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We classify the sign of the critical Casimir force between two finite objects separated by a large distance
in the two-dimensional systems that can be described by conformal field theory (CFT). Specifically, we
show that, as long as the smallest scaling dimension present in the spectrum of the system is smaller than
one, the sign of the force is independent of the shape of the objects and can be determined by the elements
of the modular Smatrix of the CFT. The provided formula for the sign of the force indicates that the force is
always attractive for equal boundary conditions, independent of the shape of the objects. However, different
boundary conditions can lead to attractive or repulsive forces. Using the derived formula, we prove the
known results regarding the Ising model and the free bosons. As new examples, we give detailed results
regarding the Q ¼ 3 state Potts model and the compactified bosons. For example, for the latter model we
show that the Dirichlet boundary condition does not always lead to an attractive force.
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I. INTRODUCTION

Two neutral objects placed near each other at distances of
a few micrometers interact with each other via the Casimir
force [1]. The Casimir force has been the subject of intense
studies in the last 80 yr in many different areas of research;
for a review, see [2,3]. Although the first studies were
mostly focused on the Casimir force in quantum electro-
dynamics (QED), it was soon realized that the same effect
can also arise for two objects embedded in any kind of
critical medium [4,5]. The Casimir effect has been also
studied experimentally from the very beginning [6,7];
however, the main breakthrough in precise measurements
occurred in more recent times. For the QED Casimir effect,
see [8–10] and, for critical fluctuation-induced forces, see
[11–13].
Determining the sign of the Casimir force has been a

subject of interest from the very beginning. In [14] it was
shown that, in dielectric systems, both attractive and
repulsive forces can arise. For more recent studies on
the conditions of the repulsive forces, see [15]. In addition
to its theoretical interest, characterizing the sign of the
Casimir force can be very important in the nano- and
microsciences for avoiding stiction. Although it is now a
familiar subject, it is quite interesting that the quest to
classify the sign of the Casimir force is still an open
problem; for recent advances, see [16–24]. One of the main
difficulties is the shape dependence of the sign of the
Casimir force in three-dimensional systems. However,
remarkably, there is a theorem for mirror symmetric objects
subject to Dirichlet boundary conditions in arbitrary
dimensions which guarantees that the force is always
attractive in those systems [16,17]. There are also some
general results regarding the stability of the objects acting

through the Casimir force; see [21] and the references
therein. Although most of the effort in characterizing the
sign of the Casimir force has been in three-dimensional
systems, the recent experiments on lipid mixtures compos-
ing biological membranes [25,26] have necessitated a
more thorough investigation of the Casimir effect in
two-dimensional systems. For example, in [27] it was
argued that Casimir-like forces between membrane bound
inclusions can arise in two dimensions and they can be
studied in the realm of the two-dimensional Ising model.
Casimir force in two-dimensional membranes has already
been studied for a long time: see, for example, [28–30] and
the references therein. However, recent studies [27,31]
based on boundary conformal field theory opened a unified
way to study the critical Casimir force in two dimensions
for arbitrary objects and generic universality classes. The
basic idea is that, if the two objects embedded in the
medium induce conformal boundary conditions, one can
map the system with two holes to an annulus, and, since the
Casimir energy on the annulus is known, one can extract
exact generic formulas for the Casimir force between two
arbitrary objects, which depends on the conformal map
which takes the system with two holes to an annulus. The
same formulas were recently used to calculate the entan-
glement entropy [32] and the formation probabilities [33] in
one-dimensional quantum chains. In this paper, we will use
this line of work to classify the sign of the Casimir force
between two finite objects embedded over a long distance.
It is worth mentioning that a similar idea was already used
in [22] to study the sign of the Casimir force between two
infinite size systems. It was concluded in that study that the
sign is usually dependent on the shape of the objects.
However, in this paper, we prove that, in a vast majority of
cases, the sign of the Casimir force between two finite
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objects is independent of the shape of the objects and can
actually be classified based on the type of the boundary
conditions induced by the objects. We first review the
results of [27,31] and introduce a few useful formulas
pertaining to the boundary conformal field theory on
the annulus. Then we derive the Casimir force between
the objects with a sign which explicitly depends on the
elements of the modular S matrix of the underlying
conformal field theory (CFT). Using the formula, one
can find the sign of the Casimir force for practically all
models in which the boundary CFT is known. Specifically,
we derive the already predicted results regarding the Ising
model and the free bosons. Then, as new examples, we
provide the sign of the Casimir force for different boundary
conditions in the Q ¼ 3 states Potts model and the
compactified bosons.

