coordinate
u ¼ uðrÞ such that

kðuÞ ¼ f
r2H

;
u02f2

H
¼ k2ðuÞ; ð3:30Þ

where H ≡Q
4
i¼1HiðrÞ and HiðrÞ and fðrÞ are defined in

Eq. (3.1). This implies that u is given by

u ¼
Z

r dr0Q
iðr0 þ qiÞ12

: ð3:31Þ

This integral can be evaluated, to give

u ¼ 2

ðq2 − q3Þ12ðq1 − q4Þ12

× F

�ðq1 − q4Þ12ðrþ q2Þ12
ðq2 − q4Þ12ðrþ q1Þ12

;
ðq1 − q3Þ12ðq2 − q4Þ12
ðq2 − q3Þ12ðq1 − q4Þ12

�
;

ð3:32Þ

where the incomplete elliptic function of the first kind is
defined by

Fðsinφ; κÞ ¼
Z

φ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2 sin2 θ

p : ð3:33Þ

Note that the function kðuÞ defined by the first equation in
(3.30) is given by

kðuÞ ¼ 1

R2
opt

¼ 1

r2H

�
1 −

2m
r

�
þ g2; ð3:34Þ

where u is defined in terms of r by (3.32), and thus the
projective symmetry condition is satisfied [since k0ðuÞ is
independent of g2]. The expression for r in terms of u can
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be made explicit in terms of the Jacobi elliptic function
snðv; ~kÞ, which is related to the incomplete elliptic integral
by Fðx; ~kÞ ¼ v, where x ¼ snðv; ~kÞ. Thus we find

r ¼ q1ðq2 − q4Þsn2ðv; ~kÞ − q2ðq1 − q4Þ
ðq1 − q4Þ − ðq2 − q4Þsn2ðv; ~kÞ

; ð3:35Þ

where

v ¼ 1

2
ðq2 − q3Þ12ðq1 − q4Þ12u;

~k ¼ ðq1 − q3Þ12ðq2 − q4Þ12
ðq2 − q3Þ12ðq1 − q4Þ12

: ð3:36Þ

For the special case of pairwise equal charges q1 ¼ q3
and q2 ¼ q4, the transformation is invertible in terms of
elementary functions:

u ¼ 1

q2 − q1
log

�
rþ q2
rþ q1

�
; ð3:37Þ

and

r ¼ q1x − q2
1 − x

; x ¼ expððq2 − q1ÞuÞ: ð3:38Þ

For the Reissner-Nordström case q1 ¼ q2 ¼ q3 ¼ q4 ≡ q,
the relation between u and r is very simple, namely

u ¼ 1

rþ q
: ð3:39Þ

In this case u ¼ 1
R, where R is the area distance. It is easy to

check that the geodesics of the optical metric are given by
Weierstrass functions of the azimuthal coordinate ϕ in this
case (cf. [39]). Setting q ¼ 0, we recover the Schwarzschild
case [40].
In the general case one may define ~u ¼ 1

r and obtain the
equation

�
d ~u
dϕ

�
2

þ ~u2 − 2m3 þ
�
g2 −

1

h2

�
Hð ~uÞ ¼ 0: ð3:40Þ

It follows that the geodesics of the optical metric are given
in general by Weierstrass functions of the azimuthal
coordinate ϕ.
One may also evaluate the Weyl projective tensor

directly in the r coordinates and verify that it does not
depend on g2.

D. Dyonic solutions of the gauged STU model

Here we show that analogous properties of the STU
black holes also hold for the case of the dyonic black-hole
solutions found in [41]. These black holes are solutions of
the theory described by the Lagrangian

L¼ ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2 −1

2
e−

ffiffi
3

p
ϕF2þ 6g2 cosh

�
1ffiffiffi
3

p ϕ

��
:

ð3:41Þ

This theory is the bosonic sector of a consistent truncation
of N ¼ 8 gauged supergravity in which just a single Uð1Þ
gauge field is retained. It is also a consistent truncation of
gauged STU supergravity. The dyonic black-hole solution
is given by [41]

ds2 ¼ −ðH1H2Þ−1
2fdt2

þ ðH1H2Þ12
�
dr2

f
þ r2dθ2 þ r2sin2θdφ2Þ

�
; ð3:42Þ

where

ϕ ¼
ffiffiffi
3

p

2
log

H2

H1

; f ¼ f0 þ g2r2H1H2; f0 ¼ 1 −
2m
r

;

A ¼
ffiffiffi
2

p �
1 − β1f0Þffiffiffiffiffiffiffiffiffi
β1γ2

p
H1

dtþ 2mγ−12
ffiffiffiffiffiffiffiffiffi
β2γ1

p
cos θdφ

�
;

H1 ¼ γ−11 ð1 − 2β1f0 þ β1β2f20Þ;
H2 ¼ γ−12 ð1 − 2β2f0 þ β1β2f20Þ: ð3:43Þ

The constants m, β1, and β2 characterize the mass, electric,
and magnetic charges [41], and the constants γ1 and γ2 are
given in terms of β1 and β2 by

γ1 ¼ 1 − 2β1 þ β1β2; γ2 ¼ 1 − 2β2 þ β1β2: ð3:44Þ

The constants β1 and β2, which must each lie in the range
0 ≤ βi ≤ 1, are further constrained by the requirement, for
positivity of the functions Hi, that γi ≥ 0.
The radius of the extremal photon sphere satisfies

