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By considering Hadamard vacuum states, we first construct the two-point functions associated with
Stueckelberg massive electromagnetism in de Sitter and anti–de Sitter spacetimes. Then, from the general
formalism developed by Belokogne and Folacci [Phys. Rev. D 93, 044063 (2016)], we obtain an exact
analytical expression for the vacuum expectation value of the renormalized stress-energy tensor of the
massive vector field propagating in these maximally symmetric spacetimes.
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I. INTRODUCTION

In a recent article, we discussed the covariant quantiza-
tion of Stueckelberg massive electromagnetism on an
arbitrary four-dimensional curved spacetime ðM; gμνÞ with
no boundary and we constructed, for Hadamard quantum
states, the expectation value of the renormalized stress-
energy tensor (RSET) [1]. Here, we do not return to the
motivations leading us to consider Stueckelberg massive
electromagnetism in curved spacetime. The interested
reader is invited to consult our previous article, in particular
its introduction as well as references therein. The formalism
developed in Ref. [1] permitted us to discuss, as an
application, the Casimir effect outside a perfectly con-
ducting medium with a plane boundary.
In the present paper, we shall address a much more

difficult problem which could have interesting implications
in cosmology of the very early Universe or in the context
of the AdS=CFT correspondence: we shall obtain an exact
analytical expression for the vacuum expectation value of
the RSET of the massive vector field propagating in de
Sitter and anti–de Sitter spacetimes. It is interesting to note
that such results do not exist in the literature while the
RSETs associated with the massive scalar field and the
massive spinor field have been obtained quite a long time
ago (see, e.g., Refs. [2–8] for the case of the massive scalar
field and Refs. [9–11] for the case of the massive spinor
field). In fact, this void in the literature can easily be
explained. Indeed, even if there exist numerous works
concerning the massive vector field in de Sitter and anti–de
Sitter spacetimes [12–22], the two-point functions are in
general constructed in the framework of the de Broglie–
Proca theory and, as a consequence, do not display the
usual Hadamard singularity (see the last remark in the
conclusion of Ref. [1]) which is a fundamental ingredient of

regularization and renormalization techniques in curved
spacetime.
In our article, we shall focus on Stueckelberg electromag-

netism defined, at the quantum level, by the action [1,23]

S½Aμ;Φ; C; C�; gμν� ¼ SA½Aμ; gμν� þ SΦ½Φ; gμν�
þ SGh½C;C�; gμν�; ð1Þ

where
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Z
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ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν−

1

2
m2AμAμ −

1

2
ð∇μAμÞ2

�

ð2Þ

denotes the action associated with the massive vector fieldAμ

with mass m (here, Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ is
the associated field strength) and
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is the action governing the auxiliary Stueckelberg scalar
field Φ. The last action term in Eq. (1) is the compensating
ghost contribution given by

SGh ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ð∇μC�∇μCþm2C�CÞ; ð4Þ

where C and C� are two fermionic ghost fields. Here, it is
important to note that some authors dealingwith Stueckelberg
electromagnetism (see, e.g., Refs. [16,21,24]) have consid-
ered Stueckelberg electromagnetism defined from the sole
action
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where ξ is a gauge parameter. In fact, these authors were
mainly interested by the determination of the Feynman
propagator associated with the massive vector field Aμ. Of
course, in order to calculate physical quantities such as the
RSET associated with Stueckelberg electromagnetism, the
full actionmust be considered; i.e., it is necessary to take also
into account, in addition to the contribution of the massive
vector field, those of the auxiliary Stueckelberg field and of
theghost fields. In our article,we shall not consider the case of
an arbitrary gauge parameter ξ. Indeed, as we have already
noted in Ref. [1], if wewant toworkwithHadamard quantum
states, it is necessary to take ξ ¼ 1. However, it is interesting
to recall that Fröb and Higuchi in a recent article [21] have
provided, for an arbitrary value of ξ, amode-sumconstruction
of the two-point functions for the massive vector field by
working in the Poincaré patch of de Sitter space. Their results
have permitted them to recover, as particular cases, the two-
point functions obtained by Allen and Jacobson in Ref. [15]
(they correspond to ξ → ∞, i.e., to the de Broglie–Proca
theory) and those obtained by Tsamis and Woodard in
Ref. [19] (they correspond to ξ → 0).
Our article is organized as follows. In Sec. II, we

construct the Wightman functions associated with the
massive vector field Aμ, the Stueckelberg auxiliary scalar
field Φ and the ghost fields C and C� and, from them, we
deduce by analytic continuation all the other two-point
functions. We do not use a mode-sum construction as in
Ref. [21], but we extend the approach of Allen and
Jacobson in Ref. [15] (see also Refs. [16,25,26]). More
precisely, by assuming that the vacuum is a maximally
symmetric quantum state, we solve the wave equations
for the various Wightman functions involved by taking
into account, as constraints, two Ward identities; we then
fix the remaining integration constants by imposing
(i) Hadamard-type singularities at short distance and
(ii) in de Sitter spacetime, the regularity of the solutions
at the antipodal point or (iii) in anti–de Sitter spacetime,
that the solutions fall off as fast as possible at spatial
infinity. In Sec. III, from the general formalism developed
in Ref. [1], we obtain an exact analytical expression for
the vacuum expectation value of the RSET of the massive
vector field propagating in de Sitter and anti–de Sitter
spacetimes. The geometrical ambiguities are fixed by
considering the flat-space limit and, moreover, we con-
sider the two alternative but equivalent expressions for
the renormalized expectation value given in Ref. [1] in
order to discuss the zero-mass limit of our results. Finally,
in a conclusion (Sec. IV), we briefly consider the possible
extension of our work to Stueckelberg electromagnetism
in an arbitrary ξ gauge.
It should be noted that, in this article, we use units such

that ℏ ¼ c ¼ G ¼ 1 and the geometrical conventions of
Hawking and Ellis [27] concerning the definitions of the
scalar curvature R, the Ricci tensor Rμν and the Riemann
tensor Rμνρσ as well as the commutation of covariant

derivatives. Moreover, we will frequently refer to our
previous article [1] and we assume that the reader has
“in hand” a copy of it.

II. TWO-POINT FUNCTIONS OF
STUECKELBERG ELECTROMAGNETISM

In this section, we shall construct the various two-point
functions involved in Stueckelberg massive electromagnet-
ism from the Wightman functions associated with the
vector field Aμ, the Stueckelberg scalar field Φ and the
ghost fields C and C�.

A. de Sitter and anti–de Sitter spacetimes

Here, we gather some results concerning (i) the geometry
of the four-dimensional de Sitter spacetime (dS4) and the
four-dimensional anti–de Sitter spacetime (AdS4) as well as
(ii) the properties of some geometrical objects defined on
these maximally symmetric gravitational backgrounds.
We have minimized the information on these topics (for
more details and proofs, see Refs. [15,26–29]). Those
results are necessary to construct the Wightman functions
of Stueckelberg electromagnetism and, in Sec. III, will
permit us to simplify in dS4 and AdS4 the formalism
developed in Ref. [1].
dS4 and AdS4 are maximally symmetric spacetimes

of constant scalar curvature (positive for the former and
negative for the latter) which are locally characterized by
the relations

Rμνρτ ¼ ðR=12Þðgμρgντ − gμτgνρÞ; ð6aÞ

Rμν ¼ ðR=4Þgμν; ð6bÞ

and

R ¼
�þ12H2 for dS4;

−12K2 for AdS4:
ð6cÞ

Here H and K are two positive constants of dimension
ðlengthÞ−1. The relations (6a)–(6c) are useful in order to
simplify the various covariant Taylor series expansions
involved in the Hadamard renormalization process (see
Ref. [1]) and will be extensively used in Sec. III.
dS4 and AdS4 can be realized as the four-dimensional

hyperboloids

ηabXaXb ¼ 12=R ð7Þ

embedded in the flat five-dimensional space R5 equipped
with the metric

ηab ¼
�
diagð−1;þ1;þ1;þ1;þ1Þ for dS4;

diagð−1;−1;þ1;þ1;þ1Þ for AdS4:
ð8Þ
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Equations (7) and (8) make it obvious that Oð1; 4Þ is the
symmetry group of dS4 and that its topology is that of
R × S3, while Oð2; 3Þ is the symmetry group of AdS4

whose topology is that of S1 ×R3. It is important to recall
that, in order to avoid closed timelike curves in AdS4, it is
necessary to “unwrap” the circle S1 to go onto its universal
covering space R1 and then AdS4 has the topology of R4.
In the context of field theories in curved spacetime, the

geodetic interval σðx; x0Þ defined as one-half the square
of the geodesic distance between the points x and x0, is of
fundamental interest (see, e.g., Refs. [30,31]) and the
Hadamard renormalization process developed in Ref. [1],
which we will exploit in Sec. III, is based on an extensive
use of this geometrical object. However, in this section,
even though σðx; x0Þ is invariant under the symmetry group
of dS4 or AdS4, it is advantageous to consider instead the
real quadratic form

zðx; x0Þ ¼ 1

2
½1þ ðR=12ÞηabXaðxÞXbðx0Þ� ð9Þ

in order to construct the two-point functions of
Stueckelberg electromagnetism. In Eq. (9), XaðxÞ and
Xbðx0Þ are the coordinates of the points x and x0 on the
hyperboloid (7) defining dS4 or AdS4 and ηab is the
corresponding metric given by (8). This quadratic form
is obviously invariant under the symmetry group of dS4 or
AdS4 and is moreover defined on the whole spacetime,
while σðx; x0Þ is not defined everywhere because there is
not always a geodesic between two arbitrary points in these
maximally symmetric spacetimes. However, when σðx; x0Þ
is defined, we have

zðx; x0Þ ¼ 1

2

h
1þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR=6Þσðx; x0Þ

p i
ð10aÞ

¼ cos2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR=24Þσðx; x0Þ

p
ð10bÞ

or, equivalently,

zðx; x0Þ ¼ cos2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2=2Þσðx; x0Þ

q
ð11Þ

in dS4 and

zðx; x0Þ ¼ cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2=2Þσðx; x0Þ

q
ð12Þ

in AdS4. The previous relations can be inverted and used to
define σðx; x0Þ globally. In fact, it will chiefly help us, in
Sec. III, to reexpress the two-point functions obtained here
in terms of σðx; x0Þ.
We shall now point out some useful properties of zðx; x0Þ.