II. CALCULATION OF THE SIGN OF THE
CASIMIR FORCE

Asmentioned in the introduction,embedding twoobjects in
the medium of a two-dimensional critical system is like
enforcing boundary conditions on the domains of the objects.
Wecall the regionsoccupiedby theobjectsD1 andD2, and the
distance between their origins jz12j. To calculate the Casimir
force between the two objects, one first needs to calculate the
free energy necessary to bring the two objects to the distance
jz12j. If the boundary conditions on the boundaries ofD1 and
D2 respect the conformal symmetry of the bulk, then one can
use the methods of CFT to calculate the Casimir free energy
and, ultimately, the Casimir force. The idea goes as follows
[27,31]: the free energy of most of the well-known CFTs is
calculated on the annulus [34]; we call it F an. One the other
hand, because of the conformal symmetry, one can map any
geometry with two boundaries to an annulus with inner and
outerradiie−h and1withaconformalmapwðzÞ;seeFig.1.The
conformal mapping also produces a contribution to the free
energywhichwe call thegeometric part of theCasimir energy
F ge; see [31]. Finally, one can write the Casimir force as

F ¼ Fx þ iFy

2
¼ −∂z12F

an − ∂z12F
ge; ð1Þ

where the geometric part is dependent solely on the conformal
map wðzÞ and can be written as

∂z12F
ge ¼ ic

24π

I
D2

fw; zgdz: ð2Þ

Here,c is thecentralchargeof thesystemandthecontourof the
integral is around the domain D2. It was shown in [31] that
when the two objects are far apart, the contribution of the
geometric part to the Casimir force is

Fge ¼ −
ðQ2

1;1 þQ1;2ÞðQ2
2;1 þQ2;2Þ

z512
þOðz−612 Þ; ð3Þ

where the coefficientsQi;j appear in the bipolar expansion of
the conformal map wðzÞ. Note that since we are not aware of
possible restrictions on the values of the coefficients Qi;j,
whicharedependentonthegeometryof theembeddedobjects,
we assume thatFge can bepositive or negative [35].However,
as we discuss now, the main contribution to the Casimir force
comes from the annulus part and can be classified into
different universality classes. It is worth mentioning that, in
some interesting cases such as those with two disks, the
corresponding conformal map is merely a Möbius trans-
formation and, consequently, Fge ¼ 0. For these geometries
the sign of the Casimir force can be determined using only the
annulus part.
The free energy on the annulus with boundary conditions

A and B on the two boundaries can be written with respect
to the Virasoro characters of the CFT; however, it is much
better to write the series form as follows [34,36]:

F an
ABð ~qÞ ¼ − ln

�
~q−c=24

�
bA0b

B
0 þ

X
j

bAj b
B
j ~q

Δj

��
þ c

h
12

;

ð4Þ

where ~q ¼ e−2h, bAj ¼ hAjj⟫, and bBj ¼ ⟪jjBi. jAðBÞi and
jj⟫ are the Cardy and Ishibashi states, respectively. The

coefficients bAðBÞj are related to the fusion coefficients nABj
of the corresponding conformal field theory by the Verlinde

formula nABj ¼ P
j0S

j0
j b

A
j b

B
j0 , where S

j0
j is the element of the

FIG. 1. The conformal map wðzÞ takes the whole plane minus
the domains D1 and D2 to an annulus.
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modular matrix S; see [36]. Note that all of the coefficients
can be written with respect to the elements of the modular
matrix; for example, b0j ¼ ⟪jj0i ¼ ðSj0Þ1=2 and, for Δ ≠ 0,

we have bΔj ¼ SjΔ
ðSj

0
Þ1=2. All of the coefficients are well known

for most of the rational CFTs [37]. Although the fusion
coefficients nABj are all non-negative integers, the other
coefficients can be positive or negative real numbers.

