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We implement the effects of disorder on a holographic superconductor by introducing a random
chemical potential on the boundary. We demonstrate explicitly that increasing disorder leads to the
formation of islands where the superconducting order is enhanced and subsequently to the transition to a
metal. We study the behavior of the superfluid density and of the conductivity as a function of the strength
of disorder. We find explanations for various marked features in the conductivities in terms of
hydrodynamic quasinormal modes of the holographic superconductors. These identifications plus a
particular disorder-dependent spectral weight shift in the conductivity point to a signature of the Higgs
mode in the context of disordered holographic superconductors. We observe that the behavior of the order
parameter close to the transition is not mean-field type as in the clean case; rather we find robust agreement
with expð−AjT − Tcj−νÞ, with ν ¼ 1.03� 0.02 for this disorder-driven smeared transition.
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I. INTRODUCTION

The suppression of conductivity due to disorder, known
as Anderson localization, is one of the most striking
transport phenomena that involves quantum behavior [1].
The application of localization ideas to superconductors
was for a long time governed by Anderson’s theorem
stating that nonmagnetic impurities have no significant
effect on the superconducting transition since Cooper pairs
are formed from time reversed eigenstates, which included
disorder [2]. Anderson’s idea applies only to weakly
disordered systems (with extended electronic states) and
weak interactions; the role of interactions has been further
discussed by Ma and Lee in [3]. The mechanism put
forward in [3] states that strong disorder gives rise to spatial
fluctuations of the order parameter along with its suppres-
sion in comparison to its value in the clean system. The
existence of spatial fluctuations of the order parameter has
recently been corroborated and argued to be the central
mechanism in the superconductor-insulator transition [4,5].
Various experiments have indicated that high-Tc super-
conductors are intrinsically disordered [6,7] emphasizing
the need for a better understanding of the interplay between
superconductivity, strong interactions and disorder. In this

manuscript we tackle this interplay using holographic
methods.
The anti–de Sitter/conformal field theory (AdS=CFT)

correspondence has already succeeded in constructing
holographic versions of superconductors [8,9] (for reviews
see [10,11]). Some holographic models have been argued
to be relevant to describe materials like the cuprates [12,13]
since their dynamics is believed to be largely governed by
their proximity to a quantum critical point [14].
In previous work [15,16] we investigated mild disorder

in holographic superconductors and found an enhancement
of the superconducting order parameter. Other recent works
studying disorder holographically include [17–19]. Here
we explore the regime of large disorder and provide a
detailed description of the superconductor-metal transition.
Although we work in a setup where the normal phase
describes a metal, it is also possible to consider insulating
setups through AdS=CFT [20–22].
In this paper we report various properties of the super-

conducting transition including the averaged and spatially
resolved behavior of the condensate, superfluid density
and conductivity and provide an explanation in terms
of the relevant hydrodynamic modes. We observe that
the disorder-driven transition is smeared and the averaged
order parameter (here the average h·i is over the spatial
coordinate or, equivalently, disorder realizations) vanishes
very quickly as hOi ∼ exp ð−AjT − Tcj−νÞ; we find
ν ¼ 1.03� 0.02. We expect that our explicit result for
this exponent will stimulate alternative approaches to
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disorder-driven transitions to provide a quantitative char-
acterization of the transition.

II. DISORDERED HOLOGRAPHIC
SUPERCONDUCTOR

To build a noisy holographic s-wave superconductor in
2þ 1 dimensions we consider, following [8], the dynamics
of a Maxwell field and a charged scalar in a fixed metric
background,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FabFab− ðDμΨÞðDμΨÞ†−m2Ψ†Ψ

�
:

The system is studied on the Schwarzschild-AdS4 metric,

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2 þ dy2
�
;

fðzÞ ¼ 1 − z3; ð1Þ
where we have set the radius of AdS, R ¼ 1, and the
horizon at zh ¼ 1. This system is dual to a 2þ 1 CFT living
on the boundary of AdS4, and the Uð1Þ gauge field realizes
a conserved current. The temperature of the black hole is
identified with that of the field theory, and by fixing the
horizon radius we are making use of the rescaling sym-
metry of our theory to work in units of temperature. We
take the following (consistent) ansatz for the matter fields:

Ψðx; zÞ ¼ ψðx; zÞ; A ¼ ϕðx; zÞdt; ð2Þ
where ψðx; zÞ ∈ R. The resulting equations of motion read

∂2
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2ψ2
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ϕ2 −

m2f
z2

�
ψ ¼ 0:

ð4Þ
In what follows we choose the scalar mass m2 ¼ −2,
corresponding to a dual operator of conformal dimension
Δ ¼ 2.
The main rule for reading the AdS=CFT dictionary states

that field theory information is extracted from the boundary
values of the gravity fields. The UV (z ¼ 0) asymptotics of
Eqs. (3) and (4) lead to

ϕðx; zÞ ¼ μðxÞ þ ρðxÞzþ ϕð2ÞðxÞz2 þ oðz3Þ; ð5Þ
ψðx; zÞ ¼ ψ ð1ÞðxÞzþ ψ ð2ÞðxÞz2 þ oðz3Þ; ð6Þ

where μðxÞ and ρðxÞ correspond, in the dual field theory, to
space-dependent chemical potential and charge density,
respectively. The functions ψ ð1ÞðxÞ and ψ ð2ÞðxÞ are iden-
tified, under the duality, with the source and vacuum

expectation value of an operator of dimension 2.
Imposing ψ ð1ÞðxÞ ¼ 0 in Eq. (6) corresponds to sponta-
neous breaking of theUð1Þ symmetry with order parameter
O ∝ ψ ð2ÞðxÞ. In the IR ðz ∼ zh ¼ 1Þ regularity implies that
At vanishes at the horizon.
To mimic the choice of random on-site potential used

originally by Anderson in [1] we implement disorder by
introducing a noisy chemical potential,

μðxÞ ¼ μ0 þ
μ0
25

w
Xk�
k¼k0

cosðkxþ δkÞ; ð7Þ

where δk is a random phase for each k, and w is a free
parameter that determines the strength of the disorder.
Notice that the system is homogeneous along the remaining
spacelike direction y. We discretize the space, and impose
periodic boundary conditions in the x direction, leading to k
with values

kn ¼
2π

L
ðnþ 1Þ with 0 ≤ n < N ¼ k�

k0
; ð8Þ

where L is the length in the x direction of our cylindrical
space. Our noise is a truncated version of Gaussian white
noise where the highest wave number k� takes the role of
the inverse of the correlation length for the chemical
potential. More details on the properties of this choice
of disorder can be found in [16].
Summarizing, we think of k0 as the inverse system size

and of k� as the inverse correlation length, and we work
in the regime k0=T ≪ 1. More precisely, for most of the
simulations we take L ¼ 20π, and k� ¼ 1, but we checked
the stability of the results for lengths up to L ¼ 80π.
To find solutions describing disordered superconducting

states we integrate the equations of motion (3) and (4) for
different realizations of disorder characterized by sets of the
random phases δk. We define the expectation values for the
different observables by averaging over different realiza-
tions. Typical plots correspond to about fifty realizations.

III. THE ORDER PARAMETER AND
SUPERCONDUCTING ISLANDS

Let us focus on the behavior of the order parameter as a
function of the chemical potential μ and the dimensionless
strength of disorder w. We pay special attention to the
minimum of the condensate Omin throughout the sample
which we expect to be related with the dc conductivity.
In [15,16] it was shown that noise enhances the spatial

average of the order parameter. However, already Ma and
Lee found in [3] that strong disorder gives rise to spatial
fluctuations of the order parameter along with its suppres-
sion in comparison with its value in the clean/homogeneous
system. In Fig. 1 we plot the spatial dependence of the order
parameter at a temperature T ¼ 0.81Tw¼0

c , where Tw¼0
c is

the homogeneous critical temperature. We find that for
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strong enough noise regions akin to islands appear in the
system.
The enhancement of superconducting properties