With respect to the antipodal transformation which sends
the point xwith coordinates XaðxÞ on the hyperboloid (7) to
its antipodal point Px with coordinates

XaðPxÞ ¼ −XaðxÞ; ð13Þ

we have

zðx; Px0Þ ¼ 1 − zðx; x0Þ: ð14Þ

We have also

zðx; x0Þ > 1 if x and x0 are timelike related; ð15aÞ

zðx; x0Þ ¼ 1 if x and x0 are null related; ð15bÞ

0 < zðx; x0Þ < 1 if x and x0 are spacelike related;

ð15cÞ

zðx; x0Þ ≤ 0 if x and

x0 cannot be joined by a geodesic; ð15dÞ

in dS4 and

zðx; x0Þ > 1 if x and x0 are spacelike related; ð16aÞ

zðx; x0Þ ¼ 1 if x and x0 are null related; ð16bÞ

0 < zðx; x0Þ < 1 if x and x0 are timelike related;

ð16cÞ

zðx; x0Þ ≤ 0 if x and x0 cannot be joined by a geodesic;

ð16dÞ
in AdS4. All these results can be visualized in the Carter-
Penrose diagrams of dS4 (see Fig. 1) and AdS4 (see Fig. 2).

FIG. 1. Carter-Penrose diagram of dS4. Without loss of general-
ity, the point x can be taken to be any point in spacetime. Px
denotes its associated antipodal point. The left and right edges of
this diagram must be identified along the dashed lines. Iþ and I−

denote, respectively, the future and past spacelike infinities for
timelike and null geodesics. The hatched area is the set of points
x0 which cannot be reached by geodesics from x and for which
σðx; x0Þ is not defined.
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To conclude this subsection, we recall that in dS4 and
AdS4, any bitensor which is invariant under the spacetime
symmetry group (a maximally symmetric tensor) can be
expressed only in terms of the bitensors z, z;μ, z;μ0 , gμν, gμ0ν0
and gμν0 [15]. Here, gμν0 is the usual bivector of parallel
transport from x to x0 which is defined by the differential
equation gμν0;ρσ;ρ ¼ 0 and the boundary condition
limx0→xgμν0 ðx; x0Þ ¼ gμνðxÞ. For example, a two-point func-
tion Gðx; x0Þ associated with a scalar field is necessarily of
the form GðzÞ and a two-point function Gμν0 ðx; x0Þ asso-
ciated with a vector field can be written in the form
AðzÞgμν0 þ BðzÞz;μz;ν0 . This very important remark will
simplify the construction of the two-point functions of
Stueckelberg electromagnetism. Besides, in order to handle
these functions in connection with the wave equations and
the Ward identities, it will be necessary to use the following
geometrical relations

z;μz;μ ¼ ðR=12Þzð1 − zÞ; ð17aÞ

gμν0;ρz;ρ ¼ 0; ð17bÞ

gμν0z;μ ¼ −z;ν0 ; ð17cÞ

gμν0z;ν
0 ¼ −z;μ; ð17dÞ

z;μν ¼ ðR=24Þð1 − 2zÞgμν; ð17eÞ

z;μν0 ¼ ðR=24Þgμν0 þ ð1=zÞz;μz;ν0 ; ð17fÞ

gμν0;ρ ¼ −ð1=zÞðgμρz;ν0 þ gρν0z;μÞ; ð17gÞ

gμν0;ρ0 ¼ −ð1=zÞðgμρ0z;ν0 þ gν0ρ0z;μÞ; ð17hÞ

gμν0;ρ;ρ ¼ ðR=12Þ½ðz − 1Þ=z�gμν0 þ ð2=z2Þz;μz;ν0 ; ð17iÞ

and to note that the d’Alembertian operator acting on
biscalar functions is given by

□ ¼ R
12

�
zð1 − zÞ d2

dz2
þ ð2 − 4zÞ d

dz

�
: ð18Þ

B. Stueckelberg theory, wave equations and Ward
identities for the Wightman functions

From the quantum action (1), we can easily obtain the
wave equations satisfied by the massive vector field Aμ, the
auxiliary scalar field Φ and the ghost fields C and C�.
They have been derived in our previous article [see
Eqs. (19)–(21) in Ref. [1]] and, in dS4 or in AdS4, due
to Eq. (6b), they reduce to

ð□ − R=4 −m2ÞAμ ¼ 0; ð19aÞ

ð□ −m2ÞΦ ¼ 0; ð19bÞ

ð□ −m2ÞC ¼ 0; ð19cÞ

ð□ −m2ÞC� ¼ 0: ð19dÞ

From now on, we shall assume that the Stueckelberg theory
is quantized in a normalized vacuum state j0i and, in
addition, that this quantum state is (i) maximally symmetric
and (ii) of Hadamard type. We recall that, in the context of
the calculation of the renormalized expectation value of the
stress-energy-tensor operator with respect to a vacuum j0i,
it is convenient to work with the Feynman propagators or,
equivalently, with the so-called Hadamard Green functions
associated with the fields of the theory [1]. So, we need in
dS4 and AdS4 the explicit expressions of these two-point
functions. In fact, it is possible to construct the zoo of
the two-point functions of the theory from the Wightman
functions and, in a first step, we shall focus on these
particular two-point functions.
We recall that the Wightman function associated with the

massive vector field Aμ is given by

GðþÞA
μν0 ðx; x0Þ ¼ h0jAμðxÞAν0 ðx0Þj0i ð20Þ

and satisfies the wave equation [see also Eq. (19a)]

FIG. 2. Carter-Penrose diagram of AdS4. Without loss of
generality, the point x can be taken to be any point in spacetime.
Px denotes its associated antipodal point. Here, we only display
an elementary cell of the universal covering of anti–de Sitter
spacetime. The whole manifold is obtained by gluing along the
dashed lines the top edge of one cell with the bottom edge of
another one and by replicating, ad nauseam, this process. I
denotes timelike infinity. The hatched area is the set of points x0
which cannot be reached by geodesics from x and for which
σðx; x0Þ is not defined.
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ð□x − R=4 −m2ÞGðþÞA
μν0 ðx; x0Þ ¼ 0: ð21Þ

Similarly, the Wightman function associated with the
auxiliary scalar field Φ is given by

GðþÞΦðx; x0Þ ¼ h0jΦðxÞΦðx0Þj0i ð22Þ

and is a solution of [see also Eq. (19b)]

ð□x −m2ÞGðþÞΦðx; x0Þ ¼ 0; ð23Þ

while the Wightman function associated with the ghost
fields is defined by

GðþÞGhðx; x0Þ ¼ h0jC�ðxÞCðx0Þj0i ð24Þ

and satisfies the wave equation [see also Eq. (19d)]

ð□x −m2ÞGðþÞGhðx; x0Þ ¼ 0: ð25Þ

Moreover, we have two Ward identities that relate these
three Wightman functions. We can write

∇μGðþÞA
μν0 ðx; x0Þ þ∇ν0GðþÞGhðx; x0Þ ¼ 0 ð26Þ

and

GðþÞΦðx; x0Þ −GðþÞGhðx; x0Þ ¼ 0: ð27Þ

It should be noted that, in our previous article, we have
derived the Ward identities for the Feynman propagators
[see Eqs. (33) and (29) in Ref. [1]] and for the Hadamard
Green functions [see Eqs. (65) and (66) in Ref. [1]]. Here
we have written them for the Wightman functions. They
can be derived in the same way, i.e., from the wave
equations by using arguments of uniqueness [30]. The
Ward identity (27) expresses the equality of the Wightman
functions associated with the auxiliary scalar field and the
ghost fields. So, thereafter we shall omit the labels Φ and
Gh and use a generic form for these two Green functions
by writing

GðþÞðx; x0Þ ¼ GðþÞΦðx; x0Þ ¼ GðþÞGhðx; x0Þ: ð28Þ

C. Explicit expression for the Wightman functions
in dS4 and AdS4

1. General form of the Wightman functions
in maximally symmetric backgrounds

We have previously assumed that the vacuum j0i
is a maximally symmetric state. As a consequence,

we can express the Wightman functions GðþÞA
μν0 ðx; x0Þ and

GðþÞðx; x0Þ as a function of the quadratic form zðx; x0Þ [see
also the last paragraph of Sec. II A] and write

GðþÞðx; x0Þ ¼ GðþÞðzÞ ð29Þ

for the scalar Wightman functions (22) and (24) and

GðþÞA
μν0 ðx; x0Þ ¼ GðþÞA

μν0 ðzÞ ¼ αðzÞgμν0 þ 4βðzÞz;μz;ν0 ð30Þ

for the vector Wightman function (20).
By inserting (29) into the wave equation (23) or (25) and

by taking into account the relations (17) and (18), we obtain
the differential equation

�
zð1 − zÞ d2

dz2
þ ð2 − 4zÞ d

dz
−
12m2

R

�
GðþÞðzÞ ¼ 0: ð31Þ

Similarly, inserting (30) into the wave equation (21) leads
to a system of two coupled differential equations for the
functions αðzÞ and βðzÞ given by

�
zð1 − zÞ d2

dz2
þ ð2 − 4zÞ d

dz
−
2zþ 1

z
−
12m2

R

�
αðzÞ

þ R
6
ð1 − 2zÞβðzÞ ¼ 0 ð32aÞ

and

�
zð1 − zÞ d2

dz2
þ ð4 − 8zÞ d

dz
−
10z − 1

z
−
12m2

R

�
βðzÞ

þ 6

R
1

z2
αðzÞ ¼ 0; ð32bÞ

while, from the Ward identity (26), we obtain

�
d
dz

þ 3

z

�
αðzÞ −

�
R
3
zð1 − zÞ d

dz
þ 5R

6
ð1 − 2zÞ

�
βðzÞ

−
d
dz

GðþÞðzÞ ¼ 0: ð33Þ

Equation (31) is a hypergeometric differential equation
of the form [32–34]

�
zð1−zÞ d

2

dz2
þ½c−ðaþbþ1Þz� d

dz
−ab

�
Fða;b;c;zÞ¼0

ð34Þ

with a ¼ 3=2þ κ, b ¼ 3=2 − κ and c ¼ 2 where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − 12m2=R

q
: ð35Þ

This equation is invariant under the transformation
z → 1 − z because the parameters a, b and c satisfy
aþ bþ 1 ¼ 2c. As a consequence, we can write
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GðþÞðx; x0Þ ¼ C1
GFð3=2þ κ; 3=2 − κ; 2; zÞ

þ C2
GFð3=2þ κ; 3=2 − κ; 2; 1 − zÞ ð36Þ

where C1
G and C2

G are two integration constants.
The differential equations (32a) and (32b) which provide

the Wightman function (30) are much more complicated to
solve. In order to do so, we introduce the new function γðzÞ
defined by