Exceptions bAðBÞ0 and b0j are always non-negative real
numbers. Finally, the Δj’s in Eq. (4) are the conformal
weights of the bulk operators propagating around the
annulus. Note that, in the sum, we have all of the highest
weights and their descendants.
Since we have h → 2 ln jz12j for the large separations of

the two objects, one can write

F an
ABðz12Þ → − ln½bA0bB0 � −

bA1b
B
1

bA0b
B
0

1

jz12j4Δ1
; ð5Þ

where Δ1 is the smallest scaling dimension present in the
spectrum of the system. The first term is the Affleck-
Ludwig boundary entropy and the second term is the
leading decaying term in the annulus part of the free
energy. Although the power-law decay 1

jz12j4Δ1 was predicted
a long time ago (see [38]), deriving the coefficient of the
decaying term is the main result of this work. As far as
Δ1 < 1, which is the most common case (see Appendix A),
the main contribution to the Casimir force comes from the
annulus part of the free energy. In other words, the Casimir

force of far-apart objects decays as F → − bA
1
bB
1

bA
0
bB
0

1
jz12j4Δ1þ1.

Then one can determine the sign of the force sn as

sn ¼ −
bA1b

B
1

jbA1bB1 j
: ð6Þ

The above equation is our main result and, although it has a
very simple form, it can be used to classify the sign of the
Casimir force for a wide variety of critical systems. One of
the immediate consequences of the above formula is that,
for the same boundary conditions on the domains D1 and
D2, the Casimir force is always attractive. Note that this
result is independent of the geometry of the objects as long
as Δ1 < 1. For those cases in which the main contribution
comes from the geometric part of the force, the sign can
depend on the shape of the objects. Since all of the

coefficients bAðBÞj are known for most of the CFTs, one
can use them to find the sign of the Casimir force. In
principle, as we will show for different boundaries, the sign
can be positive or negative. From now on, we focus on three
examples, the Ising model, the Q ¼ 3 state Potts model,
and free bosons. In the case of the Ising model and the free
bosonic systems, we prove the currently known results. For
compactified bosonic systems, we produce some surprising

new results. All of the conclusions regarding the Q ¼ 3
state Potts model are new.

III. ISING MODEL

The model is defined by the Hamiltonian

H ¼ −J
X
hiji

sisj; ð7Þ

where si ¼ �1 and the sum is over all of the nearest
neighbor sites. The possible conformal invariant boundary
conditions of the Ising model are known and are called
fixed and free; see Appendix B. Since the fixed boundary
condition can be up or down (þ or −), we have four
different possibilities for the partition functions on the
annulus: (a) (þþ), (b) (þ−), (c) (þf), and (d) (ff). The
first and last cases, as we discussed before, lead to attractive
forces. Using the b coefficients listed in Appendix B for the
sign of the Casimir force, i.e., sn, we have

snðþþÞ < 0; ð8Þ

snðþ−Þ > 0; ð9Þ

snðþfÞ > 0; ð10Þ

snðffÞ < 0: ð11Þ

The above conclusions are consistent with the known
results (see, for example [5]). However, note that we prove
them independent of the shape of the floating objects here.