reported in [15,16] has some precedent in the condensed
matter literature. The role of superconducting islands was
already explicitly mentioned in [23], and further analyzed
in [4]. In that work it was shown that for each realization of
disorder, there are spatial regions where the local upper
critical field exceeds the system-wide average value. These
regions form superconducting islands weakly coupled
via the Josephson effect. At low temperatures, proximity
coupling is long ranged and, thus, global superconductivity
may be established in the system. Similar arguments were
also advanced in [5]. We see that precisely this mechanism
seems to be at play in our holographic model.
To characterize the possible appearance of islands we

study the minimum of the condensate Omin for different
values of the parameters that characterize the system. In
Fig. 2 we plot Omin (dashed line) as a function of the

disorder strength w at constant temperature T ¼ 0.81Tw¼0
c .

This figure shows that Omin is a holographic version of the
original suggestion of Ma and Lee [3] that strong disorder
gives rise to spatial fluctuations of the order parameter
along with its suppression in comparison with its value in
the clean/homogeneous system. Moreover, for large values
of the disorder strength we observe an exponential tail for
Omin. This means that we have some leaking between
islands of superfluid leading to a finite value of the
condensate in between. We relate this to the fact that
AdS suppresses large momentum contributions to the order
parameter as reported in [15,16].

IV. CONDUCTIVITIES

The holographic computation of conductivities requires
the study of fluctuations on top of the background. Here we
focus on the conductivity of the Uð1Þ broken supercon-
ducting phase, where the perturbations couple to the noise
due to the nontrivial scalar field. Given the symmetries
of the setup, there are two different conductivities one can
study: the one in the direction parallel to the noise and that
orthogonal to it. The orthogonal conductivity is insensitive
to the disorder, and we thus focus on the parallel one.
To compute the electric conductivity we consider homo-

geneous perturbations of the gauge field oscillating with
frequency ω,

Aμ ¼ Að0Þ
μ ðx; zÞ þ aμðx; zÞe−iωt; ð9Þ

and on the boundary (z ¼ 0) we impose ftiðxÞ ¼ 1 (where
fμν is the field strength of aμ, and i runs over the spatial
directions x, y), thus sourcing a constant electric field
in the dual field theory. Then, following AdS=CFT, the
conductivity is computed as

σiiðxÞ ¼
hJii
Ei

¼ −
i∂zaiðx; zÞ
ωaiðx; zÞ

����
z→0

; ð10Þ

where there is no summation over i, and we impose ingoing
boundary conditions for aiðx; zÞ at the horizon.
For the conductivity in the direction of the noise we must

consider the linearized equations for the spatial component
of the gauge field axðx; zÞ. Unfortunately, the x dependence
couples ax to the perturbation of the temporal component
of the gauge field a0ðx; zÞ and to the perturbations of the
scalar field χðx; zÞ þ iηðx; zÞ, and we must then solve the
four coupled linear equations of motion. Interestingly, as
we show in Fig. 4, the fields ðχ; ηÞ show up as hydro-
dynamic modes in the computation of conductivities.
When looking for the low-frequency behavior of the

conductivity we find that, as in the homogeneous phase, we
have a pole in the imaginary part of σ. This translates,
through Kramers-Kronig rules, into a (numerically invis-
ible) delta function in the real part, giving
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FIG. 1. The condensate as a function of the coordinate x for
three realizations with strength w ¼ 0.1, 0.9, 3, and the same set
δk (orange, yellow and purple lines, respectively), at a temper-
ature T ¼ 0.81Tw¼0

c . This plot shows the appearance of islands,
that is, of spatial fluctuations in the condensate.
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FIG. 2. Superfluid density, ns (solid line), and minimum of the
condensate, Omin (dashed line), as a function of disorder, w, for
T=Tw¼0

c ¼ 0.81. The value of Omin has been normalized to unity
at w ¼ 0.

