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We study a quantum-mechanical model proposed by Sachdev, Ye and Kitaev. The model consists of N
Majorana fermions with random interactions of a few fermions at a time. It it tractable in the large-N limit,
where the classical variable is a bilocal fermion bilinear. The model becomes strongly interacting at low
energies where it develops an emergent conformal symmetry. We study two- and four-point functions of the
fundamental fermions. This provides the spectrum of physical excitations for the bilocal field. The
emergent conformal symmetry is a reparametrization symmetry, which is spontaneously broken to
SLð2; RÞ, leading to zero modes. These zero modes are lifted by a small residual explicit breaking, which
produces an enhanced contribution to the four-point function. This contribution displays a maximal
Lyapunov exponent in the chaos region (out-of-time-ordered correlator). We expect these features to be
universal properties of large-N quantum mechanics systems with emergent reparametrization symmetry.
This article is largely based on talks given by Kitaev, which motivated us to work out the details of the ideas
described there.
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I. INTRODUCTION

Studies of holography have been hampered by the lack
of a simple solvable model that can capture features of
Einstein gravity. The simplest model, which is a single
matrix quantummechanics, does not appear to lead to black
holes [1] (see Ref. [2] for a review). N ¼ 4 super Yang-
Mills at strong ’t Hooft coupling certainly leads to black
holes, and exact results are known at large N for many
anomalous dimensions and some vacuum correlation
functions, but at finite temperature the theory is difficult to
study.
A system that reproduces some of the dynamics of black

holes should be interacting, but we might hope for a model
with interactions that are simple enough that it is still
reasonably solvable.
Kitaev has proposed to study a quantum-mechanical

model of N Majorana fermions interacting with random
interactions [3]. It is a simple variant of a model introduced
by Sachdev and Ye [4], which was first discussed in relation
to holography in Ref. [5]. The Hamiltonian of Ref. [3] is
simply

H ¼
X
iklm

jiklmψ iψkψ lψm ð1:1Þ

where the couplings jiklm are taken randomly from a
Gaussian distribution with zero mean and a width of order
J =N3=2.
One interesting feature of this model is that it develops

an approximate conformal symmetry in the infrared.
Understanding how to deal with quantum-mechanical

theories that develop such a conformal symmetry seems
very important for both condensed matter physics and
gravity. One naively expects a full Virasoro symmetry.
However, in the model, the symmetry is both explicitly as
well as spontaneously broken, so we end up with “nearly
conformal quantum mechanics,” or NCFT1. [We propose to
use the term NCFT1 to denote systems that have one time
dimension which are nearly invariant under a full repar-
ametrization (or Virasoro) symmetry.1] The same situation
arises in gravity, when we consider very near extremal
black holes. These are black holes that develop a nearly
AdS2 region, which we can call NAdS2; see Ref. [7] for a
recent discussion. It is well known that purely AdS2 gravity
is not consistent, except for the ground states. So the right
setting in which to study holography for near extremal
black holes is NAdS2=NCFT1.
Besides this structural similarity, it was noted in

Refs. [3,8] that the out-of-time-order correlators of the
Sachdev-Ye-Kitaev (SYK) model (1.1) grow in a manner
that reflects an underlying chaotic dynamics. At relatively
low energies this growth matches the one expected in a
theory of gravity [9–11], which saturates the chaos
bound [12].
In this paper we study this model a bit further. We start

by summarizing the computation of the two-point func-
tions [4,13] in the large-N limit, following Sachdev, Ye,
Parcollet, and Georges. We will discuss this in a variant of
the model where the interaction involves q fermions at a

1This should be contrasted to what is usually called “conformal
quantum mechanics,” such as in Ref. [6], which are only invariant
under SLð2; RÞ.
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time [3]. We will further show that the equations simplify
considerably in the large-q limit. This allows us to
connect analytically the free UV theory to the interacting
and nearly conformal IR theory. Further recent work
in this or similar models includes Refs. [7,14–19].
See also Refs. [20,21] for a string-motivated model with
disorder.
We then derive an explicit integral expression for the

four-point function in the infrared limit. This problem
was also considered in Ref. [19]. The four-point function
is actually infinite in the strict conformal limit, due to
Nambu-Goldstone bosons associated to the spontane-
ously broken reparametrization invariance. To remove the
infinity we have to take into account the explicit breaking
of this symmetry, which lifts these modes by a small
amount. We expect that this should be a universal feature
of large, but finite, entropy NCFT1 systems. Namely, the
systems cannot realize the conformal symmetry exactly,2

and the small explicit breaking leads to a universal
contribution that dominates the four-point function and
saturates the chaos bound.3 In particular, AdS2 dilaton
gravity is an example with the same explicit breaking
[26], leading to the same dominant term in the four-point
function.
In addition to this term, the SYK four-point function

contains subleading pieces that are finite in the low-
temperature limit. These contain information about the
composite operators that appear in the operator product
expansion (OPE) of

P
iψ iðτÞψ ið0Þ. These get anomalous

dimensions at leading order inN and seem analogous to the
single trace operators of the usual gauge theory examples of
holography. One finds a tower of states with an approx-
imately integer spacing. This tower of states is reminiscent
of the one appearing in large-N O(N) models, where we
have one state for each spin. Here we get a similar structure,
but with dimensions which have Oð1Þ corrections relative
to the dimensions in the free theory. This suggests that the
bulk theory contains low-tension strings. These extra states
do not compete with the dilaton gravity piece, even though
the strings are light, simply because of the enhancement of
gravity in NAdS2.
Much of the analysis in this paper, including the ladder

diagrams, the spectrum of the kernel kcðhÞ, and the
effective theory of reparametrizations, is simply what

Kitaev presented in his talks [3], and we are thankful to
him for several further explanations.

A. Organization of the paper and summary
of results

The article might seem a bit technical in some parts, so
we will summarize below what is done in various sections.
The reader might want to jump directly to the sections that
look most interesting to him/her.
In Sec. II we review the large-N structure of the theory.

The model has one dimensionful parameter J , with
dimensions of energy, which characterizes the size of the
interaction terms in the Hamiltonian. This implies that the
interaction is relevant and becomes strong at low energies.
For large N the diagrams have a simple structure that is
reminiscent of the one for large-NOðNÞ theories (see also
the discussion in Ref. [18]). There is a bilocal field
~Gðτ1; τ2Þ depending on two times which becomes classical
in the large-N limit. On the classical solution, G, this field
is equal to the two-point function of the fermions
Gðτ1; τ2Þ ¼ 1

N

P
N
i¼1hψ iðτ1Þψ iðτ2Þi. The classical equation

for G is nonlocal in time but it can be solved numerically.
G can be inserted in the action to compute the partition
function. We also show that in the variant of the model
where q fermions interact at a time, the large-q limit
becomes analytically tractable and one can solve the
classical equations for any value of the coupling.
Another simple solvable limit is the case q ¼ 2. In that
case, the Hamiltonian has the form H ¼ i

P
kljklψkψ l

which is a randommass-like term. This can be diagonalized
and we get a spectrum of masses, or energies, given by the
usual semicircle law distribution for random matrices. This
particular example is integrable and some properties are
different than the one for the generic q case. In particular,
we find that there is no exponentially growing contribution
to the out-of-time-order four-point function.
At low energies the model simplifies further due to the

emergence of a conformal symmetry. In one dimension the
conformal group is the same as the group of all repar-
ametrizations. One can see this symmetry explicitly in both
the low-energy action, and the low-energy equations for the
bilocal fields. One might expect a theory that has a full
reparametrization symmetry to be topological. This is not
the case here because the reparametrization symmetry is
spontaneously broken down to an SLð2; RÞ subgroup. In
other words, the bilocal function Gðτ1; τ2Þ ¼ Gðτ1 − τ2Þ
becomes Gc ∝ τ−2Δ12 for large values of J τ12 (with
τ12 ¼ τ1 − τ2). The partition function displays a zero-
temperature entropy of order N. In addition, there is a
finite-temperature entropy which is linear in the temper-
ature, proportional to N=ðβJ Þ. Generically the model is
expected to have a single ground state, but here we are
considering temperatures that are fixed in the large-N limit.
This means that we are accessing an exponentially large
number of states.

2The argument in Ref. [22] shows that an exact SLð2; RÞ
symmetry is incompatible with a thermofield interpretation with a
finite number of states. Of course, in gravity the exact SLð2; RÞ
symmetry is broken by the presence of a dilaton field; see Ref. [7]
for a recent discussion.

3In 1 þ1-dimensional conformal field theory the conformal
symmetry is also spontaneously broken (recall that L−2j0i ≠ 0),
but it is not explicitly broken. In that case we also have a universal
(stress tensor) contribution to the four-point function. By itself
this piece saturates the chaos bound [23–25], but only in special
theories does it dominate.
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In Sec. III we discuss general features of the four-point
function of the fermions hψ iψ iψ jψ ji. This can also be
viewed as a two-point function of the bilocal fields. The
final form for the leading 1=N piece in the four-point
function is displayed in Eq. (3.112).
This computation of the four-point function is a bit

technical and, for this reason, this section is rather long.
The diagrams that contribute have the form of ladder
diagrams. Therefore, they can be summed by defining a
kernelK that corresponds to adding a rung to a ladder. Then
the full ladder has a form proportional to 1

1−K F0 where F0 is
a diagram with no rungs. This is conceptually easy.
However, it is tricky to invert the kernel since one has
to understand in more detail the space of functions where it
is acting. Fortunately the problem partially simplifies at low
energies due to the unbroken SLð2; RÞ symmetry. This
symmetry can be used to diagonalize the kernel and also to
describe the space of functions we should sum over. This
leads to a relatively explicit expression for the four-point
function in terms of a sum over intermediate states
[Eqs. (3.50) and (3.52)], once we exclude the Goldstone
bosons which need to be treated separately. We can read off
the spectrum of operators that appear in the OPE of two
fermions. The spectrum is given by the solutions hm to the
equation kcðhmÞ ¼ 1, with kcðhÞ in Eq. (3.35). We can
vaguely view this tower of operators as ψ i∂1þ2mψ i. We
say “vaguely” because the proper dimensions we obtain
from the above procedure display an order-one correction
from the naively expected values (which would be
2Δþ 1þ 2m). This is an important clue for a possible
bulk interpretation. It is saying that the fermions cannot be
associated to weakly interacting particles in the bulk. Their
interactions would have to be of order one rather than 1=N.
We then give a proper treatment for the Goldstone modes

that have Kc ¼ 1 in the conformal limit. These arise from
reparametrizations of the conformal solution, Gc. These
fluctuations have zero action in the conformal limit, but get
a nonzero action when we take into account the leading
corrections to the conformal answers. We first take a direct
approach and compute the leading correction to the
classical solution G away from the conformal limit
G ¼ Gc þ δG. It turns out that the leading correction
involves an extra factor of 1=J . One can then proceed
to compute the variation of the kernel K away from the
conformal limit K ¼ Kc þ δK. We then evaluate δK on
reparametrizations of the conformal solution δϵGc, where
ϵðτÞ is an infinitesimal reparametrization. We get a nonzero
answer which can then be used to compute the four-point
function. Since δK ends up in the denominator in the
expression for the four-point function, we get an enhanced
contribution with an additional factor of ðβJ Þ as compared
to the conformal answer, which is independent of βJ . This
enhanced contribution is not conformally covariant.
However, it has a very simple form in the OPE limit which
can be understood as follows. The OPE gives rise to an

energy operator of the model, which has quadratic fluctua-
tions hðδEÞ2i in the thermal ensemble. These fluctuations
are governed by the specific heat of the system, which again
is nonzero once we take into account the effects of the
breaking of the conformal symmetry. We also consider the
contribution of these Goldstone modes in the chaos limit.

There they give the dominant term ðβJ =NÞe2π
β t that

saturates the bound. The reparametrization symmetry of
the model is essential to obtain this pseudo-Goldstone
boson. In Appendix H we discuss a model that has a low-
energy SLð2; RÞ symmetry but without the conformal
symmetry, by thinking of the couplings as dynamical with
an SLð2; RÞ-invariant correlation function. In this case
there is no pseudo-Goldstone mode, the low-energy physics
is SLð2; RÞ invariant and the chaos exponent is less than
maximal.
In Sec. IV, we give a discussion of the four-point

function from the perspective of the large-N effective
action for the bilocal field ~G; see also Ref. [18]. The
intermediate states that appear can be understood from
the on-shell condition for fluctuations of this field. The
enhanced nonconformal part of the four-point function
arises from the functional integral over ~G configurations
that are reparametrizations of the infrared saddle point
solution. We give a simple effective field theory argument
showing that the effective action is given by the Schwarzian
derivative, ffðτÞ; τg, of the reparametrization (4.8), with a
coefficient of order ðβJ Þ−1 [3]. This action constitutes an
explicit breaking of the conformal symmetry. It can be used
to derive the enhanced contribution mentioned above, and
also to compute the specific heat.
In Sec. V we discuss some features of the spectrum of the

model. We start by presenting a numerical computation of
the spectrum for the case of N ¼ 32. The spectrum in this
case is reminiscent of that of a random matrix and, as
expected, is statistically symmetric under H → −H since
the random couplings can be positive as well as negative.
At low temperature one is interested in the region near the
bottom end of the spectral distribution. We then look at the
expression for the free energy at leading order in N, which
has the low-temperature expansion logZ ¼ −βE0 þ S0 þ
c
2β where all terms are of order N. The first term is the
ground-state energy, which is not interesting. The second is
the zero-temperature entropy. The third, with the specific
heat c ∝ N=J , arises from the breaking of the conformal
symmetry and can be computed in terms of the Schwarzian
action for the reparametrizations, after noticing that we can
change the temperature by making a reparametrization of
the Euclidean circle (or, equivalently, we can go from the
circle to the line by a reparametrization). We further
consider the N0 correction to logZ. This arises from the
one-loop correction to the effective action for the bilocal
fields. All the modes that have a nonvanishing action give a
contribution just to E0 and S0, since they are J independent
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(up to UV contributions to E0). The reparametrization
modes give a term that contributes a logarithm to the
free energy [27], specifically − 3

2
logðβJ Þ. This additional

contribution has an interesting effect. It implies that
if we compute the spectral density ρðEÞ by inverse
Laplace transforming ZðβÞ we obtain that ρðEÞ ∝
J −1eS0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðE−E0Þ

p
, with no prefactor powers of

ðE − E0Þ, in the regime where we can trust the
computation.
In Sec. VI we comment on the possible bulk interpreta-

tion. The enhanced nonconformal contribution agrees with
the four-point function one expects in a theory of dilaton
gravity [7,26]. This contribution is completely general in
any situation with a near extremal black hole with a NAdS2
region and it follows the same pattern of spontaneous plus
explicit breaking of the conformal symmetry [26] (see
Ref. [25] for a similar discussion in the AdS3=CFT2

context). Therefore the information about other possible
bulk states comes from the contribution that is J indepen-
dent and finite in the conformal limit. These are the states
that appeared in the OPE expansion of two fermions. This
looks like a single Regge trajectory with dimensions that are
linearly increasing with “spin,” though spin is hard to define
in two dimensions. This implies that a dual description
would involve a string with low tension, with ls ∼ RAdS.
Part of our motivation to study this model arose from the

observation that the four-point function was saturating the
chaos bound, which is a necessary condition for a gravity
dual. It was shown in Ref. [11] that stringy corrections to
the chaos exponent involve a factor of 1 − l2s=R2 where R is
a suitable distance scale. This suggested that the condition
might also be sufficient to exclude models with light
strings. However, examining the scale R carefully, it is
possible to show that for near extremal black holes this

correction has the form
�
1 − l2s

R2
AdS

ðS−S0Þ
S0

�
, where S is the

entropy and S0 is the zero-temperature entropy. Since the
ratio of entropies is much less than one, we see that stringy
corrections to the Lyapunov exponent are very suppressed,
suggesting that even in cases with ls ∼ RAdS2 we could have
a Lyapunov exponent close to the gravity value. In other
words, for this case a nearly saturated Lyapunov exponent
is not a guarantee of a high string tension. And indeed, in
the SYK model we seem to have a low string tension. A
related perspective on this is the following: the four-point
function saturates the bound because it is dominated by the
universal “gravity” piece coming from the zero modes
discussed above. This turns out to be enhanced by a factor
of S0=ðS − S0Þ. Relative to this piece, the “stringy” con-
tributions to the four-point function are small, so they have
only a mild effect on the chaos exponent.
We also comment on the bulk interpretation of the

fermion fields. We speculate that we should not have N
fermions in the bulk, but rather one fermion with a string
attached to the boundary.

Finally, we note that the bilocal field can be viewed as a
field in one more dimension. At low energies the extra
dimension defined in this way has a metric characterized by
the conformal group and can be viewed as a dS2 (or AdS2)
space in accordance with recent discussions of kinematic
space [28,29]. This follows simply from the structure of the
conformal group. Some terms in the action can be viewed
as local terms in this space, but others have a nonlocal
expression.
In the appendices we give some more details on the

computations.

II. TWO-POINT FUNCTIONS

A. The model

We consider a quantum-mechanical model with N
Majorana fermions with random interactions involving q
of these fermions at a time, where q is an even number. The
Hamiltonian is

H ¼ ðiÞq2
X

1≤i1<i2<���<iq≤N
ji1i2���iqψ i1ψ i2 � � �ψ iq ; ð2:1Þ

hj2i1���iqi ¼
J2ðq − 1Þ!

Nq−1 ¼ 2q−1

q
J 2ðq − 1Þ!

Nq−1 ðno sumÞ: ð2:2Þ

We take each coefficient to be a real variable drawn from a
random Gaussian distribution. Equation (2.2) indicates the
variance of the distribution. It is characterized by a
dimension-one parameter J, (or J , which is defined with
an extra factor that makes the model more uniform in q)
which we take to be the same for all coefficients. The
numerical factors, and factors of N, are introduced to
simplify the large-N limit. A factor of i is necessary to
make the Hamiltonian Hermitian when q ¼ 2 mod(4). This
i means that the system is not time-reversal symmetric for
odd q=2. Thus, if we restrict to time- reversal-symmetric
interactions the model with q ¼ 4 represents the dominant
interactions at low energy. The others involve some degree
of tuning. We assume that the system does not have a spin-
glass transition [30] and we work to leading order in the
1=N expansion. Though the model generically has a unique
ground state, we work at temperatures which are fixed in
the large-N expansion, implying that we access an expo-
nentially large number of low-energy states, of order
OðeαNÞ, α > 0.

B. Summing the leading-order diagrams

We will work first in Euclidean space. It is useful to
define the Euclidean propagator as

GðτÞ≡ hTðψðτÞψð0ÞÞi ¼ hψðτÞψð0ÞiθðτÞ
− hψð0ÞψðτÞiθð−τÞ: ð2:3Þ
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For a free Majorana fermion this is very simple

GfreeðτÞ ¼
1

2
sgnðτÞ;

GfreeðωÞ ¼ −
1

iω
¼

Z
dteiωτGfreeðτÞ: ð2:4Þ

Gfree has the same expression at finite temperature, with
τ ∼ τ þ β. Notice that it is correctly antiperiodic as
τ → τ þ β. These equations also normalize the fermion
fields appearing in the interaction (2.1). Recall that the free
Majorana fermions are simply described by operators that
are essentially N-dimensional Dirac γ matrices; see e.g.
Ref. [17]. Using this free propagator we can then compute
corrections due to the interaction. Let us look at the first
correction to the two-point function, shown in Fig. 1. This
arises by bringing down two insertions of the interaction
Hamiltonian and then averaging with respect to the dis-
order. The disorder average is represented by a dotted line
in Fig. 1. As pointed out in Ref. [19], we can sometimes
reproduce similar diagrams by considering ji1;…;iq to be a
dynamical field. Here we will stick to the disordered
model. The disorder average links the indices appearing
in the two interaction Hamiltonians and we end up with a
correction that scales as J2 relative to the free two-point
function, with no additional factors of N, since we get
(q − 1) factors of N from the sum over the indices of the
intermediate lines.
Besides this first diagram, there are many more “iterated

watermelon” diagrams that contribute at leading order inN.
Two more are shown in Fig. 1. The set of diagrams is
sufficiently simple that they can be summed by writing self-
consistency equations for the sum. First, it is convenient to
define a self-energy, Σðτ; τ0Þ, which includes all the one-
particle-irreducible contributions to the propagator. By
translation symmetry, Σðτ; τ0Þ ¼ Σðτ − τ0Þ and we can write
the full two-point function, and the definition of Σ as

1

GðωÞ ¼ −iω − ΣðωÞ; ΣðτÞ ¼ J2½GðτÞ�q−1: ð2:5Þ

Notice that the first equation is written in frequency space
while the second is in the original (Euclidean) time
coordinate (see Fig. 2). Here we have assumed translation
symmetry. The possible values of the frequency depend on
whether we are at β ¼ ∞, where it is continuous, or at finite
β where we have ω ¼ 2π

β ðnþ 1
2
Þ. When we talk about zero

temperature, we are imagining taking the large-N limit first
and then the zero-temperature limit.
As a side comment, note that we could consider a model

with a Hamiltonian which is a sum of terms with various
q’s, and with random couplings with their own variance Jq.
The large-N equations for such models would be very
similar except that the right-hand side of Eq. (2.5) would be
replaced by Σ ¼ P

qJ
2
q½GðτÞ�q−1. But we did not find any

good use for this.

C. The conformal limit

At strong coupling, the first equation in Eq. (2.5) can
be approximated by ignoring the first term on the right-
hand side. It is convenient to write these approximate
equations as

Z
dτ0Gðτ; τ0ÞΣðτ0; τ00Þ ¼ −δðτ − τ00Þ;

Σðτ; τ0Þ ¼ J2½Gðτ; τ0Þ�q−1: ð2:6Þ

Written in this form, they are invariant under reparamet-
rizations,

Gðτ; τ0Þ → ½f0ðτÞf0ðτ0Þ�ΔGðfðτÞ; fðτ0ÞÞ;
Σðτ; τ0Þ → ½f0ðτÞf0ðτ0Þ�Δðq−1ÞΣðfðτÞ; fðτ0ÞÞ ð2:7Þ

provided that Δ ¼ 1=q.
We can then use an ansatz of the form

GcðτÞ ¼
b

jτj2Δ sgnðτÞ; or

GcðτÞ ¼ b

�
π

β sin πτ
β

�
2Δ
sgnðτÞ ð2:8Þ

where we have given also the finite-temperature version,
which follows from Eq. (2.7) with fðτÞ ¼ tan τπ

β . We can
determine b by inserting these expressions into the sim-
plified equations and obtain

J2bqπ ¼
�
1

2
− Δ

�
tan πΔ; Δ ¼ 1

q
: ð2:9Þ

We will use Δ and 1=q interchangeably below. To derive
the first equation here, it is convenient to use the Fourier
transform

+ +++

FIG. 1. Diagrams representing corrections to the two-point function, for the q ¼ 4 case. The free two-point function is given by the
straight line. The first correction involves also an average over disorder, which is represented by a dashed line. We have also indicated a
couple more diagrams that also contribute at leading order in N.
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Z
∞

−∞
dτeiωτ

sgnðτÞ
jτj2Δ ¼ i21−2Δ

ffiffiffi
π

p Γð1 − ΔÞ
Γð1

2
þ ΔÞ jωj

2Δ−1sgnðwÞ:

ð2:10Þ
From Eq. (2.8) it is possible also to compute the

Lorentzian time versions by setting τ ¼ it. Since the
correlator is not analytic at τ ¼ 0 it is important to know
whether we are doing the analytic continuation of the τ > 0
or the τ < 0 Euclidean expressions. The two choices give
different choices of ordering of the Lorentzian correlator.
For example, the continuation of the τ > 0 form of the
Euclidean correlator gives

hψðtÞψð0Þi ¼ Gc;Eðitþ ϵÞ ¼ b
e−iπΔ

ðt − iϵÞ2Δ ð2:11Þ

where we summarized the fact that we continue from τ > 0
by the t → t − iϵ prescription. This equation is valid for any
sign of t. Of course the other ordering can be obtained by
continuing from the τ < 0 version. We can also get the
finite-temperature version by replacing ðt − iϵÞ →
β
π sinh ½πðt − iϵÞ=β� in Eq. (2.11).
It is sometimes also convenient to introduce the retarded

propagator defined as

Gc;RðtÞ≡ hψðtÞψð0Þ þ ψð0ÞψðtÞiθðtÞ

¼ 2b cosðπΔÞ
�

π

β sinh πt
β

�
2Δ
θðtÞ ð2:12Þ

where θðtÞ is the step function. Of course, Eq. (2.12) also
shows that the dimension Δ sets the quasinormal mode
frequencies as ωn ¼ −i 2πβ ðΔþ nÞ.
Here we have given the conformal limit of the expres-

sions. For large βJ, it is possible to solve the equations (2.5)
numerically to obtain expressions that smoothly interpolate
between the free UV limit and the infrared expressions
given above; see Fig. 15 in Appendix G. In addition, in the
next subsection we show how to do this interpolation
analytically in the large-q limit.