IV. Q= 3 STATES POTTS MODEL

The model is defined by the Hamiltonian

H ¼ −J
X
hiji

δσiσj ; ð12Þ

where σi ¼ 1, 2, 3 and the sum is over all of the nearest
neighbor sites. Many different boundary conditions are
possible for this model. To keep the discussion as simple as
possible, we confine ourselves to the ones discussed in
[34,42]. Because of the three spin possibilities, one can
define three fixed boundary conditions, a, b, and c.
However, it is also possible to define three mixed boundary
conditions, aþ b, aþ c, and bþ c. Finally, there is also a
free boundary condition. These seven boundary conditions
can be paired up in 42 ways; however, just a few of them are
independent, and the rest can be derived using the Z3

symmetry of the model. Using the boundary conformal
field theory of the model (see Appendix B), we summarized
the sign of the Casimir force for different conditions in
Table I. Note that although there is a strong tendency for
repulsion in the nonequal boundary conditions, one cannot
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argue that these boundary conditions always lead to
repulsive Casimir force.

V. FREE BOSONS

We now discuss the Casimir force for the free bosonic
systems with different boundary conditions. We first study
the uncompactified boson, which has been already the
subject of many studies in the past. Then we discuss
compactified bosons, which show more interesting fea-
tures. The free bosonic systems are defined by the action

S ¼ 1

2

Z
dx1dx2½ð∂1ϕÞ2 þ ð∂2ϕÞ2�: ð13Þ

The boundary conformal field theory of the model is well
studied (see, for example, [39]). There are two possible
conformal boundary conditions (Dirichlet and Neumann)
which can be paired up in three different ways with the
partition functions:

Zan
DDð ~qÞ ¼ e−

ðϕ0−ϕ0 0Þ2
8πh

e−
h
12ffiffiffiffiffiffi
2h

p 1

ηð ~qÞ ; ð14Þ

Zan
NNð ~qÞ ¼

e−
h
12

2ηð ~qÞ ; ð15Þ

Zan
DNð ~qÞ ¼

1ffiffiffi
2

p
Y∞
n¼1

1

1þ ~qn
; ð16Þ

where ϕ0ðϕ0
0Þ is the value of the field on the boundary and

ηð ~qÞ ¼ ~q1=24
Q∞

n¼1ð1 − ~qnÞ. Note that, for the NN and the
DN, the smallest scaling dimension is 1, which means that
the annulus and the geometric part of the Casimir force are
in the same order. This just means that, in these two cases,
the sign of the Casimir force can be dependent on the shape
of the objects and, naturally, one cannot draw universal
conclusions. However, for theDD boundary conditions, we
have

FDD → −
1

2jz12j ln jz12j
; ð17Þ

which is an attractive force [31]. Note that the sign of
the force is independent of the value of the field on the
boundary. The situation is much more intriguing for the

campactified boson, which is the scaling limit description
of a lot of statistical models, such as the Ashkin-Teller
model and the Ising model with a defect [40]. Considering
that ϕ≡ ϕþ 2πr, the annulus partition functions have the
following forms (see, for example, [40]):

Zan
DDð ~qÞ ¼

1

2r
ffiffiffi
π

p e−
h
12

ηð ~qÞ
�
1þ 2

X
k>0

cos
kðϕ0 − ϕ0

0Þ
r

~q
k2

8πr2

�
;

ð18Þ

Zan
NNð ~qÞ ¼ r

ffiffiffi
π

p e−
h
12

ηð ~qÞ
�
1þ 2

X
k>0

cos½2πrkð ~ϕ0 − ~ϕ0
0Þ� ~qπk2r2

2

�
;

ð19Þ

where ~ϕ0ð ~ϕ0
0Þ are the values of the dual fields on the lattice.

The partition function of Zan
DN is as before. For DD up until

r2 > 1
8π, the smallest scaling dimension is smaller than one,

so the annulus part of the partition function is dominant. In
this case the sign of the Casimir force is determined by
− cos ϕ0−ϕ0

0
r . It is clear that the force is attractive whenever

− π
2
< ϕ0−ϕ0

0

r < π
2
, and it is repulsive for π

2
< ϕ0−ϕ0

0

r < 3π
2
. For

the NN, the smallest scaling dimension is smaller than one
for r2 < 2

π. In this regime the sign of the Casimir force can
be determined by studying − cos½2πrkðϕ0 − ϕ0