HOLOGRAPHIC DISORDER DRIVEN SUPERCONDUCTOR- … PHYSICAL REVIEW D 94, 106003 (2016)

106003-3



σ ≈ ns

�
πδðωÞ þ i

ω

�
þ � � � ; ð11Þ

where ns is the superfluid density. Notice that for σxx, a
near-boundary analysis of the equations of motion shows
that, due to current conservation, the dc conductivity must
be homogeneous, and therefore ns is a constant indepen-
dent of x.
The dependence of the superfluid density on the strength

of disorder is shown in Fig. 2, together with the evolution of
the minimum value of the condensate. For low w, we verify
that ns does not change much in total agreement with
Anderson’s theorem even if we are describing a strongly
coupled system. The persistence of the transport properties
for weak disorder, even in strongly coupled systems, has
been argued in the metal-insulator transition in [24].
Figure 2 shows that for large w, both the superfluid density
and the minimum of the condensate decay exponentially.
This illustrates the disorder-driven transition to the normal
(metallic) phase.
We present the real part of the ac conductivity in Fig. 3,

comparing the homogeneous case with the results for two
different values of the strength of disorder. The two key
features absent in the homogeneous case are the presence of
resonances for small frequencies and a shift of the spectral
weight at large frequencies. The small frequency resonan-
ces are a direct result of coupling of new fluctuating fields
for an x-dependent chemical potential. These resonances
can be understood as related to the holographic quasinor-
mal modes studied in [25,26] and shown to affect the
conductivity at nonzero superfluid velocity in [27]. The
shift in the spectral weight clearly depends on the strength
of disorder, and we view it as evidence of the Higgs mode
associated with the spontaneous breaking of the Uð1Þ
symmetry [28]. The Higgs mode corresponds to oscilla-
tions of the modulus of the order parameter, and it is
predicted [29] to cause an excess of the electrical conduc-
tivity at subgap frequencies. In clean BCS superconductors

the mass of the Higgs mode results in a gap of its
contribution to the conductivity which is of the order of
the BCS gap, and thus makes it difficult to detect the Higgs
mode through its effect on the conductivity. However, it
was shown in [30] that disorder suppresses that gap, giving
rise to an observable excess of the ac conductivity at subgap
frequencies with respect to the standard BCS prediction
(based on the measurement of the energy gap of Cooper
pairs) [28]. The excess observed in [28] is qualitatively
similar to what we observe in Fig. 3 at frequencies
2≲ ~ω≲ 4 where the conductivity of the disordered system
(yellow line) is higher than that of the clean one
(black line).
To verify that the small frequency resonances in the

conductivity correspond to the gapless modes studied in
[26], we compute the effective velocity, vs, of the first of
these resonances assuming the dispersion relation,

ω ¼ vsðT; wÞk; ð12Þ

and taking k to be equal to k0, where k0 ¼ 2π=L is the
smallest wave number in the sum (7). We then compare
the evolution of vs with the temperature with the findings
of [26]. The result is plotted in Fig. 4 which shows that
vsðT; wÞ follows the standard temperature dependence
discussed in [25,26] (corresponding to the solid black line
in the graphic). What is new in our case is its dependence
on the disorder. For small temperatures the role of disorder
is suppressed. For higher temperatures we see that vs
decreases with increasing disorder strength except very
near the critical temperature, Fig. 4.

V. SMEARED PHASE TRANSITION

Finally, let us turn to the analysis of one of the most
universal properties in phase transitions: the behavior of
the order parameter close to the transition [31]. As a first
approach to disordered phenomena, the fate of a particular
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FIG. 3. Real part of the ac conductivity for T=Tw¼0
c ¼ 0.45. The

black line corresponds to the homogeneous case, whereas the
purple and yellow lines denote the disordered w ¼ 1 and w ¼ 2.4
cases, respectively. The dimensionless frequency ~ω is propor-
tional to ω=T.
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FIG. 4. Effective velocity vsðT; wÞ corresponding to the first
resonance of the conductivity for w ¼ 0.1 (blue dots) and w ¼ 1
(red dots). The black solid line presents the result of [26]
for the speed of sound of the sound mode in holographic
superconductors.
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clean critical point under the influence of impurities is
controlled by the Harris criterion [32] that generalizes the
standard power-counting criterion to random couplings.
As explained in [33] our chemical potential disordered
along one dimension, and thus perfectly correlated along
the remaining spatial direction, introduces relevant
disorder. This places our setup in the class of systems
where quenched disorder can lead to exotic critical points
where the conventional power-law scaling does not hold
[34–36]. Moreover, in some cases disorder has been
shown to cause the formation of rare regions undergoing
a phase transition independently from the rest of the
system. In terms of the average of the order parameter this
results in a smeared phase transition characterized by an
exponential scaling [37–39]. One would expect the islands
of conductivity that form in our system to play the role
of these rare regions, and consequently to smear out the
phase transition.
Figure 5 shows the transition for the clean, homogeneous