γðzÞ ¼ αðzÞ − ðR=3Þzð1 − zÞβðzÞ; ð37Þ

and rewrite the Ward identity (33) in the form

�
d
dz

þ 3

z

�
γðzÞ þ R

2
βðzÞ − d

dz
GðþÞðzÞ ¼ 0: ð38Þ

Then, by using Eqs. (37) and (38), we can combine the
differential equations (32a) and (32b) and we have

�
zð1 − zÞ d2

dz2
þ ð3 − 6zÞ d

dz
− 6 −

12m2

R

�
γðzÞ

¼ ð1 − 2zÞ d
dz

GðþÞðzÞ: ð39Þ

The general solution γðzÞ of this nonhomogeneous hyper-
geometric differential equation is the sum

γðzÞ ¼ γcðzÞ þ γpðzÞ ð40Þ

of the complementary solution γcðzÞ and a particular
solution γpðzÞ. γcðzÞ is the general solution of the hyper-
geometric differential equation (34) with a ¼ 5=2þ λ,
b ¼ 5=2 − λ and c ¼ 3 where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − 12m2=R

q
: ð41Þ

Since the coefficients a, b and c fulfill again
aþ bþ 1 ¼ 2c, we can therefore write

γcðzÞ ¼ C1
γFð5=2þ λ; 5=2 − λ; 3; zÞ

þ C2
γFð5=2þ λ; 5=2 − λ; 3; 1 − zÞ ð42Þ

where C1
γ and C2

γ are two new integration constants.
Furthermore, it is rather easy to check that it is possible
to take as a particular solution of (39)

γpðzÞ ¼
1

9=4 − κ2

×

�
zð1 − zÞ d2

dz2
þ ð1=2Þð1 − 2zÞ d

dz

�
GðþÞðzÞ:

ð43Þ

We have now at our disposal the general solution of the
nonhomogeneous differential equation (39). This permits
us to establish the expression of the Wightman function
(30) by determining βðzÞ from Eq. (38) and then αðzÞ from
Eq. (37). After a long but straightforward calculation using
systematically, in order to remove higher-order derivatives,
the differential relation [32–34]

d
dz

Fða; b; c; zÞ ¼ ab
c
Fðaþ 1; bþ 1; cþ 1; zÞ ð44Þ

as well as the hypergeometric differential equation (34), we
obtain

GðþÞA
μν0 ðx; x0Þ ¼ ½−ð2=3ÞC1

γzð1 − zÞF0ð5=2þ λ; 5=2 − λ; 3; zÞ þ ð2=3ÞC2
γzð1 − zÞF0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

− C1
γð1 − 2zÞFð5=2þ λ; 5=2 − λ; 3; zÞ − C2

γð1 − 2zÞFð5=2þ λ; 5=2 − λ; 3; 1 − zÞ
− ð1=4ÞC1

GFð5=2þ κ; 5=2 − κ; 3; zÞ þ ð1=4ÞC2
GFð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�gμν0

þ 8

R
½−C1

γF0ð5=2þ λ; 5=2 − λ; 3; zÞ þ C2
γF0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

− 3C1
γð1=zÞFð5=2þ λ; 5=2 − λ; 3; zÞ − 3C2

γð1=zÞFð5=2þ λ; 5=2 − λ; 3; 1 − zÞ
− ð3=4ÞC1

GF
0ð5=2þ κ; 5=2 − κ; 3; zÞ − ð3=4ÞC2

GF
0ð5=2þ κ; 5=2 − κ; 3; 1 − zÞ

− ð3=4ÞC1
Gð1=zÞFð5=2þ κ; 5=2 − κ; 3; zÞ þ ð3=4ÞC2

Gð1=zÞFð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�z;μz;ν0 : ð45Þ

It is important to note that, in Eq. (45) as well as in the
following of the article, the derivative of the hypergeo-
metric function Fða; b; c; zÞ with respect to its argument z
is denoted by F0ða; b; c; zÞ.
In summary, the general form of the Wightman func-

tion associated with the massive vector field Aμ is

explicitly given by Eq. (45) while the Wightman function
associated with the scalar field Φ and the ghost fields C
and C� is explicitly given by Eq. (36). In the following
subsections, we shall fix the integration constants C1

G,
C2
G, C

1
γ and C2

γ appearing in the expression of these two-
point functions.
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2. Wightman functions for Hadamard vacua

Previously, we have assumed that the vacuum j0i of
Stueckelberg electromagnetism is of Hadamard type. Here,
we shall consider that this assumption can be realized by
imposing that, at short distance, i.e. for x0 → x, the
Wightman function (20) associated with the massive vector
field Aμ and the Wightman function (28) associated with
both the scalar field Φ and the ghost fields C and C� satisfy

gμν
0
GðþÞA

μν0 ðx; x0Þ ∼
x0→x

1

2π2
1

σðx; x0Þ ð46Þ

and

GðþÞðx; x0Þ ∼
x0→x

1

8π2
1

σðx; x0Þ : ð47Þ

It should be noted that, at first sight, the conditions (46) and
(47) are less constraining than assuming that the Feynman

propagators associated with all the fields of the theory can
be represented in the Hadamard form [1]. (Without loss of
generality, in this discussion, we focus on Feynman
propagators but it would be possible to consider, equiv-
alently, Hadamard Green functions.) Indeed, this last
assumption provides stronger constraints on the geometri-
cal coefficients of the singular terms in 1=½σðx; x0Þ þ iϵ�
and ln½σðx; x0Þ þ iϵ� of the Hadamard representations of the
Feynman propagators. In fact, due to the choice ξ ¼ 1 of
the gauge parameter, we know that the two-point functions
of the Stueckelberg theory can be represented in the
Hadamard form and, as a consequence, if we fix the
dominant term of the coefficient of 1=½σðx; x0Þ þ iϵ�, all
the other terms are unambiguously determined [see the
differential equation (A3a) and the boundary condition
(A3b) as well as the recursion relations (39a), (39b), (43a)
and (43b) in Ref. [1]].
By inserting (10a) or (10b) into (45) and (36), we obtain

the short-distance expansions

gμν
0
GðþÞA

μν0 ðx; x0Þ ¼
�
−

3072C1
γ

Γð5=2þ λÞΓð5=2 − λÞ −
2304C1

G

Γð5=2þ κÞΓð5=2 − κÞ
�

1

Rσ2ðx; x0Þ

þ
�
−

32ð85=4 − λ2ÞC1
γ

Γð5=2þ λÞΓð5=2 − λÞ −
72ð19=4þ κ2ÞC1

G

Γð5=2þ κÞΓð5=2 − κÞ
�

1

Rσðx; x0Þ þ O
x0→x

½ln σðx; x0Þ� ð48Þ

and

GðþÞðx; x0Þ ¼ 24C1
G

Γð3=2þ κÞΓð3=2 − κÞ
1

Rσðx; x0Þ
þ O

x0→x
½ln σðx; x0Þ� ð49Þ

and, by comparing with (46) and (47), we can fix the two
integration constants C1

γ and C1
G. We have

C1
γ ¼ −

R
256π2

Γð5=2þ λÞΓð5=2 − λÞ
1=4 − λ2

ð50aÞ

¼ −
R

256π

9=4 − λ2

cosðπλÞ ð50bÞ

and

C1
G ¼ R

192π2
Γð3=2þ κÞΓð3=2 − κÞ ð51aÞ

¼ R
192π

1=4 − κ2

cosðπκÞ : ð51bÞ

Here, in order simplify the expressions (50a) and (51a)
which involve the Gamma function ΓðzÞ, we have used the
reflection formula [32–34]

ΓðzÞΓð1 − zÞ ¼ π

sinðπzÞ : ð52Þ

3. Wightman functions in dS4

In dS4, in order to fix the remaining integration
constants C2

γ and C2
G, we require the regularity of the

Wightman functions (45) and (36) at the antipodal point
of x, x0 ¼ Px and therefore on its light cone, or, in other
words, for z → 0 (see also Fig. 1) [29,35]. We obtain
immediately

C2
γ ¼ 0 ð53aÞ

and

C2
G ¼ 0: ð53bÞ

By inserting now the integration constants (50), (51),
(53a) and (53b) into the general expressions (45) and
(36), we obtain in dS4 the explicit expressions of the
Wightman function associated with the massive vector
field Aμ and the Wightman function associated with
both the Stueckelberg scalar field Φ and the ghost fields
C and C�. We have
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GðþÞA
μν0 ðx; x0Þ ¼ H2

32π

�
9=4 − λ2

cosðπλÞ zð1 − zÞF0ð5=2þ λ; 5=2 − λ; 3; zÞ þ 3

2

ð9=4 − λ2Þ
cosðπλÞ ð1 − 2zÞFð5=2þ λ; 5=2 − λ; 3; zÞ

−
1

2

ð1=4 − κ2Þ
cosðπκÞ Fð5=2þ κ; 5=2 − κ; 3; zÞ

�
gμν0

þ 1

32π

�
9=4 − λ2

cosðπλÞ F
0ð5=2þ λ; 5=2 − λ; 3; zÞ þ 3

ð9=4 − λ2Þ
cosðπλÞ ð1=zÞFð5=2þ λ; 5=2 − λ; 3; zÞ

−
1=4 − κ2

cosðπκÞ F
0ð5=2þ κ; 5=2 − κ; 3; zÞ − 1=4 − κ2

cosðπκÞ ð1=zÞFð5=2þ κ; 5=2 − κ; 3; zÞ
�
z;μz;ν0 ð54Þ

and

GðþÞðx; x0Þ ¼ H2

16π

1=4 − κ2

cosðπκÞ Fð3=2þ κ; 3=2 − κ; 2; zÞ:

ð55Þ

It should be noted that (54) is in accordance with the
result obtained recently by Fröb and Higuchi from a mode-
sum construction [see Eq. (25) in Ref. [21]] while (55) is a
closed form which can be found in various works con-
cerning the massive scalar field in dS4 [2,3,15,29,35].