D. Large-q limit

One convenient feature of the model in Eq. (2.1) is the
fact that it simplifies considerably for large q.4 We can write

GðτÞ ¼ 1

2
sgnðtÞ

�
1þ 1

q
gðτÞ þ…

�
;

ΣðτÞ ¼ J221−qsgnðτÞegðτÞð1þ…Þ ð2:13Þ

where the dots involve higher-order terms in the 1=q
expansion. We will work in the regime where gðτÞ is of
order one. In this regime we can approximate

1

GðωÞ ¼
1

− 1
iω þ ½sgn×g�ðωÞ

2q

¼ −iωþ ω2
½sgn × g�ðωÞ

2q

¼ −iω − ΣðωÞ ð2:14Þ

where in the first equality we Fourier transformed the first
equation in Eq. (2.13) and we expanded in powers of 1=q in
the second equality, keeping only the first nontrivial term.
Comparing this expression for Σ with the one in Eq. (2.13)
we get the equation

∂2
t ½sgnðτÞgðτÞ� ¼ 2J 2sgnðτÞegðτÞ; J ≡ ffiffiffi

q
p J

2
q−1
2

:

ð2:15Þ

This equation determines gðτÞ. It is well defined in the
large-q limit, when we scale J so that J is kept fixed as
q → ∞. Of course, since J is dimensionful, we can always
go to some value of τ where this equation will be valid. We
are interested in a solution with gðτ ¼ 0Þ ¼ 0. In other
words, at short distances we should recover the free-
fermion result. The derivation of this equation is valid
both for zero temperature and finite temperature. The
general solution is

egðτÞ ¼ c2

J 2

1

sinðcðjτj þ τ0ÞÞ2
: ð2:16Þ

We can now impose the boundary conditions gð0Þ ¼
gðβÞ ¼ 0 to obtain

egðτÞ ¼
�

cos πv
2

cos ½πvð1
2
− jτj

β Þ�

�
2

; ð2:17Þ

βJ ¼ πv
cos πv

2

: ð2:18Þ

The second equation determines the parameter v, which
ranges from zero to one as βJ ranges from zero to infinity.
It is also possible to take the β ¼ ∞ limit of the above
expressions to obtain

egðτÞ ¼ 1

ðjtjJ þ 1Þ2 : ð2:19Þ

Note that these results imply that Σ changes more rapidly
than G. In fact, G is almost constant, and almost equal to
1
2
sgnðτÞ, when Σ is changing to its IR value.

E. q = 2

Another solvable example is the case of q ¼ 2. In this
case we can solve Eq. (2.5) as4We are grateful to S. H. Shenker for discussions on this point.
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GðωÞ ¼ −
2

iωþ isgnðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ ω2

p : ð2:20Þ

This is the same as the one studied in Refs. [20,31,32]. For
positive Euclidean time we get

GðτÞ ¼ sgnðτÞ
Z

π

0

dθ
π
cos2 θe−2Jjτj sin θ ð2:21Þ

¼ 1

πJτ
−

1

4πðJτÞ3 þ…; Jτ ≫ 1: ð2:22Þ

For this particular case, we can simply diagonalize the
Hamiltonian (2.1), since it is quadratic. We get a set of
fermionic oscillators with some masses. The masses have a
semicircle law distribution, since we are diagonalizing a
random mass matrix. Near zero frequencies the distribution
is constant and we get the same as what we expect for a
1þ 1-dimensional fermion field (from θ ∼ 0; π above). The
spacing between the frequencies goes like 1=N, so this
fermion is on a large circle. In this sense this example is a
bit trivial since it is the same as free fermions. However, it is
useful to view it as an extreme example of the more
interesting models with q > 2. Therefore, in this model we
indeed get a fermion in an extra dimension. However,
note that we get a single fermion, not N fermions in the
extra dimension. We can also simply obtain the finite-
temperature expression for the two-point function by
summing over images in the zero-temperature answer

GβðτÞ ¼
X∞

m¼−∞
Gβ¼∞ðτ þ βmÞð−1Þm

¼
Z

π

0

dθ
π
cos2θ

cosh½ðτβ − 1
2
Þ2Jβ sin θ�

coshðJβ sin θÞ : ð2:23Þ

F. Computing the entropy

It is possible to write the original partition function of the
theory as a functional integral of the form [3,14]

e−βF ¼
Z

D ~GD ~Σ exp

�
N

	
log Pfð∂t − ~ΣÞ

−
1

2

Z
dτ1dτ2

�
~Σðτ1; τ2Þ ~Gðτ1; τ2Þ

−
J2

q
~Gðτ1; τ2Þq

�
�
: ð2:24Þ

It can be checked that the classical equations obtained from
this reproduce the equations in Eq. (2.5), when we vary
with respect to ~G and ~Σ independently. Here the tildes
remind us that we are thinking about the integration
variables, while G, Σ without tildes are the solutions of
the classical equations from Eq. (2.25), obeying Eq. (2.5).
Substituting those solutions into Eq. (2.24) we get the
leading large-N approximation to the free energy:

−βF=N ¼ log Pfð∂t − ΣÞ − 1

2

Z
dτ1dτ2

×

�
Σðτ1; τ2ÞGðτ1; τ2Þ −

J2

q
Gðτ1; τ2Þq

�
: ð2:25Þ

In the q ¼ ∞model we know the full solutions forG and
Σ, so we can insert them into Eq. (2.25) to obtain the free
energy. In order to avoid evaluating the Pfaffian term, it is
convenient to take a derivative with respect to J∂J of
the free energy (2.25). Due to the fact thatG and Σ obey the
equations of motion, the only contributing term is the
derivative of the explicit dependence on J, so that we obtain

J∂Jð−βF=NÞ ¼ J2β
q

Z
β

0

dτGðτÞq ¼ −
β

q
∂τG

����
τ→0þ

¼ −βE ð2:26Þ

where we have used the equations (2.5) in position space.
Since the partition function only depends on the combi-
nation βJ, then J∂J is the same as β∂β. Therefore the above
expression gives us the energy.

+++=

=

FIG. 2. Equations that define the summation of the leading large-N contributions, for the q ¼ 4 case. The solid circle represents the
one-particle-irreducible contributions. The dotted circle represents the full two-point function. This is a graphical representation of the
equations in Eq. (2.5).
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As q → ∞, we can insert the solution (2.17) into
Eq. (2.26). We can also use the equation (2.15) to do
the integral. Furthermore we can turn J∂J → J ∂J and use
Eq. (2.18) to turn it into a derivative with respect to v,
always keeping q and β fixed. This gives

J ∂J ð−βF=NÞ ¼ v
1þ πv

2
tan πv

2

∂vð−βF=NÞ ð2:27Þ

¼ β

4q2

Z
β

0

dτ2J 2egðτÞ ¼ β

4q2
2ð−g0ð0ÞÞ

¼ πv
q2

tan
πv
2
; ð2:28Þ

−βF=N ¼ 1

2
log 2þ 1

q2
πv

�
tan

�
πv
2

�
−
πv
4

�
ð2:29Þ

where we fixed the integration constant using that for
J → 0 we should recover the free value, which is simply
the log of the total dimension of the Hilbert space. The
expansion around weak coupling is simply an expansion in
powers of v2, which translates into an expansion in powers
of ðβJ Þ2, as expected. On the other hand, at strong
coupling we can use Eq. (2.18) to find

v ¼ 1 −
2

βJ
þ 4

ðβJ Þ2 −
ð24þ π2Þ
3ðβJ Þ3 þ… ð2:30Þ

Then, the term of order 1=q2 in Eq. (2.29) behaves as

1

q2

�
2

1 − v
−
�
2þ π2

4

�
þ π2

3
ð1 − vÞ þ…

�

¼ 1

q2

�
ðβJ Þ − π2

4
þ π2

2ðβJ Þ þ…

�
: ð2:31Þ

Here the first term can be interpreted as a correction to the
ground-state energy. The second term is a correction to the
zero-temperature entropy, to which the 1

2
log 2 term in

Eq. (2.29) also contributes. Finally the third term is a
temperature-dependent correction to the entropy, or near
extremal entropy, which goes like T for low temperature.
The temperature-independent piece can be compared

with the result obtained in Ref. [3] for general q (see the
earlier Ref. [30] for the q ¼ 4 case using the Sachdev-Ye
model)

S0
N

¼ 1

2
log 2 −

Z
Δ

0

dxπ

�
1

2
− x

�
tan πx

∼
1

2
log 2 −

π2

4q2
þ… ð2:32Þ

where the last expression is the approximate answer for
large q, which agrees with the temperature-independent
piece of Eq. (2.29) using Eq. (2.31).

It is also possible to compute the free energy at q ¼ 2.
Directly from the free-fermion picture, and subtracting the
ground-state energy, we find

logZ=N ¼
Z

π

0

dθ
π
cos2θ log ½1þ e−2Jβ sin θ�

∼
π

12βJ
þ…; for βJ ≫ 1: ð2:33Þ

We see that at small temperatures the entropy vanishes, in
agreement with the first equality in Eq. (2.32) with Δ → 1

2
.

We can also see that for large temperatures this reproduces
the value S=N ¼ 1

2
log 2.

Wewill later show that for general q the expression of the
free energy has the form

logZ ¼ −βE0 þ S0 þ
c
2β

ð2:34Þ

plus higher orders in 1=β. Here E0 is the ground-state
energy, S0 is the zero-temperature entropy and c=β is the
specific heat. E0, S0 and c are all of order N. The exact
large-N free energy can be computed numerically for
general q. Appendix G contains some discussion of this.

G. Correction to the conformal propagator

It is also interesting to consider the leading correction
to the conformal two-point function. For large q the
conformal answer is

Gc ¼
bsgnðτÞ
jτj2q

¼ 1

2

1

jJ τj2Δ ; J 2ð2bÞq ¼ 1: ð2:35Þ

Using Eqs. (2.13) and (2.19), we find the leading correction

GðτÞ ¼ GcðτÞ
�
1 −

2

q
1

J jτj þ…

�
: ð2:36Þ

At finite temperature, we use Eq. (2.17) to find

GðτÞ ¼ GcðτÞ
�
1 −

2

q
1

βJ

�
2þ π − 2πjτj=β

tan πjτj
β

�
þ…

�
:

ð2:37Þ

On the other hand, for q ¼ 2 we see from Eq. (2.22) that
the order 1=J correction vanishes. We will later discuss
general values of q.

III. FOUR-POINT FUNCTIONS

In this section, we analyze the leading 1=N piece of the
four-point function, at strong coupling βJ ≫ 1. In any
correlation function, the average over disorder ji1;…;iq will
give zero unless the indices of the fermions are equal in
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pairs. This means that the most general nonzero four-point
function is

hψ iðτ1Þψ iðτ2Þψ jðτ3Þψ jðτ4Þi: ð3:1Þ

We will consider the case in which we average over i, j.
(The pure i ¼ j and i ≠ j cases are related in a simple way.)
The averaged correlator

1

N2

XN
i;j¼1

hTðψ iðτ1Þψ iðτ2Þψ jðτ3Þψ jðτ4ÞÞi

¼ Gðτ12ÞGðτ34Þ þ
1

N
F ðτ1;…; τ4Þ þ… ð3:2Þ

has a disconnected piece given by a contraction with the
dressed propagators, plus a power series in 1=N. We will
analyze the first term in this series, F .

A. The ladder diagrams

The diagrams that one must sum to computeF are ladder
diagrams with any number of rungs, built from the dressed
propagators discussed in the previous section. The first few
diagrams for F are shown in Fig. 3. We will use F n to
denote the ladder with n rungs, so that F ¼ P

nF n. The
first diagram, F 0, is just a product of propagators

F 0ðτ1…τ4Þ ¼ −Gðτ13ÞGðτ24Þ þGðτ14ÞGðτ23Þ: ð3:3Þ

This piece contributes at order 1=N because the propa-
gators set i ¼ j in the sum of Eq. (3.2). The next diagram is
a one-rung ladder, where we integrate over the locations of
the ends of the rung:

F 1 ¼ J2ðq − 1Þ
Z

dτdτ0½Gðτ1 − τÞGðτ2 − τ0Þ

×Gðτ − τ0Þq−2Gðτ − τ3ÞGðτ0 − τ4Þ − ðτ3 ↔ τ4Þ�:
ð3:4Þ

In this expression, the factor of (q − 1) comes from the
choice of which of the lines coming out of the interaction
vertex should be contracted into a rung, and which should

continue on as the side rail. This diagram also contributes at
order 1=N, because the 1=Nq−1 scaling of the product of
two couplings multiplies a factor ofNq−2 from the sum over
(q − 2) indices in the rung loops. One can check that all of
the ladder diagrams (and only these!) are proportional
to 1=N.
The standard technique for summing a set of ladder

diagrams is to use the fact that they are generated by
multiplication by a kernel K. This is illustrated in Fig. 4.
Explicitly,

F nþ1ðτ1; τ2; τ3; τ4Þ

¼
Z

dτdτ0Kðτ1; τ2; τ; τ0ÞF nðτ; τ0; τ3; τ4Þ; ð3:5Þ

where the kernel is

Kðτ1; τ2; τ3; τ4Þ≡ −J2ðq − 1ÞGðτ13ÞGðτ24ÞGðτ34Þq−2:
ð3:6Þ

It is convenient to think about the integral transform in
Eq. (3.5) as a matrix multiplication, where the first two
arguments of K form one index of the matrix, and the last
two form the other index. The sum of all ladder diagrams is
then a geometric series that can be summed by matrix
inversion:

F ¼
X∞
n¼0

F n ¼
X∞
n¼0

KnF 0 ¼
1

1 − K
F 0: ð3:7Þ

To carry this out, we would like to understand how to
diagonalize K. The way we have defined it, K is not a
symmetric operator under ðτ1; τ2Þ ↔ ðτ3; τ4Þ. However, we
can conjugate by a power of the propagator to get a
symmetric version

~Kðτ1; τ2; τ3; τ4Þ≡ jGðτ12Þj
q−2
2 Kðτ1; τ2; τ3; τ4ÞjGðτ34Þj

2−q
2

ð3:8Þ

¼ −J2ðq − 1ÞjGðτ12Þj
q−2
2 Gðτ13ÞGðτ24ÞjGðτ34Þj

q−2
2 : ð3:9Þ

FIG. 3. Diagrams representing the 1=N term in the index-averaged four-point function, for the q ¼ 4 case. One should also include the
diagrams with ðτ3 ↔ τ4Þ and a relative minus sign. The propagators here are the dressed two-point functions discussed above.

FIG. 4. The (nþ 1)-rung ladder F nþ1 can be generated from the n-rung ladder by “multiplication” with the kernel K, shown in blue.
We call the vertical propagators a “rung” and the horizontal ones a “rail.”
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This is enough to show that K has a complete set of
eigenvectors. We will consider this kernel as acting on
the space of antisymmetric functions of two arguments, say
τ3, τ4. We will use both ~K and K in what follows.

B. Using conformal symmetry

So far, what we have said is true for any value of the
coupling βJ. In order to proceed further, we will go to
the conformal limit βJ ≫ 1. In this limit we can use the
conformal expressions for GcðτÞ [Eq. (2.8)]. It is worth
noting that the J dependence inK drops out in the conformal
limit. This is due to the factors ofb in the infrared expressions
for G [Eqs. (2.8) and (2.9)]. In the conformal limit compu-
tations on the zero-temperature line are equivalent to
computations on the finite-temperature circle, after using
the map

τline ¼ fðτcircleÞ ¼ tan
πτcircle

β
: ð3:10Þ

This is a special case of the general reparametrization
symmetry (2.7). The expressions for the propagators are
simpler when we consider the theory on the line, so we will
work there formost of this section. SubstitutingEq. (2.8) into
the kernel we get

Kcðτ1; τ2; τ3; τ4Þ ¼ −
1

α0

sgnðτ13Þsgnðτ24Þ
jτ13j2Δjτ24j2Δjτ34j2−4Δ

ð3:11Þ

α0 ≡ 2πq
ðq − 1Þðq − 2Þ tan π

q

¼ 1

ðq − 1ÞJ2bq : ð3:12Þ

It will turn out that we can safely compute some, but not all,
of the large-βJ correlator using this expression for K. The
reason is that some of the eigenfunctions have eigenvalue
Kc ¼ 1 in the conformal limit, leading to a divergence
in the geometric series (3.7). When the time comes, in
Sec. III C, we will treat those eigenfunctions in perturbation
theory outside the conformal limit. For now, we proceed
with Eq. (3.11).
The key property that makes it possible to diagonalize

Eq. (3.11) is conformal invariance. This can be pre-
sented using the following generators of an SLð2Þ
algebra:

D̂ ¼ −τ∂τ − Δ; P̂ ¼ ∂τ; K̂ ¼ τ2∂τ þ 2τΔ;

½D̂; P̂� ¼ P; ½D̂; K̂� ¼ −K̂; ½P̂; K̂� ¼ −2D̂:

ð3:13Þ

Here Δ ¼ 1=q is the conformal dimension of the
fermion. These generators commute with the kernel
Kc, in the sense that up to total derivatives with respect
to τ3 and τ4, we have

ðD̂1 þ D̂2ÞKcðτ1; τ2; τ3; τ4Þ
¼ Kcðτ1; τ2; τ3; τ4ÞðD̂3 þ D̂4Þ ð3:14Þ

and similarly for the P̂ and K̂ generators. (These are the
generators appropriate for acting on the nonsymmetric
kernel Kc. To get a set that commutes with the
symmetric version ~Kc we should replace Δ by 1=2.)
This symmetry is useful in two ways. First, it implies that

the ladder diagrams F n are simple powers times a function
of the SLð2Þ invariant cross ratio:

χ ¼ τ12τ34
τ13τ24

: ð3:15Þ

This is because the function F 0 in Eq. (3.3) transforms like
a conformal four-point function, and this property is
preserved by acting with an SLð2Þ-invariant operator.
This will allow us to represent the kernel in the space of
functions of a single cross ratio, rather than in the space of
functions of two times. In other words, we can consider
Kcðχ; ~χÞ instead of Kcðτ1; τ2; τ3; τ4Þ. Second, it implies that
the kernel commutes with the Casimir operator C1þ2 built
from the sum of the generators acting on the two times:

C1þ2 ¼ ðD̂1 þ D̂2Þ2 −
1

2
ðK̂1 þ K̂2ÞðP̂1 þ P̂2Þ

−
1

2
ðP̂1 þ P̂2ÞðK̂1 þ K̂2Þ

¼ 2ðΔ2 − ΔÞ − K̂1P̂2 − P̂1K̂2 þ 2D̂1D̂2: ð3:16Þ

The Casimir is a differential operator with a family of
eigenfunctions given by simple powers times functions
ΨhðχÞ. Because the spectrum is nondegenerate, these must
be exactly the eigenfunctions of the kernel Kcðχ; ~χÞ acting
in the space of cross ratios. This leads to a recipe for the
four-point function:
(1) Understand the properties of F and F n as functions

of the cross ratio.
(2) Find the eigenfunctions of C1þ2 with these proper-

ties. These are particular hypergeometric functions
ΨhðχÞ, related to conformal blocks of weight h.

(3) Determine the set of h to have a complete basis of
functions. This turns out to be h ¼ 1

2
þ is

and h ¼ 2; 4; 6; 8;….
(4) Compute kcðhÞ, the eigenvalue of the kernel Kc as a

function of h.
(5) Determine the inner products hΨh;F 0i and

hΨh;Ψhi.
(6) Compute the four-point function as

F ðχÞ ¼ 1

1 − Kc
F 0

¼
X
h

ΨhðχÞ
1

1 − kcðhÞ
hΨh;F 0i
hΨh;Ψhi

: ð3:17Þ
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We now go through each of these steps in detail.

1. The four-point function as a function of the cross ratio

In the conformal limit, the ladder diagrams F n will
transform under SLð2Þ like a four-point function of
dimension Δ fields,

F nðτ1…τ4Þ ¼ Gcðτ12ÞGcðτ34ÞF nðχÞ;

χ ¼ τ12τ34
τ13τ24

; GcðτÞ ¼
bsgnðτÞ
jτj2Δ : ð3:18Þ

Using the antisymmetry under τ1 ↔ τ2 and under τ3 ↔ τ4,
the symmetry under ðτ1; τ2Þ ↔ ðτ3; τ4Þ and an SLð2Þ
transformation, we can arrange to have τ1 ¼ 0, τ3 ¼ 1,
τ4 ¼ ∞ and also τ2 > 0. This restricts the cross ratio χ ¼ τ2
to be positive. Because of the time ordering in Eq. (3.2), the
ordering of the fermions and the overall sign depends on
whether χ is less than or greater than one:

F nðχÞ ∼
	þhψ jð∞Þψ jð1Þψ iðχÞψ ið0Þi 0 < χ < 1

−hψ jð∞Þψ iðχÞψ jð1Þψ ið0Þi 1 < χ < ∞:

ð3:19Þ

When χ < 1 we have an iijj configuration, and when
χ > 1 we have ijij; see Fig. 10.
In the region χ > 1, the correlation function has an extra

discrete symmetry. This is easiest to see if we place the
points on the circle using the somewhat nonstandard map

τ − 2

τ
¼ tan

θ

2
: ð3:20Þ

The three operators at 0,1 and ∞ get sent to the points
−π;− π

2
and π

2
as shown in Fig. 5. The final operator at

τ2 ¼ χ ends up at some coordinate θ. The obvious
symmetry under θ → −θ translates to χ → χ

χ−1. This means
that in the region χ > 1, we must have F ðχÞ ¼ F ð χ

χ−1Þ.
Notice that this transformation maps the interval 1 < χ < 2
to the range 2 < χ < ∞, with a fixed point at χ ¼ 2. The
conclusion is that the full F ðχÞ is determined once we
know it in the region 0 < χ < 2, and also that F must have
a vanishing derivative at the point χ ¼ 2.

An obvious advantage of the cross ratio is that the ladder
kernel becomes a function of fewer variables. One can
substitute the form (3.18) into the original expression for
the kernel (3.5) and then do one of the τ integrals. The
result is an equation of the form

F nþ1ðχÞ ¼
Z

2

0

d~χ
~χ2

Kcðχ; ~χÞF nð~χÞ ð3:21Þ

where Kcðχ; ~χÞ is a symmetric kernel that is given in terms
of hypergeometric functions in Appendix B.