0Þ�. The sign
is negative when − 1

4
< rð ~ϕ0 − ~ϕ0

0Þ < 1
4
, and it is repulsive

for those cases where 1
4
< rð ~ϕ0 − ~ϕ0

0Þ < 3
4
. It is interesting

to note that, in contrast to the noncompactified boson, the
sign of the Casimir force is dependent on the difference
between the values of the fields (the dual fields) on the
boundaries and can, in principle, be adjusted. It will be
interesting to check this phenomenon directly in the case of
the Ashkin-Teller model or in the Ising model with a defect.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we showed that the sign of the Casimir
force at asymptotically large separations in most of the two-
dimensional critical systems can be determined by studying
the elements of the modular S matrix of the underlying
CFT. Although the force is attractive when the boundary
conditions induced by the objects are the same, it is not true
that different boundary conditions always repel each other.
In some cases, like those involving compactified bosons,
one can get an alternative behavior for the sign of the
Casimir force by changing the value of the (dual) field on
the boundary. This is in contrast to the common belief that
two Dirichlet boundary conditions always attract each
other. We note that our analyses can break down if the
two objects are too close to each other. One reason is that
the geometric part of the force for short distances starts to
become important, especially for sharp boundaries. At the
same time, the annulus part might also change sign,

TABLE I. Sign of the Casimir force in the Q ¼ 3 states Potts
model with different boundary conditions.

a b c aþ b aþ c bþ c f

a − þ þ − − þ þ
bþ c þ − − þ þ − −
f þ þ þ − − − −

M. A. RAJABPOUR PHYSICAL REVIEW D 94, 105029 (2016)

105029-4



depending on the spectrum of the system. It would be very
interesting to find a physical argument based on Coulomb
gas representation for the conclusions that we presented in
this article. It would also be important to check some of the
predictions of the formula presented here with some
numerical techniques.
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APPENDIX A: CONFORMAL WEIGHTS IN
MINIMAL MODELS

In this appendix, we briefly discuss the conformal
weights of minimal models Mðp; p0Þ, with an integer
p > p0 > 0. For more details, see [41]. The discussion is
relevant because our classification is heavily based on
having the conformal dimension Δ < 1. This condition is
the most common case; however, there are some excep-
tions. In minimal models, the central charge c and the
conformal weights Δr;s are positive rational numbers and
are given in the following formulas:

c ¼ 1 − 6
ðp − p0Þ2

pp0 ; ðA1Þ

Δr;s ¼
ðpr − p0sÞ2 − ðp − p0Þ2

4pp0 ;

1 ≤ r ≤ p0 − 1; 1 ≤ s ≤ p − 1: ðA2Þ

Most of the famous critical models are examples of the
above CFTs. For example,Mð4; 3Þ,Mð5; 4Þ, andMð6; 5Þ
are the Ising, tricritical Ising, andQ ¼ 3 states Potts model,
respectively. Note that it is not true that all of the scaling
operators with the above conformal dimensions appear in
every representation of a given statistical model. For
example, in the Q ¼ 3 states Potts model studied here,
only those with Δ < 1 appear. It is simple to verify that, in
Mð4; 3Þ, there is no conformal weight which is bigger than
one. However, in Mð5; 4Þ, one out of six operators has a
conformal dimension bigger than one. In Mð6; 5Þ two out
of ten scaling dimensions are bigger than one. Note that, in
all of the above models, the order parameters have
conformal dimensions smaller than one. The situation
can be clarified most effectively in the case of the restricted
solid-on-solid model; see [41]. The model at one of the
critical points can be described by the minimal model
Mðq; q − 1Þ, with q > 4. In this model, for example, there
are q − 3 order parameters with the conformal weights

hkþ1;kþ1 ¼ ðkþ1Þ2−1
4qðq−1Þ , where 1 ≤ k ≤ q − 3. All of these

conformal weights are smaller than one. The above dis-
cussion shows that most of the conformal dimensions are

smaller than one in most of the well-known models;
however, in some models, one might be able to define a
new set of boundary conditions where Δ > 1 and, con-
sequently, one cannot use our method to classify the sign of
the Casimir force.