4. Wightman functions in AdS4

In AdS4, in order to fix the remaining integration
constants C2

γ and C2
G, we require that the Wightman

functions (45) and (36) fall off as fast as possible at spatial
infinity, i.e., for z → ∞ (see also Fig. 2). We recall that this
condition is imposed because the Cauchy problem is not
well posed in AdS4, this gravitational background being
not globally hyperbolic [27]. Such a condition permits us to
control the flow of information through spatial infin-
ity [28,36].
In the expressions (45) and (36) of the Wightman

functions, the hypergeometric functions are expressed
in terms of the variables z and 1 − z. In order to impose
the boundary condition previously mentioned, it is
helpful to reexpress them in terms of the variable
1=z. This can be achieved thanks to the connection
formulas [32–34]

Fða; b; c; zÞ ¼ ΓðcÞΓðb − aÞ
ΓðbÞΓðc − aÞ ð−zÞ

−aFða; a − cþ 1; a − bþ 1; 1=zÞ

þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ ð−zÞ

−bFðb; b − cþ 1; b − aþ 1; 1=zÞ ð56aÞ

which is valid for j argð−zÞj < π and

Fða; b; c; 1 − zÞ ¼ ΓðcÞΓðb − aÞ
ΓðbÞΓðc − aÞ z

−aFða; c − b; a − bþ 1; 1=zÞ þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ z

−bFðb; c − a;b − aþ 1; 1=zÞ ð56bÞ

which is valid for j argðzÞj < π. We can then observe that
the Wightman functions (45) and (36) approach zero as fast
as possible at spatial infinity if we eliminate the terms in
z−ð5=2−κÞ and z−ð5=2−λÞ in the expression of the former and
the term in z−ð3=2−κÞ in the expression of the latter. (Here,
since m > 0, we have that λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þm2=K2

p
> 0 and

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þm2=K2

p
> 0.) We then obtain immediately

C2
γ ¼ �ie�iπλC1

γ ð57aÞ

and

C2
G ¼∓ ie�iπκC1

G: ð57bÞ

In Eqs. (57a) and (57b), the upper sign (the lower sign)
must be chosen if, in the expressions (45) and (36) of
the Wightman functions, z lies in the upper half plane (in
the lower half plane). This follows from the relation
ð−zÞ−a ¼ e∓iπaz−a which is a consequence of
ð−zÞ−a ¼ exp½−a lnð−zÞ�.
By inserting now the integration constants (50), (51),

(57a) and (57b) into the general expressions (45) and (36),
we can obtain in AdS4 the explicit expressions of the
Wightman function associated with the massive vector field
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Aμ and the Wightman function associated with both the Stueckelberg scalar field Φ and the ghost fields C and C�. Making
use of the reflection formula (52) and of the duplication formula [32–34]

Γð2zÞ ¼ 22z

2
ffiffiffi
π

p ΓðzÞΓðzþ 1=2Þ ð58Þ

to deal with the Γ function, we have

GðþÞA
μν0 ðx; x0Þ ¼ −

K2

32π

�
9=4 − λ2

cosðπλÞ zð1 − zÞ½F0ð5=2þ λ; 5=2 − λ; 3; zÞ ∓ ie�iπλF0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

þ 3

2

ð9=4 − λ2Þ
cosðπλÞ ð1 − 2zÞ½Fð5=2þ λ; 5=2 − λ; 3; zÞ � ie�iπλFð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

−
1

2

ð1=4 − κ2Þ
cosðπκÞ ½Fð5=2þ κ; 5=2 − κ; 3; zÞ � ie�iπκFð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�

�
gμν0

þ 1

32π

�
9=4 − λ2

cosðπλÞ ½F
0ð5=2þ λ; 5=2 − λ; 3; zÞ ∓ ie�iπλF0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

þ 3
ð9=4 − λ2Þ
cosðπλÞ ð1=zÞ½Fð5=2þ λ; 5=2 − λ; 3; zÞ � ie�iπλFð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

−
1=4 − κ2

cosðπκÞ ½F
0ð5=2þ κ; 5=2 − κ; 3; zÞ ∓ ie�iπκF0ð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�

−
1=4 − κ2

cosðπκÞ ð1=zÞ½Fð5=2þ κ; 5=2 − κ; 3; zÞ � ie�iπκFð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�
�
z;μz;ν0 ð59aÞ

¼ −
K4

32π2m2

�
Γð7=2þ λÞΓð1=2þ λÞ

Γð1þ 2λÞ z−ð5=2þλÞð1 − zÞFð7=2þ λ; 1=2þ λ; 1þ 2λ; 1=zÞ

− 3
Γð5=2þ λÞΓð1=2þ λÞ

Γð1þ 2λÞ z−ð5=2þλÞð1 − 2zÞFð5=2þ λ; 1=2þ λ; 1þ 2λ; 1=zÞ

þ Γð5=2þ κÞΓð1=2þ κÞ
Γð1þ 2κÞ z−ð5=2þκÞFð5=2þ κ; 1=2þ κ; 1þ 2κ; 1=zÞ

�
gμν0

þ K2

32π2m2

�
Γð7=2þ λÞΓð1=2þ λÞ

Γð1þ 2λÞ z−ð7=2þλÞFð7=2þ λ; 1=2þ λ; 1þ 2λ; 1=zÞ

− 6
Γð5=2þ λÞΓð1=2þ λÞ

Γð1þ 2λÞ z−ð7=2þλÞFð5=2þ λ; 1=2þ λ; 1þ 2λ; 1=zÞ

−
Γð7=2þ κÞΓð1=2þ κÞ

Γð1þ 2κÞ z−ð7=2þκÞFð7=2þ κ; 1=2þ κ; 1þ 2κ; 1=zÞ

þ 2
Γð5=2þ κÞΓð1=2þ κÞ

Γð1þ 2κÞ z−ð7=2þκÞFð5=2þ κ; 1=2þ κ; 1þ 2κ; 1=zÞ
�
z;μz;ν0 ð59bÞ

and

GðþÞðx; x0Þ ¼ −
K2

16π

1=4 − κ2

cosðπκÞ ½Fð3=2þ κ; 3=2 − κ; 2; zÞ ∓ ie�iπκFð3=2þ κ; 3=2 − κ; 2; 1 − zÞ� ð60aÞ

¼ K2

16π2
Γð3=2þ κÞΓð1=2þ κÞ

Γð1þ 2κÞ z−ð3=2þκÞFð3=2þ κ; 1=2þ κ; 1þ 2κ; 1=zÞ: ð60bÞ

Here, it is important to recall that, in Eqs. (59a) and (60a), the upper sign (the lower sign) must be chosen if z lies in the
upper half plane (in the lower half plane). It should be noted that we have provided two equivalent expressions for these
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two-point functions: the hypergeometric functions appear-
ing in formulas (59a) and (60a) are given in terms of the
variables z and 1 − z while those appearing in formulas
(59b) and (60b) are expressed in terms of 1=z. The
expression (60) is a result which can be found in some
other works concerning the massive scalar field in AdS4

(see, e.g., Refs. [8,9,15,37]). To our knowledge, the
Wightman function (59) associated with the massive vector
field Aμ of the Stueckelberg theory is not in the literature. In
Ref. [16], Janssen and Dullemond have considered that
problem but we are unable to link their results with ours.

D. Feynman propagators and Hadamard Green
functions in dS4 and AdS4

It is well known that, in quantum field theory in flat
spacetime, we can construct all the interesting two-point
functions, i.e., the retarded and advanced Green functions,
the Feynman propagator and the Hadamard Green function,
from the Wightman function by taking its real or its
imaginary part and, when it is necessary, by using multi-
plication by a step function in time. In some sense, this
remains true in curved spacetime [30,31,38] and, in this
subsection, we shall provide the expressions of the
Feynman propagators and the Hadamard Green functions
of Stueckelberg massive electromagnetism from the
Wightman functions obtained previously. Here, we shall
adopt a pragmatic point of view by following the approach
and the arguments of Allen and Jacobson [15,29]. It is
however interesting to note the existence of a more rigorous
point of view exposed in an impressive article by Bros and
Moschella which concerns the scalar field in de Sitter
spacetime [39] and in the Bros et al. paper on general
quantum field theories in anti–de Sitter spacetime [40].

1. In dS4

The expressions (54) and (55) of theWightman functions
involve the hypergeometric function Fða; b; c; zÞ which, in
general, has a branch point at z ¼ 1 (i.e., for x0 on the light
cone of x) and a branch cut which runs along the real axis
from z ¼ 1 to þ∞ (i.e., for x0 in the light cone of x) [see
also Eq. (15)]. As a consequence, these Wightman func-
tions are perfectly defined when x and x0 are spacelike
related or cannot be joined by a geodesic but, when they are
timelike related, it is important to specify how to approach
the branch cut. In fact, it is necessary to replace in Eqs. (54)
and (55) the biscalar z by the biscalar z ∓ iϵ (here ϵ → 0þ)
where the minus sign (respectively the plus sign) is chosen
when x0 lies in the past (respectively the future) of x.
Indeed, in dS4, due to the relation (10) [note that
z ¼ 1 − ðR=24Þσ þ…], the prescription z → z ∓ iϵ indu-
ces the change σ → σ � iϵ which permits us to encode the
usual behavior of the Wightman functions in curved
spacetime (see also Chap. 4 of Ref. [41]) and to recover,

in the flat-space limit, the Wightman functions of
Minkowski quantum field theory.
The Feynman propagator GA

μν0 ðx;x0Þ¼ ih0jTAμðxÞ
Aν0 ðx0Þj0i associated with the massive vector field Aμ (here,
T denotes the time-ordering operator) is obtained from

the Wightman function (54) by writing GA
μν0 ðx; x0Þ ¼

iGðþÞA
μν0 ðz − iϵÞ with ϵ → 0þ. Indeed, in dS4, the prescrip-

tion z → z − iϵ induces the change σ → σ þ iϵ which
permits us to encode the time ordering (see also Secs. II
C and III A of Ref. [1]). Similarly, the Feynman propa-
gators GΦðx; x0Þ ¼ ihψ jTΦðxÞΦðx0Þjψi and GGhðx; x0Þ ¼
ihψ jTC�ðxÞCðx0Þjψi associated respectively with the
scalar field Φ and the ghost fields C and C� are equal
to iGðþÞðz − iϵÞ.
The expression of the Hadamard Green function

Gð1ÞA
μν0 ðx; x0Þ ¼ h0jAμðxÞAν0 ðx0Þ þ Aν0 ðx0ÞAμðxÞj0i ð61Þ

associated with the massive vector field Aμ is obviously
obtained from (54) by noting that

Gð1ÞA
μν0 ðx; x0Þ ¼ GðþÞA

μν0 ðx; x0Þ þ GðþÞA
ν0μ ðx0; xÞ: ð62Þ

In the same way, the Hadamard Green function

Gð1ÞΦðx; x0Þ ¼ h0jΦðxÞΦðx0Þ þ Φðx0ÞΦðxÞj0i ð63Þ

associated with the auxiliary scalar field Φ and the
Hadamard Green function

Gð1ÞGhðx; x0Þ ¼ h0jC�ðxÞCðx0Þ − Cðx0ÞC�ðxÞj0i ð64Þ

associated with the ghost fields C and C� can be obtained
from (55). We have

Gð1ÞΦðx; x0Þ ¼ Gð1ÞGhðx; x0Þ ¼ Gð1Þðx; x0Þ ð65Þ

with

Gð1Þðx; x0Þ ¼ GðþÞðx; x0Þ þ GðþÞðx0; xÞ: ð66Þ

Formulas (62) and (66) must be taken with a grain of salt.
Indeed, it is important to recall that Hadamard Green
functions are real valued while Wightman functions are
complex valued and the prescription permitting us to define
the former and the latter on the branch cut are different. In
fact, Hadamard Green functions are average across the cut,
i.e., we have