case [9], and for three disordered cases (w ¼ 0.1, 0.2, 0.4).
We confirm that for the disordered transition the order
parameter behaves as hOi ∼ exp ð−AjT − Tcj−νÞ in Fig. 6.
Notice that Tc is different for each value of w, and is always
higher than Tw¼0

c . By taking the logarithmic derivative
hO0ðTÞi=hOðTÞi, this figure shows linear fits that allow us
to determine the exponent ν, obtaining ν ¼ 1.03� 0.02
independent of the disorder w. Explicitly, the fits in Fig. 6
are y ¼ −2.26 − 2.02x for w ¼ 0.4, y ¼ −3.13 − 2.01x for
w ¼ 0.2 and y ¼ −4.21 − 2.06x for w ¼ 0.1, and notice
that the slope of these fits corresponds to −ðνþ 1Þ. The fits
also show that the coefficient A of the expression above
increases with the disorder strength w, in agreement with
the optimal fluctuation theory predictions [37,39]. In
particular, after assuming ν ≈ 1, these fits result in the
following values of A: 0.01 at w ¼ 0.1, 0.04 at w ¼ 0.2,
and 0.1 at w ¼ 0.4. The ranges of the fits, shown by
solid black lines in Fig. 6, are determined on one side
by the region where the condensate behaves as in the

homogeneous case which as Fig. 5 shows is for temper-
atures around :95Tc. On the other side the bound arises
from the numerical instability introduced by exponentially
small values of the condensate. Notice that the points at
temperatures above Tw¼0

c are rare, and many realizations
are needed in order to have enough statistics to capture their
behavior. Moreover, those points correspond to very low
values of the condensate, and small errors in hOðTÞi affect
strongly the value of hO0ðTÞi=hOðTÞi. Finally, one should
notice that the UV cutoff k� in our disordered chemical
potential bounds the disorder distribution. Consequently,
one expects to find, as we do, a finite disordered critical
temperature Tw

c above which only the normal phase exists
[37,39].

VI. CONCLUSIONS

A. Superconducting islands in holography: We argued
that the formation of islands in the context of holographic
disorder-driven superconductors is, as in experimental
and numerical analyses, the central mechanism at play
in the transition. This behavior is responsible for the
enhancement of superconductivity reported in [15,16].
The fact that the islands are coupled via the Josephson
effect, as suggested originally in [4], causes the expo-
nential decay in the tail of the superfluid density as shown
in Fig. 2.
B. Disorder in strongly interacting systems: The inter-

play between disorder and interactions has been the subject
of vigorous studies in the condensed matter literature
initiated most recently by the work of Basko et al. [24].
In the series of works generated by [24] (see for example
[40–42]), it is shown that for sufficiently strong disorder,
weak interactions do not change the nature of the localized
phase [43,44]. The present work is in the complementary
region, where interactions are strong to begin with, and
disorder is increased. We have established that weak
disorder does not destroy the holographic superconducting
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FIG. 5. The disorder-driven transition is smeared. We plot the
spatial average of the condensate close to the critical temperature
for w ¼ 0, 0.1, 0,2 and 0.4 (black, purple, orange, and yellow
lines, respectively).
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FIG. 6. The disorder-driven transition is smeared. We plot
log ð1O dO

dTÞ versus logðTc − TÞ for w ¼ 0.1, 0.2, 0.4 (purple,
orange, and yellow, respectively). The solid black lines denote
linear fits to the data, and the vertical dashed lines indicate the
critical temperature of the homogeneous case Tw¼0

c .
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state; in particular, Fig. 2 shows that the superfluid density
is largely unaffected for small disorder. Instead, for strong
disorder the formation of islands suppresses the superfluid
density driving the system to the normal phase.
C. Optical conductivity: We have studied the ac