2. Eigenfunctions of the Casimir

We now search for a complete set of eigenfunctions of
the Casimir C1þ2 with the properties just described. First
we need to understand how C1þ2 acts on functions of the
cross ratio. One can check directly from Eq. (3.16) that

C1þ2

1

jτ12j2Δ
fðχÞ ¼ 1

jτ12j2Δ
CfðχÞ;

C≡ χ2ð1 − χÞ∂2
χ − χ2∂χ : ð3:22Þ

Writing the eigenvalue as hðh − 1Þ, the equation we would
like to solve is Cf ¼ hðh − 1Þf. The general solution is a
linear combination of

χh2F1ðh; h; 2h; χÞ; χ1−h2F1ð1 − h; 1 − h; 2 − 2h; χÞ:
ð3:23Þ

We need to select from this set a complete basis for the
space of functions with f0ð2Þ ¼ 0. These functions should
also be normalizable with respect to the inner product from
Eq. (3.21) that makes K symmetric,

hg; fi ¼
Z

2

0

dχ
χ2

g�ðχÞfðχÞ: ð3:24Þ

This is the same inner product that makes C Hermitian,
neglecting boundary terms. Since the eigenfunctions of a
Hermitian operator are complete, we can determine the
basis by finding the conditions that make the boundary
terms vanish, and then selecting the eigenfunctions from
among Eq. (3.23) that satisfy these conditions.
The Hermiticity condition is

0 ¼ hg; Cfi − hCg; fi

¼
Z

2

0

dχ½g�ð1 − χÞf0 − g�0ð1 − χÞf�0: ð3:25Þ

At χ ¼ 2 the boundary term vanishes due to the require-
ment f0ð2Þ ¼ 0. At χ ¼ 0 it vanishes provided that we
impose that f → 0 faster than χ1=2. Because the eigen-
functions (3.23) have logarithmic singularities at χ ¼ 1,
there is another possible “boundary” contribution from this

FIG. 5. The symmetry of the χ > 1 correlator under χ → χ
χ−1 is

manifest as θ → −θ after mapping to the circle.
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point. In order for it to vanish, we need to impose that
the logarithmic and constant terms in f agree as we
approach χ ¼ 1 from the two sides. In other words, if
we have f ∼ Aþ B logð1 − χÞ for χ → 1−, then we should
have f ∼ Aþ B logðχ − 1Þ for χ → 1þ. This will cancel the
boundary terms provided that we define the integral by
approaching one in the same way from 1− and 1þ.
We now look for eigenfunctions with these properties.

We can start in the region χ > 1 by imposing that
f0ð2Þ ¼ 0. This selects a linear combination of the func-
tions (3.23) that can be written using a special hyper-
geometric identity as

Ψh ¼
Γð1

2
− h

2
ÞΓðh

2
Þffiffiffi

π
p 2F1

�
h
2
;
1

2
−
h
2
;
1

2
;
ð2 − χÞ2

χ2

�
;

1 < χ; ð3:26Þ

where we have chosen a convenient normalization constant.
Note that Ψh ¼ Ψ1−h in a manifest way. In the region
χ < 1, we must match to a linear combination

Ψh ¼ A
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

þ B
Γð1 − hÞ2
Γð2 − 2hÞ χ

1−h
2F1ð1 − h; 1 − h; 2 − 2h; χÞ;

χ < 1; ð3:27Þ

by requiring that the logarithmic and constant terms at
χ ¼ 1 agree with Eq. (3.26). This determines

A ¼ 1

tan πh
2

tan πh
2

;

B ¼ Að1 − hÞ ¼ − tan
πh
2

tan πh
2

: ð3:28Þ

The final condition to impose is thatΨh must vanish at least
as fast as χ1=2 as χ → 0. There are two types of solutions.
(1) For h ¼ 1

2
þ is both terms in Eq. (3.27) are margin-

ally allowable. These solutions are monotonic for
1 < χ and oscillatory for χ < 1, with infinitely many
oscillations.

(3) For h ¼ 2n, n ¼ 1; 2; 3; � � � the B coefficient van-
ishes, so Eq. (3.27) is again allowable at small χ.
These solutions are monotonic for 0 < χ < 1 and
oscillatory for 1 < χ (it crosses zero n times).

Together, these two sets form a complete basis of normal-
izable functions with f0ð2Þ ¼ 0. We emphasize that in both
cases,Ψh is given by Eq. (3.26) for 1 < χ and Eq. (3.27) for
χ < 1. For the continuum states h ¼ 1

2
þ is there is an

integral representation that gives the correct answer for all
χ > 0,

ΨhðχÞ ¼
1

2

Z
∞

−∞
dy

jχjh
jyjhjχ − yjhj1 − yj1−h : ð3:29Þ

This integral does not converge for the discrete states.
Finally, we note for later use that near χ ¼ 1 the function
Ψh has the expansion

Ψh ∼ −
�
logðχ − 1Þ þ 2γ þ 2ψðhÞ − π tan

πh
2

�
ðχ > 1Þ:

ð3:30Þ

For χ < 1 we replace logðχ − 1Þ → logð1 − χÞ.

3. The eigenvalues of the kernel kcðhÞ
The eigenfunctions Ψh of the Casimir C were non-

degenerate. Because the Casimir commutes with the kernel
Kc, these functions must also be eigenfunctions of Kc. In
principle, we can compute the eigenvalues kcðhÞ by
integrating the functions ΨhðχÞ with Kcðχ; ~χÞ. However,
we can get the answer in a simpler way. We start by backing
off of the cross ratio formalism and thinking about the
Casimir acting on two times, C1þ2. Eigenfunctions of this
operator with eigenvalue hðh − 1Þ have the form of
conformal three-point functions of two fermions with a
dimension h operator,

sgnðτ1 − τ2Þ
jτ1 − τ0jhjτ2 − τ0jhjτ1 − τ2j2Δ−h

: ð3:31Þ

For any value of τ0 and h, these are also eigenfunctions of
the kernel Kc. The eigenvalue kcðhÞ depends only on h,
since we can use SLð2Þ to move τ0 around. In particular, we
can take it to infinity, so that the eigenvalue is [see
Eq. (3.11)]

kcðhÞ ¼
Z

dτdτ0Kcð1; 0; τ; τ0Þ
sgnðτ − τ0Þ
jτ − τ0j2Δ−h

¼ −
1

α0

Z
dτdτ0

sgnð1 − τÞsgnð−τ0Þsgnðτ − τ0Þ
j1 − τj2Δjτ0j2Δjτ − τ0j2−2Δ−h :

ð3:32Þ

This integral can be evaluated by dividing up the τ and τ0
integrals into regions where the sign functions are constant.
A quicker way to get the answer is as follows. We use

sgnðτÞ
jτja ¼

Z
dω
2π

e−iωτcðaÞjωja−1sgnðωÞ;

cðaÞ ¼ 2i2−a
ffiffiffi
π

p Γð1 − a
2
Þ

Γð1
2
þ a

2
Þ ð3:33Þ

to write the factor in Eq. (3.32) that depends on jτ − τ0j as a
Fourier transform. Then the τ and τ0 integrals factorize. We
can shift the integration variables and then use Eq. (3.33)
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again for each factor. These two factors are equal up to an
overall sign. Finally we get an integral of the same form as
Eq. (3.33). Thus we find that

kcðhÞ ¼ −
1

α0

cð2 − 2Δ − hÞ
cð2Δ − hÞ ½cð2ΔÞ�2ð−1Þ: ð3:34Þ

Using α0 from Eq. (3.11) and using Γ function identities,
one finds [3]

kcðhÞ ¼ −ðq − 1Þ
Γð3

2
− 1

qÞΓð1 − 1
qÞ

Γð1
2
þ 1

qÞΓð1qÞ
Γð1q þ h

2
Þ

Γð3
2
− 1

q −
h
2
Þ

×
Γð1

2
þ 1

q −
h
2
Þ

Γð1 − 1
q þ h

2
Þ : ð3:35Þ

We can apply this result to the eigenfunctions ΨhðχÞ by
using the representation

sgnðτ12Þsgnðτ34Þ
jτ12j2Δjτ34j2Δ

ΨhðχÞ

¼ 1

2

Z
dτ0

sgnðτ12Þ
jτ10jhjτ20jhjτ12j2Δ−h

×
sgnðτ34Þ

jτ30j1−hjτ40j1−hjτ34j2Δ−1þh ð3:36Þ

which holds for h ¼ 1
2
þ is. This follows from the SLð2Þ

covariance of the right-hand side and from Eq. (3.29). The
τ1, τ2 dependence here is a superposition of eigenfunctions
of the form (3.31), so the left-hand side is an eigenfunction
of Kc with eigenvalue kcðhÞ. The eigenfunctions in the
discrete case are analytic continuations of the continuum
eigenfunctions, so their eigenvalues are determined by the
continuation of kcðhÞ.
The eigenvalue kcðhÞ is real for all of the eigenvectors

h ¼ 1
2
þ is and h ¼ 2; 4; 6;…. It is positive for the discrete

states, and negative for the continuum. We will find the
full analytic function useful in what follows. This function
satisfies kcðhÞ ¼ kcð1 − hÞ. For generic q, it has poles
at h ¼ 1þ 2

q þ 2n for n ≥ 0 and the corresponding h →

ð1 − hÞ reflection. Some simple special cases are

kcðhÞ ¼ −
3

2

tan πðh−1=2Þ
2

ðh − 1=2Þ ; q ¼ 4; ð3:37Þ

kcðhÞ ¼
2

hðh − 1Þ ; q ¼ ∞; ð3:38Þ

kcðhÞ ¼ −1; q ¼ 2: ð3:39Þ
We can understand kcðhÞ at some special values of h

using the Schwinger-Dyson equation. When h ¼ 0, we are
acting the kernel on a multiple of the original GcðτÞ. This
should give kcð0Þ ¼ −ðq − 1Þ, as we argue in Fig. 6. We
will see below that when h ¼ 2, we are acting with
the kernel on a linearized reparametrization of GcðτÞ.
One can then use the reparametrization invariance of
Eq. (2.6) to make a similar argument that kcð2Þ ¼ 1; see
Eq. (3.71) below.

4. The inner products hΨ h;Ψ hi and hΨ h;F 0i
Next we consider the norms of the eigenfunctions Ψh,

beginning with the continuum h ¼ 1
2
þ is, and taking

s; s0 > 0. We continue to use the norm for functions of
χ defined in Eq. (3.24). We expect the inner product
hΨh;Ψh0 i to be proportional to δðs − s0Þ. A singular
contribution of this type can only come from the small-χ
region of the inner product integral, where we can replace
the hypergeometric functions in Eq. (3.26) by one. Using ∼
to denote agreement up to terms that are finite as s → s0, we
have

hΨh;Ψh0 i ∼
π tan πh
4h − 2

Z
ϵ

0

dχ
χ
ðχiðs−s0Þ þ χ−iðs−s0ÞÞ

∼
π tan πh
4h − 2

2πδðs − s0Þ: ð3:40Þ

Based on this calculation, one might expect that the inner
product has finite terms in addition to the δðs − s0Þ. In fact,
this cannot be the case, since eigenfunctions with different
values of s must be orthogonal. We conclude that the rhs of
Eq. (3.40) is the exact answer.
For the discrete set, h ¼ 2n, we have that ΨhðχÞ ¼

2Re½Qh−1ðyÞ�, where y ¼ ð2 − χÞ=χ and Q is the
Legendre Q function. After writing the inner product
as an integral over y, one can use standard integral
formulas for Q to find

hΨh;Ψh0 i ¼
δhh0π

2

4h − 2
: ð3:41Þ

We also need to compute the inner product of these
eigenfunctions with the zero-rung ladder F 0. As a function

FIG. 6. On the left we have the kernel acting on GðτÞ. This is equal to ðq − 1ÞG � Σ � G. Using the approximate Schwinger-Dyson
equation (2.6), this becomes −ðq − 1ÞG.
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of the times τ1;…; τ4, F 0 is given in Eq. (3.3). Using the
conformal form of GðτÞ and going to a function of χ using
Eq. (3.18), we have

F 0ðχÞ ¼
8<
:

−χ2Δ þ
�

χ
1−χ

�
2Δ

0 < χ < 1

−χ2Δ −
�

χ
χ−1

�
2Δ

1 < χ < ∞:
ð3:42Þ

We consider the inner product with the continuum states;
the case with the discrete states will follow by analytic
continuation in h. The inner product integral can be done
inside the integral representation (3.29). Notice that the
integral representation extends to a function on the entire
line −∞ < χ < ∞ that satisfies ΨðχÞ ¼ Ψð χ

χ−1Þ. For χ > 1

we have that the zero-rung ladder F 0 is symmetric under
the same transformation, while for χ < 1 it is antisym-
metric. Using these properties we can write the inner
product as a single integral over the whole line:

hΨh;F 0i ¼ −
1

2

Z
∞

−∞
dydχ

sgnðχÞ
jχj2−h−2Δjχ − yjhj1 − yj1−hjyjh :

ð3:43Þ

The integration region can now be divided up and all
integrals can be done using the Euler beta function. It is
convenient to write the answer in terms of the eigenvalue
function kcðhÞ as

hF 0;Ψhi ¼
α0
2
kcðhÞ: ð3:44Þ

We can understand the appearance of kcðhÞ here by
realizing that F 0 is proportional to the action of Kc on a
delta function, so it should have an expression involving an
integral of kcðhÞ over the basis elements. We discuss this
further in Appendix C.

5. The sum of all ladders

We can now write a slightly naive expression for the full
sum of ladders as

F ðχÞ ¼
X
h

ΨhðχÞ
1

1− kcðhÞ
hΨh;F 0i
hΨh;Ψhi

¼ α0

Z
∞

0

ds
2π

ð2h− 1Þ
π tanðπhÞ

kcðhÞ
1− kcðhÞ

ΨhðχÞ

þα0
X∞
n¼1

�ð2h− 1Þ
π2

kcðhÞ
1− kcðhÞ

ΨhðχÞ
�
h¼2n

: ð3:45Þ

The problem with this formula is that the n ¼ 1 term in the
sum diverges, since the eigenvalue kcð2Þ ¼ 1. Of course,
the actual four-point function is finite; what this means is
that we have to treat the contribution of the h ¼ 2
eigenfunctions outside the conformal limit, where the

eigenvalues will be slightly less than one. This gives an
enhanced contribution that we will analyze in Sec. III C
below.5 For now we focus on the contribution of the h ≠ 2
eigenfunctions, for which the conformal limit can be taken
smoothly. We refer to the contribution of these eigenfunc-
tions as F h≠2:

F h≠2

α0
¼

Z
∞

0

ds
2π

ð2h − 1Þ
π tanðπhÞ

kcðhÞ
1 − kcðhÞ

ΨhðχÞ

þ
X∞
n¼1

�ð2h − 1Þ
π2

kcðhÞ
1 − kcðhÞ

ΨhðχÞ
�
h¼2n

: ð3:46Þ

This can be put into a more convenient form by substituting

2

tan πh
¼ 1

tan πh
2

−
1

tan πð1−hÞ
2

; ð3:47Þ

and then combining terms by extending the region of
integration to all values of s and using the antisymmetry of
the rest of the integrand under h → 1 − h. We get

F h≠2ðχÞ
α0

¼
Z

∞

−∞

ds
2π

ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

ΨhðχÞ

þ
X∞
n¼2

Res

� ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

ΨhðχÞ
�
h¼2n

ð3:48Þ
where now the integral runs over all s, and we have written
the discrete sum as a sum over residues of the poles
of 1= tanðπh=2Þ.
A nice feature of this formula is that it can be understood

as a single contour integral, over a contour in the complex h
plane defined as

1

2πi

Z
C
dh ¼

Z
∞

−∞

ds
2π

þ
X∞
n¼1

Resh¼2n: ð3:49Þ

Note that Ψh has poles at h ¼ 1þ 2n. However, these are
canceled by zeros of 1= tanðπh=2Þ at the same values.
Therefore the product has poles only at h ¼ 2n. The
contribution of the explicit residues will imply that we
do not end up picking up the poles at these locations either
when we shift the contour to the right.
Let us see how this works in more detail. First, we

consider the case χ > 1. Then we can push the contour
from the s axis rightward to infinity. In the process, we
cancel the sum over residues, but we pick up poles at the
locations where kcðhÞ ¼ 1 (see Fig. 7). We refer to these
values as hm, and we will say more about them in the next
section:

5In Appendix H we discuss a model where we effectively
replace 1 − kcðhÞ → 1 − gkcðhÞ, with g < 1, in Eq. (3.45), which
removes the h ¼ 2 divergence.
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F h≠2ðχÞ ¼−α0
X∞
m¼0

Res

� ðh− 1=2Þ
π tanðπh=2Þ

kcðhÞ
1− kcðhÞ

ΨhðχÞ
�
h¼hm

;

χ > 1: ð3:50Þ

The case for χ < 1 is more delicate, since we cannot push
the 2F1ð1 − h; 1 − h; 2 − 2h; χÞ function in ΨhðχÞ to large
positive h. So we do the following: first, we use the h →
ð1 − hÞ antisymmetry of the rest of the integrand to replace
the tanðπh=2Þ inside the integral by tanðπhÞ. This gives an
integrand that is explicitly symmetric under h → ð1 − hÞ.
Next, we use this symmetry to replace the B term in
Eq. (3.27) by another copy of the A term. This gives

F h≠2ðχÞ
α0

¼
Z

ds
2π

ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

×
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

þ
X∞
n¼2

Res

� ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

×
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

�
h¼2n

; ð3:51Þ

where, in the residue sum, we have also used that ΨhðχÞ ¼
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ for even integerh. This integrand can

now be pushed to the right as before, canceling the explicit
residues and picking up the poles where kcðhÞ ¼ 1:

F h≠2ðχÞ ¼ −α0
X∞
m¼0

Res

� ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

×
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

�
h¼hm

;

χ < 1: ð3:52Þ

6. Operators of the model

An important region of the four-point function is the
OPE limit of small χ. The expansion of the four-point

function in this region gives the coefficients and dimen-
sions of the operators appearing in the product of two
fermions, ψ ið0Þψ iðχÞ. We can read these off from the
expression (3.52).
The first solution to kcðhÞ ¼ 1 is h0 ¼ 2. Although we

omitted the divergent h ¼ 2 piece from the discrete sum in
defining F h≠2, we still pick up a finite contribution from
the double pole at that location when we deform the
contour. Naively, this would lead to a logarithmic term
that is difficult to interpret in the OPE. However, it turns
out that this piece cancels against other contributions
related to the h ¼ 2 subspace that will be described in
Sec. III C 4 below.
After h0 ¼ 2, we have an infinite set of solutions

h1; h2;… that are associated to ordinary poles. The sum
over these has the expected form for an operator product
expansion

h4pti ¼
X∞
m¼1

c2m½χhm2F1ðhm; hm; 2hm; χÞ�; ð3:53Þ

where the hm are the dimensions of the operators appearing,
the quantity in brackets is the corresponding conformal
block, and c2m would be the square of the operator product
coefficient. In particular, c2m should be positive. From
Eq. (3.52) we get

c2m ¼ −
α0
N

·
ðhm − 1=2Þ
π tanðπhm=2Þ

ΓðhmÞ2
Γð2hmÞ

·
1

−k0ðhmÞ
× ðhm > 2Þ: ð3:54Þ

In this expression, we have included the overall factor of
1=N that relates F ðχÞ to the four-point function (3.2). One
can check that c2m is positive, because k0ðhmÞ is negative
and tan πhm=2 is also negative. The rest of the factors are
positive.
We do not have an exact expression for the dimensions

hm, but we can parametrize the values as

hm ¼ 2Δþ 1þ 2mþ ϵm; ð3:55Þ

FIG. 7. The continuum piece of the contour that defines F h≠2 can be pushed to the right, canceling the residues of the poles of the
1= tanðπh=2Þ (dots), and picking up poles from the locations where kcðhÞ ¼ 1 (crosses). We have a double pole at h ¼ 2.
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where we observe that ϵm becomes small at large m.
Asymptotically,

ϵm ¼ 2Γð3 − 2ΔÞ sinð2πΔÞ
πΓð1þ 2ΔÞ

1

ð2mÞ2−4Δ ; m ≫ 1;

ϵm ¼ 3

2πm
; for Δ ¼ 1=4;

ϵm ¼ 2Δ
m2

; for Δ → 0: ð3:56Þ

One would like to view these as arising from two particles
in AdS with some interaction. In general the correction to
the energy is related to the scattering phase shift δ ∼ log S,
where S is the S matrix. This is related to the relativistically
invariant amplitude by δ ∼A=s where s is the center-of-
mass energy, or equal to s ∼m2 in this case (for large m).
We see that, generically, we cannot get Eq. (3.56) from a
local interaction, since those would involve powers of m2.
For example, an interaction mediated by a particle of spin J
would give δ ∼m2J−2, while what we have here goes like
δ ∼ 1=m (for q ¼ 4). For the special case of Δ → 0, we
have something consistent with an interaction mediated by
a spin-zero field, but the interaction is going to zero
as Δ → 0.
Here we have emphasized that the hm values are the

powers that appear in the OPE. By conformal invariance,
these are the same powers that determine the decay of
perturbations to the system after excitation by a fermion
bilinear.

7. Analytic continuation to the chaos region

Another interesting region to consider is where we take
the large real-time behavior of an out-of-time-order product
with the ordering ψ iðtÞψ jð0Þψ iðtÞψ jð0Þ. The behavior of
four-point functions in this limit is a probe of chaos. A
convenient configuration is the correlator

Tr½yψ iðtÞyψ jð0Þyψ iðtÞyψ jð0Þ�; y≡ ρðβÞ1=4 ð3:57Þ
where we have split the thermal density matrix into four
factors y as in Ref. [12]. In a conformal theory, this can be
obtained from the Euclidean correlator on the line, by
mapping to the finite-temperature circle using Eq. (3.10)
and then continuing to real time. To get the configuration
(3.57), the upshot is that we should study the four-point
function at a value of the cross ratio equal to

χ ¼ 2

1 − i sinh 2πt
β

: ð3:58Þ

Note that the χ → χ=ðχ − 1Þ symmetry of the correlator
takes t → −t in Eq. (3.58) and it ensures the reality of
Eq. (3.57). Notice that for t ¼ 0 this is a value greater than
one, so we should start with the formula for χ > 1 and
analytically continue it. For large values of t, we will end up
with a small and purely imaginary cross ratio. But because

we are continuing the χ > 1 expression to small χ, we do
not end up with the OPE limit of small χ.
The difference between these limits arises because

the continuation to small χ of the χ > 1 expression for
Ψh is not the same as the function Ψh evaluated directly at
small χ. Indeed, for small χ, the continuation gives

Ψχ>1
h ðχÞ ∼ Γð1

2
− h

2
ÞΓðh − 1

2
Þ

21−hΓðh
2
Þ ð−iχÞ1−h þ ðh → 1 − hÞ:

ð3:59Þ
If the real part of h is greater than one, this will be growing
for small χ. By Eq. (3.58), this translates to exponential
growth as a function of t that is a diagnostic of many-
body chaos.
Formally, the divergent term at h ¼ 2 corresponds to a

growth ∝ χ−1 ∝ e2πt=β that saturates the chaos bound. We
will see below that this rate of growth remains correct when
we treat the enhanced h ¼ 2 contribution outside the
conformal limit. For now, we consider the continuation
of the rest of the correlator, F h≠2, but we emphasize that
this is a small correction to the h ¼ 2 piece, in the chaos
limit as well as elsewhere.
If F h≠2 were a finite sum of Ψh, we could analyze the

chaos region by continuing each of the terms separately. If
we try this with Eq. (3.48), or with Eq. (3.50), we will find
that the residue sum does not converge after the continu-
ation. So we have to first manipulate the expression into a
form that is safer to continue. We start by defining a
function kRðhÞ by

kRð1 − hÞ
kcðhÞ

¼ cos πðΔ − h
2
Þ

cos πðΔþ h
2
Þ : ð3:60Þ

This function has an interpretation in terms of the eigen-
values of the real-time ladder kernel constructed from
retarded propagators (3.115). However, for our purposes
we only need to know two properties. First, kRð1 − hÞ ¼
kcðhÞ when h is an even integer, so we can replace kcðhÞ →
kRð1 − hÞ inside the residue sum of Eq. (3.48). Second,
kRð1 − hÞ ¼ 1 has only one solution with the real part of h
positive, which is h ¼ 2. This means that when we pull the
contour that circles the h ¼ 4; 6; � � � poles back to the line
h ¼ 1

2
þ is, as shown in Fig. 8, we will only pick up a

double pole at h ¼ 2 plus the integral over the line. This
leads to

F h≠2ðχÞ
α0

¼
Z

ds
2π

ðh − 1=2Þ
π tanðπh=2Þ

�
kcðhÞ

1 − kcðhÞ

−
kRð1 − hÞ

1 − kRð1 − hÞ
�
ΨhðχÞ − Res

� ðh − 1=2Þ
π tanðπh=2Þ

×
kRð1 − hÞ

1 − kRð1 − hÞΨhðχÞ
�
h¼2

: ð3:61Þ
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So far this is just another legal way to write the Euclidean
correlator.
Now we consider the continuation of the χ > 1 expres-

sion to small χ. The integral over s does not give anything
growing as χ becomes small, because we can do the
continuation in such a way that the integral always remains
convergent, and the integrand vanishes as χ → 0. Therefore
the only growing piece in F h≠2 comes from the second line
of Eq. (3.61). This is essentially a Regge pole. In our case it
is a double pole, so we get a linear combination of Ψ2ðχÞ
and ∂hΨ2ðχÞjh¼2. Unlike the double pole in the OPE
region, this does not cancel against other contributions.
The term proportional to Ψ2 will saturate the chaos

bound, but naively the second term exceeds it, due to the
extra logarithm in the small-χ behavior:

∂hΨhðχÞjh¼2 ∼ −
2π log 1

−iχ

−iχ
−

2π

−iχ
: ð3:62Þ

This translates to something proportional to te2πt=β at
large t, which would violate the bound. Also, the term
comes with a sign that is forbidden by the argument of
Ref. [12]. So, by itself, F h≠2 would not be an allowable
four-point function. However, it is consistent as a small
correction to the enhanced h ¼ 2 piece that we will study

below. The te
2πt
β term then corresponds to a small finite-

coupling shift (a decrease) in the growth exponent of the
large h ¼ 2 contribution.