Gð1ÞA
μν0 ðx; x0Þ ¼ GðþÞA

μν0 ðzþ iϵÞ þGðþÞA
μν0 ðz − iϵÞ ð67Þ

and

Gð1Þðx; x0Þ ¼ GðþÞðzþ iϵÞ þGðþÞðz − iϵÞ ð68Þ
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with ϵ → 0þ. This prescription, which is in total agreement with that defining the Wightman functions, permits us to have at
our disposal Hadamard Green functions which are real valued. More explicitly, by inserting (54) into (67) and (55) into (68),
we obtain

Gð1ÞA
μν0 ðx; x0Þ ¼

H2

16π

�
9=4 − λ2

cosðπλÞ zð1 − zÞðReFÞ0ð5=2þ λ; 5=2 − λ; 3; zÞ þ 3

2

ð9=4 − λ2Þ
cosðπλÞ ð1 − 2zÞðReFÞð5=2þ λ; 5=2 − λ; 3; zÞ

−
1

2

ð1=4 − κ2Þ
cosðπκÞ ðReFÞð5=2þ κ; 5=2 − κ; 3; zÞ

�
gμν0

þ 1

16π

�
9=4 − λ2

cosðπλÞ ðReFÞ
0ð5=2þ λ; 5=2 − λ; 3; zÞ þ 3

ð9=4 − λ2Þ
cosðπλÞ ð1=zÞðReFÞð5=2þ λ; 5=2 − λ; 3; zÞ

−
1=4 − κ2

cosðπκÞ ðReFÞ
0ð5=2þ κ; 5=2 − κ; 3; zÞ − 1=4 − κ2

cosðπκÞ ð1=zÞðReFÞð5=2þ κ; 5=2 − κ; 3; zÞ
�
z;μz;ν0 ð69Þ

and

Gð1Þðx; x0Þ ¼ H2

8π

1=4 − κ2

cosðπκÞ ðReFÞð3=2þ κ; 3=2 − κ; 2; zÞ:

ð70Þ

Here, we have introduced the average across the cut of the
hypergeometric function Fða; b; c; zÞ defined by

ðReFÞða; b; c; zÞ ¼ Fða; b; c; zþ iϵÞ þ Fða; b; c; z − iϵÞ
2

:

ð71aÞ

This function is nothing else than the real part of
Fða; b; c; zÞ on the branch cut. We have also used its
derivative ðReFÞ0ða; b; c; zÞ with respect to its argument z.
It should be noted that below we shall need also its
imaginary part

ðImFÞða; b; c; zÞ ¼ Fða; b; c; zþ iϵÞ − Fða; b; c; z − iϵÞ
2i

ð71bÞ

and we shall use its derivative ðImFÞ0ða; b; c; zÞ with
respect to its argument z.

2. In AdS4

Mutatis mutandis, the previous discussion can be
adapted to obtain the Feynman propagators and the
Hadamard Green functions in AdS4. We first note that
the branch cut of the Wightman functions (59) and (60)
runs along the real axis from z ¼ −∞ to z ¼ 1. This
appears clearly if we consider the expressions (59b) and
(60b). Indeed, the functions of the form z−a ¼ expð−a ln zÞ
and the hypergeometric functions of the form
Fða; b; c; 1=zÞ involved in these expressions are respec-
tively cut along the negative axis and the segment [0, 1]. As

a consequence, the Wightman functions (59) and (60) are
perfectly defined if z > 1, i.e., when x and x0 are spacelike
related [see also Eq. (16)] whereas, if z ≤ 1, and in
particular when x and x0 are timelike related (i.e., if
z ∈�0; 1½), it is important to specify how to approach the
branch cut. In fact, it is necessary to replace in Eqs. (59) and
(60) the biscalar z by the biscalar z� iϵ (here ϵ → 0þ)
where the plus sign (respectively the minus sign) is
chosen when x0 lies in the past (respectively the future)
of x. Indeed, in AdS4, due to the relation (10), it is now
the prescription z → z� iϵ which induces the change
σ → σ � iϵ permitting us to encode the usual behavior
of the Wightman functions in curved spacetime.
In AdS4, the Feynman propagator GA

μν0 ðx; x0Þ ¼
ih0jTAμðxÞAν0 ðx0Þj0i associated with the massive vector
field Aμ is obtained from the Wightman function (59) by

writing GA
μν0 ðx; x0Þ ¼ iGðþÞA

μν0 ðzþ iϵÞ with ϵ → 0þ. Indeed,
in this gravitational background, the prescription z → zþ
iϵ induces the change σ → σ þ iϵ which permits us to
encode the time ordering. Similarly, the Feynman propa-
gators GΦðx; x0Þ ¼ ihψ jTΦðxÞΦðx0Þjψi and GGhðx; x0Þ ¼
ihψ jTC�ðxÞCðx0Þjψi associated respectively with the
scalar field Φ and the ghost fields C and C� are equal
to iGðþÞðzþ iϵÞ.
In AdS4, the expression of the Hadamard Green function

(61) associated with the massive vector field Aμ is obtained
by inserting (59) into (67) while the Hadamard Green
function (65) associated with both the massive scalar field
Φ and the ghost fields C and C� is obtained by inserting
(60) into (68). In fact, here we shall construct the Hadamard
Green functions from (59a) and (60a) only. Indeed, the
resulting expressions are easily tractable in the context of
the renormalization of the stress-energy tensor, or more
precisely, their regular parts can be naturally extracted. Of
course, in order to obtain the Hadamard Green functions, it
is then important to take carefully into account the upper
sign (in that case, we use the variable zþ iϵ and we are
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working in the upper half plane) or the lower sign (in that case, we use the variable z − iϵ and we are working in the
lower half plane) in (59a) and (60a). A straightforward calculation leads to expressions which are explicitly real valued and
given by

Gð1ÞA
μν0 ðx; x0Þ ¼ −

K2

16π

�
9=4 − λ2

cosðπλÞ zð1 − zÞ½ðReFÞ0ð5=2þ λ; 5=2 − λ; 3; zÞ þ sinðπλÞðReFÞ0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

− cosðπλÞðImFÞ0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

þ 3

2

ð9=4 − λ2Þ
cosðπλÞ ð1 − 2zÞ½ðReFÞð5=2þ λ; 5=2 − λ; 3; zÞ − sinðπλÞðReFÞð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

þ cosðπλÞðImFÞð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

−
1

2

ð1=4 − κ2Þ
cosðπκÞ ½ðReFÞð5=2þ κ; 5=2 − κ; 3; zÞ − sinðπκÞðReFÞð5=2þ κ; 5=2 − κ; 3; 1 − zÞ

þ cosðπκÞðImFÞð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�
�
gμν0

þ 1

16π

�
9=4 − λ2

cosðπλÞ ½ðReFÞ
0ð5=2þ λ; 5=2 − λ; 3; zÞ þ sinðπλÞðReFÞ0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

− cosðπλÞðImFÞ0ð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

þ 3
ð9=4 − λ2Þ
cosðπλÞ ð1=zÞ½ðReFÞð5=2þ λ; 5=2 − λ; 3; zÞ − sinðπλÞðReFÞð5=2þ λ; 5=2 − λ; 3; 1 − zÞ

þ cosðπλÞðImFÞð5=2þ λ; 5=2 − λ; 3; 1 − zÞ�

−
1=4 − κ2

cosðπκÞ ½ðReFÞ
0ð5=2þ κ; 5=2 − κ; 3; zÞ þ sinðπκÞðReFÞ0ð5=2þ κ; 5=2 − κ; 3; 1 − zÞ

− cosðπκÞðImFÞ0ð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�

−
1=4 − κ2

cosðπκÞ ð1=zÞ½ðReFÞð5=2þ κ; 5=2 − κ; 3; zÞ − sinðπκÞðReFÞð5=2þ κ; 5=2 − κ; 3; 1 − zÞ

þ cosðπκÞðImFÞð5=2þ κ; 5=2 − κ; 3; 1 − zÞ�
�
z;μz;ν0 ð72Þ

and

Gð1Þðx; x0Þ ¼ −
K2

8π

1=4 − κ2

cosðπκÞ ½ðReFÞð3=2þ κ; 3=2 − κ; 2; zÞ

þ sinðπκÞðReFÞð3=2þ κ; 3=2 − κ; 2; 1 − zÞ
− cosðπκÞðImFÞð3=2þ κ; 3=2 − κ; 2; 1 − zÞ�:

ð73Þ

III. RENORMALIZED STRESS-ENERGY
TENSOR OF STUECKELBERG

ELECTROMAGNETISM

In this section, from the general formalism developed in
Ref. [1], we shall obtain exact analytical expressions for the
vacuum expectation value of the RSETof the massive vector
field propagating in dS4 and AdS4. We shall, in particular, fix
the geometrical ambiguities in the results (see Refs. [42,43]
for interesting remarks on the ambiguity problem as well as

Sec. IV E of Ref. [1] and references therein) by considering
the flat-space limit and, moreover, we shall discuss the zero-
mass limit of the expressions found.