APPENDIX B: BOUNDARY CONFORMAL
FIELD THEORY OF THE ISING MODEL
AND THE Q= 3 STATES POTTS MODEL

In this appendix, we summarize all of the necessary
formulas of the boundary conformal field theory of the
Ising model and the Q ¼ 3 states Potts model. All of the
details can be found in the original paper by Cardy [34,36];
see also [42,43].

1. Ising model

We first discuss the Ising model, which is the simplest
rational CFT, with the central charge c ¼ 1

2
. The theory has

three primary operators: the identity with the conformal
weight ΔI ¼ 1, the energy operator ϵ with the weight
Δϵ ¼ 1

2
, and the spin operator σ with Δσ ¼ 1

16
. The modular

S matrix of the model is

S ¼

0
BB@

1
2

1
2

1ffiffi
2

p

1
2

1
2 − 1ffiffi

2
p

1ffiffi
2

p − 1ffiffi
2

p 0

1
CCA; ðB1Þ

where the rows and the columns are labeled by the weights
ð0; 1

2
; 1
16
Þ. The conformal boundary states can now be

written with respect to the Ishibashi states as

j0i ¼ 1ffiffiffi
2

p j0⟫þ 1ffiffiffi
2

p jϵ⟫þ 1

2
1
4

jσ⟫; ðB2Þ
���� 12
�

¼ 1ffiffiffi
2

p j0⟫þ 1ffiffiffi
2

p jϵ⟫ −
1

2
1
4

jσ⟫; ðB3Þ
���� 116

�
¼ j0⟫ − jϵ⟫: ðB4Þ

The first two states can be identified as the fixed þ and the
fixed −, and the latter is identified with the free boundary
condition. Having the above states, one can read both all of
the coefficients bj and the nature of the smallest scaling
dimension present in the system. For example, (a) for þþ,
the smallest scaling dimension is 1

16
and bþσ ¼ 1

2
1
4

; (b) for

þ−, the smallest scaling dimension is again 1
16

and
b−σ ¼ − 1

2
1
4

; (c) for fixed-free cases, the smallest scaling

dimension is 1
2
and bþϵ ¼ 1

2
1
2

and bfϵ ¼ −1; and (d) for free-

free cases, the smallest scaling dimension is again 1
2

with bfϵ ¼ −1.
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2. Q= 3 states Potts model

We now discuss the boundary conformal field theory of
Q ¼ 3 states Potts model. Although it is possible to discuss
the full structure of the boundary conformal field theory of
these model (see [43] to avoid unnecessary complications),
we start with those cases that respect the W symmetry of
the model. The central charge of the CFT is c ¼ 4