conductivity for disordered holographic superconductors,
identifying the new low-frequency resonances with qua-
sinormal modes of the holographic superconductor.
Moreover, the conductivity displays a disorder-dependent
shift of the spectral weight highly suggestive of a massive
Higgs excitation. Strong experimental evidence in favor
of a Higgs mode in strongly disordered superconductors
close to the quantum phase transition has been recently
reported in [28].
D. The disorder-driven transition is smeared: We

have shown that under the influence of disorder the
superconductor-metal transition changes from power law,
mean field to a smeared transition of the form
expð−AjT − Tcj−νÞ, with ν ¼ 1.03� 0.02. We hope that
our results motivate other approaches to a quantitative
description of this transition.
E. Future directions: Understanding the properties of

conductivities in the language of modes helps us compare
with more traditional condensed matter methods directly.
Building a holographic disordered superconducting thin
film will help us tackle the Higgs mode in the strongly
disordered superconductor close to the quantum phase
transition [28]. Ultimately, due to the universality of
critical exponents [31], we hope that our holographic
approach provides a direct path to disorder-driven critical
exponents.
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APPENDIX: SUPPORTING MATERIAL

1. Numerical stability

Given the aleatory nature of our calculation, in this
appendix we show the stability of the result of the value
of ν against the number of realizations. Namely, Fig. 7
shows that the result stabilizes as we increase the number
of realizations of disorder, i.e., the number of times we
generate a series of random phases, δk in Eq. (7). Most
of our simulations for determining ν involve over 100
realizations.

2. Homogeneous versus smeared condensate

In Fig. 8 we show that the homogeneous transition
follows a power law. We present it in the same plot
as a smeared transition to illustrate how our numerical
analysis distinguishes between the homogeneous and the
disordered transition. Note that for a homogeneous con-
densate Oh ¼ AhjT − Tcjβ, with β ¼ 1=2 [9]; hence one
can write

log

�
O0

O

�
¼ − log jT − Tcj þ cons; ðA1Þ

while for the disordered case O ¼ As expð−AjT − Tcj−νÞ,
and one has

log

�
O0

O

�
¼ −ðνþ 1Þ log jT − Tcj þ cons: ðA2Þ

3. Equations of the perturbations

The equations of motion for the perturbations relevant
for computing the electric conductivity read
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FIG. 7. The condensates for w ¼ 0.4 with four different
numbers of realizations: purple corresponds to ten realizations,
orange to 25, yellow to 75, and black to 150. Notice that except
for the leftmost, high temperature, data points, the value of the
condensate stabilizes for a number of realizations above 25.
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FIG. 8. The homogeneous condensate (black dots) and the
smeared condensate for w ¼ 0.1 (purple). The red and blue
lines correspond to the linear fits y ¼ −0.71 − 1.00x and
y ¼ −4.21 − 2.06x, respectively.
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2ðiωηþ a0ψ þ 2ϕχÞψ − z2ðf∂zza0 þ iω∂xax þ ∂xxa0Þ ¼ 0; ðA3Þ

z2

f
ðω2ax þ ff0∂zax þ f2∂zzax − iω∂xa0Þ − 2ðψ2ax − ψ∂xηþ ∂xψηÞ ¼ 0; ðA4Þ

−2ðiωηþ ψa0Þϕ − z2ϕ2χ þ ð−z2ω2 þm2fÞχ − zfð−2f∂zχ þ zf0∂zχ þ zf∂zzχ þ z∂xxχÞ ¼ 0; ðA5Þ

ðz2ðω2 þ ϕ2Þ −m2fÞη − 2xf2∂zηþ z2ð−iωa0ψ − 2iωϕχ þ fðf0∂zηþ f∂zzη − ψ∂xax − 2ax∂xψ þ ∂xxηÞÞ ¼ 0; ðA6Þ

subject to the constraint

−iz2ω∂za0 þ fð2ψ∂zη − 2η∂zψ − z2∂xzaxÞ ¼ 0: ðA7Þ
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