C. Proper treatment of the h= 2 subspace

We saw above that the conformal limit of the kernel has
eigenfunctions with eigenvalue kcðhÞ ¼ 1, which lead to a
divergence in the four-point function. These eigenfunctions
are h ¼ 2 eigenfunctions of the Casimir operator C1þ2. In
order to get a finite answer for the four-point function, we
have to treat these particular eigenfunctions outside the
conformal limit, by doing perturbation theory in the leading
nonconformal correction to the kernel, δK. This correction
arises from the leading nonconformal correction δG to the

correlators that make up the kernel. The small parameter is
the inverse coupling, 1=ðβJÞ.
Since the perturbation δK breaks conformal symmetry,

the line and the finite-temperature circle are inequivalent,
and we have to study the problem directly on the circle. We
will use an angular coordinate θ ¼ 2πτ=β, which runs from
0 ≤ θ < 2π on the circle. (Equivalently, we can say that we
work in units where β ¼ 2π, and that θ is the periodic
Euclidean time variable.)
It will be slightly more convenient to use the symmetric

version of the kernel ~K in this section. This was defined in
Eq. (3.9)

~Kðθ1; θ2; θ3; θ4Þ ¼ −J2ðq − 1ÞjGðθ12Þj
q−2
2 Gðθ13Þ

× Gðθ24ÞjGðθ34Þj
q−2
2 : ð3:63Þ

We will refer to the antisymmetric eigenfunctions of this
kernel as Ψexact

h;n ðθ1; θ2Þ ¼ −Ψexact
h;n ðθ2; θ1Þ, where h is an

abstract label that will become clear below, and n describes
the Fourier index in the center-of-mass coordinate
e−inðθ1þθ2Þ=2. The kernel ~K is symmetric with respect to
the standard inner product

hΨ;Φi≡
Z

2π

0

dθ1dθ2Ψ�ðθ1; θ2ÞΦðθ1; θ2Þ: ð3:64Þ

To get a formula for the four-point function, we can use
the fact that the zero-rung ladder F 0 is proportional to the
kernel acting on the antisymmetric identity matrix, ~K · I,
where

Iðθ1…θ4Þ ¼
1

2
½δðθ14Þδðθ23Þ − δðθ13Þδðθ24Þ�

¼ −
X
h;n

Ψexact
h;n ðθ1; θ2ÞΨexact�

h;n ðθ3; θ4Þ: ð3:65Þ

Roughly, the sum of ladders is then F ¼ ð1 − ~KÞ−1 ~K · I.
More precisely,

FIG. 8. To continue the sum over residues to the chaos region, we first replace the kcðhÞ by kRð1 − hÞ, and then pull the contour
surrounding the poles back to the line 1=2þ is, picking up the double pole at h ¼ 2 but no other poles. In this form the function can
safely be continued. In addition we also have the original integral along h ¼ 1=2þ is with the function kc; we leave this piece alone
because it can already be continued.
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½ðq− 1ÞJ2jGðθ12Þj
q−2
2 jGðθ34Þj

q−2
2 �F ðθ1…θ4Þ

¼ 2
X
h;n

kðh;nÞ
1− kðh;nÞΨ

exact
h;n ðθ1;θ2ÞΨexact�

h;n ðθ3;θ4Þ; ð3:66Þ

where kðh; nÞ is the exact eigenvalue associated to
Ψexact

h;n ðθ1; θ2Þ. For the appropriate set of eigenvectors, this
formula is correct for any value of the coupling βJ.
In the conformal limit βJ ≫ 1 we can make contact with

our previous analysis: the exact eigenfunctions Ψexact
h;n

approach eigenfunctions Ψh;n of the Casimir C1þ2 with
eigenvalue hðh − 1Þ. The eigenvalue kðh; nÞ → kcðhÞ
becomes a function of h only, and the sum over n in
Eq. (3.66) reproduces the previous expression in terms of
the functions ΨhðχÞ; see Appendix D. The sum over h
includes both the continuum and discrete pieces. We can
take the conformal limit smoothly for everything but h ¼ 2.
This gives the function F h≠2 that we studied previously,
after mapping to the circle with τ ¼ tan θ

2
. We note that the

cross ratio χ is given in terms of the finite-temperature
coordinates as

χ ¼ sin θ12
2
sin θ34

2

sin θ13
2
sin θ24

2

: ð3:67Þ

Before, we got an infinity in the conformal limit from the
h ¼ 2 contribution, which is now given by a family of
functions Ψ2;n for different Fourier index n. For these
terms, we have to retain the leading nonconformal correc-
tion to the eigenvalues kð2; nÞ ¼ 1 −Oð 1

βJÞ. In the remain-
der of this section, we will do this in detail.

1. The h = 2 eigenfunctions and reparametrizations

We will start by working out the Ψ2;n functions on the
circle. In the conformal limit, we can substitute in for the
propagators using Eq. (2.8) to get

~Kcðθ1;…; θ4Þ ¼ −α0
1

j2 sin θ12
2
j1−2Δ

sgnðθ13Þ
j2 sin θ13

2
j2Δ

×
sgnðθ24Þ

j2 sin θ24
2
j2Δ

1

j2 sin θ34
2
j1−2Δ ð3:68Þ

with α0 defined in Eq. (3.12). As on the line, this kernel
commutes with a set of SLð2Þ generators,

P̂ ¼ e−iθ½∂θ − i=2�; K̂ ¼ −eiθ½∂θ þ i=2�;
D̂ ¼ i∂θ: ð3:69Þ

It follows that eigenfunctions of ~Kc will be functions
of two times that diagonalize the Casimir C1þ2 ¼ −1=2 −
K̂1P̂2 − P̂1K̂2 þ 2D̂1D̂2 and the translation operator

D̂1þ2 ¼ D̂1 þ D̂2. One can write the Casimir as a differ-
ential operator and directly find the h ¼ 2 eigenfunctions.
We can get the answer another way by considering

reparametrizations of the propagator. The Schwinger-
Dyson equations in the conformal limit are reparametriza-
tion invariant. This means that if we consider the change
in G from a linearized reparametrization θ → θ þ ϵðθÞ,
which is

δϵGc ¼ ½Δϵ0ðθ1Þ þ Δϵ0ðθ2Þ þ ϵðθ1Þ∂θ1 þ ϵðθ2Þ∂θ2 �Gc;

ð3:70Þ

then Gc þ δϵGc will also solve the conformal Schwinger-
Dyson equations (2.6). The first equation in Eq. (2.6) then
implies

0 ¼ δϵGc � Σc þGc � δϵΣc → 0

¼ δϵGc þ Gc � ½ðq − 1ÞJ2Gq−2
c δϵGc� � Gc

¼ ð1 − KcÞδϵGc ð3:71Þ

where the star denotes the following product:
ðF � GÞðτ; τ00Þ ¼ R

dτ0Fðτ; τ0ÞGðτ0; τ00Þ. We conclude that
δϵG is annihilated by (1 − K), so it is an eigenfunction of K
with eigenvalue one. For the symmetric kernel ~K, the

associated eigenfunction is jGjq−22 δϵG.
To get a convenient basis, we can consider ϵ ∼ e−inθ.

Plugging the conformal correlators (2.8) into the repar-

ametrization formula (3.70), evaluating jGjq−22 δϵG and
normalizing with respect to Eq. (3.64), we get

Ψ2;n ¼ γn
e−iny

2 sin x
2

fnðxÞ; fn ¼
sin nx

2

tan x
2

− n cos
nx
2
; ð3:72Þ

x ¼ θ1 − θ2; y ¼ θ1 þ θ2
2

; γ2n ¼
3

π2jnjðn2 − 1Þ :

ð3:73Þ

These are eigenfunctions of ~K with eigenvalue one, and
eigenfunctions of the Casimir C1þ2 with h ¼ 2. For the
cases n ¼ −1, 0, 1, the variation δϵG vanishes, because of
the SLð2Þ covariance of the conformal correlators. So we
only have eigenfunctions for jnj ≥ 2. For positive n, they
organize into a single representation of SLð2Þ, with highest
weight vector Ψ2;2. One can repeatedly apply P1 þ P2

to this function to get all of the Ψ2;n, with n ≥ 2. We
similarly get a single lowest weight representation that
describes n ≤ 2.
In Sec. IV, we will use the reparametrization perspective

to give a simple explanation of why these eigenfunctions
lead to a divergence in the four-point function, and how
it gets regulated. For now we proceed in the most
straightforward way, correcting the infinity by finding
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the shift in kð2; nÞ that fixes the vanishing denominator
in Eq. (3.66).

2. The shift in the eigenvalues

Wewill start by studying the correction to kð2; nÞ at large
q, where the eigenvalue problem is quite simple for all
values of the coupling βJ. The simplification is because the
propagators are equal to

GðθÞ ¼ sgnðθÞ
2

�
1þ gðθÞ

q
þ � � �

�
: ð3:74Þ

At large q we can set the side rail propagators equal to the
first term. To form the rung functionGq−2, we exponentiate
the 1

q correction as in Eq. (2.17). The eigenvalue equation
~KΨ ¼ kΨ is

− J2q
Z

dθ1dθ2
sgnðθ13Þ

2

sgnðθ24Þ
2

e
1
2
½gðθ12Þþgðθ34Þ�

2q−2
Ψðθ1; θ2Þ

¼ kΨðθ3; θ4Þ: ð3:75Þ

Because the side rail propagators are so simple, we can
turn this integral equation into a differential equation by
applying the differential operator ∂θ3∂θ4e

−1
2
gðθ34Þ to both

sides and using ∂xsgnðxÞ ¼ 2δðxÞ. Plugging in for eg

using Eq. (2.17), parameterizing the eigenvalue as
k ¼ 2=hðh − 1Þ, and making a Fourier ansatz, one finds

Ψðθ1; θ2Þ ¼
e−iny

sin ~x
2

ψnðxÞ; ~x ¼ vxþ ð1 − vÞπ; ð3:76Þ

�
n2 þ 4∂2

x −
hðh − 1Þv2

sin2 ~x
2

�
ψnðxÞ ¼ 0. ð3:77Þ

Here, v was defined in Eq. (2.18), and we are using the
same notation for x, y as in Eq. (3.72). At infinite coupling,
v is close to one [Eq. (2.30)]. When v is exactly equal to
one, Eq. (3.77) is the equation for an eigenfunction of the
Casimir C1þ2. However, Eq. (3.77) gives the exact eigen-
vectors of the large-q model for any value of the coupling.
We would like to find eigenfunctions with the right

symmetry properties. As functions of the two angles θ1, θ2,
the four-point function has the symmetries

Fðθ1; θ2Þ ¼ −Fðθ2; θ1Þ;
Fðθ1 þ 2π; θ2Þ ¼ −Fðθ1; θ2Þ;
Fðθ1; θ2 þ 2πÞ ¼ −Fðθ1; θ2Þ: ð3:78Þ

We can combine the first two to obtain Fðθ1; θ2Þ ¼
Fðθ2 þ 2π; θ1Þ. In terms of x and y this means that

Fðx; yÞ ¼ Fð2π − x; yþ πÞ: ð3:79Þ

The first symmetry in Eq. (3.78) can be used to restrict the
range of x to be positive. Then the periodicity condition
implies Eq. (3.79). To compensate for the factor of e−iny in
Eq. (3.76), ψnðxÞ needs to be symmetric about x ¼ π for
even n and antisymmetric for odd n. Solutions with these
properties are

ψh;nðxÞ ∼
�
sin

~x
2

�
h

2

F1

�
h − ~n
2

;
hþ ~n
2

;
1

2
; cos2

~x
2

�
;

~n ¼ n
v

ðn evenÞ; ð3:80Þ

∼ cos
~x
2

�
sin

~x
2

�
h

2

F1

�
1þ h − ~n

2
;
1þ hþ ~n

2
;
3

2
; cos2

~x
2

�

× ðn oddÞ: ð3:81Þ

The quantization condition on h comes from the boundary
condition that ψ should vanish at x ¼ 0, which means
~x ¼ πð1 − vÞ.
We are interested in the eigenfunctions that approach the

h ¼ 2 conformal eigenfunctions at strong coupling. For a
generic value of h near two, we get a divergence as ~x goes
to zero. To the first two orders in (1 − v), the correct
condition is just that this diverging term should not be
present. This means the first or second argument of the
hypergeometric function should be a negative integer. The
solution near two is hn ¼ 2þ j ~nj − jnj ¼ 2þ jnj 1−vv .
Converting to k ¼ 2=hðh − 1Þ, we get

kð2; nÞ ¼ 1 −
3jnj
2

ð1 − vÞ þ
�
7n2

4
−
3jnj
2

�
ð1 − vÞ2 þ � � �

ð3:82Þ

¼ 1 −
3jnj
βJ

þ 7n2

ðβJ Þ2 þ � � � : ð3:83Þ

Now we move to general q. We cannot solve the
eigenvalue problem exactly, but we can do first-order
perturbation theory in the kernel, computing the shift in
the eigenvalues of the h ¼ 2 eigenfunctions by taking
hΨ2;n; δ ~K ·Ψ2;ni where δ ~K is the leading correction to the
conformal form. More specifically, we will take the leading
correction in the infrared; this will be justified as long as the
integrals we get for the matrix elements are convergent.
The correction to the kernel comes from substituting in

the correction Gc þ δG to the conformal propagators,
where δG is the leading correction in the infrared. For
the large-q model, we found in Eq. (2.37) that the leading
correction to the conformal answer is proportional to the
function

f0ðθÞ≡ 2þ π − jθj
tan jθj

2

: ð3:84Þ
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[Note that f0 is not the limit n → 0 of fn defined for n ≥ 2
in Eq. (3.72).] By solving the Schwinger-Dyson equations
numerically for different values of q, we found in all cases
that

δG
Gc

¼ −
αG
βJ

f0 ð3:85Þ

is a good approximation for large θβJ and for a suitable
constant αG. We give a plot of αGðqÞ, from fitting against
the numerical solution, in Fig. 9. One can also show
directly that δG is an eigenfunction of the conformal kernel
with eigenvalue one (and therefore an allowed perturbation
in the infrared, by Appendix A), up to a UV divergence that
should be interpreted as a local source in the Schwinger-
Dyson equation. The required source is proportional to the
−iω term that we dropped in the conformal limit, but
matching the numerical coefficient would require us to
know how the divergence is regularized, which seems to
require the exact solution; see Appendix A. Of course, in
the q ¼ ∞ model we have the exact solution, and one can
check that the coefficient is αG ¼ 2=q at large q. In the
large-q model and also in the numerics at general q, the
next correction in the IR appears to be at order ðβJ Þ−2.
One expects the next correction after that to be at order
ðβJ Þ1−h1 where h1 is the dimension of the next irrelevant
operator, i.e. the solution to kcðhÞ ¼ 1. When q ¼ 4 we
have h1 ¼ 3.7735….
Getting the shift in the eigenvalue from the correction δG

involves some work, which we will defer to Appendix E.
One approach is to compute the shift by directly evaluating
the integrals in hΨ2;n; δ ~K ·Ψ2;ni. This can be simplified by
using conformal symmetry to show that the answer has to
be proportional to n, and then doing the integrals at large n.
We give some details on this method in Appendix E.
A quicker way to get the answer is to use the fact, shown

in Appendix F, that

1

qαG
·
hΨh;n; δ ~K ·Ψ2;ni

1 − kcðhÞ
ð3:86Þ

is independent of q, despite the fact that the components
qαG, kc, and δ ~K each depend on q. Here, Ψh;n is the
conformal eigenfunction with weight h. The expression
(3.86) has a pole at h ¼ 2, with residue proportional to the
eigenvalue shift. Equating this residue with what we get in
the q ¼ ∞ model, and using some large-q data [qαG ¼ 2,
k0cð2Þ ¼ −3=2, and Eq. (3.83)], we find

kð2; nÞ ¼ 1 −
αK
βJ

jnj þ � � � ; ð3:87Þ

αK ≡ −qk0cð2ÞαG
¼

�
πq
sin 2π

q

þ q3ð6 − qÞ − 6q2

2ðq − 1Þðq − 2Þ
�
αG: ð3:88Þ

This agrees with the more direct method in Appendix E. We
give a plot of the coefficient αK in the right panel of Fig. 9.
One finds that it stays reasonably close to three for all
values of q.

3. The enhanced h = 2 contribution

Because the eigenvalues of the h ¼ 2 eigenvectors are
close to one, they give an enhanced contribution to the four-
point function, of order βJ. This piece comes from the h ¼
2 part of Eq. (3.66), where we put in the conformal results
for everything except the 1 − kðh; nÞ in the denominator,
which we correct using the leading shift (3.87). The result is

F bigðθ1…θ4Þ
Gðθ12ÞGðθ34Þ

¼ 6α0
π2αK

βJ
X
jnj≥2

einðy0−yÞ

n2ðn2 − 1Þ

×

�
sin nx

2

tan x
2

− n cos
nx
2

��
sin nx0

2

tan x0
2

− n cos
nx0

2

�
;

x ¼ θ12; x0 ¼ θ34;

y ¼ θ1 þ θ2
2

; y0 ¼ θ3 þ θ4
2

: ð3:89Þ

Because of the βJ enhancement, this term is parametrically
large compared to the h ≠ 2 pieces we studied in the
previous sections. It is not conformally invariant, in the

FIG. 9. The functions αGðqÞ and αKðqÞ, computed by solving the Schwinger-Dyson equations numerically for different values of q.
The first three physical values are αGð2Þ ¼ 0, αGð4Þ ≈ 0.1872, and αGð6Þ ≈ 0.1737. Analytically, we know that αG behaves as 2=q at
large q, and like πðq − 2Þ=8 for q near two. αK never strays more than roughly five percent from the large-q value of three.
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sense that the sum is not only a function of the cross ratio.
This lack of conformal symmetry arises because the
eigenvalue shift (3.87) depends on the index n that labels
the SLð2Þ descendant in the h ¼ 2 representation.
Concretely, we have n2ðn2 − 1Þ in the denominator, instead
of jnjðn2 − 1Þwhich would have given a multiple ofΨ2ðχÞ;
see Eq. (D4).
Using the fact that the h ¼ 2 eigenfunctions are linear-

ized reparametrizations of the propagator, with reparamet-
rization ϵn ∝ e−inθ, we can write Eq. (3.89) as

F big ¼
X
n

hϵnϵ−niδϵnGδϵ−nG;

hϵnϵ−ni ¼
�
6α0q2

αKN

�
βJ

n2ðn2 − 1Þ : ð3:90Þ

This is the type of contribution one expects from a
fluctuation integral over reparametrizations of the con-
formal saddle point, with an action given by the inverse of
the ϵ propagator. We will say more about this perspective in
Sec. IV below. For now, we note that one can Fourier
transform (3.90) to obtain

hϵðθÞϵð0Þi ¼ 1

N
6ðβJ Þβ2q2α0

ð2πÞ4αK

�
−
1

2
ðjθj − πÞ2

þ ðjθj − πÞ sin jθj þ 1þ π2

6
þ 5

2
cos θ

�
:

ð3:91Þ

The sum over n in Eq. (3.89) can be done by repeatedly
integrating the geometric series, or by using this propagator
and Eq. (3.70). The result depends on whether the ordering
of the times corresponds to an iijj or ijij ordering of the
fermions; see Fig. 10. In the nonalternating configuration
iijj, we have the very simple expression

iijj order∶
F bigðθ1; θ2; θ3; θ4Þ

Gðθ12ÞGðπÞ

¼ 6α0
π2αK

βJ
�

θ12
2 tan θ12

2

− 1

��
θ34

2 tan θ34
2

− 1

�
: ð3:92Þ

This correlator is produced by fluctuations in the total
energy in the thermal ensemble. Let us be a bit more
explicit. We can compute the contribution of the energy
fluctuations by starting with the variation in the correlator
produced by a small change in the temperature:

Gðτ; β þ δβÞ
Gðτ; βÞ ¼ 1 −

2Δ
β

�
1 −

πτ

β tan πτ
β

�
δβ: ð3:93Þ

Now we use the saddle point relation E ¼ c=ð2β2Þ to get
δβ ¼ −β3δE=c; see Eq. (2.34). From the fluctuations in E
we therefore expect a connected piece in the four-point
function that is

1

N

F bigðτ1; τ2; τ3τ4Þ
Gðτ12ÞGðτ34Þ

¼ 4

q2

�
1 −

πτ12
β tan πτ12

β

��
1 −

πτ34
β tan πτ34

β

�

×
β4

c2
hðδEÞ2i: ð3:94Þ

The energy two-point function can be computed from

hðδEÞ2i ¼ ∂2
β logZ ¼ c

β3
: ð3:95Þ

Inserting this, writing things in terms of θ ¼ 2πτ=β, and
converting c to αK using Eq. (5.2), we find exact agreement
with Eq. (3.92).
For small θ12, Eq. (3.92) goes as θ212, suggesting

the presence of a dimension-two operator, or an
operator product expansion of the form ψðθ1Þψðθ2Þ ∝
ðθ12Þ−2Δþ2Tðθ2Þ. If we took also the θ34 → 0 limit, then
we would expect to have a result proportional to
hTðθ2ÞTðθ4Þi. If this was in a conformal field theory, we
would have expected this to go like ðsin θ24=2Þ−4. Instead
we find that it is a constant. The the reason is that T is
essentially the Hamiltonian of the theory. As such it is
conserved and its two-point function in the thermal
ensemble simply measures the energy fluctuations. We
can write an explicit expression for T in terms of ϵ of
the form

T ¼ NαS
J

�
ϵ000 þ ð2πÞ2

β2
ϵ0
�
þ… ð3:96Þ

with αS as in Eq. (4.5). The dots indicate possible higher-
order terms in ϵ. We can then check using Eq. (3.91) that
hTTi is indeed constant, and is given by Eq. (3.95)

hTðτ1ÞTðτ2Þi ¼
c
β3

∝
N

β2ðβJ Þ : ð3:97Þ

Because of the factor of ðβJ Þ, this becomes small in the
conformal limit, seemingly in keeping with the idea that the
stress tensor should vanish in a one-dimensional conformal
field theory. However, the contribution to the four-point

(a) (b)

FIG. 10. Two configurations for the fermions. In (a) we have
the iijj configuration with χ < 1 and in (b) we have the ijij
configuration with χ > 1.
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function also involves the three-point couplings hTψψi,
which are the other factors in Eq. (3.94). These give two
factors of ðβJ Þ in the numerator, which more than
compensate for the suppression of hTTi.6
We now turn our attention to a configuration in the

alternating configuration ijij. The result is a bit more
complicated but it simplifies nicely in the case that we take
one of the pairs of fermions to be diametrically opposed on
the circle. For example, we can take θ3 ¼ 0, and θ4 ¼ π:

ijij order∶
F bigðθ1; θ2; 0; πÞ
Gðθ12ÞGðπÞ

¼ −
6α0
π2αK

βJ
�

θ12
2 tan θ12

2

− 1 − π
sin θ1

2
sin θ2

2

j sin θ12
2
j

�
: ð3:98Þ

This is the configuration that is appropriate for continuing
to the chaos limit. To get the function defined in Eq. (3.57),
we continue to θ2 ¼ π

2
− 2πi

β t and θ1 ¼ θ2 − π, finding

F bigðtÞ
GðπÞGðπÞ ¼

6α0
π2αK

βJ
�
1 −

π

2
cosh

2πt
β

�
: ð3:99Þ

This saturates the chaos bound.