A. General considerations

In this subsection, we have gathered some results
established in Ref. [1] which will be necessary to construct,
in the next three subsections, the RSETs associated with
Stueckelberg electromagnetism in dS4 and AdS4. By doing
so, we hope to alleviate the task of the reader and to prevent
him from drowning in the heavy formalism developed in
our previous article.
We have seen in Ref. [1] that, in the context of the

renormalization of the stress-energy tensor of Stueckelberg
electromagnetism, it is necessary to extract the regular and
state-dependent parts of the Hadamard Green functions

Gð1ÞA
μν0 ðx; x0Þ and Gð1Þðx; x0Þ. They can be obtained by

removing from Gð1ÞA
μν0 ðx; x0Þ and Gð1Þðx; x0Þ their singular
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and purely geometrical parts Gð1ÞA
sing μν0 ðx; x0Þ and

Gð1Þ
singðx; x0Þ. We have

Gð1ÞA
reg μν0 ðx; x0Þ ¼ Gð1ÞA

μν0 ðx; x0Þ −Gð1ÞA
sing μν0 ðx; x0Þ ð74Þ

and

Gð1Þ
regðx; x0Þ ¼ Gð1Þðx; x0Þ −Gð1Þ

singðx; x0Þ ð75Þ

where

Gð1ÞA
sing μν0 ðx; x0Þ ¼

1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ gμν0 ðx; x0Þ

þ VA
μν0 ðx; x0Þ ln jM2σðx; x0Þj

�
ð76Þ

and

Gð1Þ
singðx; x0Þ ¼

1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ Vðx; x0Þ ln jM2σðx; x0Þj

�
:

ð77Þ

The expressions of Gð1ÞA
sing μν0 ðx; x0Þ and Gð1Þ

singðx; x0Þ
involve the geodetic interval σðx; x0Þ, the bivector of
parallel transport gμν0 ðx; x0Þ, the Van Vleck–Morette deter-
minant Δðx; x0Þ (see Ref. [30] or the Appendix of Ref. [1]
for its definition and properties) as well as the
geometrical bivector VA

μν0 ðx; x0Þ and the geometrical bisca-
lar Vðx; x0Þ which are defined by the expansions
VA
μν0 ðx; x0Þ ¼

Pþ∞
n¼0 V

A
n μν0 ðx; x0Þσnðx; x0Þ and Vðx; x0Þ ¼Pþ∞

n¼0 Vnðx; x0Þσnðx; x0Þ and by the recursion relations
satisfied by the coefficients VA

n μν0 ðx; x0Þ and Vnðx; x0Þ
[see Eqs. (39a), (39b), (43a) and (43b) in Ref. [1]].
Moreover, we have introduced the renormalization mass
M permitting us to make dimensionless the argument of the
logarithm.
In fact, in order to construct the RSET, we only need the

lower coefficients of the covariant Taylor series expansions
for x0 → x of the bitensor

WA
μνðx; x0Þ ¼ 4π2gνν

0 ðx; x0ÞGð1ÞA
reg μν0 ðx; x0Þ ð78Þ

and of the biscalar

Wðx; x0Þ ¼ 4π2Gð1Þ
regðx; x0Þ ð79Þ

or, more precisely, we only need the covariant Taylor series
expansions of these two quantities up to order σ1ðx; x0Þ (see
Sec. IV of Ref. [1]). As a consequence, we are not really
interested by the full expressions of (76) and (77) but by
their covariant Taylor series expansions truncated by

neglecting the terms vanishing faster than σðx; x0Þ for
x0 → x. They can be obtained from the covariant Taylor
series expansion of Δ1=2ðx; x0Þ up to order σ2ðx; x0Þ [see
Eq. (A9) in Ref. [1]], the covariant Taylor series expansion
of VA

μνðx; x0Þ up to order σ1ðx; x0Þ [see Eqs. (71a)–(72d) in
Ref. [1]] and the covariant Taylor series expansion of
Vðx; x0Þ up to order σ1ðx; x0Þ [see Eqs. (73a)–(74c) in
Ref. [1]]. By inserting these covariant Taylor series
expansions into (76) and (77), we can derive the covariant
Taylor series expansions of WA

μνðx; x0Þ defined by (78) [see
Eq. (75) in Ref. [1] for its general expression] and of
Wðx; x0Þ defined by (79) [see Eq. (76) in Ref. [1] for its
general expression].
Fortunately, in maximally symmetric spacetimes, due to

the relations (6a)–(6c), the regularization of the Hadamard

Green functions Gð1ÞA
μν0 ðx; x0Þ and Gð1Þðx; x0Þ greatly sim-

plifies. Indeed:
(i) The covariant Taylor series expansions of the vari-

ous bitensors involved in the singular parts of the
Hadamard Green functions reduce to

Δ1=2 ¼ 1þ ð1=24ÞRσ þ ð19=17280ÞR2σ2 þOðσ3Þ;
ð80aÞ

VA
μν ¼ f½ð1=2Þm2 þ ð1=24ÞR� þ ½ð1=8Þm4

þ ð1=24Þm2Rþ ð1=432ÞR2�σggμν
þ ð1=1728ÞR2σ;μσ;ν þOðσ3=2Þ; ð80bÞ

and

V ¼ ½ð1=2Þm2 − ð1=12ÞR�
þ ½ð1=8Þm4 − ð1=48Þm2R�σ þOðσ3=2Þ: ð80cÞ

(ii) The covariant Taylor series expansions of the bi-
tensors WA

μνðx; x0Þ and Wðx; x0Þ reduce to

WA
μν ¼ sμν þ

1

2
sμνabσ;aσ;b þOðσ3=2Þ ð81Þ

and

W ¼ wþ 1

2
wabσ

;aσ;b þOðσ3=2Þ: ð82Þ

In the following, these considerations will facilitate
our task.
In our previous article, we have provided two

different expressions for the RSET of Stueckelberg
electromagnetism:

(i) A first expression which only involves state-
dependent as well as geometrical quantities associ-
ated with the massive vector field Aμ [see Eq. (123)

STUECKELBERG MASSIVE ELECTROMAGNETISM IN DE … PHYSICAL REVIEW D 94, 105028 (2016)

105028-13



in Ref. [1]]. Here, the contribution of the quantum
massive scalar field Φ has been removed thanks to a
Ward identity and the result obtained is given in
terms of the first coefficients of the covariant
Taylor series expansions for x0 → x of the bitensor
WA

μνðx; x0Þ [see Eq. (75) in Ref. [1]].
(ii) A second expression where the contributions of the

massive vector field Aμ and of the massive scalar
field Φ have been artificially separated [see
Eqs. (125) and (126) in Ref. [1]] and which has
been constructed in such a way that the zero-mass
limit of the first contribution reduces to the RSET
of Maxwell’s electromagnetism. The result obtained
is given in terms of the first coefficients of the
covariant Taylor series expansions for x0 → x of the
bitensors WA

μνðx; x0Þ and Wðx; x0Þ [see Eqs. (75) and
(76) in Ref. [1]].

Of course, these expressions are equivalent but it will be
necessary to consider both in order to clearly discuss the
zero-mass limit of the Stueckelberg theory (see Sec. III D).
In maximally symmetric spacetimes, these expressions
simplify considerably. Indeed, the RSET of Stueckelberg
electromagnetism can be expressed in terms of its trace as

h0jT̂μνj0iren ¼
1

4
h0jT̂ρ

ρj0irengμν ð83Þ

and this one reduces to

h0jT̂ρ
ρj0iren ¼

1

8π2
f½−m2 − ð1=8ÞR�sρρ

þ sρτρτ þ 3vA1 ρ
ρg þ Θρ

ρ ð84Þ

if we focus on the expression which only involves the
characteristics of the quantum massive vector field Aμ [see,
in Ref. [1], Eqs. (123) and (124)]. If we alternatively focus
on the expression which involves both the characteristics of
the massive vector field Aμ and of the massive scalar fieldΦ
[see, in Ref. [1], Eqs. (125)–(128)], we have

h0jT̂ρ
ρj0iren ¼ T A

ρ
ρ þ T Φ

ρ
ρ þ Θρ

ρ ð85Þ

with

T A
ρ
ρ ¼ 1

8π2
f½−m2 − ð1=4ÞR�sρρ þ 2sρτρτ þ 4vA1 ρ

ρg
ð86aÞ

and

T Φ
ρ
ρ ¼ 1

8π2
ð−m2wþ 2v1Þ: ð86bÞ

It should be noted that the term Θρ
ρ appearing in Eqs. (84)

and (85) is a purely geometrical term which encodes the

ambiguities in the definition of the RSET [see Sec. IV E of
Ref. [1]] and which involves, in particular, a contribution
associated with the renormalization massM. We also recall
that the term vA1 ρ

ρ in Eqs. (84) and (86a) and the term v1 in
Eq. (86b) are purely geometrical quantities which appear
in the covariant Taylor series expansions of VA

μνðx; x0Þ and
Vðx; x0Þ [see Eqs. (71b) and (73b) in Ref. [1]]. From
Eqs. (72d) and (74c) of Ref. [1], we can show that, in
maximally symmetric backgrounds, they reduce to

vA1 ρ
ρ ¼ ð1=2Þm4 þ ð1=12Þm2R − ð1=2160ÞR2 ð87Þ

and

v1 ¼ ð1=8Þm4 − ð1=24Þm2Rþ ð29=8640ÞR2: ð88Þ

It is crucial to discuss the form of the trace term Θρ
ρ

appearing in Eqs. (84) and (85). In an arbitrary gravita-
tional background, such a term is given by Eq. (133) of
Ref. [1] which reduces, in maximally symmetric space-
times, to

Θρ
ρ ¼ 1

8π2
ðαm4 þ βm2RÞ: ð89Þ

Here, α and β are constants which can be fixed by
imposing additional physical conditions on the RSET
(see below) or which can be redefined by renormalization
of Newton’s gravitational constant and of the cosmologi-
cal constant. Indeed, let us recall that, in Eq. (89), the
terms αm4 and βm2R come from the Einstein-Hilbert
action defining the dynamics of the gravitational field
(see also the discussion in Sec. IV E 1 of Ref. [1]). Of
course, the ambiguities associated with the renormaliza-
tion mass M are necessarily of this form but their
expressions are totally determined. In maximally sym-
metric spacetimes, the renormalization mass induces in
(84) a contribution given by

Θρ
ρðMÞ ¼ lnðM2Þ

8π2
½ð3=2Þm4 þ ð1=4Þm2R�: ð90Þ

It can be derived from Eq. (146) of Ref. [1] which is valid
in an arbitrary gravitational background. Similarly, the
renormalization mass induces in (85) a contribution
given by

Θρ
ρðMÞ ¼ ΘA

ρ
ρðMÞ þ ΘΦ

ρ
ρðMÞ ð91Þ

with

ΘA
ρ
ρðMÞ ¼ lnðM2Þ

8π2
½m4 þ ð1=3Þm2R� ð92aÞ

and
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ΘΦ
ρ
ρðMÞ ¼ lnðM2Þ

8π2
½ð1=2Þm4 − ð1=12Þm2R�: ð92bÞ

It can be derived from Eqs. (144), (147a) and (147b) of
Ref. [1] which are valid in an arbitrary gravitational
background.
To conclude this subsection, we would like to remark

that the Taylor coefficient sρτρτ appearing in the expressions
(84) and (86a) of the RSET can be related with lower-order
Taylor coefficients. Indeed, due to the “Ward identity”
linking the bitensors WA

μνðx; x0Þ and Wðx; x0Þ [see Eq. (85)
in Ref. [1]], we can write in a maximally symmetric
spacetime [see Eq. (86b) in Ref. [1]]

sρτρτ ¼ ð1=8ÞRsρρ þ wρ
ρ − vA1 ρ

ρ þ 4v1: ð93Þ

Moreover, due to the “wave equation” satisfied by the
biscalar Wðx; x0Þ [see Eq. (82) in Ref. [1]], we have the
constraint [see Eq. (83a) in Ref. [1]]

wρ
ρ ¼ m2w − 6v1: ð94Þ

By inserting (94) into (93), we then obtain

sρτρτ ¼ ð1=8ÞRsρρ þm2w − vA1 ρ
ρ − 2v1: ð95Þ

This last equation is very interesting. Indeed, it permits us
to realize that, in maximally symmetric spacetimes, the
construction of the RSET of Stueckelberg electromagnet-
ism can be accomplished using only the coefficients sρρ and
w, i.e., the lowest-order coefficients of the covariant Taylor

series expansions (81) and (82). As a consequence, in the
regularization process, it would be sufficient to consider
the covariant Taylor series expansions of (76) and (77)
truncated by neglecting the terms vanishing faster than
σ0ðx; x0Þ ¼ 1 for x0 → x. Moreover, we can remark that the
Taylor coefficient sρρ is a trace term. So, in order to obtain
its expression, it would be sufficient to regularize the trace

gμν
0 ðx; x0ÞGð1ÞA

μν0 ðx; x0Þ of the Hadamard Green function (69)
or (72) and this could be done rather easily by taking into
account the relation (17a). In fact, in the following, we shall
not use these considerations even if it is obvious they could
greatly simplify our job. We intend to determine the full
covariant Taylor series expansions (81) and (82) because
this will permit us to control the internal consistency of our
calculations and, in particular, that the singular terms in
ln jσðx; x0Þj hidden in the expressions (69), (70), (72) and
(73) of the Hadamard Green functions are of Hadamard
type. We shall use the constraints (94) and (95) only to
check our results.