2ðr − 3mÞ
ðr − 2mÞ ¼ −r

�
H0

1

H1

þH0
2

H2

�
; ð3:45Þ

where H0
i ≡ dHi

dr . It is straightforward to show that

−rH0
1 ¼

2β1½1þ xð1 − β2Þ�
ð1þ xÞ2 ≥ 0; ð3:46Þ

where r ¼ 2mð1þ xÞ, with an analogous result for H2
0 in

which the labels 1 and 2 are interchanged. Since r ≥ 2m
corresponds to x ≥ 0, it is manifest that the right-hand side
of (3.45) is always non-negative for x ≥ 0 (i.e. r ≥ 2m). It
approaches the value 2ðβ1 þ β2Þ as x goes to zero, and it
goes to zero as x goes to infinity.
Furthermore, one can see that the right-hand side of

(3.45) is a monotonically decreasing function of x. Namely,
one can show that
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�
−r

H0
1

H1

�0
¼ −

β1
mH2

1

½γ1 þ β2ð1 − β1Þ þ 2xγ1

þ x2γ1ð1 − β2Þ� ≤ 0; ð3:47Þ

with an analogous result where the labels 1 and 2 are
interchanged. Thus there is only one solution of (3.45), at
r ¼ r̄ ≥ 3m, just as in the four-charge solution of
Sec. III A.

IV. EINSTEIN-MAXWELL-DILATON
BLACK HOLES

In this section, we study the properties of photon spheres
for static black holes in the family of Einstein-Maxwell-
dilaton (EMD) theories.

A. Static black holes in EMD theories

Einstein-Maxwell-dilaton gravity is described by the
Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p ðR − 2ð∂ϕÞ2 − e−2aϕF2Þ: ð4:1Þ
The static black-hole solution is given by [42]

ds2 ¼ −Δdt2 þ Δ−1dr2 þ R2dΩ2
2;

e−2aϕ ¼ F
2a2

ð1þa2Þ
− ; A ¼ Q cos θdφ;

Δ ¼ FþF
ð1−a2Þ
ð1þa2Þ
− ; R2 ¼ r2F

2a2

ð1þa2Þ
− ;

F� ¼ 1 −
r�
r
; ð4:2Þ

and

MADM ¼ 1

2

�
rþ þ 1 − a2

1þ a2
r−

�
; Q2 ¼ rþr−

1þ a2
: ð4:3Þ

If a potential of the type considered in [43] is added,
namely

VðϕÞ ¼ −
2λ

3ð1þ a2Þ2 ½a
2ð3a2 − 1Þe−2ϕ

a

þ ð3 − a2Þe2aϕ þ 8a2eðaϕ−
ϕ
aÞ�; ð4:4Þ

the only change to the solution is in the functionΔ, which is
then given by [43]

Δ ¼ FþF
1−a2

1þa2− −
λ

3
R2: ð4:5Þ

1. Isotropic coordinates and refractive index

If λ ¼ 0, we can introduce an isotropic radial coordinate
ρ defined by

log ρ ¼
Z

1

r
ffiffiffiffiffiffiffiffiffiffiffiffi
F−Fþ

p dr; ð4:6Þ

which implies that, with a convenient choice for the
constant of integration,

r ¼ ρ

�
1þ u2

ρ

��
1þ v2

ρ

�
; ð4:7Þ

where we have reparametrized the constants r� in terms of
constants u and v as

rþ ¼ ðuþ vÞ2; r− ¼ ðu − vÞ2: ð4:8Þ

In terms of the new quantities, we have

F− ¼
ð1þ uv

ρ Þ2
ð1þ u2

ρ Þð1þ v2
ρ Þ

; Fþ ¼
ð1 − uv

ρ Þ2
ð1þ u2

ρ Þð1þ v2
ρ Þ

: ð4:9Þ

The metric now takes the form

ds2 ¼ −Δdt2 þ Φ4ðdρ2 þ ρ2dΩ2
2Þ; ð4:10Þ

where

Φ2 ¼ R
ρ
¼

��
1þ u2

ρ

��
1þ v2

ρ

�� 1

1þa2
�
1þ uv

ρ

� 2a2

1þa2 ;

ð4:11Þ

and with the dilaton given by

e2aϕ ¼
��

1þ u2

ρ

��
1þ v2

ρ

��
− 2a2

1þa2
�
1þ uv

ρ

� 4a2

1þa2 :

ð4:12Þ

The effective refractive index nðρÞ in this representation
is given by

nðρÞ ¼ Φ2ðρÞffiffiffiffi
Δ

p ðρÞ ¼
½ð1þ u2

r Þð1þ v2
r Þ�

3

1þa2

ð1þ uv
r Þ

2

1þa2ð1 − uv
r Þ

2ð1−a2Þ
1þa2

: ð4:13Þ

B. Photon spheres and Hod’s conjecture

For the static dilatonic black-hole solutions [43]
discussed above, the photon radius is of the form:

1

R2
opt

¼ 1

r2
FþF

1−3a2

1þa2− −
1

3
λ: ð4:14Þ

Thus the independence of the location of the photon
spheres on the cosmological constant continues to hold
in this case as well. The extremal values of the photon
spheres are at values of r ¼ r̄ satisfying the equation
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3

r
−

1

r − rþ
þ 3a2 − 1

1þ a2
r−
r

1

r − r−
¼ 0: ð4:15Þ

This quadratic equation determines two stationary points,
r ¼ b�, with

b� ¼ 1

4
½3rþ þ ð2 − xÞr−

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2 − xÞr− − rþ�2 þ 8rþðrþ − r−Þ

q
�; ð4:16Þ

where x≡ ð3a2 − 1Þ=ða2 þ 1Þ. Noting that 1þ x ¼
4a2=ða2 þ 1Þ ≥ 0 and 3 − x ¼ 4=ða2 þ 1Þ ≥ 0, it follows
that x lies in the range −1 ≤ x ≤ 3. Assuming 0 ≤ r− ≤ rþ
we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2 − xÞr− − rþ�2 þ 8rþðrþ − r−Þ

p
≥ jZj, where

we define

Z ¼ ð2 − xÞr− − rþ ð4:17Þ

(which may have either sign). It then follows that

bþ − rþ ≥
1

4
ðZ þ jZjÞ ≥ 0;

b− − rþ ≤
1

4
ðZ − jZjÞ ≤ 0; ð4:18Þ

and so the larger stationary point always lies outside the
outer horizon, while the smaller stationary point lies inside.

1. Photon spheres: Nonextremal dilatonic solutions

In [9], Hod conjectured the bound (2.50) for static black
holes, or, in other words,

N ≡ Roptðr̄Þ2
4M2

ADM
≥ 1: ð4:19Þ

For the dilatonic black holes with λ ¼ 0, it is straightfor-
ward to show that this bound is satisfied when a2 ≤ 1 for
any value of the ratio r−

rþ
≤ 1. At a critical value a2 ¼ 1, we

have N ¼ 1 for r−
rþ

¼ 1. For a2 > 1 the bound is violated;

i.e.,N < 1 for sufficiently large values of the ratio r−
rþ
. In the

limiting case of large a2, the bound is violated for 0.85≲ r−
rþ
.

These features are quantitatively displayed in Fig. 1, which
depicts the value ofN as a function of r−

rþ
and a2. The figure

further confirms that N is bounded from above by 8, and
that it saturates this bound for the extremal Reissner-
Nordström black hole:

Roptðr̄Þ ≤ 4
ffiffiffi
2

p
MADM: ð4:20Þ

This bound is saturated for the extremal Reissner-
Nordström black hole.

Hod’s theorem (2.45) states that

Rðr̄Þ ¼ Roptðr̄Þð−gttðr̄ÞÞ12 ≤ 3MADM: ð4:21Þ

This is clearly satisfied, since both Roptðr̄Þ and jgttðr̄Þj are
bounded from below. The bound is saturated when the ratio
r−
rþ

goes to zero. We illustrate these results in Fig. 2.

2. Photon spheres for ultraextremal dilatonic solutions

We now turn to the analysis of photon spheres in the case
when the solutions have a mass below the BPS bound, i.e.
ultraextremal black holes. It is convenient to parametrize r�

FIG. 1. The ratio N ¼ Roptðr̄Þ2
4M2

ADM
as a function of r−

rþ
and a2.

FIG. 2. The ratio of Rðr̄Þ2
M2

ADM
is plotted as a function of r−

rþ
and a2.

Note the ratio is always smaller than 9, thus confirming
the bound.
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in terms of the charge and the ADM mass of the black
holes:

rþ ¼MADMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM− ð1−a2ÞQ2

q
;

r− ¼ 1−a2

1þa2
ðMADM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM− ð1−a2ÞQ2

q
Þ: ð4:22Þ

The extremal black hole with the property rþ ¼ r−
saturates the BPS bound:

M2
ADM ¼ Q2

1þ a2
: ð4:23Þ

Note that for a2 ≤ 1, there is a range of ultraextremal black
holes with

Q2

1þ a2
≥ M2

ADM ≥ ð1 − a2ÞQ2: ð4:24Þ

In this regime, r−rþ ≥ 1, namely, the outer horizon is at r− and

the inner one at rþ. From the analysis of the extremal
equation of the photon sphere it is now possible to show
that for 1

3
≤ a2 ≤ 1, both extrema of the photon sphere

(4.16) lie outside the larger horizon r−, as long as

1 ≤
r−
rþ

≤
9ða2 þ 1Þ

3a2 þ 7þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3a2 − 1Þ

p : ð4:25Þ

For a2 in the range f1
3
; 1g, the upper bound in (4.25) has the

range f3
2
; 1g. We illustrate these results in Fig. 3. In this

range of parameters the outer photon radius corresponds to
a minimum, which is stable (an antiphoton sphere), and the
inner solution to a maximum, which is therefore unstable
(a photon sphere).