4. Other terms from the h = 2 subspace

Because the factor kð2;nÞ
1−kð2;nÞ in Eq. (3.66) is large, of order

βJ , corrections of order ðβJ Þ−1 from the rest of the
formula (3.66) will combine to give finite contributions in
the conformal limit. There are several sources of these
terms. First, the δG correction to the propagators on the lhs
of Eq. (3.66) give a correction

F ðθ1…θ4Þ
Gðθ12ÞGðθ34Þ

⊃−
q
2

�
δGðθ12Þ
Gcðθ12Þ

þ δGðθ34Þ
Gcðθ34Þ

�
F bigðθ1…θ4Þ
Gcðθ12ÞGcðθ34Þ

ð3:100Þ

¼ 3α0
π2jk0cð2Þj

½f0ðθ12Þ þ f0ðθ34Þ�
X
jnj≥2

einðy0−yÞfnðxÞfnðx0Þ
n2ðn2 − 1Þ :

ð3:101Þ

Notice that this depends on q only through the factor
α0=k0cð2Þ, which is a simple explicit function of q. Next, we
have a contribution from the first-order change in the h ¼ 2
eigenvectors, δΨ2;n. In Appendix F we show that δΨ2;n is

independent of q except for a coefficient of qαG. It is easy
to check that this also leads to a term inF that depends on q
only through the prefactor α0=k0cð2Þ.
Third, we have contributions from the order ðβJ Þ0 term

in kð2;nÞ
1−kð2;nÞ. This requires knowledge of the second-order

change in the eigenvalue, which we have not computed.
However, we have noticed that we get a very simple final
answer if we assume

kð2; nÞ ¼ 1þ k0cð2Þ
qαGjnj
βJ

þ k00cð2Þ
2

�
qαGjnj
βJ

�
2

þ…:

ð3:102Þ

The first term is just a restating of Eq. (3.87). One can use
Eq. (3.83) to check that the second term is correct in the
q ¼ ∞ model. By diagonalizing the kernel constructed
from the numerical GðτÞ (see Appendix G), we have
checked that the coefficient of the second term in
Eq. (3.102) is correct to within roughly percent-level
multiplicative precision, for several low values of q, n.
We will assume that it is actually true.
The simplification that results from Eq. (3.102) is the

following. One can use Eq. (D4) to show that the

contribution to F from the order-one term in kð2;nÞ
1−kð2;nÞ

combines with the terms from the double pole at h ¼ 2
in Eqs. (3.50) and (3.52) to give, again, an expression that
depends on q only through the prefactor α0=k0cð2Þ. So we
conclude that up to order ðβJ Þ0, the four-point function
will be given by the F big contribution, plus the residues of
the simple poles h1; h2;… in Eqs. (3.50) or (3.52), plus
terms that are universal in q up to an overall coefficient.
We will compute these last terms by studying the q ¼ ∞
four-point function in more detail.

D. More detail on the q =∞ four-point function

In the q ¼ ∞ model, we can compute the four-point
function in a way that simultaneously treats all of the
contributions we have been discussing so far. This is based
on the fact that F is a Green’s function for a simple
differential operator. Because the side-rail propagators
in the large-q kernel are proportional to sgnðθÞ [see
Eq. (3.75)], we have that

−
2

v2 ~P2
∂θ1∂θ2Kðθ1…θ4Þ ¼ δðθ13Þδðθ24Þ;

~P≡ 1

sin ~x
2

; ~x ¼ vxþ ð1 − vÞπ: ð3:103Þ

In other words, the differential operator on the left-hand
side is the inverse of K. Roughly, the four-point function is
given by F ¼ ðK−1 − 1Þ−1. Multiplying both sides by
ðK−1 − 1Þ, we get a differential equation for F with a
delta function source.

6We emphasize that T is not a conformal operator. As the
Hamiltonian of the theory, it is dimension one, but it has a time-
independent two-point function that would be characteristic of a
dimension-zero conformal operator. On the other hand, the OPE
with two fermions vanishes as the fermions approach each other
in a way that would be characteristic of a dimension-two
conformal operator.
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To write the precise equation we get, it is convenient to
use the coordinates x ¼ θ12, y ¼ θ1þθ2

2
. These overcount

physical configurations of points. We can reduce this
overcounting by restricting to x ≥ 0, x0 ≥ 0 and y ≥ y0.
Then the correct equation is

�
−
∂2
y

4
þ v2∂2

~x −
v2 ~P2

2

�
F ðx; y; x0; y0Þ

¼ δðy − y0Þδðx − x0Þ þ δðy − y0 − πÞδð2π − x − x0Þ:
ð3:104Þ

The second term on the rhs can be understood as the
image of the first term under the symmetry ðx; yÞ →
ð2π − x; y − πÞ; see the discussion above Eq. (3.80).
We can solve this equation by separation of variables.

We expand in a complete set of eigenfunctions of the
operator −∂2

~x þ ~P2=2, with boundary conditions of zero at
x ¼ 0. These eigenfunctions are just Eqs. (3.80) and (3.81)
with h ¼ 2. The boundary condition implies that ~n should
be an integer n ≥ 2 plus a correction of order ð1 − vÞ3 that
we will neglect. Then Eqs. (3.80) and (3.81) simplify to the
functions fn defined in Eq. (3.72), with eigenvalues n2=4.
These functions satisfy a completeness relation

X
n>2

fnð~xÞfnð~x0Þ
πðn2 − 1Þ ¼ δð~x − ~x0Þ;

X
n>2

ð−1Þn fnð~xÞfnð~x
0Þ

πðn2 − 1Þ ¼ δð2π − ~x − ~x0Þ: ð3:105Þ

So we can write

F ðx; y; x0; y0Þ ¼
X
n>2

Hnðy − y0Þ fnð~xÞfnð~x
0Þ

πðn2 − 1Þ ; ð3:106Þ

�
−
1

4
∂2
y −

v2n2

4

�
HnðyÞ ¼ v½δðyÞ þ ð−1Þnδðy − πÞ�:

ð3:107Þ

The factor of v on the right side came from δðx − x0Þ ¼
vδð~x − ~x0Þ and δð2π − x − x0Þ ¼ vδð2π − ~x − ~x0Þ. The sol-
ution for HnðyÞ should be continuous and 2π-periodic. The
sources in Eq. (3.106) imply that we have a discontinuous
derivative at y ¼ 0 and y ¼ π. The discontinuity at zero is
equivalent to a discontinuity between the derivative at 0þ
and at 2π−. Solving these constraints, we find that the
solution for 0 < y < 2π is

HnðyÞ ¼ −
2

n sinðnπvÞ ðcos ½nvðy − πÞ�

þ ð−1Þn cos ½nvðjy − πj − πÞ�Þ ð3:108Þ

¼ 4 cosðnyÞ
πn2ð1 − vÞ þ

4ðy − π
2
Þ sinðnyÞ
πn

þOð1 − vÞ ð3:109Þ

¼
�
βJ
2

þ 1 −
�
y −

π

2

�
∂y

�
4 cosðnyÞ

πn2
þO

�
1

βJ

�
:

ð3:110Þ

In the second line we expanded in 1 − v assuming
0 < y < π. (For π < y < 2π, we need to replace the π=2
in the second term by 3π=2.) In the third line we used
1

1−v ≈
βJ
2
þ 1. Substituting Eq. (3.110) into Eq. (3.106)

and also using fnð~xÞ ¼ fnðxÞ þ ð1 − vÞðπ − xÞf0nðxÞþ
…, we get the full q ¼ ∞ four-point function up to order
ðβJ Þ0:

F ðx; y; x0; 0Þ ¼
	
βJ − 2

�
−1þ

�
y −

π

2

�
∂y

þ ðx − πÞ∂x þ ðx0 − πÞ∂x0

�


×
X
jnj≥2

e−inyfnðxÞfnðx0Þ
π2n2ðn2 − 1Þ : ð3:111Þ

One can check that the term of order ðβJ Þ reproduces F big

from Eq. (3.89) for the case q ¼ ∞ (α0 ¼ 2, αK ¼ 3,
G ¼ 1

2
). Although we have not displayed it here, the next

term, at order ðβJ Þ−1 can also be computed from
Eq. (3.108). Beyond that order, one has to use the hyper-
geometric functions (3.80) and (3.81) that generalize fn for
noninteger n.
An interesting feature of the function F big was that it

was independent of y in the nonalternating configuration,
which corresponds to y > jxþ x0j=2. This persists at
order one, since the new y dependence of Eq. (3.111)
is proportional to a y derivative of F big. This is consistent
with the idea that in the q ¼ ∞ model the Hamiltonian is
the only operator that appears in the OPE. Notice that
this is rather nontrivial from the way we set up the
calculation in the previous sections: in the OPE region,
the y-dependent double pole contribution in F h≠2 must
be completely canceled by some of the terms discussed in
Sec. III C 4.

E. Summary of the four-point function

In the previous section, we argued that the order-one
terms in F coming from the double pole and the various
corrections to the h ¼ 2 contributions add up to a function
that depends on q only through the prefactor α0=k0cð2Þ.
We can then use the q ¼ ∞ result (3.111) to write the
general four-point function up to order one. When χ < 1,
we have
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F ðx; y; x0; 0Þ
GðxÞGðx0Þ ¼ α0

	
6βJ
αK

−
6

jk0cð2Þj
�
−1þ

�
y −

π

2

�
∂y

þ ðx − πÞ∂x þ ðx0 − πÞ∂x0

�


×
X
jnj≥2

e−inyfnðxÞfnðx0Þ
π2n2ðn2 − 1Þ

− α0
X∞
m¼1

Res
� ðh − 1=2Þ
π tanðπh=2Þ

kcðhÞ
1 − kcðhÞ

×
ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

�
h¼hm

: ð3:112Þ

For χ > 1 we have the same formula except that we need to

replace ΓðhÞ2
Γð2hÞFðh; h; 2h; χÞ → ΨhðχÞ on the second line, as

in Eq. (3.50). We defined α0 in Eq. (3.12), kc in Eq. (3.35),
x; x0; y in Eq. (3.89), and fn in Eq. (3.72). αK is plotted in
Fig. 9. The cross ratio χ is defined for finite temperature
in Eq. (3.67).
In the region χ < 1, the first line is actually independent

of y. It encodes the contribution to the four-point function
from a conserved operator, T, essentially the Hamiltonian
of the theory. This term is not conformally invariant. The
second line represents a tower of other operators that do
contribute in a conformally invariant way. The dimensions
are determined by kcðhmÞ ¼ 1.7

The expression (3.112) is very convenient for analyzing
the OPE limit. If we are interested in deriving the
expression for the chaos limit, then we can start from
the version of Eq. (3.112) for χ > 1. We then replace the
sum over residues by small circle contour integrals around
each point. Then we pull the contours out to h ¼ 1

2
þ is. In

the process we pick up residues at h ¼ 2k, k ≥ 1. We have a
double pole at h ¼ 2 and single poles for k > 1. In the case
of the single poles, we replace kcðhÞ by the retarded kernel
kRð1 − hÞ; see Eq. (3.60). Again, we now express those
contributions in terms of small contour integrals around
these points and shift the contour to h ¼ 1

2
þ is. After we do

this, we pick up a residue at h ¼ 2. Thus, the final
contribution involves the difference between the residues
of the kc kernel and the retarded kernel

α0Res

� ðh − 1
2
Þ

π tanðπh=2Þ
�

kcðhÞ
1 − kcðhÞ

−
kRð1 − hÞ

1 − kRð1 − hÞ
�
ΨhðχÞ

�
h¼2

: ð3:113Þ

This expression contains terms going like χ−1 log χ and χ−1.
These should be added to similar terms that arise from the

terms involving derivatives in Eq. (3.112). The total te
2πt
β

term, which contains the correction to the Lyapunov
exponent, has the form (3.128) which leads to
Eq. (3.129). The logarithmic term that comes from the
pole involving 1=ð1 − kcÞ cancels the one coming from the
derivatives in Eq. (3.112).

F. The chaos exponent at finite coupling

1. The retarded kernel

One way to compute the correlator in the chaos limit is to
take the exact Euclidean answer and continue it. This is the
approach we have taken so far in this paper. If we are only
interested in getting the asymptotic rate of growth, we can
take a simpler approach, used by Kitaev in Ref. [8]. We will
consider an out-of-time-order correlation function in real
time, where the fermions are separated by a quarter of the
thermal circle:

Fðt1; t2Þ ¼ Tr½yψ iðt1Þyψ jð0Þyψ iðt2Þyψ jð0Þ�;
y≡ ρðβÞ1=4: ð3:114Þ

The 1=N piece of F is determined by a set of ladder
diagrams on a time contour that includes the thermal circle
and also a pair of real-time folds for the operators ψðt1Þ and
ψðt2Þ. As t1, t2 become large, these folds grow. The
asymptotic growth rate of the 1=N piece of F is determined
only by the properties of the ladder diagrams on the real-
time part of the contour. To analyze these ladders, we define
a retarded kernel

KRðt1…t4Þ ¼ J2ðq − 1ÞGRðt13ÞGRðt24ÞGlrðt34Þq−2:
ð3:115Þ

Here, GR are the retarded propagators, which include the
sum over insertions on the two sides of the fold. The
functionGlr is a Wightman correlator with points separated
by half of the thermal circle in addition to the real time
separation. In the conformal limit

GRðtÞ ¼ 2b cosðπΔÞθðtÞ
�

π

β sinh πt
β

�
2Δ
;

GlrðtÞ ¼ b
�

π

β cosh πt
β

�
2Δ
: ð3:116Þ

The sum of ladder diagrams in F satisfies the usual integral
equation which states that adding an extra rung to each
diagram and also introducing a new zero-rung diagram
leaves the sum unchanged. At large time t1, t2, the zero-
rung diagram is numerically small, because the propagators
decay exponentially in time. This means that at large time,
the sum of ladders must satisfy a homogeneous equation
that states that adding one rung to each ladder will not

7We should also note that if Eq. (3.102) is not true, we
will have further contributions, probably including a “real”
dimension-two operator.
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change the sum [8,33]. So F must be an eigenfunction of
KR with eigenvalue one:

Fðt1; t2Þ ¼
Z

dt3dt4KRðt1…t4ÞFðt3; t4Þ: ð3:117Þ

To solve this, we make a growth ansatz

Fðt1; t2Þ ¼ eλLðt1þt2Þ=2fðt12Þ ð3:118Þ

and then determine the values of λL such that we can find an
f that gives an eigenfunction of KR with eigenvalue one,
solving Eq. (3.117). In the conformal limit, one can show
by direct integration that we have eigenfunctions and
eigenvalues

e−h
π
βðt1þt2Þ

½cosh π
β t12�2Δ−h

; kRðhÞ ¼
Γð3− 2

qÞΓð2q−hÞ
Γð1þ 2

qÞΓð2− 2
q−hÞ : ð3:119Þ

This agrees with the definition of kRðhÞ, given previously in
Eq. (3.60). As we noted there, the only solution to kRðhÞ ¼
1 is h ¼ −1, which gives λL ¼ 2π

β . One might have expected
to also find subleading growth rates in the conformal limit,
corresponding to different families of eigenfunctions. Such
eigenfunctions exist, but one can check that the next largest
allowed value of λL is zero. This explains why every
growing term in the chaos limit was growing at this rate,
including various terms that were subleading to the
enhanced contribution F big.

2. Large q

In the large-q model we can use this retarded kernel to
find the growth exponent λL at all values of the coupling.
From Eq. (2.13) and the definition of GR in Eq. (2.12),
together with the analytic continuation to real times τ →
β=2þ it of Eq. (2.17), we find that

GRðtÞ ¼ θðtÞ; qJ2GlrðtÞq−2 ¼
2π2v2

β2cosh2ðπvβ tÞ ð3:120Þ

where vwas defined in Eq. (2.18). v goes from zero at weak
coupling to one at strong coupling. Substituting Eq. (3.120)
into the formula for the retarded kernel, and then taking
derivatives ∂t1∂t2 of Eq. (3.117) with the ansatz (3.118),
we get

�
λ2L
4
− ∂2

x

�
fðxÞ ¼ 2π2v2

β2cosh2ðπvβ xÞ fðxÞ: ð3:121Þ

After rescaling the x variable, the equation becomes

−
�
λLβ

2πv

�
2
~fð~xÞ ¼

�
−∂2

~x −
2

cosh2 ~x

�
~fð~xÞ;

~x ¼ πv
β
x; ~fð~xÞ ¼ fðxÞ: ð3:122Þ

This is a Schrodinger problem for a particle in the
−2= cosh2 ~x potential. There is a single bound state
~f ∝ 1= cosh ~x. The energy of this state is minus one, which
gives the exact growth exponent

λL ¼ 2π

β
v: ð3:123Þ

At weak coupling we have λL ≈ 2J , and at strong coupling
we have λL ≈ 2π

β ½1 − 2=ðβJ Þ�. We give a plot of λL
in Fig. 11.

3. General q

For general q, we do not have an exact expression for λL
at finite coupling. However, we can relate the first ðβJÞ−1
correction to the parameter αG, and we can compute the
function at small and moderate βJ numerically. First we
discuss the ðβJÞ−1 correction. One way to compute this is to

FIG. 11. Left: The exact λL in the large-q model. Right: λL for q ¼ 4. The red curve shows the formula (3.129) in a region of
reasonable validity. The circles are exact values, obtained by numerically solving real-time Schwinger-Dyson equations and then
diagonalizing the retarded kernel. Note that the x axis is βJ , not βJ.
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do first-order perturbation theory in the retarded kernel.
The leading nonconformal correction to KR comes from
plugging Eq. (3.85) into the definitions GRðtÞ ¼ ½Gðitþ
ϵÞ −Gðit − ϵÞ�θðtÞ and GlrðtÞ ¼ Gðitþ β=2Þ to get the
corrected propagators

δGR

GR
¼ −

αG
βJ

�
2 −

π tan π
q þ 2πt

β

tanh πt
β

�
;

δGlr

Glr
¼ −

αG
βJ

�
2 −

2πt
β

tanh
πt
β

�
: ð3:124Þ

Rather than taking this direct approach, we will use the
results derived earlier in this section to get the answer by a
different method. From Eq. (3.99), the leading term in the
chaos limit behaves like

F ðtÞ
GðπÞGðπÞ ≈ −

3α0βJ
2παK

e
2π
β t: ð3:125Þ

If we correct the growth exponent to λL ¼ 2π
β þ δλL, and

expand to linear order in δλL, we expect a term linear in t
times the growing exponential:

F expectðtÞ
GðπÞGðπÞ ¼ −ðtδλLÞ ·

3α0βJ
2παK

e
2π
β t: ð3:126Þ

We expect δλL to be of order ðβJ Þ−1, so this term is of
order one at large coupling. We found a term exactly of this
type when we analyzed the double pole in the chaos limit of
the F h≠2 function. The contribution that contains the log is

F haveðtÞ
GðπÞGðπÞ ¼ −

3α0
k0Rð−1Þπ2

∂hΨhðχÞjh¼2 ð3:127Þ

≈
3α0

2πk0Rð−1Þ
2π

β
te

2π
β t ð3:128Þ

where we took the large-t limit in the second line, using
Eqs. (3.58) and (3.62). Comparing with Eq. (3.126), and
rewriting αK in terms of αG using Eq. (3.88), we find

λL ¼ 2π

β

�
1 −

−k0ð2Þ
k0Rð−1Þ

qαG
βJ

þ � � �
�
: ð3:129Þ

We have checked that this agrees with the direct method
described above.
The correction is always negative. It is consistent with

the large-q exact result. Evaluating the derivatives and
plugging in the numerical value for αG, we have that when
q ¼ 4

−k0ð2Þ
k0Rð−1Þ

qαG
βJ

≈
4.28
βJ

≈
6.05
βJ

; ðq ¼ 4Þ: ð3:130Þ

When q approaches two, the correction diverges, like

−k0ð2Þ
k0Rð−1Þ

qαG
βJ

¼ 6π

ðπ2 − 6Þðq − 2Þ
1

βJ
; ðq → 2Þ:

ð3:131Þ

This divergence seems to be consistent with the fact that the
q ¼ 2 the model is free, so the chaos exponent must vanish
for any value of βJ .
Another approach to computing λL is to numerically

solve the real-time Schwinger-Dyson equations to find GR
and Glr, and then use a binary search to find the largest
value of λL such that there exists an eigenfunction fðt12Þ
that satisfies Eq. (3.117). This works well for small and
moderate βJ . In Fig. 11 we plot some data points for q ¼ 4
computed this way. They appear to match smoothly to the
large ðβJ Þ result (3.129). We will give a few more details
about this approach in Appendix G.