B. The renormalized stress-energy tensor in dS4

In dS4, the covariant Taylor series expansions (81) and
(82) can be obtained by inserting the expressions (69) and
(70) of the Hadamard Green functions into (74) and (75)
taking into account (i) the relation (11) which links the
quadratic form zðx; x0Þ with the geodetic interval σðx; x0Þ as
well as (ii) the expression of the singular parts (76) and (77)
constructed by using the covariant Taylor series expansions
(80a)–(80c). We then obtain

sμν ¼ f−ð1=2Þm2 − ð19=144ÞRþ ½ð3=8Þm2 þ ð1=16ÞR�½lnðR=24Þ þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ�
þ ½ð1=8Þm2 − ð1=48ÞR�½lnðR=24Þ þΨð5=2þ κÞ þΨð5=2 − κÞ þ 2γ�ggμν; ð96aÞ

sμνab ¼ f−ð5=16Þm4 − ð43=288Þm2R − ð691=51840ÞR2

þ ½ð5=48Þm4 þ ð5=72Þm2Rþ ð5=576ÞR2�½lnðR=24Þ þΨð7=2þ λÞ þΨð7=2 − λÞ þ 2γ�
− ½ð1=32Þm2Rþ ð1=192ÞR2�½lnðR=24Þ þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ�
þ ½ð1=48Þm4 þ ð1=288Þm2R − ð1=864ÞR2�½lnðR=24Þ þΨð7=2þ κÞ þΨð7=2 − κÞ þ 2γ�ggμνgab
þ fð1=144Þm2Rþ ð19=5184ÞR2

− ½ð1=24Þm4 þ ð1=36Þm2Rþ ð1=288ÞR2�½lnðR=24Þ þΨð7=2þ λÞ þΨð7=2 − λÞ þ 2γ�
þ ½ð1=32Þm2Rþ ð1=192ÞR2�½lnðR=24Þ þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ�
þ ½ð1=24Þm4 þ ð1=144Þm2R − ð1=432ÞR2�½lnðR=24Þ þΨð7=2þ κÞ þΨð7=2 − κÞ þ 2γ�
− ½ð1=96Þm2R − ð1=576ÞR2�½lnðR=24Þ þΨð5=2þ κÞ þΨð5=2 − κÞ þ 2γ�ggμðajgνjbÞ ð96bÞ

and
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w ¼ −ð1=2Þm2 þ ð1=18ÞRþ ½ð1=2Þm2 − ð1=12ÞR�
× ½lnðR=24Þ þΨð3=2þ κÞ þΨð3=2 − κÞ þ 2γ�;

ð96cÞ

wab ¼ f−ð5=16Þm4 þ ð13=288Þm2Rþ ð1=5760ÞR2

þ ½ð1=8Þm4 − ð1=48Þm2R�½lnðR=24Þ þΨð5=2þ κÞ
þΨð5=2 − κÞ þ 2γ�ggab: ð96dÞ

In the previous expressions, we have introduced the
digamma function ΨðzÞ ¼ ðd=dzÞ lnΓðzÞ and we have
used systematically its properties [32–34] and, more
particularly, the recurrence formula

Ψðzþ 1Þ ¼ ΨðzÞ þ 1=z ð97Þ
in order to simplify them. We have also introduced the
Euler-Mascheroni constant γ ¼ −Ψð1Þ. From these results,
we can now write

sρρ ¼ −2m2 − ð19=36ÞRþ ½ð3=2Þm2 þ ð1=4ÞR�½lnðR=24Þ þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ�
þ ½ð1=2Þm2 − ð1=12ÞR�½lnðR=24Þ þΨð5=2þ κÞ þΨð5=2 − κÞ þ 2γ�; ð98aÞ

sρτρτ ¼ −ð5=4Þm4 − ð19=36Þm2R − ð1=60ÞR2 þ ½ð3=16Þm2Rþ ð1=32ÞR2�½lnðR=24Þ þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ�
þ ½ð1=2Þm4 þ ð1=12Þm2R − ð1=36ÞR2�½lnðR=24Þ þΨð7=2þ κÞ þΨð7=2 − κÞ þ 2γ�
− ½ð5=48Þm2R − ð5=288ÞR2�½lnðR=24Þ þΨð5=2þ κÞ þΨð5=2 − κÞ þ 2γ� ð98bÞ

and

wρ
ρ ¼ −ð5=4Þm4 þ ð13=72Þm2Rþ ð1=1440ÞR2 þ ½ð1=2Þm4 − ð1=12Þm2R�½lnðR=24Þ þΨð5=2þ κÞ þΨð5=2 − κÞ þ 2γ�:

ð98cÞ

It should be noted that the constraints (94) and (95) are
satisfied by these coefficients. This can be easily checked
using the recurrence formula (97).
By inserting now the expressions (98a) and (98b) into

(84) taking into account the geometrical term (87) as well
as the geometrical ambiguities (89) and (90), we have for
the trace of the RSET

8π2h0jT̂ρ
ρj0iren dS4

¼ ðαþ 9=4Þm4 þ ðβ þ 17=24Þm2Rþ ð19=1440ÞR2

− ½ð3=2Þm4 þ ð1=4Þm2R�½lnðR=ð24M2ÞÞ
þΨð5=2þ λÞ þΨð5=2 − λÞ þ 2γ� ð99Þ

and, of course, the RSET h0jT̂μνj0iren can be obtained
immediately from (83). This expression could be consid-
ered as the final result of our work in dS4. Indeed, by
construction, it fully includes the state dependence of the
Stueckelberg theory and, moreover, it takes into account all
the geometrical ambiguities. However, it is possible to go
further and to fix the renormalization mass M and the
coefficient α by requiring the vanishing of this expression
in the flat-space limit, i.e. for R → 0. We first absorb the
term 2γ into the renormalization mass M and we then
obtain M ¼ m=

ffiffiffi
2

p
and α ¼ −9=4 which leads to

8π2h0jT̂ρ
ρj0iren dS4

¼ ðβ þ 17=24Þm2Rþ ð19=1440ÞR2

− ½ð3=2Þm4 þ ð1=4Þm2R�½lnðR=ð12m2ÞÞ
þΨð5=2þ λÞ þΨð5=2 − λÞ�: ð100Þ

This last result is not free of ambiguities due to the
arbitrary coefficient β remaining in the expression of the
trace of the RSET. However, it is worth noting that it would
be possible to cancel it or, more precisely, to cancel the term
ðβ þ 17=24Þm2R by a finite renormalization of the
Einstein-Hilbert action of the gravitational field.

C. The renormalized stress-energy tensor in AdS4

Mutatis mutandis, the calculations of Sec. III B can be
adapted to obtain the RSET of Stueckelberg electromag-
netism in AdS4. We first determine the covariant Taylor
series expansions (81) and (82) from the expressions (72)
and (73) of the Hadamard Green functions. We have

sμν ¼ f−ð1=2Þm2 þ ð5=144ÞRþ ½ð3=8Þm2 þ ð1=16ÞR�
× ½lnð−R=24Þ þ 2Ψð1=2þ λÞ þ 2γ�
þ ½ð1=8Þm2 − ð1=48ÞR�½lnð−R=24Þ þ 2Ψð1=2þ κÞ
þ 2γ�ggμν; ð101aÞ
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sμνab ¼ f−ð5=16Þm4 − ð1=18Þm2Rþ ð119=51840ÞR2 þ ½ð5=48Þm4 þ ð11=288Þm2Rþ ð1=288ÞR2�
× ½lnð−R=24Þ þ 2Ψð1=2þ λÞ þ 2γ� þ ½ð1=48Þm4 þ ð1=288Þm2R − ð1=864ÞR2�
× ½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ�ggμνgab þ fð1=144Þm2Rþ ð1=5184ÞR2

− ½ð1=24Þm4 − ð1=288Þm2R − ð1=576ÞR2�½lnð−R=24Þ þ 2Ψð1=2þ λÞ þ 2γ�
þ ½ð1=24Þm4 − ð1=288Þm2R − ð1=1728ÞR2�½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ�ggμðajgνjbÞ ð101bÞ

and

w ¼ −ð1=2Þm2 þ ð7=72ÞRþ ½ð1=2Þm2 − ð1=12ÞR�
× ½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ�; ð101cÞ

wab ¼ f−ð5=16Þm4 þ ð25=288Þm2R − ð29=5760ÞR2

þ ½ð1=8Þm4 − ð1=48Þm2R�½lnð−R=24Þ
þ 2Ψð1=2þ κÞ þ 2γ�ggab: ð101dÞ

In order to simplify the previous expressions and, in
particular, to eliminate the terms in tanðπκÞ and in tanðπλÞ
occurring in the expressions (72) and (73) of the Hadamard
Green functions, we have used systematically the relation

Ψðnþ 1=2þ zÞ þΨðnþ 1=2 − zÞ þ π tanðπzÞ

¼ 2Ψð1=2þ zÞ þ 2ð1 − δn0Þ
Xn−1
p¼0

pþ 1=2
ðpþ 1=2Þ2 − z2

ð102Þ

(here δnm is the Kronecker delta) which is valid for
n ∈ N. This relation can be derived from the reflection
formula [32–34]