C. Projective symmetry for the dilatonic black holes

Here we demonstrate that the static dilatonic black holes
also exhibit the projective symmetry, just as we demon-
strated for the static STU black holes in Sec. III C.
The radial transformation that casts the metric in the

form (3.27) that makes the projective symmetry manifest
can be integrated to give

u ¼ 1

r−

1þ a2

1 − a2

�
1 − F

1−a2

1þa2−
	
; ð4:26Þ

with F� ¼ 1 − r�
r . This equation can then be inverted, to

give r in terms of u. We have already shown that

kðuÞ ¼ 1

R2
opt

¼ 1

r2
FþF

1−3a2

1þa2− − λ ð4:27Þ

has a cosmological constant contribution that is indepen-
dent of the radial coordinate. The a ¼ 0 case is special,
with

u ¼ −
1

r−
log

�
1 −

r−
r

�
: ð4:28Þ

V. BLACK HOLES IN HORNDESKI GRAVITY

In this section we examine the static black-hole solutions
in a simple example of a Horndeski theory of gravity
coupled to a scalar field, and we show that in certain cases
there can be two photon spheres outside the black-hole
horizon. Specifically, we consider the theory described by
the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

2
ðαgμν − γGμνÞ∂μχ∂νχ

�
; ð5:1Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor. In four

dimensions, the black hole is given by [44,45]

ds2 ¼ −hdt2 þ dr2

f
þ r2dΩ2

2; χ02 ¼ 3βg2r2

ð1þ 3g2r2Þf ;

h ¼ C −
μ

r
þ g2r2 þD arctanð ffiffiffi

3
p

grÞffiffiffi
3

p
gr

;

f ¼ ð4þ βγÞ2ð1þ 3g2r2Þ2
½4þ 3ð4þ βγÞg2r2�2 h; ð5:2Þ

where

FIG. 3. The range of the second extremal photon radius plotted

for Roptðr̄Þ
r−

as a function of r−
rþ

≥ 1 (ultraextremal solutions) and a2.

Note that for a2 ≥ 1
3
, there is always a range of r−

rþ
> 1 for which

the second extremal photon radius is larger than r−, and thus
outside the naked singularity.
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C ¼ 4 − βγ

4þ βγ
; D ¼ β2γ2

ð4þ βγÞ2 ; ð5:3Þ

and the constants g and β are related to α, γ, and Λ by

α ¼ 3g2γ; Λ ¼ −3g2
�
1þ 1

2
βγ

�
: ð5:4Þ

Defining

GðxÞ≡ arctan x
x

; ð5:5Þ

and letting x ¼ ffiffiffi
3

p
gr, the horizon is located at r ¼ r0 (and

hence x ¼ x0) where

0 ¼ −
μ

r0
þ Cþ ðg2r20 þDGðx0ÞÞ: ð5:6Þ

Now 3x2 þ GðxÞ − 1 ≥ 0, and D ≤ 1, and so it follows
that

g2r2 þDGð
ffiffiffi
3

p
grÞ ≥ ðg2r2 þDGð

ffiffiffi
3

p
grÞÞjg¼0; ð5:7Þ

and so the radius r0 of the horizon for general g is smaller
than the radius when g ¼ 0, implying

r0 ≤
μ

CþD
¼ 16μ

ð4þ βγÞ2 : ð5:8Þ

The photon sphere is determined by finding the root or
roots of ðR−2Þ0 ¼ 0 that lie outside the horizon, where R2 ¼
r2=h is the radius squared in the optical metric. Note that
unlike all the previous black-hole examples, here ðR−2Þ0 is
dependent on the “gauge coupling” g that determines the
effective AdS cosmological constant, since it enters in the
function Gð ffiffiffi

3
p

grÞ. Setting ðR−2Þ0 ¼ 0 we obtain an
expression that can be written as

1−
3μ

2ðCþDÞr¼
D

2ðCþDÞ
�
3þ 2x2

1þ x2
−
3arctanx

x

�
: ð5:9Þ

The function in square brackets on the right-hand side
can be shown to be non-negative, and hence we have
the result that the radius rs of the photon sphere obeys the
inequality

rs ≥
3μ

2ðCþDÞ ¼
24μ

ð4þ βγÞ2 : ð5:10Þ

In view of (5.8), we see that the photon sphere must lie
outside the horizon, with

rs ≥
3

2
r0: ð5:11Þ

We can write (5.9) as

32

β2γ2
−
3

ffiffiffi
3

p
gμð4þ βγÞ2
β2γ2x

¼ 3þ 2x2

1þ x2
−
3 arctan x

x
; ð5:12Þ

and since the right-hand side ranges monotonically from 0
to 2 as x ranges from 0 to infinity, it follows that there will
generically be two solutions or none if 32=ðβ2γ2Þ < 2
(depending on the value of μ), and one solution or none if
32=ðβ2γ2Þ > 2 (again, depending on the value of μ).

VI. QUINTESSENCE BLACK HOLES

According to [46], quintessence should satisfy

Tϕ̂ ϕ̂ ¼ T θ̂ θ̂ ¼ −
1

2
ð3wþ 1ÞTr̂ r̂ ¼

1

2
ð3wþ 1ÞTt̂ t̂; ð6:1Þ

where w is taken to be a constant. The dominant energy
condition [47] requires Tt̂ t̂ ≥ 0 and

j3wþ 1j ≤ 2: ð6:2Þ

It follows from (2.29) that γ in the metric (2.27) is constant,
and hence, by rescaling t appropriately,

−gtt ¼
1

gRR
¼ 1

1 − 2MðRÞ
R

; ð6:3Þ

where R is the area distance. MðRÞ is called the Misner-
Sharp mass. For further discussion of (6.3) see [48]. On
then has