IV. THE EFFECTIVE THEORY OF
REPARAMETRIZATIONS

In this section we will discuss the effective action of the
model. This gives a second perspective on the computation
of the four-point function that makes some features clearer,
such as the physical interpretation of the enhanced h ¼ 2
contribution. It also allows us to connect the specific heat
term in the free energy to the ladder kernel.
The effective action of the model is derived by starting

with the original fermion path integral and doing the
Gaussian integral over the disorder. This gives a bilocal
action for the fermions. One can integrate out the fermions
after introducing a field ~Gðτ1; τ2Þ and a Lagrange multiplier
field ~Σ that sets ~G equal to 1

N

P
jψ jðτ1Þψ jðτ2Þ. We are left

with the nonlocal action [3]

S
N

¼ −
1

2
log detð∂t − ~ΣÞ þ 1

2

Z
dτ1dτ2

�
~Σðτ1; τ2Þ ~Gðτ1; τ2Þ

−
J2

q
~Gðτ1; τ2Þq

�
ð4:1Þ

for ~G, ~Σ. This is an exact rewriting of the theory. Because of
the Lagrange multiplier constraint, we can compute the
four-point function of fermions (3.2) in the ~G, ~Σ variables
as

1

N2

X
ij

hψ iðτ1Þψ iðτ2Þψ jðτ3Þψ jðτ4Þi

¼
Z

d ~Σd ~Ge−S ~Gðτ1; τ2Þ ~Gðτ3:τ4Þ: ð4:2Þ

The action has a saddle point at the solutions G, Σ of the
Schwinger-Dyson equations (2.5). [Note that ~G, ~Σ denote
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the integration variables in Eq. (4.2), while G, Σ are the
classical solutions to the action (4.1).] Evaluating the
integrand at this saddle point gives the disconnected part
of the four-point function. We can also consider fluctua-
tions. It is convenient to define the fluctuations g, σ so that

we have ~G ¼ Gþ jGj2−q2 g and ~Σ ¼ Σþ jGjq−22 σ. Notice that
the measure is invariant d ~Gd ~Σ ¼ dgdσ. Expanding the
action to second order in g, σ and using the saddle point
equation G ¼ ð∂τ − ΣÞ−1 to simplify, we find

S
N

¼ −
1

4J2ðq − 1Þ
Z

dτ1…dτ4σðτ1; τ2Þ ~Kðτ1…τ4Þσðτ3; τ4Þ

þ 1

2

Z
dτ1dτ2

�
gðτ1; τ2Þσðτ1; τ2Þ

−
1

2
J2ðq − 1Þgðτ1; τ2Þ2

�
: ð4:3Þ

Here, ~K is the symmetric ladder kernel defined in Eq. (3.9).
We can integrate out σ, getting an action just for g. It is
convenient to write this in matrix notation, as

S
N

¼ J2ðq − 1Þ
4

g · ð ~K−1 − 1Þg ð4:4Þ

where 1 is the identity matrix. We can use this to get the
1=N term in the four-point function (4.2), by replacing both

factors of ~G in the integrand by jGj2−q2 g and then doing the
Gaussian integral with an appropriately chosen contour.
This immediately gives the expression (3.66) that we
previously derived from the Feynman diagrams.
The expressions written so far are valid at any energy.

When we go to low energies and we use the conformal
expressions, Gc, Σc in order to evaluate the kernel ~K,
then we find that the action is zero when evaluated on
fluctuations that are reparametrizations of the conformal
correlator, as in Eq. (3.70). This is because these fluctua-
tions are eigenfunctions of the kernel with eigenvalue one
[Eq. (3.71)]. More conceptually, it is because the action
(4.1) is reparametrization invariant [under Eq. (2.7)] if we
drop the ∂t term inside the determinant. Notice that even
though the action is reparametrization invariant, the sol-
ution Gc is only invariant under the SLð2; RÞ subgroup.
Thus we can view reparametrization invariance as an
emergent symmetry of the infrared theory which is sponta-
neously broken by the conformal solution Gc. The zero
modes in the action can be viewed as Nambu-Goldstone
modes for the spontaneous breaking of the full conformal
symmetry down to SLð2; RÞ. Note that we could consider
an alternative model which does not have a reparametriza-
tion invariance, then we do not get any enhanced contri-
bution in the IR; see Appendix H.
We can now include the leading nonconformal correc-

tion to the action (4.4), which is determined by the first-
order shift in the h ¼ 2 eigenvalues of the kernel (3.87).

This will provide a nonzero action for these reparametriza-
tion modes. To compute this, we consider a small repar-
ametrization τ → τ þ ϵðτÞ, and evaluate the action on δϵGc.
It is convenient to work in frequency space for ϵ, and to use
that reparametrizations δϵGc are proportional to the h ¼ 2
eigenfunctions of the kernel. We get an action proportional
to n2ðn − 1Þ, where n labels the Matsubara frequency. This
factor arises from the product of the jnj in the eigenvalue
shift and the jnjðn2 − 1Þ in the normalization of the h ¼ 2
eigenfunctions. Transforming back to position space, we
have

S
N

¼ αS
J

Z
β

0

dτ
1

2

�
ðϵ00Þ2 −

�
2π

β

�
2

ðϵ0Þ2
�
;

αS ≡ αK
6q2α0

¼ qjk0cð2ÞjαG
6q2α0

: ð4:5Þ

This action for ϵ is local, even though the original action
is nonlocal. This is reasonable because the breaking of
reparametrization invariance is a UV effect. In fact, the
action that we get could have been guessed by standard
effective field theory reasoning: it is simply the expression
of lowest order in derivatives that vanishes for global SLð2Þ
transformations. It must vanish in that case because the
correlator is SLð2Þ invariant, δSLð2ÞGc ¼ 0 is zero. Notice
that these SLð2Þ reparametrizations should not be thought
of as zero modes; they simply are not part of the functional
integral over G.
Therefore the emergent conformal symmetry is both

spontaneously broken by the infrared solutionGc as well as
explicitly broken, which gives a small action (4.5). It is
small in the sense that it formally vanishes as J → ∞. On
the other hand, notice that it is large in the sense that it is of
order N. To get a reasonable theory we need to include the
effects of this breaking. This pattern of symmetry breaking
is reminiscent of the pions in QCD; the chiral symmetry is
both spontaneously and explicitly broken (by the quark
mass terms). Thus Eq. (4.5) turns the reparametrization
modes into pseudo-Nambu-Goldstone bosons.
The enhanced contributionF big from Eq. (3.89) can now

be understood in a simple way. It is the result of the part of
the functional integral (4.2) that consists of summing over
reparametrizations of the circle weighted by the action
(4.5). This leads directly to Eq. (3.90).
We would like to generalize the action (4.5) to finite

reparametrizations τ → fðτÞ. It is convenient to start with
the zero-temperature case where both f and τ are coor-
dinates on the line. f is a coordinate on the “straight” line
where the IR correlator is a pure power, and τ is a
coordinate on the reparametrized line. Near any point
(we take the origin), one can write

fðτÞ ¼ fð0Þ þ f0ð0Þ
�
τ þ 1

2

f00ð0Þ
f0ð0Þ τ

2 þ � � �
�
: ð4:6Þ
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For small τ we have a small reparametrization with ϵ0 ¼ 0
and ϵ00 ¼ f00=f0, followed by a scaling and translation. The
scaling and translation have no effect on the correlator on
the zero-temperature line, so we can generalize

1

2

Z
dτðϵ00Þ2 → 1

2

Z
dτ

�
f00

f0

�
2

ð4:7Þ

which up to a total derivative implies that the action can be
written as

S ¼ −N
αS
J

Z
dτff; τg;

ff; τg≡ f000

f0
−
3

2

�
f00

f0

�
2

: ð4:8Þ

In the second step we introduced the Schwarzian derivative
ff; τg and used integration by parts. Note that the
Schwarzian derivative is invariant under SLð2Þ symmetry

f → ðafþbÞ
ðcfþdÞ. This is an exact symmetry since the zero-

temperature Gc is exactly invariant under this
transformation.
To get the action for reparametrizations of the circle, we

consider the transformation

fðτÞ ¼ tan

�
πτ

β

�
ð4:9Þ

which maps the circle to the line. Already for this trans-
formation we get an interesting result. Inserting Eq. (4.9)
into the Schwarzian action (4.8) we get a finite-temperature
correction to the free energy

−βF ⊃
NαS
J

Z
β

0

dτ
	
tan

πτ

β
; τ



¼ 2π2αS
N
βJ

: ð4:10Þ

At large q, we have αS ¼ 1
4q2 (αK ¼ 3 and α0 ¼ 2), and this

agrees with the term found previously in Eq. (2.31). For
q ¼ 2 we get αS ¼ 1

24π (α0 ¼ π2, αK ¼ π), and again we
agree with Eq. (2.33). In Fig. 12 we give a plot of αS and
indicate a numerical check of this formula. Note that while
this action nicely explains the near extremal entropy, it says
nothing about the zero-temperature entropy.
If we are interested in further reparametrizations of the

circle, τ → gðτÞ, we can use the composition law for the
Schwarzian derivative ffðgðτÞÞ; τg ¼ ðg0Þ2ff; gg þ fg; τg
to obtain

S
N

¼ −
αS
J

Z
dτ

	
tan

πgðτÞ
β

; τ




¼ αS
2J

Z
dτ

��
g00

g0

�
2

−
�
2π

β

�
2

ðg0Þ2
�
: ð4:11Þ

Writing gðτÞ ¼ τ þ ϵðτÞ and expanding in ϵ we get both of
the quadratic terms in Eq. (4.5).

V. THE DENSITY OF STATES AND
THE FREE ENERGY

The large-N free energy is determined by evaluating the
~G, ~Σ action (4.1) on the saddle point values G, Σ. In a low-
temperature expansion, we have

logZ ¼ −βE0 þ S0 þ
c
2β

þ � � � ; ð5:1Þ

where the ground-state energy, entropy and specific heat
are all proportional to N. The ground-state energy will not
be important for our discussion. The zero-temperature
entropy is given for general q by Eq. (2.32). The specific
heat is determined by Eq. (4.10) as

c
2
¼ 2π2αS

N
J

: ð5:2Þ

For the case q ¼ 4 we have c ≈ 0.396N=J.
All of the terms in Eq. (5.1) are proportional to N. There

is an important order-one correction to this free energy
which we can compute from the determinant of the
quadratic action (4.3). The log determinant of this action
gives a term8

−βF ⊃ −
1

2

X
h;n

log½1 − kðh; nÞ�: ð5:3Þ

FIG. 12. The coefficient of the Schwarzian action αS is plotted.
The blue curve is the value given by the previously computed αG.
The circles are values inferred from Eq. (5.2) and the numerical
evaluation of the specific heat c. The agreement is a check that the
Schwarzian action is correct nonlinearly, not just for small
reparametrizations.

8This contribution to the free energy was first pointed out
by J. Polchinski and A. Streicher, using Feynman diagrams. They
also noted that the sum over near-zero modes would lead to a log
term [27].
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We get an interesting log βJ term from the h ¼ 2 modes,
which have eigenvalues close to one. Substituting in the
corrected eigenvalues (3.87), we get

−βF ⊃ −
X∞
n¼2

log
n
βJ

þ const → #βJ −
3

2
log βJ þ const:

ð5:4Þ

This sum is divergent, but the divergence will presumably
be cut off at n ∼ βJ, where one expects higher-order effects
to make the eigenvalue kð2; nÞ small. This will lead to a
term proportional to βJ with an unknown coefficient; this is
a correction to the ground-state energy. The special feature
of the h ¼ 2 sum is that we also get the finite log piece
indicated on the right. This can be extracted by zeta
function regularization or the Euler-MacLaurin formula.
The logarithm means that the partition function is propor-
tional to β−3=2 at large β.
We can also get this factor of β−3=2 from the action (4.5)

as follows. We also do the functional integral over ϵðτÞ.
However, we need to recall that we are not integrating over
SLð2; RÞ transformations. Thus, we need to divide the
integral by the volume of SLð2; RÞ, since we should view
SLð2; RÞ as a gauge symmetry. This will result in the
insertion of factors of the form δðϵð0ÞÞδðϵ0ð0ÞÞδðϵ00ð0ÞÞ in
the functional integral. When we rescale ϵ to get rid of the
coefficient of the quadratic action in Eq. (4.5), we will find
a factor of ðβJ Þ−3=2 from the three delta functions.
The integral over all the nonzero modes with h ≠ 2 will

produce a βJ divergence that corrects the ground-state
energy, plus a β-independent factor which can be absorbed
as a 1=N correction to S0 in Eq. (5.1).
With this information, we can now compute the density

of states by doing an inverse Laplace transform to the
partition function. It is convenient to subtract the ground-
state energy, so that from now on E indicates the energy
above the ground state. The integral is

ρðEÞ ¼ 1

2πi

Z
γþiR

dβZðβÞeβE

∝ eS0
Z

dβ

ðβJÞ32 e
βEþc=2β

≈
ffiffiffiffiffiffiffi
2π

cJ3

r
eS0þ

ffiffiffiffiffiffi
2cE

p
: ð5:5Þ

In the final step we approximated the integral as a saddle
point, valid for cE ≫ 1. It is interesting that the determinant
from the saddle point integral cancels the factor β−

3
2 from

the one-loop free energy, so ρðEÞ approaches a constant at
low energy, in this approximation. We can also compute the
integral for small cE, where it becomes ≈ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πE=J3

p
eS0 .

The
ffiffiffiffi
E

p
vanishing is interesting, because it agrees with the

behavior that one gets for the spectrum of a random

Hamiltonian. However, we cannot trust the computation
for such small values of E; at the crossover point cE ∼ 1,
the saddle point in the β integral is at β ∼ c ∼ N=J. At such
low temperatures, the Schwarzian action discussed in the
previous section stops being semiclassical, and our analysis
would need to be improved.9

A somewhat complementary approach to the spectrum is
to exactly diagonalize the Hamiltonian (2.1) for small
values of N. The Majorana fermion operators ψ i are just
matrices that satisfy fψ i;ψ jg ¼ δij. In other words, they are
Dirac gamma matrices. To represent the model with N
fermions, we need a Hilbert space of dimension 2N=2. We
were able to study up to N ¼ 32 without any special
techniques. We give a plot of the binned spectrum for
N ¼ 32 in Fig. 13.
One obvious feature of the plot is that there is no scale-

invariant divergence ρðEÞ ∝ 1=E or δðEÞ at low energy.
Instead, the density goes smoothly to zero. A naive reading
of the plot suggests that the spectrum vanishes as Ep with p
near one. The zero-temperature entropy does not reflect any
actual degeneracy, only a large density of states near the
ground state. From this perspective, a completely random
Hamiltonian on a system of N qubits also has a zero-
temperature entropy, S0 ¼ N log 2, from the density
ρðEÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðE − 2Þp
2N . This gives a low-temperature free

energy logZ ¼ N log 2 − ð3=2Þ log β.

FIG. 13. The spectrum for a single realization of the q ¼ 4
model with N ¼ 32 fermions.

9As a side remark, note that, as we discussed in Ref. [26], the
effective action (4.5) also appears for near extremal black holes.
Therefore in such cases the computation of Eq. (5.5) will be valid.
In that case, the fact that the density is constant at low energies is
consistent with the fact that Bogomol’nyi-Prasad-Sommerfield
(BPS) black holes can have a large degeneracy at exactly zero
energy. For non-BPS black holes we could have further correc-
tions that might remove the large degeneracy at exactly zero
energy.
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In fact, from Fig. 13, the density of states in SYK does
not look too different from the random matrix semicircle.
It is important to note, though, that if we increase N
the density in the central region will be growing much
faster than near the edges. Near the center, we expect
the density characteristic of the infinite-temperature
entropy, ρ ∼ 2N=2 ≈ e0.35N , while near the edges we expect
eS0N ≈ e0.23N . By diagonalizing the Hamiltonian for differ-
ent values of N between 24 and 32, and counting the
number of levels within bands of width 0.3J, we found the
best fit e0.33N near the center and e0.24N near the edge, in
reasonable agreement with large-N expectations. Note that
the Hamiltonian, while containing of order N4 random
elements is not as random as a general random matrix in
Hilbert space, which would contain 2N random elements.

VI. TOWARDS A BULK INTERPRETATION

A natural starting point for a bulk interpretation is the
action (4.1). Due to the large factor of N, this looks like a
classical system for the fields ~Σ and ~G. One of them can be
easily eliminated, so we really have one field which is a
function of two variables. Thus we seem to have a field
theory defined on a two-dimensional space. It is natural to
think of the average of the two times as a time and the
difference as a new dimension. The solution to the
Schwinger-Dyson equations gives us a classical background
for this system, and then we have fluctuations governed by a
quadratic action of the form (4.4). The computation of the
four-point function of the fermions can be viewed as the
computation of the propagator for this bilocal field and it
involved inverting the operator (1= ~K − 1) [Eq. (4.4)].
In the large-βJ limit, we have seen that there is a

dominant mode associated to the emergence of a conformal
symmetry which is both spontaneously and explicitly
broken. A conformal symmetry is easily obtained if we
consider AdS2 gravity. When we regularize the space and
we introduce some boundary conditions we get a boundary
mode that is the same as the one parametrized by the
function fðτÞ discussed above. The AdS2 metric preserves
explicitly an SLð2; RÞ group. This metric is spontaneously
breaking the rest of the reparametrizations. The boundary
mode is the corresponding Goldstone boson and it implies
that pure AdS2 gravity is not well defined, if we want to
have any nontrivial excitation [7,34,35]. However, when
AdS2 arises from a higher-dimensional theory, there is
always a coupling to a dilaton which is not constant on
AdS2. This explicitly breaks the conformal symmetry and it
gives rise to an action for the modes parametrized by fðτÞ.
The details of this will be discussed in a separate pub-
lication [26] and the discussion is very closely related to the
analysis in Ref. [7]. In summary, both the mode para-
metrized by fðτÞ and its action are reproduced by any near
AdS2 (or NAdS2) geometry. This feature is insensitive to
the precise details about the type of matter we can have in

AdS2. It results purely from the emergence of the con-
formal symmetry and its slight breaking.
In order to elucidate the kind of matter we have in the

dual of SYK we need to look at the other propagating
modes contained in the field Gðτ1; τ2Þ. Fortunately, for all
the other modes we can use the SLð2; RÞ symmetry to
describe them. The propagating modes can be read off
from the OPE expansion of the fermion four-point
function. Their conformal dimensions are the solutions
to kcðhmÞ ¼ 1 and were discussed in Sec. III B 6. We get an
infinite tower of dimensions which asymptotes to
Eqs. (3.55)–(3.56) at large values of m. This asymptotic
form of the dimensions has a structure that looks like a two-
particle state in AdS2. However, it is important to note that
the shift in dimensions is of order one, and not order 1=N.
Therefore, we cannot view these states as a two-particle
state of fermions in the bulk with weak, gravitational
strength, interactions. This tower of particles is reminiscent
of a string theory with a string scale of order the AdS
radius. In fact, it also looks similar to what we would get in
an OðNÞ model, where we get a state for each spin and the
number of single string states does not exhibit an expo-
nential growth with energy (Hagedorn behavior). Here all
members of the tower are getting an order-one shift in their
dimensions.10 In two dimensions we do not have a clear
notion of spin, but if we define spin by the contribution to
the correlator in the chaos region, then they have spins
S > 2 (S ¼ 2 is for the h ¼ 2 states related to the
reparametrizations).

A. Comments on kinematic space

In this subsection we expand a bit on the comment on the
relation between the two times of G and the two variables of
a bulk field. Recently, this was further explored in Ref. [18].
In general we can define

t ¼ τ1 þ τ2
2

; σ ¼ τ1 − τ2
2

: ð6:1Þ

At this point this is just a simple relabeling of the times.
Written in this way, we see that some of the terms in the
action (4.1) become local in the t, σ space. But the Pfaffian
term is still nonlocal.
Furthermore, in the IR region, the Casimir operator

acting on the two times τ1, τ2 has the form

C12Φ ¼ −ðτ1 − τ2Þ2∂τ1∂τ2Φ

¼ σ2ð−∂2
t þ ∂2

σÞΦ ¼ ∇2Φ ð6:2Þ

10In the free OðNÞ models we get such a tower with
dimensions given exactly by the sum of dimensions of the
two elementary free field components ψ∂2nþ1ψ . In the case of
the Gross-Neveu model in 2þ 1 dimensions, the interaction that
gives the lowest member gets an anomalous dimension. Namely
ψ2 has a shift from Δfree ¼ 2 → Δ ¼ 1.
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where Φðt1; t2Þ ¼ δ̂G
Gc

where δ̂G is a small fluctuation
around the classical solution of the action (4.1), which
in the IR is given by the conformal answer Gc [Eq. (2.8)].
We see that this looks like the Laplacian in AdS2, in
coordinates ds2 ¼ −dt2þdσ2

σ2
, and in units where the AdS

radius is set to one. This space was defined in a purely
kinematic way by using general properties of the conformal
group. It was called kinematic space in Refs. [28,29].
Note that even the quadratic action (4.4) for Φ is highly
nonlocal. It involves 1=kcðhÞ − 1 which is a complicated
function of the Casimir, C ¼ hðh − 1Þ ¼ ∇2; see
Eq. (3.35). We should think of this Φ as describing many
degrees of freedom since there are many solutions of
1=kcðhÞ − 1 ¼ 0, describing the tower of states in
Sec. III B 6.
It is amusing to note that the expression for the energy

given in Eq. (2.26) looks like an Arnowitt-Deser-Misner-
like expression for the energy in terms of a property of the
solution at the boundary of the geometry, namely τ1 ¼ τ2
or σ ¼ 0.
In the Euclidean theory we expect the bulk to be H2.

However, the kinematic space defined as above, through
the Casimir operator, continues to be a Lorentzian signature
space. This is a general feature of the Casimir operator
acting on bilocal fields as has been used recently in
Ref. [29]. We can view the space as dS2, or AdS2 with
time periodically identified, depending on the overall sign
we choose for this metric. More explicitly, in the Euclidean
finite-temperature theory, we have the times τ1 and τ2
which are periodic variables. When we define the sum and
the difference we get (for β ¼ 2π)

τ ¼ τ1 þ τ2
2

; σ ¼ τ1 − τ2
2

; C ¼ sin2σð−∂2
τ þ ∂2

σÞ
ð6:3Þ

which looks like the wave equation on global dS2, or AdS2
with time periodically identified. In fact, the funny set of
eigenfunctions that we needed to sum over in e.g. Eq. (3.45)
has a simple interpretation in AdS2 or dS2. They are the set
of normalizable solutions of this wave equation. We had a
further antisymmetry restriction on the wave functions,
which amounts to antisymmetry under an antipodal trans-
formation in this dS2 or AdS2 space. It would be interesting
to see if some variation of this model has a de Sitter
interpretation. Finally, this relation to kinematic space
suggests that the usual bulk of AdS=CFT requires a further
inverse x-ray or Radon transform. We make a few more
comments on this in Appendix I.

B. The fermions

So far, we have avoided the “elephant in the room,”
which are the N boundary fermions. One can question
whether these should correspond to N bulk fermions or not.

Before trying to answer this question, let us recall the
special case of q ¼ 2. In that case the N boundary fermions
give rise to just one “bulk” fermion as follows. After we
diagonalize the random mass matrix by an orthogonal
transformation we find that ϕi ¼

P
mrimψm, where ψm is a

fermion with a definite mass (or frequency).11 In the large-
N limit, the distribution of masses is nearly continuous and
we can view it as an extra dimension. So, in this case we see
that the different boundary fermions ψ i give rise to different
parts of the bulk fermion field ψ . This should be the case,
since a bulk fermion has many independent creation and
annihilation operators.
Before we continue, let us also make another general

comment. One can imagine getting rid of the fundamental
fermions by viewing the couplings jijkl as dynamical with
very slow dynamics so that they are effectively constant
[19]. At the order we are working, this gives the same
equations.12 Once we make the couplings jijkl dynamical,
we can gauge the OðNÞ symmetry. Naively this seems to
remove the fermions from the spectrum so that we do not
need to discuss them further. However, we continue to have
a related operator of the form

Oðτ; τ0Þ ¼ ψ iðτÞ½Pei
R

τ

τ0 A�jiψ jðτ0Þ: ð6:4Þ

The one-point functions of this operator hOðτ; τ0Þi ∼
NGðτ; τ0Þ continue to display an SLð2; RÞ-invariant form
with dimensions Δ.
We can now wonder what the interpretation of such an

operator in the bulk is. This question was studied in detail
for the related case of a matrix model in the nonsinglet
sector in Ref. [37]. In that case, the corresponding state was
a folded closed string coming from the boundary into the
bulk. In our case we can imagine a similar explanation in
terms of an open string that comes in from the boundary.
Then we can view the propagating states as strings

oscillating in AdS2; see Fig. 14. This is just a picture, since
we are not displaying the precise string theory background.
We can now go back to the ungauged model. At the level

that we treated it so far, it has a global OðNÞ symmetry.
And it is tempting to think that whether or not we gauge the
symmetry is some operation purely at the boundary.
Therefore even for the OðNÞ model we expect to see that
the fermion contains a string going into the bulk. In that
case, the index i remains at the boundary of the bulk, and
we can view it as a Chan-Paton index at the boundary. But
in the bulk we would have just a single string, and no
uncontracted indices. An alternative point of view,

11For positive m we have a complex creation operator and
for negative m the corresponding annihilation operator.