Ψð1 − zÞ ¼ ΨðzÞ þ π cotðπzÞ ð103Þ

making use of tanðπzÞ ¼ − cot½πðzþ 1=2Þ� and of the
recurrence formula (97). From the results (101a), (101b)
and (101d), we can write

sρρ ¼ −2m2 þ ð5=36ÞRþ ½ð3=2Þm2 þ ð1=4ÞR�
× ½lnð−R=24Þ þ 2Ψð1=2þ λÞ þ 2γ�
þ ½ð1=2Þm2 − ð1=12ÞR�
× ½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ�; ð104aÞ

sρτρτ ¼ −ð5=4Þm4 − ð11=72Þm2Rþ ð1=90ÞR2

þ ½ð3=16Þm2Rþ ð1=32ÞR2�
× ½lnð−R=24Þ þ 2Ψð1=2þ λÞ þ 2γ�
þ ½ð1=2Þm4 − ð1=48Þm2R − ð1=96ÞR2�
× ½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ� ð104bÞ

and

wρ
ρ ¼ −ð5=4Þm4 þ ð25=72Þm2R − ð29=1440ÞR2

þ ½ð1=2Þm4 − ð1=12Þm2R�
× ½lnð−R=24Þ þ 2Ψð1=2þ κÞ þ 2γ�: ð104cÞ

It should be noted that the constraints (94) and (95) are
satisfied by these coefficients.
By inserting now the expressions (104a) and (104b) into

(84) taking into account the geometrical term (87) as well
as the geometrical ambiguities (89) and (90), we have for
the trace of the RSET

8π2h0jT̂ρ
ρj0irenAdS4 ¼ ðαþ 9=4Þm4 þ ðβ þ 5=24Þm2R

− ð11=1440ÞR2 − ½ð3=2Þm4

þ ð1=4Þm2R�½lnð−R=ð24M2ÞÞ
þ 2Ψð1=2þ λÞ þ 2γ�: ð105Þ

Finally, by requiring the vanishing of this expression in the
flat-space limit, i.e. for R → 0, we can fix the renormaliza-
tion mass M (after absorption of the term 2γ) and the
coefficient α. We then obtain M ¼ m=

ffiffiffi
2

p
and α ¼ −9=4

which leads to

8π2h0jT̂ρ
ρj0irenAdS4 ¼ ðβ þ 5=24Þm2R − ð11=1440ÞR2

− ½ð3=2Þm4 þ ð1=4Þm2R�
× ½lnð−R=ð12m2ÞÞ þ 2Ψð1=2þ λÞ�:

ð106Þ

D. Remarks concerning the zero-mass limit of the
renormalized stress-energy tensor

Because Stueckelberg massive electromagnetism is a
Uð1Þ gauge theory which generalizes Maxwell’s theory, we
could naively expect to recover, by considering the zero-
mass limit of the previous results, the usual trace anomaly
for Maxwell’s theory given by [see, e.g., Eq. (130) in
Ref. [1] or Eq. (3.25) in Ref. [44]]

8π2h0jT̂A
ρ
ρj0iren ¼ 2vA1 ρ

ρ − 4v1 ð107Þ
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which reduces, in a maximally symmetric gravitational
background, to

8π2h0jT̂A
ρ
ρj0iren ¼ −ð31=2160ÞR2: ð108Þ

In fact, this is not the case. In dS4, for m2 → 0, Eq. (100)
provides

8π2h0jT̂ρ
ρj0iren dS4 ¼ ð19=1440ÞR2; ð109Þ

while, in AdS4, for m2 → 0, we obtain from Eq. (106)

8π2h0jT̂ρ
ρj0irenAdS4 ¼ −ð11=1440ÞR2: ð110Þ

This “discontinuity” is not really surprising. Indeed, as we
have already noted in Ref. [1], in an arbitrary spacetime,
due to the contribution of the auxiliary scalar field Φ, the
full RSET of Stueckelberg electromagnetism never permits
us to recover the RSET of Maxwell’s theory. This can be
alternatively interpreted by noting that the presence of a
mass term in the Stueckelberg theory breaks the conformal

invariance of Maxwell’s theory. To circumvent this diffi-
culty, we have proposed in Ref. [1] to split the RSET of
Stueckelberg electromagnetism into two separately con-
served RSETs, a contribution directly associated with the
vector field Aμ and another one corresponding to the scalar
field Φ (see also our discussion in Sec. III A), the zero-mass
limit of the first contribution reducing to the RSET of
Maxwell’s electromagnetism. Even if we consider that this
separation is rather artificial because, in our opinion, only
the full RSET is physically relevant, the auxiliary scalar
field Φ playing the role of a kind of ghost field, it is
interesting to test our proposal which has nevertheless
provided correct results in the context of the Casimir effect
(see Sec. V of Ref. [1]).
In dS4, we can obtain the separated RSETs associated

with the massive vector field Aμ and the massive scalar field
Φ which vanish in the flat-space limit by inserting into
Eqs. (86a) and (86b) the Taylor coefficients (98a), (98b),
and (96c) and by moreover taking into account the
geometrical ambiguities (92a), (92b) and (89). We have

8π2h0jT̂A
ρ
ρj0iren dS4 ¼ ðβA þ 13=18Þm2Rþ ð59=2160ÞR2 − ½ð3=2Þm4 þ ð1=4Þm2R�½lnðR=ð12m2ÞÞ þΨð5=2þ λÞ

þΨð5=2 − λÞ� þ ½ð1=2Þm4 − ð1=12Þm2R�½lnðR=ð12m2ÞÞ þΨð5=2þ κÞ þΨð5=2 − κÞ� ð111Þ

for the RSET associated with the massive vector field Aμ

and

8π2h0jT̂Φ
ρ
ρj0iren dS4 ¼ ðβΦ − 5=36Þm2Rþ ð29=4320ÞR2

− ½ð1=2Þm4 − ð1=12Þm2R�
× ½lnðR=ð12m2ÞÞ þΨð3=2þ κÞ
þΨð3=2 − κÞ� ð112Þ

for the RSET associated with the massive scalar field Φ. It
is worth pointing out that the sum of these two RSETs
coincides with the RSET given by Eq. (100). This is a
trivial consequence of Eq. (97). We can moreover note that
the RSET (112) associated with the scalar fieldΦ is nothing
else than the result derived by Bunch and Davies in Ref. [3]
(see also Refs. [2,4,5]). If we now consider the limit
m2 → 0 of the RSET (111) associated with the vector field
Aμ, we obtain

8π2h0jT̂A
ρ
ρj0iren dS4 ¼ ð59=2160ÞR2: ð113Þ

Here, we do not recover the usual trace anomaly (108) of
Maxwell’s electromagnetism. In fact, this can be explained
easily. Indeed, in Secs. IV C 4 and IVD of Ref. [1], we have
constructed theRSETassociatedwith themassive vector field
Aμ which reduces, in the zero-mass limit, to the RSET of
Maxwell’s electromagnetism by assuming tacitely the regu-
larity for m2 → 0 of the Taylor coefficients involved in the
calculations and, in particular, of the coefficient w. This
assumption is certainly valid for a large class of spacetimes
but, in the context of field theory in dS4, it is not founded. For
example, from Eq. (96c), we can show that w ∼ R2=ð48m2Þ
for m2 → 0. We here encounter the well-known infrared
divergence problem which plagues quantum field theories in
de Sitter spacetime (see, e.g., Ref [29] and references therein).
In AdS4, we can obtain the separated RSETs associated

with the massive vector field Aμ and the massive scalar field
Φ which vanish in the flat-space limit by inserting into
Eqs. (86a) and (86b) the Taylor coefficients (104a), (104b)
and (101c) and by moreover taking into account the
geometrical ambiguities (92a), (92b) and (89). We have

8π2h0jT̂A
ρ
ρj0irenAdS4 ¼ ðβA þ 7=18Þm2R − ð31=2160ÞR2 − ½ð3=2Þm4 þ ð1=4Þm2R�½lnð−R=ð12m2ÞÞ þ 2Ψð1=2þ λÞ�

þ ½ð1=2Þm4 − ð1=12Þm2R�½lnð−R=ð12m2ÞÞ þ 2Ψð1=2þ κÞ� ð114Þ
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for the RSET associated with the massive vector field Aμ

and

8π2h0jT̂Φ
ρ
ρj0irenAdS4 ¼ ðβΦ − 13=72Þm2Rþ ð29=4320ÞR2

− ½ð1=2Þm4 − ð1=12Þm2R�
× ½lnð−R=ð12m2ÞÞ þ 2Ψð1=2þ κÞ�

ð115Þ

for the RSETassociated with the massive scalar fieldΦ. We
can note that the sum of these two RSETs coincides with
the RSET given by Eq. (106) and that the RSET (115)
associated with the scalar field Φ is in agreement with the
result derived by Camporesi and Higuchi in Ref. [9] (see
also Ref. [8]). If we now consider the limit m2 → 0 of the
RSET (114) associated with the vector field Aμ, we obtain

8π2h0jT̂A
ρ
ρj0irenAdS4 ¼ −ð31=2160ÞR2: ð116Þ

In AdS4, we recover the usual trace anomaly (108) of
Maxwell’s electromagnetism.

IV. CONCLUSION

In the present article, by focusing on Hadamard vacuum
states, we have first constructed the various two-point
functions associated with Stueckelberg massive electro-
magnetism in de Sitter and anti–de Sitter spacetimes. Then,
from the general formalism developed in Ref. [1], we have
obtained an exact analytical expression for the vacuum
expectation value of the RSET of the massive vector field

propagating in de Sitter and anti–de Sitter spacetimes. It is
worth pointing out that these results have been obtained by
working in the unique gauge for which the machinery of
Hadamard renormalization can be used (i.e., ξ ¼ 1).
However, in the literature, Stueckelberg massive electro-
magnetism is often considered for an arbitrary gauge
parameter ξ, i.e., by describing the massive vector field
from the action (5) instead of the action (2). Here, we refer
to the articles by Fröb and Higuchi [21] who consider the
massive vector field in de Sitter spacetime and by Janssen
and Dullemond [16] who work in anti–de Sitter spacetime.
The propagators constructed in this context are ξ dependent
but have good physical properties and, even if they do not
have a Hadamard-type singularity at short distance (for
ξ ≠ 1), they reproduce in the flat-space limit the standard
Minkowski two-point functions given by Itzykson and
Zuber in Ref. [24]. It would be interesting to analyze the
physical content of these propagators by constructing their
associated RSETs. Due to the expected gauge independ-
ence of the RSET, it is quite likely that the results obtained
will be identical to those given in the previous section but a
proof of this claim certainly requires a careful study. We
plan to provide it in the near future.
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