5
and the

primary operators are ðI; ϵ;ψ ; σ;ψ†; σ†Þwith the conformal
weights ð0; 2

5
; 2
3
; 1
15
; 2
3
; 1
15
Þ. Note that in the Kac table of the

c ¼ 4
5
minimal model we have at least four other operators,

(1, 2), (4, 2), (2, 2), (3, 2), with the conformal weights
1
8
, 13

8
, 1
40
, and 21

40
, which play important roles in the Q ¼ 3

states Potts model. The modular S matrix of the model is

S ¼ N2

0
B@

s s s

s ωs ω2s

s ω2s ωs

1
CA; s ¼

�
1 λ2

λ2 −1

�
; ðB5Þ

where N4 ¼ 5−
ffiffi
5

p
30

and λ2 ¼ 1þ ffiffi
5

p
2

. The conformal boundary
states can be written as

j0i¼N½j0⟫þλjϵ⟫þjψ⟫þλjσ⟫þjψ†⟫þλjσ†⟫�; ðB6Þ
���� 23
�

¼ N½j0⟫þ λjϵ⟫þ ωjψ⟫þ ωλjσ⟫þ ω2jψ†⟫

þ ω2λjσ†⟫�; ðB7Þ
����23

†
�

¼ N½j0⟫þ λjϵ⟫þ ω2jψ⟫þ ω2λjσ⟫þ ωjψ†⟫

þ ωλjσ†⟫�; ðB8Þ
���� 25
�

¼ N½λ2j0⟫ − λ−1jϵ⟫þ λ2jψ⟫ − λ−1jσ⟫þ λ2jψ†⟫

− λ−1jσ†⟫�; ðB9Þ
���� 115

�
¼ N½λ2j0⟫ − λ−1jϵ⟫þ ωλ2jψ⟫ − ωλ−1jσ⟫

þ ω2λ2jψ†⟫ − ω2λ−1jσ†⟫�; ðB10Þ
���� 115

†
�

¼ N½λ2j0⟫ − λ−1jϵ⟫þ ω2λ2jψ⟫ − ω2λ−1jσ⟫

þ ωλ2jψ†⟫ − ωλ−1jσ†⟫�: ðB11Þ

The first three states can be identified as three fixed
states, a, b, and c. Here, we also report the corresponding
partition functions on the cylinder:

Za;a ¼ χIðqÞ ¼ χ11ðqÞ þ χ41ðqÞ; ðB12Þ

Za;b ¼ χψ ðqÞ ¼ χ13ðqÞ; ðB13Þ

Za;c ¼ χψ†ðqÞ ¼ χ13ðqÞ; ðB14Þ

where χI;ψ ;ψ†ðqÞ are the W symmetry characters written
with respect to the Virasoro characters. Note that, by using
χðqÞ ¼ P

jS
j
iχjð ~qÞ, one can write all of the partition

functions with respect to ~q. Note that, although in all of
the cases the smallest scaling dimension is 1

15
, the b

coefficients are different, ba1
15

¼ −2bb1
15

¼ −2bc1
15

¼ 2Nλ.

The next three states in the list, i.e., (B9) (B10), and
(B11), are related to mixed boundary conditions.
Specifically, on the cylinder, we have

Za;bþc ¼ χϵðqÞ ¼ χ21ðqÞ þ χ31ðqÞ; ðB15Þ

Za;aþc ¼ χσðqÞ ¼ χ23ðqÞ; ðB16Þ

Za;aþb ¼ χσ†ðqÞ ¼ χ23ðqÞ: ðB17Þ

The smallest scaling dimension in each of the above
three cases is 1

15
, and we also have 2baþc

σ ¼ 2baþb
σ ¼

−bbþc
σ ¼ 2Nλ−1.
The next interesting case is the free-free boundary

condition with the cylinder partition function

Zf;f ¼ χIðqÞ þ χψðqÞ þ χψ†ðqÞ: ðB18Þ
It is not difficult to see that the operator with the smallest
scaling dimension in this case is the energy operator with
the conformal weight 2

5
. Note that, in this case, we have

baϵ ¼ bbϵ ¼ bcϵ ¼ Nλ. The last possible boundary condi-
tions, ðf; aÞ and ðf; aþ bÞ, cannot be written with respect
to the characters of the W symmetry. However, they were
also studied in the literature, and on the cylinder they can be
written with respect to the Virasoro characters as

Zf;a ¼ χð1;2ÞðqÞ þ χð4;2ÞðqÞ; ðB19Þ

Zf;bþc ¼ χð2;2ÞðqÞ þ χð3;2ÞðqÞ: ðB20Þ

In both cases, the operator with the smallest scaling
dimension is the energy operator and the behavior of the
partition functions on the long cylinders are

Zf;að ~qÞ → −
ffiffiffi
3

p
N2λ2 ~q

2
5; ðB21Þ

Zf;bþcð ~qÞ →
ffiffiffi
3

p
N2 ~q

2
5: ðB22Þ

The above equations can be used to derive the sign of the
Casimir force for all of the boundary conditions stud-
ied here.
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