2MðRÞ
R

¼ 2M0

R
þ ϵ

�
Lw

R

�
3wþ1

: ð6:4Þ

The values ðw; ϵÞ ¼ ð1
3
;−1Þ correspond to the Reissner-

Nordström metric. If ðw; ϵÞ ¼ ð−1;�1Þ, one has a cosmo-
logical constant. Kiselev [46] favors, on symmetry
grounds, ðw; ϵÞ ¼ ð− 2

3
; 1Þ for quintessence which, as a

consequence, satisfies the dominant energy condition.
Under this assumption, the metric is given by

ds2 ¼ −
�
1 −

2M
R

−
R
L

�
dt2 þ dr2

1 − 2M
R − R

L

þ R2ðdθ2 þ sin θ2dϕ2Þ: ð6:5Þ

IfM ¼ 0 we obtain a metric reminiscent of de Sitter space,
with a cosmological event horizon at R ¼ L and a naked
singularity at R ¼ 0. The optical radius Ropt is given by

1

R2
opt

¼ 1

R2
−

1

LR
; ð6:6Þ

and so
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d
dR

�
1

R2
opt

�
¼ −

1

R3

�
2 −

R
L

�
; ð6:7Þ

which is negative throughout the static region.
One may take L negative; L ¼ −a say. This corresponds

to quintessence with a negative energy density. The metric
no longer has a cosmological horizon, but it does not have
AdS asymptotics, but, rather, something softer. Defining

ρþ a ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

a

r
; ð6:8Þ

so that if

R ¼ rþ r2

4a
; ð6:9Þ

the metric becomes

ds2 ¼ −dt2 þ dr2 þ r2
�
1þ r

4a

�
2

ðdθ2 þ sin θ2dϕ2Þ:

ð6:10Þ
In the positive r direction, the area of a sphere of constant
radius increases faster than it would in flat space, but more
slowly than in AdS4. In the negative r direction we get the
solution for ordinary quintessence with a cosmological
horizon. The solution has a singularity at r ¼ 0. This is
clear, since R2 as a function of r has odd powers of r,
starting with an r3 term.
We turn now to the quintessence black hole (6.5) with

M > 0. If M < L=8 then there are two Killing horizons at

R ¼ RH∓ ¼ 1

2
L

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8M
L

r �
¼ 1

2
Lð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8x
p

Þ;

ð6:11Þ
where x ¼ M=L. These horizons coalesce at R ¼ L

2
when

M ¼ L=8, or x ¼ 1=8.
Provided M < L=6, i.e. x < 1=6, which of course

is always greater than the critical value x ¼ 1=8, the
derivative

d
dR

�
1

R2
opt

�
¼ 1

LR4
ðR2 − 2RLþ 6MLÞ ð6:12Þ

vanishes at

R ¼ R̄∓ ¼ L

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

6M
L

r �
¼ Lð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6x
p

Þ:

ð6:13Þ
Now −gtt vanishes at the horizons R ¼ RH∓ . Thus we
expect an odd number of critical points in the static interval
RH−

< R < RHþ . Since we have two solutions, we there-
fore expect that one will lie inside the static region and one
outside. In order to see we calculate

R̄− − RH−
¼ L

2
ð1 − fðxÞÞ; ð6:14Þ

R̄þ − RHþ ¼ L
2
ð1þ fðxÞÞ; ð6:15Þ

where the function

fðxÞ ≔ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6x

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p
ð6:16Þ

is defined on the interval 0 ≤ x ≤ 1
8
. Clearly

fð0Þ ¼ f

�
1

8

�
¼ 1;

f0ðxÞ ¼ −
6ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6x
p þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8x
p : ð6:17Þ

Any critical point of fðxÞ must satisfy

9ð1 − 8xÞ ¼ 4ð1 − 6xÞ: ð6:18Þ

There is a unique such x, namely

x ¼ 5

48
; f

�
5

48

�
¼

ffiffiffi
2

3

r
; ð6:19Þ

and hence

ffiffiffi
2

3

r
≤ fðxÞ ≤ 1; ð6:20Þ

and so

1� fðxÞ ≥ 0: ð6:21Þ

Thus

RH−
≤ R̄− ≤ RHþ ≤ R̄þ: ð6:22Þ

Hence we obtain a single photon sphere, with the larger
critical point lying beyond the cosmological horizon. There
is no antiphoton sphere.

VII. HIGHER DIMENSIONS

A. Five dimensions

The metric of the static three-charge black-hole solution
of the maximally supersymmetric gauged supergravity
[33,49] takes the form

ds2 ¼ −ðH1H2H3Þ−2=3fdt2
þ ðH1H2H3Þ1=3ðf−1dr2 þ r2dΩ2

3Þ; ð7:1Þ

where
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f ¼ 1 −
2m
r2

þ g2r2H1H2H3;

Hi ¼ 1þ qi
r2

; i ¼ 1; 2; 3: ð7:2Þ

The mass and three Uð1Þ charges are given by

MADM ¼ mþ 1

3

X3
i¼1

qi;

Q2
i ¼ qiðqi þ 2mÞ; i ¼ 1; 2; 3: ð7:3Þ

Using (7.1), we see that the three-charge black hole in AdS5
has an optical radius RoptðrÞ given by