12Except that there is an additional contribution to the free
energy from the j fields, of the form Nq log β from the j fields.
We thank S. H. Shenker for this comment. This model is
structurally reminiscent of the 2þ 1-dimensional OðNÞ theories
with fundamental bosons and fermions studied in Ref. [36].
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motivated by the global SOðNÞ symmetry, would be to put
OðNÞ gauge fields in the bulk and charged fermion fields in
the interior. However, in this case large-N counting would
give us a coupling gSOðNÞ ∼ 1, which, together with the
factorN, gives us a strong coupling. The fermions would be
joined by a color electric flux, which looks conceptually
similar to the strings discussed above. In fact we would get
something like the ’t Hooft model [38], but in AdS2.
Further work would be needed to check whether this is

the right interpretation.
When the couplings are random but fixed, it would be

interesting to understand the corresponding bulk dual.
Since the corrections to the leading answer would come
at higher orders in the 1=N expansion (at order 1=Nq−1), it
seems natural to suspect that they would be associated to
effects that are sensitive to quantum corrections.

C. Scrambling for near-extremal black holes
and their stringy corrections

One of the original reasons for interest in the SYK model
was the fact that it has the maximal chaos exponent
λL ¼ 2π=β. This is a necessary condition to have a theory
dual to gravity, and it was thought that it might also be
sufficient. A piece of evidence for this idea was that stringy
corrections decrease λL by an amount proportional to
l2
s=L2 [11]

λL ¼ 2π

β

�
1 −

l2
s

L2
þ � � �

�
ð6:5Þ

where L is a curvature scale at the horizon, so it seems that
theories with maximal λL should not have large strings.
However, the operator dimensions hn that we found in the
OPE suggest that the bulk theory dual to SYK has a tower
of light fields roughly similar to a string spectrum with
ls ∼ RAdS. This seems to be a counterexample to the idea
that maximal chaos implies a gravity dual. This motivates
us to examine in more detail the form of the scale L that
was appearing in Eq. (6.5).

Let us briefly review the shock-wave calculation that
gives the chaos limit of the four-point function. We have an
out-of-time-ordered four-point function with two pairs of
operators. One pair is at time zero, and the other is at time t.
The growing part of the correlator is given by the phase
shift of the bulk field associated to the t ¼ 0 pair as it
crosses a shock sourced by the other pair. The general form
of the shock wave plus static black hole metric is

ds2 ¼ −aðuvÞdudvþ bðuvÞdxidxi þ hðxÞδðuÞdu2 ð6:6Þ

where we have added D − 2 extra flat dimensions.
Einstein’s equations give

1

2

�
−
∂2
i

b
−
�∂u∂vb

ab

�
ðD − 2Þ

�
hðxÞδðuÞ ¼ 8πGNTuu;

ð6:7Þ

1

2

�
−∇2 þ ϕ00ð0Þ

ϕð0Þ
�
hðxÞδðuÞ ¼ 8πGNTuu ð6:8Þ

where ϕ ∝ b
D−2
2 is the “dilaton,” or the coefficient of the

two-dimensional curvature in the action
R
ϕRð2Þ after

dimensional reduction on the extra flat coordinates. And
ϕ00 is the second derivative with respect to proper distance
from the horizon, evaluated at the horizon. Now we
integrate this over the transverse space and also over u
in a neighborhood of the horizon. We get

1

2

ϕ00

ϕ
Ah ¼ 8πGNPu ð6:9Þ

where A is the area of the horizon, and h is the zero mode
of the shock-wave profile. Pu is the momentum of the
quantum associated to the pair of operators at time t, which

is Pu ∼ ðΔ=RAdSÞe
2π
β t. Dividing both sides by 2GN gives

ϕ00

ϕ
Sh ¼ 4πPu ð6:10Þ

where S is the entropy of the black hole. The phase shift for
the other field crossing this shock is

δ ∼
Δ

RAdS
h ∼

�
Δ2

R2
AdS

ϕ

ϕ00

�
1

S
e
2π
β t: ð6:11Þ

We should regard the quantity in brackets as being the βJ
enhancement. In fact, for near extremal black holes, we
have that the profile of the dilaton at the horizon has the
form ϕ ¼ ϕ0 þ γ cosh ρ

RAdS2
, where ϕ0 gives the extremal

entropy and γ the near extremal entropy, with γ ≪ ϕ0. So
we can write

(a) (b)

FIG. 14. (a) A particle with a string going to the boundary. (b) A
pair of particles in the bulk with a string connecting them. They
are oscillating in global AdS2. We can view the string as
fundamental or as a color electric flux of an OðNÞ gauge field.
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R2
AdS

ϕ00

ϕ
¼ S − S0

S0
→ ∝

1

q2βJ
ð6:12Þ

where on the left side we have a gravity expression and on
the right-hand side we write the quotient of entropies that
we have in the SYK model. Here we have simply
reproduced the leading part of the answer from a gravity
computation. We will connect it more clearly to the
reparametrizations in Ref. [26]. The prefactor enhancement
of the butterfly effect for near extremal black holes was
noticed previously in Refs. [39,40].
Now we consider stringy corrections to the chaos

exponent, following Ref. [11]. We read these off from
Eq. (6.8). We reintroduce the extra dimensions, substitute

k2 → k2 þ ϕ00

ϕ
ð6:13Þ

in the Regge behavior of the flat-space string amplitude
s2−l

2
sk2=2, and then take k to zero. This gives an effective

spin which is

j ¼ 2 −
l2
s

2

ϕ00

ϕ
¼ 2 −

l2
s

2R2
AdS

ðS − S0Þ
S

: ð6:14Þ

So even if the string length is large, there is another
parameter suppressing the correction to

λL ¼ 2π

β
ðj − 1Þ

¼ 2π

β

�
1 −

l2
s

2R2
AdS

S − S0
S

þ � � �
�
: ð6:15Þ

Note that using the expression for the ratios of entropies in
Eq. (6.12) we get an estimate for the SYK model of a
correction of order 1

q2βJ (provided ls ∼ RAdS). This is

indeed what we found in Eq. (3.129) up to q-dependent
factors.
It is a little surprising that the change in the Regge spin

can be small, despite the presence of light strings. The right
interpretation seems to be that the gravity contribution
gets a βJ (or near-extremal) enhancement, but the higher
stringy exchanges do not. So gravity dominates and we
have a spin near two.

VII. BRIEF CONCLUSIONS

The SYK model is an interesting quantum-mechanical
model displaying a spontaneously and explicitly broken
reparametrization symmetry. These features dominate the
low-energy properties of the model and are expected to be
universal for any large-N system with emergent reparamet-
rization symmetry. One motivation to study this model is
that near-extremal black holes also display this pattern of
symmetry breaking [26]. We also expect that this will be

relevant to other condensed matter physics models. This
symmetry breaking pattern gives rise to several features of
the low-energy dynamics. First, it gives rise to a specific
heat that is linear in the temperature. It also gives rise to a
large contribution to the four-point function, which satu-
rates the chaos bound in the out-of-time-ordered configu-
ration. All these features are expected to be universal
features of systems with emergent reparametrization sym-
metry or NCFT1 s.
We also studied several features that are special to this

particular model, such as the spectrum of dimensions of
fermion bilinear operators. These suggest that the dual
description should contain a single Regge trajectory with
low-tension strings in nearly AdS2 space. We also gave a
detailed description of the nonenhanced parts of the four-
point function. Several questions remain about the proper
holographic interpretation of this particular model.
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APPENDIX A: THE SCHWINGER-DYSON
EQUATIONS AND THE KERNEL

We consider the Schwinger-Dyson equations (2.5). We
treat the iω term as a perturbation. In fact for an arbitrary
perturbation we can write the equations as

G � Σþ G � s ¼ −1 ¼ −δðτ1 − τ2Þ; Σ ¼ J2Gq−1 ðA1Þ

where the � stands for G � Σ ¼ R
dτGðτ1; τÞΣðτ; τ2Þ and G

is the full solution with the source. The source induced
by the −iω term in Eq. (2.5) is s ¼ −δ0ðτ − τ2Þ We can
now write G ¼ Gc þ δG, where δG is the perturbation
to the conformal solution induced by the presence of
the source.
Expanding the equations to first order, using the second

equation to express δΣ in terms of δG, and convolving with
G on the right, we obtain

δG − ðq − 1ÞJ2Gc �Gq−2
c δG �Gc ¼ Gc � s �Gc ðA2Þ

which can also be written as

½ð1 − KcÞδG�ðτ1; τ2Þ ¼ −
Z

dτ∂τGcðτ1 − τÞGcðτ − τ2Þ

ðA3Þ

where we have used the homogeneous equation
Gc � Σc ¼ −δðτ − τ00Þ.
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For simplicity, we will discuss the solution of these
equations on the line, rather than the finite-temperature
circle. Then the right-hand side has the form sgnðτ12Þ

jτ12j4Δ . This is
a function like Eq. (3.31) with τ0 → ∞ and h → −2Δ.
Therefore it seems that we could solve for δG by inverting
1 − Kc. However, kcð−2ΔÞ ¼ ∞ [see Eq. (3.35)], which
would lead to δG ¼ 0, so we cannot solve the equation
this way. However, we could also consider adding terms
δG that obey ð1 − KcÞδG ¼ 0. A formal solution would
be an h ¼ −1 mode which gives the correction δG ∝
Gc

1
jJτj [see again Eq. (3.31) with τ0 → ∞]. This is

formally annihilated by 1 − Kc, but crucially, it is not
actually annihilated because of a UV divergence. This
divergence arises from the region where the two times
in the integral KcδG are very close to each other. In this
region δG ∝ sgnðτÞ

jJτj1þ2=q and

½Kc · δG�ðτ1; τ2Þdivergent
∝ J2

Z
dτ3dτ4Gcðτ13ÞGcðτ24Þ

sgnðτ34Þ
jJτ34j3−2=q

: ðA4Þ

This divergence would be regulated in the full theory, at
scale τ34 ∼ 1

J. This will have the effect of replacing

sgnðτ34Þ
jJτ34j3−2=q

→
#

J2
δ0ðτ34Þ ðA5Þ

where we used that the antisymmetry of the function
implies the need to look at the first derivative of the
rest. In other words, all we are using about the left-hand
side is that it is a sharply peaked antisymmetric
function of ðJτ34Þ. The factors of J on the right-hand
side come from the range of τ34 that is contributing to
the integral. This then leads to an expression with the
same form as the right-hand side of Eq. (A3), including
the correct J dependence. However, the numerical
coefficient will depend on the details of how the
divergence is regulated in the full theory. In other
words, to compute the full coefficient, we need to know
the whole flow, in order to know how the coincident
point divergence of the conformal case is regulated.
Another point of this appendix is to show that the same

kernel that appears in the four-point function also appears

when we want to compute the corrections around the IR
solution.

APPENDIX B: THE KERNEL AS A FUNCTION
OF CROSS RATIOS

The kernel gives the (nþ 1)-ladder diagram in terms of
the n-ladder diagram as

sgnðτ12Þsgnðτ34Þ
jτ12j2Δjτ34j2Δ

F nþ1ðχÞ

¼ −
1

α0

Z
dτadτb

sgnðτ1aÞsgnðτ2bÞ
jτ2bj2Δjτ1aj2Δjτabj2−4Δ

·
sgnðτabÞsgnðτ34Þ
jτabj2Δjτ34j2Δ

F nð~χÞ;

χ ¼ τ12τ34
τ13τ24

; ~χ ¼ τabτ34
τa3τb4

: ðB1Þ

Wewould like to use conformal symmetry to turn this into a
one-dimensional integral equation. We can take τ1 ¼ 0,
τ3 ¼ 1, τ4 ¼ ∞, so that ~χ ¼ τab

τa−1
and χ ¼ τ2, and then

replace the τb integration variable by ~χ. The measure is
dτadτb ¼ dτad~χð1 − τaÞ. One finds

F nþ1ðχÞ ¼
1

α0

Z
∞

−∞

d~χ
j~χj2

� jχ∥~χj
jχ − ~χj

�
2Δ
sgnðχ ~χÞmðχ; ~χÞF nð~χÞ;

ðB2Þ

mðχ; ~χÞ¼ sgnðχ− ~χÞ
Z

∞

−∞
dτ

sgnðτÞsgnð1−τÞsgn
�
1− 1−~χ

χ−~χ τ
�

jτj2Δj1−τj1−2Δ
���1− 1−~χ

χ−~χ τ
���2Δ :

ðB3Þ
The integral over τ can be done by dividing up the region of
integration and using

Z
1

0

dτ
ð1 − xτÞaτbð1 − τÞc

¼ Γð1 − bÞΓð1 − cÞ
Γð2 − b − cÞ 2F1ða; 1 − b; 2 − b − c; xÞ: ðB4Þ

The answer is

mðχ; ~χÞ≡

8>><
>>:

2π
sin 2πΔFð1 − 2Δ; 2Δ; 1; zÞ − B2Δð 1

1−zÞ − B1−2Δð 1
1−zÞ z ≤ 0;

− 2π
z2Δ sin 2πΔFð2Δ; 2Δ; 1; z−1z Þ þ 2π

sin 2πΔFð2Δ; 1 − 2Δ; 1; zÞ 0 ≤ z ≤ 1;

− 2π
sin 2πΔFð2Δ; 1 − 2Δ; 1; 1 − zÞ þ B2Δðz−1Þ þ B1−2Δðz−1Þ 1 ≤ z;

z≡ 1 −minðχ; ~χÞ
jχ − ~χj ; BhðxÞ ¼

ΓðhÞ2
Γð2hÞ x

h
2F1ðh; h; 2h; xÞ: ðB5Þ
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We are interested in applying this integral kernel to
functions F ðχÞ with the symmetry of the four-point
function. This means that we should have F ðχÞ ¼
F ðχ=ðχ − 1ÞÞ. This transformation maps the interval
between zero and two into the complement on the real
line, so we can restrict our attention to fðχÞwith 0 ≤ χ ≤ 2.
Using the invariance and changing integration variables in
Eq. (B2), we get a closed equation in this interval:

F nþ1ðχÞ ¼
1

α0

Z
2

0

d~χ
~χ2

F nð~χÞ
�
χ2Δ ~χ2Δ

jχ − ~χj2Δ mðχ; ~χÞ

þ sgnð~χ − 1Þ χ2Δ ~χ2Δ

jχ þ ~χ − χ ~χj2Δ m
�
χ;

~χ

~χ − 1

��
:

ðB6Þ

The expression in brackets times 1=α0 is the kernel
Kcðχ; ~χÞ described in Eq. (3.21).

APPENDIX C: REPRESENTING F 0
IN TERMS OF Ψ h

Using contour manipulations very similar to the one we
used to derive Eqs. (3.50) and (3.52), it is possible to write a
formula for F 0 as a sum over residues. There are two
differences: first, we do not have a divergent term at h ¼ 2,
so we do not need to subtract it. Second, since we have
kcðhÞ in the integrand instead of kcðhÞ=½1 − kcðhÞ�, we are
interested in the poles of kcðhÞ, which occur at values
h ¼ 2

q þ 1þ 2n. We get the following formulas for F 0.
When χ > 1,

F 0ðχÞ ¼ −α0
X∞
n¼0

Res

� ðh − 1=2Þ
π tanðπh=2Þ kcðhÞΨhðχÞ

�
h¼2

qþ1þ2n
;

χ > 1 ðC1Þ

and when χ < 1 we have

F 0ðχÞ ¼ −α0
X∞
n¼0

Res

� ðh − 1=2Þ
π tanðπh=2Þ kcðhÞ

ΓðhÞ2
Γð2hÞ χ

h
2F1ðh; h; 2h; χÞ

�
h¼2

qþ1þ2n
; χ < 1: ðC2Þ

These expressions (C1) and (C2) can be checked by
numerically evaluating the residue sums and comparing
to Eq. (3.42).

APPENDIX D: WRITING Ψ hðχ Þ IN TERMS
OF Ψ h;nðθ1;θ2Þ

By solving the Casimir differential equation, one finds
that the antisymmetric eigenfunctions of C1þ2 with weight
Δ ¼ 1=2 and symmetry under ðx; yÞ → ð2π − x; yþ πÞ are

Ψh;nðθ1;θ2Þ¼ γh;n
e−iny

2sinx
2

ψh;nðjxjÞ; x¼θ12; y¼θ1þθ2
2

ðD1Þ

where the functions ψh;n are the ones appearing in
Eqs. (3.80) and (3.81), but with v ¼ 1 so that ~n ¼ n. The
norms of the continuum eigenfunctions h ¼ 1=2þ is can be
determined by assuming that hΨh;n;Ψh0;ni ¼ 2πδðs − s0Þ,
where the inner product is defined in Eq. (3.64), and
analyzing the integral near x ¼ 0 and x ¼ 2π, as in
Eq. (3.40). One finds an expression involving a product
of gamma functions. With these normalizations, we have that

2h−1
π tanðπhÞ

ΨhðχÞ�
2sinθ12

2

��
2sinθ34

2

�¼2
X
n

Ψ�
h;nðθ1;θ2ÞΨh;nðθ3;θ4Þ;

χ¼sinθ12
2
sinθ34

2

sinθ13
2
sinθ24

2

ðD2Þ

which shows that the continuum part of the formulas (3.45)
and (3.66) agree. When we go to the discrete case where h is
an even integer, the continuum normalization γ2h;n diverges
for jnj ≥ h, and the factor of 1= tanðπhÞ in Eq. (D2) also
diverges. The coefficient of this divergence gives the relation

2h − 1

π2
ΨhðχÞ

ð2 sin θ12
2
Þð2 sin θ34

2
Þ ¼ 2

X
jnj≥h

Ψ�
h;nðθ1; θ2ÞΨh;nðθ3; θ4Þ

ðD3Þ

where the Ψh;n are now defined with discrete norms so that
hΨh;n;Ψh0;n0 i ¼ δhh0δnn0 . This establishes the equivalence of
the discrete parts of Eq. (3.45) and (3.66). A special case that
we use in the main text of the paper is

Ψ2ðχÞ ¼ 2
X
jnj≥2

einðy−y0ÞfnðxÞfnðx0Þ
jnjðn2 − 1Þ ðD4Þ

where x ¼ θ12, y ¼ θ1þθ2
2

, x0 ¼ θ34, y0 ¼ θ3þθ4
2

and χ is
defined as in Eq. (D2). The functions fn were defined
in Eq. (3.72).

APPENDIX E: DIRECT APPROACH TO
THE SHIFT IN EIGENVALUE

In this appendix we sketch a second derivation of
Eq. (3.88), which consists of substituting Gþ δG in
for the propagators in the kernel, with δG given in
Eq. (3.85), and then analyzing the integrals to compute
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hΨ2;n; δ ~K ·Ψ2;ni. When we correct the propagator, we get
corrections to ~K of two types. One type is a correction to
the rung propagators; see Fig. 4. In that case, we can use
the fact that Ψ2;n is an eigenfunction of the unperturbed
kernel to do two of the integrals. This gives an expression
that is independent of q, up to an overall multiple
ðq − 2ÞαG. Comparing to the q ¼ ∞ case, one finds that
in general

δrungkð2; nÞ ¼ −
ðq − 2ÞαG

βJ
3jnj
2

: ðE1Þ

The corrections to the rail propagators are not as simple.
The change in the kernel is

δrail ~K ¼ −J2ðq − 1ÞjGðθ12Þj
q−2
2 δGðθ13Þ

×Gðθ24ÞjGðθ34Þj
q−2
2 þ ð13 ↔ 24Þ: ðE2Þ

Our first goal is to show that hΨ2;n; δrail ~K ·Ψ2;ni is propor-
tional to jnj. We can do this using conformal symmetry. It
will be useful to represent the function f0 appearing in
Eq. (3.85) as an integral

f0 ¼
Z

π

−π
dθ0

��� sin θ10
2
sin θ20

2

������ sin θ12
2

��� : ðE3Þ

This implies that δG has the form of an integrated
conformal three-point function of two fermions with an
operator of dimension minus one. Another useful identity is
based on

1

8

sin2 θ12
2

sin2 θ10
2
sin2 θ20

2

¼
X∞
n¼2

einθ0e−inyfnðxÞ; for jeiθ0 j < 1;

ðE4Þ

which implies that Ψ2;n is proportional to an integrated
conformal three-point function of two fermions with a
dimension-two operator:

Ψ2;nðθ1; θ2Þ ¼
γn
4π

Z
2π

0

dθ0e−inθ0
2 sin θ12

2

ð2 sin θ10
2
Þ2ð2 sin θ20

2
Þ2 ;

γ2n ¼
3

π2jnjðn2 − 1Þ : ðE5Þ

Here the integral is defined by giving θ0 a small imaginary
part iϵsgnðnÞ.
The shift hΨ2;n; δrail ~K ·Ψ2;ni is an integral over four

times θ1;…; θ4 of a product of propagators and eigenfunc-
tions. The idea is to represent the eigenfunctions Ψ2;n and
the change in the propagator δG using the integral formulas
(E5) and (E3). This adds three new integration variables,

θa, θb, θc. The complete expression is proportional to the
integral over all seven θ variables of

γ2neinðθa−θbÞ
�����
sin θ12

2
sin θ34

2

sin θ13
2
sin θ24

2

�����
2Δ

sgnðθ12θ34θ13θ24Þ
sin2 θ1a

2
sin2 θ2a

2
sin2 θ3b

2
sin2 θ4b

2

×

�����
sin θ1c

2
sin θ3c

2

sin θ13
2

����� ðE6Þ

plus a similar term with (13 ↔ 24). First we consider
holding θa, θb, θc fixed and doing the integral over
θ1;…θ4. The θa and θb variables are the integration
parameters in the representation (E5) of Ψ2;n. They should
be understood as having small imaginary parts of opposite
sign. With this prescription, the integral over θ1…θ4 is
convergent, and has analytic dependence on θa and θb.
[The naive divergence of the integral θ13 ¼ 0 is not present
because of the sgnðθ13Þ factor.] Now, the important point is
that the integral is SLð2Þ covariant, with external weights
h ¼ 2 for the θa, θb variables and weight h ¼ −1 for the θc
variable. So the answer must be proportional to

γ2neinðθa−θbÞ
sin θac

2
sin θbc

2

sin5 θab
2

: ðE7Þ

We cannot have absolute value signs or sgn functions in
this expression, because it must have analytic dependence
on θa, θb. Finally, we integrate over the last three
variables. The integral over θc turns the numerator into
cos θab=2. In the integral over θa, the opposite iϵ pre-
scriptions for θa, θb imply that we pick up the residue of
the fifth-order pole at θa ¼ θb. This is proportional to
n2ðn2 − 1Þ. Combining with the factor γ2n defined in
Eq. (3.72) we conclude that hΨ2;n; δrail ~K ·Ψ2;ni is indeed
proportional to jnj.
To determine the coefficient of proportionality, one can

compute the ratio of the rung and rail corrections by
analyzing the integrals at large n. More precisely, we take
n large and β large, withΩ ¼ 2πn=β held fixed. In this limit
it is better to use a proper time coordinate on the circle, τ,
rather than the angle θ ¼ 2πτ=β. The h ¼ 2 eigenfunctions
(3.72) are proportional to

Ψðτ1; τ2Þ ∝
eiΩðτ1þτ2Þ=2

τ12
fðΩτ12=2Þ;

fðρÞ ¼ cos ρ −
sin ρ
ρ

: ðE8Þ

For large n, all integrals will be dominated by the UV,
where the propagator and correction are

Gc ¼ b
sgnτ
jτj2Δ ;

δG
Gc

∝
1

jτj : ðE9Þ
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The frequency Ω scales out, so we can choose the value
Ω ¼ 2. Then the rung and rail contributions to the
eigenvalue are proportional to the integrals

Irail ¼
Z

dτ2dτ3dτ4eiτ2−iτ3−iτ4fðτ2Þ
sgnðτ2Þ
jτ2j2−2Δ

sgnðτ34Þ
jτ34j2−2Δ

×
sgnðτ3Þ
jτ3j1þ2Δ

sgnðτ24Þ
jτ24j2Δ

fðτ34Þ; ðE10Þ

Irung ¼
q − 2

2

Z
dτ2dτ3dτ4eiτ2−iτ3−iτ4fðτ2Þ

sgnðτ2Þ
jτ2j3−2Δ

×
sgnðτ34Þ
jτ34j2−2Δ

sgnðτ3Þ
jτ3j2Δ

sgnðτ24Þ
jτ24j2Δ

fðτ34Þ ðE11Þ

where the proportionality constant is the same in both
cases. Since we know the normalized rung contribution, we
can get the full answer by computing the ratio of the above
integrals and using Eq. (E1):

δkð2; nÞ ¼
�
1þ Irail

Irung

�
δrungkð2; nÞ: ðE12Þ

The rung integral is easy to evaluate using the fact that we
started with eigenvectors of the original kernel. The rail
integral takes more work (it is convenient to represent some
of the factors in the integrand as Fourier transforms) but the
integrals can be done, and one eventually finds agreement
with Eq. (3.88).

APPENDIX F: THE FIRST-ORDER CHANGE
IN h= 2 EIGENVECTORS

In this appendix we show that the first-order shift in the
h ¼ 2 eigenvectorsΨexact

2;n ¼ Ψ2;n þ δΨ2;n þ � � � is indepen-
dent of q up to an overall multiple:

δΨ2;n ¼
qαG
2

δΨq¼∞
2;n : ðF1Þ

Morally, the reason is the following. The h ¼ 2 eigenvec-
tors are given by reparametrizations of Gc, and the first-
order corrections are related to reparametrizations of δG,
which itself is universal in q up to a coefficient. However,
we will not need this interpretation. To give the actual
argument, we start by considering the reparametrization
δϵI, where

Iðτ1; τ2Þ ¼
Z

dτadτbGðτ1; τaÞΣðτa; τbÞGðτ2; τbÞ: ðF2Þ

Here, reparametrizations are defined to act as in Eq. (3.70),
and we consider the function I to have weight Δ ¼ 1=q.
With this definition, I is reparametrization covariant, in the
sense that the reparametrization of the answer for the
integral is the same as the reparametrization of the various

parts that go inside the integral. Writing this statement
out for linearized reparametrizations and using the exact
Schwinger-Dyson equations

Z
dtaGðt1; taÞΣðta; t2Þ ¼ −δðt12Þ þ ∂t2Gðt1; t2Þ; ðF3Þ

we find

ð1 − KÞ · δϵG ¼ 1

q
Hϵ;

Hϵðτ1; τ2Þ≡
Z

dτϵ0ðτÞGðτ1; τÞ∂τGðτ2; τÞ − ð1 ↔ 2Þ:

ðF4Þ

This is true for any value of the coupling, provided that K
and G are the exact kernel and propagator. Using
~K ¼ jGjq−22 KjGj−q−2

2 , and taking a matrix element with
one of the conformal eigenvectors Ψh;n, we get [the inner
product is as in Eq. (3.64)]

hΨh;n; ð1 − ~KÞ · jGjq−22 δϵGi ¼
1

q
hΨh;n; jGj

q−2
2 Hϵi: ðF5Þ

Naively, the leading piece of the lhs of Eq. (F5) is at order
ðβJÞ−1, where we use the conformal answers for every-

thing. However, this gives zero because jGcj
q−2
2 δϵGc is an

eigenvector of ~Kc with eigenvalue one. In fact, the leading
IR terms are at order ðβJÞ−2. We get these by substituting
either δG or δK into the left side. The rhs has no terms at
this order, so these contributions must cancel:

hΨh;n; ð1 − ~KcÞ · δϵðjGcj
q−2
2 δGÞi

− hΨh;n; δ ~K · jGcj
q−2
2 δϵGci ¼ 0: ðF6Þ

The integral defining the lhs of Eq. (F6) has a UV
divergence; we define the integral by taking only the
cutoff-independent ðβJÞ−2 piece and discarding the
power divergence. In the exact theory, UV divergences
in this expression and on both sides of Eq. (F5) will be
regulated to terms at order ðβJÞ−h and ðβJÞ−h−1.
Depending on h these might dominate over the IR
term we are interested in, but as long as h ≠ 2 they can
be separated.
Let us examine Eq. (F6) in more detail. We can act with

the kernel to the left, giving ð1 − kcðhÞÞ. Now, jGcj
q−2
2 δϵGc

is proportional to ð1=qÞ times an h ¼ 2 conformal eigen-
vector, and the quantity being reparametrized on the lhs is
independent of q, up to a multiple αG. So we conclude that

1

qαG

hΨh;n; δ ~K ·Ψ2;ni
1 − kcðhÞ

ðF7Þ
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is independent of q. Apart from the prefactor, this expres-
sion is the first-order perturbation theory formula for the
matrix element of hΨh;n; δΨ2;ni, so we conclude Eq. (F1).
Although we did not need explicit formulas for the
corrected eigenvectors in this paper, one can get them
by expanding and normalizing Eqs. (3.80) and (3.81).

APPENDIX G: NUMERICAL SOLUTION OF
THE SCHWINGER-DYSON EQUATIONS

In this appendix, we discuss the numerical solution of the
Schwinger-Dyson equations at finite βJ. The Euclidean
solutions give us the coefficient αG (and thus also αK , αS).
One can also use these solutions to directly compute the
large-N free energy. The real-time solutions were used to
compute the blue circles in Fig. 11.
We will begin by discussing the Euclidean equations, at

finite temperature:

GðωnÞ−1 ¼ −iωn − ΣðωnÞ;
ΣðτÞ ¼ J2GðτÞq−1: ðG1Þ

Here ωn ¼ 2πðnþ 1=2Þ=β is a Matsubara frequency. One
can solve these equations just by iterating them, starting
with the free correlator and using a numerical Fourier
transform to switch between frequency ωn and time
θ ¼ 2πτ=β. In order to get the iteration to converge, one
should take a weighted update13

GjðωnÞ ¼ ð1 − xÞGj−1ðωnÞ þ x
1

−iωn − Σj−1ðωnÞ
ðG2Þ

where the weighting x is a parameter. One can set it by
beginning with x ¼ 0.5 and then monitoring the differenceR jGj −Gj−1j2 between successive steps. If this begins to
increase, one divides x by a half and continues the iteration.
Some exact solutions are shown for different values of βJ
in Fig. 15.

For large values of βJ, the difference between the exact
and conformal correlators is fit very well by

G ≈ Gc −
αG
βJ

Gcf0 ðG3Þ

where f0 was defined in Eq. (3.84) and αG is a fitting
parameter. More precisely, this holds as long as τJ is large.
We determine αG from the numerical solutions by fitting for
the coefficient in the region π=2 ≤ θ ≤ π. In the numerics
we have a finite frequency cutoff and finite J, but we take
both large and look for convergence. For small q < 3 to get
accurate results we have to extrapolate in both variables,
first in the cutoff and then in J.
The function αGðqÞ was plotted in Fig. 9. Some explicit

values are αGð2Þ ¼ 0, αGð4Þ ≈ 0.1872, αGð6Þ ≈ 0.1737,
αGð8Þ ≈ 0.1522, and αGð10Þ ≈ 0.1336. A Padé approxim-
ant that stays within approximately one percent of the
numerical answer is

αGðqÞ ≈
2ðq − 2Þ

16=π þ 6.18ðq − 2Þ þ ðq − 2Þ2 : ðG4Þ

With the solution to the Schwinger-Dyson equations,
we can also compute the free energy using Eq. (2.25). In
terms of the correlators and the self-energy at Matsubara
frequencies, we have

logZ
N

¼ 1

2
log 2þ 1

2

X∞
n¼−∞

log

�
1þ ΣðωnÞ

iωn

�

−
β

2

Z
β

0

�
ΣðτÞGðτÞ − J2

q
GðτÞq

�
: ðG5Þ

To get this expression from Eq. (2.25), we have used the
free answer logZ ¼ N

2
log 2 in the case J ¼ 0 to set the

constant. The effect was to replace

X
n

logð−iωnÞ → log 2: ðG6Þ

FIG. 15. The exactGðθÞ in the q ¼ 4model is shown in solid lines, for βJ ¼ 10 (left) and βJ ¼ 50 (right). We also plot the conformal
answer Gc in dash-dotted lines, and the conformal answer plus the first correction Gcf0 in dashed lines.

13We are grateful to A. Kitaev for suggesting this.
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The answer we expect for the free energy is an expansion in
powers of 1=ðβJÞ:

logZ
N

¼ a1βJ þ a2 þ
a3
βJ

þ � � � ðG7Þ

where −a1J is the ground-state energy density, a2 is the
zero-temperature entropy density, and 2a3 is the specific
heat density. We can remove the ground-state energy by
considering

logZ − J∂J logZ
N

¼ a2 þ 2
a3
βJ

þ � � � : ðG8Þ

The derivative term can be evaluated using Eq. (2.26).
Evaluating the sum of these terms on the numerical solution
to the Schwinger-Dyson equations for moderately large βJ,
we find very good agreement with the S0ðqÞ given in
Eq. (2.32). The agreement is good enough that we can
subtract S0 and study the remainder for different values of
βJ in order to compute a3. This was used to compute the
circles in Fig. 12.
We can also continue the equations (G1) to get the

retarded and Wightman correlators in real time, following
Ref. [13]. For this it is important to use the spectral function
ρðωÞ. Here, ω with no subscript is a real-time frequency,
which takes continuous values. We are using conventions
where the spectral function can be defined as the real part of
the Fourier transform of the retarded propagator:

ρðωÞ≡ 2ReGRðωÞ ¼ G>ðωÞð1þ e−βωÞ;
G>ðtÞ≡ hψðtÞψð0Þi ¼ Gðitþ ϵÞ: ðG9Þ

The Matsubara propagatorGðωnÞ can be written in terms of
ρ as

GðωnÞ ¼
Z

dω0

2π

ρðω0Þ
−iωn þ ω0 : ðG10Þ

In this form, one can easily continue to complex frequency.
The continuation to real-time frequency is essentially the
retarded propagator: GRðωÞ ¼ −iGð−iωþ ϵÞ. To get the
real-time Schwinger-Dyson equation we also have to
understand how to continue ΣðωnÞ. Writing the second
equation (G1) in frequency space and using Eq. (G9) we
have

ΣðωnÞ ¼ J2
Z

β

0

eiωnτGðτÞq−1;

GðτÞ ¼
Z

dω
2π

e−ωτ
ρðωÞ

1þ e−βω
: ðG11Þ

After doing the τ integral we get an equation that can be
continued to complex frequency,

ΣðωnÞ ¼ J2
Z �Yq−1

j¼1

dωj

2π

ρðωjÞ
1þ e−βωj

�
1þ e−β

P
j
ωj

−iωn þ
P

jωj
:

ðG12Þ

Now we have a closed set of equations for ρ that can be
iterated. First, we compute the retarded propagator from the
continuation of the first equation in Eq. (G1):

GRðωÞ−1 ¼ ½−iGð−iωþ ϵÞ�−1 ¼ −iωþ ϵ − iΣð−iωþ ϵÞ:
ðG13Þ

Next, we compute the spectral function by taking twice the
real part. Finally, we substitute ρ into Eq. (G12) to get the
new self-energy. An appropriately weighted iteration of this
procedure converges. In implementing these equations
numerically, we have to put both an IR cutoff and a UV
cutoff on the frequencies. This makes the problem more
challenging than the Euclidean problem, but we still get
good agreement with the conformal answer and the leading
correction. See Fig. 16 for a plot.

FIG. 16. The retarded propagator GR (left) and the half-circle Wightman correlator Glr (right) are plotted in the q ¼ 4 model with
βJ ¼ 10. The solid curve is the numerical answer, the dash-dotted curve is the conformal answer, and the dashed curve is the conformal
answer plus the leading correction (3.124). The behavior of the numerical GR near t ¼ 0 is somewhat contaminated by finite-cutoff
wiggles.
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The only place we used these real-time solutions in the
main text was to compute the circles in Fig. 11. To evaluate
these we solve the above equations to get GR and Glr,
which can also be written in terms of ρ. We then assume
an ansatz (3.118). This turns Eq. (3.117) into a one-
dimensional integral equation for fðt12Þ. This can be
discretized and represented as a matrix equation. λL is
determined by the condition that this matrix should have an
eigenvalue equal to one. We find this by doing a binary
search.

APPENDIX H: A MODEL WITHOUT THE
REPARAMETRIZATION SYMMETRY

It is natural to ask whether there is a model where instead
of 1=ð1 − KÞ in the expression for the four-point function
(3.7) we get 1=ð1 − gKÞ, with a g < 1. This would move
the pole away from h ¼ 2 and would lead to a finite
expression in the conformal limit. It is clear from our
discussion in Sec. IV that this can only be true in a model
without reparametrization symmetry.
A simple model with these properties arises if we assume

that the couplings ji1���iq are time-dependent fields with a
two-point function

hji1���inðtÞji1���inð0Þi ¼
J2ðq − 1Þ!

Nq−1 ×
1

jtj2α : ðH1Þ

The new factor is the last one. In the limit α → 0we recover
the original model (to leading orders in the 1=N expansion).
With this modification we can still write the Schwinger-

Dyson equations as

1

GðωÞ ¼ −iω − ΣðωÞ;

ΣðτÞ ¼ J2½GðτÞ�q−1 1

jτj2α : ðH2Þ

In the low-energy limit, we can now make a scale-invariant
ansatz as before

Gc ¼
bsgnðτÞ
jτj2Δ̂

: ðH3Þ

With this ansatz we can solve the low-energy limit of
Eq. (H2) (dropping the iω term) and we find that

Δ̂Σ ¼ Δ̂ðq − 1Þ þ α ¼ 1 − Δ̂; Δ̂ ¼ 1 − α

q
ðH4Þ

where we have denoted the dimension of Gc by Δ̂, since it
is not equal to 1=q. The overall coefficient has exactly the
same expression as before [Eq. (2.9)] in terms of Δ̂

J2bqπ ¼
�
1

2
− Δ̂

�
tan πΔ̂: ðH5Þ

We can now consider the kernel that appears in the four-
point function computation. It has an expression similar to
the one before [Eq. (3.6)],

K̂cðτ1;τ2;τ3;τ4Þ ¼−ðq− 1ÞGcðτ13ÞGcðτ24Þ
Σcðτ34Þ
Gcðτ34Þ

¼−ðq− 1ÞbqJ2 sgnðτ13Þ
jτ13j2Δ̂

sgnðτ24Þ
jτ24j2Δ̂

1

jτ34j2−4Δ̂

¼−
ðq− 1Þ
ð1Δ̂− 1ÞKc;Δ̂ ðH6Þ

where Kc;Δ̂ is the usual kernel but with Δ → Δ̂. Namely, in
Eqs. (3.11)–(3.12) we replace Δ → Δ̂ and q → 1=Δ̂.
The eigenvalues of the new kernel are then equal to

k̂cðhÞ ¼ gkc;Δ̂ðhÞ; g≡ ðq − 1Þ
ð1Δ̂ − 1Þ ðH7Þ

where kΔ̂ðhÞ is the usual expression in terms of Δ [i.e. we
replace 1=q → Δ̂ everywhere in Eq. (3.35)]. Now if
0 < α < 1, then we see that Δ̂ < 1=q which means that
g < 1. This implies that now the sum that appears in the
computation of the four-point function is regular and of the
form

1

1 − K̂
¼ 1

1 − gKΔ̂
: ðH8Þ

Therefore now we do not have to worry about the h ¼ 2

contribution. For h ¼ 2 we find that K̂ ¼ g < 1 and the
sum is finite. In this case, the expression analogous to
Eq. (3.45) is finite. Since k0cðh ¼ 2Þ < 0, the first pole is at
a value hp < 2. Something similar happens with the
retarded kernel, K̂R where the pole moves to a value
−1 < hchaos < 0. More explicitly, using the formula (3.60)
we find

k̂Rð1 − hÞ ¼ cos πðΔ̂ − h
2
Þ

cos πðΔ̂þ h
2
Þ kc;Δ̂ðhÞ: ðH9Þ

We can easily check from here that k̂Rðh ¼ 0Þ ¼ q − 1 > 1

and that k̂Rðh ¼ −1Þ ¼ g < 1. Therefore there is always a
solution for k̂RðhchaosÞ ¼ 1 for −1 < hchaos < 0, leading to

the behavior eð−hchaosÞ
2π
β t. This means that we have a growing

contribution but it grows more slowly than the bound. Here
we are assuming that when we go to the finite-temperature
theory we also change the two-point function (H1) to its
finite-temperature version.
As α → 0, it seems clear that we will get a divergence

that will go like 1=α. The coefficient of this divergence
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would be a function of cross ratios. This is different than the
function that multiplies 1

βJ that we discussed in Sec. III C 3.
As we take the limit α → 0 the sum over the normal-

izable h ¼ 2 modes, in Fourier space, involves a factor of
the form 1=ð1 − K̂Þ ∝ 1=ðαþ n

ðβJÞÞ, where we also included
the terms that would break the conformal symmetry when
α ¼ 0. Then depending on whether α or 1=ðβJÞ is larger,
we go from one regime to the other.
We can then derive an effective action for reparametri-

zations which would reproduce the above kernel. We find
that it should have the schematic form

X
n

�
1

Jβ
n2ðn2 − 1Þ þ αðn2 − 1Þjnj

�
jϵnj2 ðH10Þ

where the last term in the action is nonlocal. It should come
from the variation of the modified term in the effective
action

Z
dθ1dθ2

J2

j2 sin θ12
2
j2α Gcðθ12Þq ðH11Þ

when we make a reparametrization of Gc and then expand
to quadratic order in ϵ. When α is zero, the term is
reparametrization invariant, but one can check that if we
expand to linear order in α it does give the second term
in Eq. (H10).
We could view the two-point function of the j’s as

arising from a higher-dimensional conformal field theory. If
that field theory has a holographic dual, then we would be
describing something that lives on an AdS2 subspace of a
higher-dimensional bulk. Such a theory would not have a
purely dynamical two-dimensional gravity. This setup
arises naturally in the Kondo model and its holographic
duals. See Ref. [41] for a Kondo model example that
inspired the SYK model studied in this paper, and Ref. [42]
and references therein for holographic examples.

APPENDIX I: FURTHER COMMENTS ON
KINEMATIC SPACE

In this appendix we expand a bit more on the comments
in Sec. VI A, where we explored properties of the two-
dimensional space characterized by two times t1, t2 of a
bilocal field.
We can consider the finite-temperature Lorentzian

theory. After defining the following coordinates the
Casimir becomes (setting β ¼ 2π)

t¼ t1þ t2
2

; σ→
t1− t2
2

; →C→ sinh2σð−∂2
t þ∂2

σÞ ðI1Þ

where we now have the wave equation on the outside of the
Lorentzian black hole. We see that the two-point function

Gc is determining the metric of the space we should
consider.
We can easily get to the interior by taking

t1 → t1 þ iβ=4, t2 → t2 − iβ=4 so that now we get

C ∼ cosh2σð∂2
t − ∂2

σÞ ðI2Þ

which is the wave operator in the interior region. The fact
that we have a complex shift in the two times by t1 − t2 →
t1 − t2 þ iβ=2 is related to the fact that we can easily create
particles in the interior if we have access to both sides of the
thermofield double, or if we perform small perturbations of
the thermofield double state [43].
Finally, there is an elegant relation between bulk and

boundary using embedding coordinates. Points on the
boundary can be written in terms of projective coordinates
XM ¼ ðX−1; X0; X1Þ, with ðX:XÞ≡ −X2

−1 − X2
0 þ X2

1 ¼ 0

and X ∼ λX. If we have a pair of such points on the
boundary, Xa

M and Xb
M, then we can define

YL ¼ ϵMNLXa
MX

b
N

ðXa:XbÞ ðI3Þ

where ðXa:XbÞ is simply the inner product using the SLð2Þ
metric. This obeys ðY:YÞ ¼ −1. Of course, conceptually,
this is the same as what we have discussed above, except
that now we see that the formulas are SLð2Þ covariant.

1. The kinematic space in the full model at q =∞
As a final comment, we will consider the case of q → ∞.

This case looks simpler because the only state in the singlet
spectrum is the h ¼ 2 state. As we approach the q → ∞
limit the other states are decoupling, but their energies are
not becoming large. In this sense it is different than the very
large ’t Hooft coupling limit of a gauge theory, where the
decoupling of the string states happens because they
become heavy. An observation is that in this case we get
an interesting picture in terms of the “bulk” coordinates
defined in Eq. (6.1). In this limit the kernel is given by

Kðt1; t2; t3; t4Þ ¼ sgnðt13Þsgnðt24Þ
1

ðjt34j þ ϵÞ2 − ð3 ↔ 4Þ;

ϵ ¼ 1

J
: ðI4Þ

We then find that it obeys the equation

− ðjt12j þ ϵÞ2∂t1∂t2Kðt1; t2; t3; t4Þ
¼ ½δðt1 − t3Þδðt2 − t4Þ − ð3 ↔ 4Þ�
¼ ðσ þ ϵÞ2ð−∂2

t þ ∂2
zÞKðt; z; t0; z0Þ ðI5Þ

where we defined t, σ as in Eq. (6.1). After defining
z ¼ σ þ ϵ we find that we get the wave operator in AdS2
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(parametrized by t, z) with a cutoff at z ¼ ϵ. In particular,
here z ≥ ϵ always and, for the spectral problem we are
putting boundary conditions that set the normalizable
functions to be zero at ~z ¼ ϵ. So in this case the kernel
is really K ¼ 2

∇ϵ
[see also Eq. (3.38)], where ∇ϵ is the

Laplacian in AdS2 with Dirichlet boundary conditions
at z ¼ ϵ. Now the quadratic term in Eq. (4.4) becomes
1
K − 1 ¼ 1

2
∇2

ϵ − 1 and has a simple local form. This is
interesting because a popular way to regularize AdS
computations consists in setting a cutoff a ~z ¼ ϵ.
However, it was unclear which kind of regularization
of the boundary theory would give such a cutoff. Here we

see an example, where we get the same kind of regular-
ized AdS2 problem. In this theory we flow rather quickly
from the topological theory in the UV to the IR AdS2-like
theory. This needs to be taken with a grain of salt given
that we do not know whether there is a way to think about
the model as a local theory in AdS. Also the above
construction seems more related to regulating the kin-
ematic space than the actual bulk.
In the finite-temperature case we also get a dS2, or AdS2

with periodic time. In this case we also need to rescale
the size of the circles relative to their naive values;
see Eq. (3.77).
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