1

R2
opt

¼ 1

r2H1H2H3

�
1 −

2m
r2

þ g2r2H1H2H3

�

¼ 1

r2H1H2H3

�
1 −

2m
r2

�
þ g2: ð7:4Þ

The situation is very similar to that in four spacetime
dimensions. The extremum is determined by the equation

r2 − 4m
r2 − 2m

¼
X3
i¼1

qi
r2 þ qi

; ð7:5Þ

which has a unique positive solution with r2 ¼ r̄2 > 4m.
A generalization Hod’s theorem (2.45) to higher dimen-

sions given in [29] can be shown to be satisfied for these
solutions. Namely, one can write

R̄2 ¼
Y3
i¼1

ðr̄2 þ qiÞ13 ≤
1

3

X3
i¼1

ðr̄2 þ qiÞ ≤
1

3

X3
i¼1

ð4mþ qiÞ

¼ 4MADM þ r̄2 − 4m −
X3
i¼1

qi ≤ 4MADM: ð7:6Þ

The first inequality above is due to the inequality of
geometric and arithmetic means, and the second inequality
follows from

r̄2 − 4m −
X3
i¼1

qi ¼ −
X3
i¼1

qiðqi þ 2mÞ
r̄2 þ qi

≤ 0; ð7:7Þ

where the first equality above is due to (7.5).

B. Seven dimensions

The static two-charged black hole in an AdS7 back-
ground given in [33] has the metric

−ðH1H2Þ−4
5fdt2 þ ðH1H2Þ15

�
dr2

f
þ r2dΩ2

5

�
; ð7:8Þ

with

f ¼ 1 −
2m
r4

þ g2r2H1H2; Hi ¼ 1þ qi
r4
; i ¼ 1; 2:

ð7:9Þ

The mass and two Uð1Þ charges are given by

MADM ¼ mþ 2

5

X2
i¼1

qi; Q2
i ¼ qiðqi þ 2mÞ; i ¼ 1; 2:

ð7:10Þ

The optical radius RoptðrÞ is given by

1

R2
opt

¼ 1

r2H1H2

�
1 −

2m
r4

þ g2r2H1H2

�

¼ 1

r2H1H2

�
1 −

2m
r4

�
þ g2; ð7:11Þ

and the argument goes through as in the previous example.
The extremum is determined by the equation

r4 − 6m
r4 − 2m

¼
X2
i¼1

2qi
r4 þ qi

; ð7:12Þ

which has a unique positive solution with r4 ¼ r̄4 > 6m.
It can be shown that these solutions satisfy an analogue

of Hod’s theorem (2.45) generalized to seven dimensions
[29]. Namely, we write

R̄4 ¼
�
r̄4
Y2
i¼1

ðr̄4 þ qiÞ2
�1

5

≤
1

5
½r̄4 þ 2ðr̄4 þ q1Þ

þ 2ðr̄4 þ q2Þ� ≤ 6MADM þ r̄4

− 6m − 2
X2
i¼1

qi ≤ 6MADM: ð7:13Þ

The first inequality above is due to the inequality of
geometric and arithmetic means. The second inequality
is due to

r̄4 − 6m − 2
X2
i¼1

qi ¼ −2
X4
i¼1

qiðqi þ 2mÞ
r̄4 þ qi

≤ 0; ð7:14Þ

where the first equality above is due to (7.12).

VIII. CONCLUSIONS

In this paper we have examined the optical metrics of
static spherically symmetric solutions of various theories of
current interest. In particular we have been interested in
whether they admit photon spheres and if so how many.
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In the case of all the solutions we have looked at whose
energy-momentum tensor satisfies the dominant and strong
energy conditions and which are nonsingular outside a
regular event horizon we have found a unique photon
sphere and as a consequence no antiphoton spheres. For
some ultraextremal solutions we have found, consistent
with other authors one may have both a photon sphere and
an antiphoton sphere. We have also found in the case of a
particular theory of Horndeski type that one may have both
a photon sphere and an antiphoton sphere outside a regular
Killing horizon of the spacetime metric. We are thus led to
the conjecture that a violation of either the dominant or the
strong energy condition is a necessary condition for the
existence of an antiphoton sphere outside a regular black-
hole horizon.
We have investigated a conjecture of Hod [8], concern-

ing a lower bound on the optical radius of the photon sphere
[see Eq. (2.50)], and have found counterexamples in the
case of static black holes in STU supergravity where fewer
than three electric charges are turned on.
We have also found that the rather mysterious projective

symmetry of the optical metric first observed in the case of
the Schwarzschild–de Sitter metric continues to hold for the
static spherically symmetric solutions of the STU super-
gravity theories. At present we have no conceptual under-
standing of why this symmetry is present, or why it seems
related to the fact that the null geodesics in this case may be
described by Weierstrass elliptic functions.
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APPENDIX: k ESSENCE AND IRROTATIONAL
RELATIVISTIC FLUIDS

The equation of motion for the theory with Lagrangian
L ¼ LðXÞ, where X ¼ −gμν∂μψ∂νψ , is given by

∇μ

�∂L
∂X∇μψ

�
¼ 0: ðA1Þ

We may define a current

Jμ ¼ ∂L
∂X∇μψ ; ðA2Þ

which is conserved by virtue of the shift symmetry
ψ → ψ þ constant. If LX ¼ ∂L

∂X, then the energy-momentum
tensor is

Tμν ¼ 2LX∂μψ∂νψ þ gμνL: ðA3Þ

If X > 0 we may define a unit timelike vector by

uμ ¼
∂μψffiffiffiffi
X

p ; ðA4Þ

and find that the energy-momentum tensor takes the form
of an irrotational perfect fluid with Eulerian 4-velocity uμ:

Tμν ¼ ρuμuν þ Pðgμν þ uμuνÞ; ðA5Þ

where

ρþ P ¼ 2XLX; P ¼ L; ρ ¼ 2XLX − L: ðA6Þ

Here gμν þ uμuν ¼ hμν is a projection tensor which projects
an arbitrary vector to one orthogonal to the world lines of
the fluid. A simple calculation yields

∂ρ
∂P ¼ LX − 2XLXX

LX
; ðA7Þ

whence, as will be verified later, the sound speed vs is
given by

v2s ¼
LX

LX − 2XLXX
: ðA8Þ

Examples of k essence include
(i) Polytropic fluid with P ¼ wρ,

L ¼ X
1þw
2w ¼ Xp;

w ¼ constant ¼ 1

2p − 1
; ðA9Þ

where p may be fractional. The left-hand side of the
equation of motion

∇μðX∇μψÞ ¼ 0 ðA10Þ

is what one might call p d’Alembertian, the ana-
logue in Lorentzian geometry of the p Laplacian of
Riemannian geometry. The case p ¼ 2 in d ¼ 4 is
conformally invariant.
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(ii) Born-Infeld:

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
þ 1; P ¼ ρ

ρþ 1
: ðA11Þ

(iii) The Chaplygin gas:

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
; P ¼ −

1

ρ
: ðA12Þ

Of course the fluid description only works if X > 0 and
so, in particular, it cannot be applied to static solutions,
which have X < 0.

1. Thermodynamics

Since uμ;μ ¼ _V=V, where V is the infinitesimal volume of
an element of the fluid dragged along the flow lines, the
first law of thermodynamics reads

ðρþ PÞdV þ Vdρ ¼ 0: ðA13Þ

Now in general, if a fluid is locally homogeneous and
passes through thermodynamic equilibria, we have

Ts ¼ ρþ P; Tds ¼ dρ;
dρ

ρþ P
¼ ds

s
: ðA14Þ

Therefore, by (A13), we have

sV ¼ constant ðA15Þ

and the flow is isentropic. From (A14) the dependence of
all ðρ; P; s; TÞ on any one of them is determined once an
equation of state is specified, and hence by (A13) on the
volume expansion. Thus for a polytrope,

ρ ¼ A

�
T

1þ w

�1þw
w

; s ¼ ð1þ wÞA
�

T
1þ w

�1
w

; ðA16Þ

where A is a constant with dimensions L−3M−1
w. If w ¼ 1

3
, A

has dimensions L−3M−3 ¼ ℏ−3. If w ≠ 1
3
one needs a

further dimensionful constant to relate the energy density
to the entropy density or to the temperature.

2. Entropy current as Noether current

The conserved current arising from the shift symmetry
ψ → ψ þ constant gives rise to a conserved current,

Jμ ¼ ∂L
∂ð∂μψÞ

¼ −2X1
2LXuμ: ðA17Þ

From (A7)

−2X1
2LX ¼ −X−1

22XLX ¼ −ðρþ PÞX−1
2; ðA18Þ

and from (A14) we have

ds
s
¼

�
dρþ dP
ρþ P

−
dP

ρþ P

�
ðA19Þ

¼ d lnðρþ PÞ − dL
2XLX

ðA20Þ

¼ d lnðρþ PÞ − dX
2X

; ðA21Þ

whence

s ¼ constant × ðρþ PÞX−1
2: ðA22Þ

Thus

Jμ ¼ constant × suμ: ðA23Þ

For example, for radiation we have w ¼ 1
3
, and hence

L ¼ X2 ¼ ðgμν∂μψ∂νψÞ2: ðA24Þ

The equation of motion is

∇μðð∇ψÞ2∇μψÞ ¼ 0; ðA25Þ

or, as long as ∇μψ is timelike,

ðgμν − 2uμuνÞ∇μ∇νψ ¼ 0: ðA26Þ

One recognizes

ða−1Þμν ¼ gμν − 2uμuν ðA27Þ

as the acoustic cometric, i.e. the inverse of the acoustic
metric

aμν ¼ gμν þ
2

3
uμuν ðA28Þ

for a fluid with P ¼ 1
3
ρ.

If one repeats the calculation above for L ¼ Xp, one
finds

ða−1Þμν ¼ gμν − ð2p − 1Þuμuν; ðA29Þ

aμν ¼ gμν þ 1 − wuμuν; ðA30Þ

which corresponds to a fluid with sound speed

vs ¼
ffiffiffiffiffi
∂P
∂ρ

q
¼ ffiffiffiffi

w
p

. For both the Born-Infeld and the

Chaplygin gases, one finds the sound speed vs to be
given by
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vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
ðA31Þ

and

ða−1Þμν ¼ gμν −
X

1 − X
uμuν; ðA32Þ

aμν ¼ gμν þ Xuμuν: ðA33Þ

In general one finds that the equation of motion for ψ
takes the form

ða−1Þμν∇μ∇νψ ¼ 0; ðA34Þ

where the acoustic cometric a−1μν is given by

ða−1Þμν ¼ gμν − 2
LXX

LX
uμuν: ðA35Þ

Equation (A35) is consistent with (A8):

∇μðð∇ψÞ2∇μψÞ ¼ 0; ðA36Þ

or, as long as ∇μψ is timelike,

ðgμν − 2uμuνÞ∇μ∇νψ ¼ 0: ðA37Þ

3. Black-hole accretion and emission

In order to describe a steady (i.e. time-independent)
spherically symmetric flow in a background whose
metric is

ds2 ¼ −ΔðRÞdt2 þ dR2

FðrÞ þ R2ðdθ2 þ sin2 θdϕ2Þ ðA38Þ

¼ Δ


−dt2 þ dr⋆2 þ

r2

Δ
ðdθ2 þ sin2θdϕ2Þ

�
ðA39Þ

where the metric in the braces is the optical metric and r⋆ is
the radial optical distance, often called the Regge-Wheeler
tortoise coordinate:

dr⋆ ¼ dRffiffiffiffiffiffiffi
FΔ

p : ðA40Þ

We make the ansatz

ψ ¼ t − χðRÞ; ðA41Þ

and find that the fluid 3-velocity v with respect to a
local orthonormal frame at rest with respect to the hole
is given by

v ¼ dχ
dr⋆

: ðA42Þ

If v > 0, the flow is an outward-directed wind. If v < 0, we
have an inward-directed accretion flow. Moreover

X ¼ 1

Δð1 − v2Þ : ðA43Þ

For any steady radial conserved current we have

R2

ffiffiffiffi
Δ
F

r
JR ¼ constant: ðA44Þ

In our case, if d ¼ 4, that means

vR2LXðXÞ ¼ constant ¼ vR2LX

�
1 − v2

Δ

�
: ðA45Þ

For a polytropic gas this gives

vð1 − v2Þp−1 ¼ a2
Δp−1

R2
ðA46Þ

where a is a constant. As a varies, we obtain a family of
curves in the ðv; rÞ plane labeled by the constant a. In the
asymptotically flat case, we are looking either for an
ingoing curve or an outgoing curve.
It is a simple matter to check that (A46) with p ¼ 2

reproduces Eq. (15) of [20]. In the Schwarzschild case

Δ ¼ F ¼ 1 −
2M
R

; ðA47Þ

one finds that if R is plotted against v for different values of
the constant a, one obtains Fig. 1 of [20]. The left-hand side
of (A46) with p ¼ 2 achieves its greatest (least) value of
� 2ffiffiffiffi

27
p at v ¼ dχ

dr⋆ ¼ � 1ffiffi
3

p . In other words the fluid velocity

coincides with the velocity of sound. The right-hand side of
(A46) achieves its greatest (least) value when the optical
radius

Ropt ¼
Rffiffiffiffi
Δ

p ðA48Þ

is stationary: In other words, at radii for which there are
circular null geodesics. In order that v be a single-valued
function of r on the interval r ∈ ð2M;∞Þ, we must there-
fore choose

constant ¼ �2
ffiffiffiffiffi
27

p
M2; ðA49Þ

vð1 − v2Þ ¼ �2
ffiffiffiffiffi
27

p
M2

Δ
R2

: ðA50Þ

The Bondi radius, at which the two flows, one inward (−)
and one outward (þ), make a transition from subsonic to
supersonic, occurs at the photon sphere R ¼ 3M.
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If the constant is positive we have a wind, while if the
constant is negative we have accretion. Asymptotically we
have

windðþÞ∶ R→∞ v¼ 1−
ffiffiffiffiffi
27

p �
M
R

�
2

þ�� � ; ðA51Þ

r → 2M v ¼
ffiffiffiffiffi
27

p ðR − 2MÞ
4M

þ � � � ; ðA52Þ

accretionð−Þ∶ R → ∞ v ¼ −2
ffiffiffiffiffi
27

p �
M
R

�
2

þ � � � ;

ðA53Þ

r → 2M v ¼ −1þ
ffiffiffiffiffi
27

p ðR − 2MÞ
8M

þ � � � : ðA54Þ

Near the acoustic horizon we have

windðþÞ∶ R → 3M v ¼ 1ffiffiffi
3

p þ
ffiffiffiffiffi
2

27

r �
R − 3M

M

�
þ � � � ;

ðA55Þ

accretionð−Þ∶R→3M v¼−
1ffiffiffi
3

p þ
ffiffiffiffiffi
2

27

r �
R−3M

M

�
þ���:

ðA56Þ

The case for general p is similar. The left-hand side of
(A46) achieves its maximum for v2 ¼ w. The right-hand
side reaches its maximum for

rBondi ¼
1

2
M

�
3þ 1

w

�
: ðA57Þ

The analogy that is often made is with a de Laval nozzle.
The throat or waist of the hourglass-shaped nozzle is a
sonic horizon, at which the speed of sound and the speed of
the fluid coincide. In the present case, this throat is the waist
at R ¼ 3M of the optical wormhole whose geometry
interpolates between flat space as r⋆ → þ∞ to the event
horizon at r⋆ → −∞, where the geometry approaches that
near the conformal infinity of hyperbolic three-space [18]
and whose radius curvature is given by the surface gravity,
or 2π times the Hawking temperature. As pointed out in
[18], this behavior is universal for all black holes, and now
we see that equally universal is the fact the sonic horizon
coincides (for a radiation gas) with the photon sphere.
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