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We apply the Noether procedure for gauging space-time symmetries to theories with Galilean
symmetries, analyzing both massless and massive (Bargmann) realizations. It is shown that at the linearized
level the Noether procedure gives rise to (linearized) torsional Newton-Cartan geometry. In the case of
Bargmann theories the Newton-Cartan formMμ couples to the conservedmass current.We show that even in
the case of theories with massless Galilean symmetries it is necessary to introduce the form Mμ and that it
couples to a topological current. Further, we show that the Noether procedure naturally gives rise to a
distinguished affine (Christoffel type) connection that is linear in Mμ and torsionful. As an application of
these techniques we study the coupling of Galilean electrodynamics to TNC geometry at the linearized level.
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I. INTRODUCTION

Field theories are central to the description of a wide
range of physical phenomena. Their understanding con-
tinues to be an important theme, in which a crucial role is
played by both spacetime and internal symmetries. One
way of classifying space-time symmetries is in terms of
their subset of boost symmetries, which come in three
types, Lorentz, Galilean and Carrollian, corresponding to
relativistic, nonrelativistic and ultrarelativistic boost sym-
metries respectively. In each of these cases the theory can
also be made scale invariant, while symmetry breaking
patterns of different kinds can arise as well. A natural
question to ask is how to formulate the coupling of such
classes of field theories to relevant geometric structures
while respecting diffeomorphism invariance. One way to
address this question at the linearized level is to consider
the Noether procedure and gauge the space-time sym-
metries. Finding the resulting underlying geometry opens
up for a host of interesting applications, including the study
of Ward identities, anomalies, hydrodynamics, holographic
realizations and new dynamical theories of gravity.
In this context, Newton-Cartan (NC) geometry [1–3] has

in recent years seen an increasing interest, in part due to its
appearance as the boundary geometry [4,5] in holographic
setups with anisotropic scaling in the bulk [6–9]. More
generally this has been motivated, as explained above, from
a wider field theoretic perspective as the background
geometry to which nonrelativistic field theories couple in
a covariant way. In particular, this followed the proposal in
[10] to use NC geometry in constructing an effective field
theory for quantum Hall states. Furthermore, NC geometry
and its torsionful generalization appears to be the natural
geometrical framework underlying Hořava-Lifshitz gravity,
allowing for full diffeomorphism invariance [11].

A generalization of NC geometry with torsion, called
torsional Newton-Cartan (TNC) geometry, was first
observed [4,5] in the context of holography for a specific
action supporting z ¼ 2 Lifshitz geometries. This analysis
was subsequently generalized to a large class of holo-
graphic Lifshitz models for arbitrary values of z in [12,13].
In parallel, TNC geometry was shown to arise from
gauging the Schrödinger algebra [14] or the Bargmann
algebra [11], generalizing earlier work [15] that showed
how to obtain NC geometry from gauging Bargmann. In
applications to condensed matter systems with nonrelativ-
istic symmetries, such as the fractional quantum Hall effect,
the addition of (twistless) torsion was presented in [16]
following the introduction [10] of NC geometry to this
problem. The coupling of nonrelativistic field theories to
TNC was also considered in [13,17,18]. Further inves-
tigations of TNC geometry from different perspectives
subsequently appeared in [19–21] and [22–24].
The relevant geometric fields in TNC are a timelike

vielbein τμ and inverse spatial metric hμν with corank 1 plus
their projective inverses, together with a one-form Mμ.

1

One of the features that distinguishes TNC geometry from
Riemannian geometry is that, while in the latter there is a
unique metric compatible and torsionless affine connection
(the Levi-Civita connection), in TNC geometry this is not
the case. Furthermore, for all Galilean affine connections
the temporal part of the torsion is completely fixed and

1In cases where there is no particle number Uð1Þ symmetry, it
is useful to introduce a Stückelberg scalar χ and write Mμ ¼
mμ − ∂μχ where mμ transforms as a connection under Uð1Þ
particle number (see e.g. [4,11,13]). With the χ-field one can also
couple nonrelativistic theories that do not have a local Uð1Þ
symmetry to TNC geometry. In this paper we will restrict to the
case of field theories that have at least Galilean symmetries.
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proportional to ∂μτν − ∂ντμ [19,21]. Thus, torsion appears
quite naturally and generally if one does not require any
conditions on the flow of time τμ. The original case of NC
geometry2 assumes that τμ is closed, i.e. providing a notion
of absolute time, making torsionlessness possible.3 Already
in this case, one finds that there is no unique connection
that solves the analogue of metric compatibility and the
torsionless condition. Such Galilean connections are only
determined up to an arbitrary two-form due to the degen-
eracy of hμν [19,21]. Thus, contrary to Riemannian geom-
etry where zero torsion has the advantage of selecting a
unique distinguished connection, for NC geometry this is
not the case. Moreover, there is another field-theoretic
reason why torsion is natural to consider in the non-
relativistic case. This is because energy density and energy
flux are the response to varying τμ, so that in order to be
able to compute the most general response this quantity
better be unconstrained.
Thus, it seems that there is no distinguished connection

in (T)NC geometry, and, moreover, it appears that the
various approaches in the literature lead to different para-
metrizations of the connections. A natural question to ask is
thus, whether there exists aminimal connection in the sense
that it requires the least number of gauge fields in order to
define a good covariant derivative. For Riemannian geom-
etry the minimal connection is identical to the Levi-Civita
connection, which can be expressed in terms of just the
vielbeins, but for TNC geometry the situation is more
complicated.
The purpose of this paper is to employ the Noether

procedure to the gauging of space-time symmetries in
nonrelativistic field theories in order to determine the
minimal connection of TNC geometry. To this end, we
will consider field theories that have Galilean and
Bargmann spacetime symmetries, depending on whether
they are massless or massive respectively [27–30].
Interestingly, this minimal connection turns out to be the
one that was identified among the one-parameter family of
[11], as the unique connection that satisfies the additional
requirement that the connection is linear in Mμ. Our
treatment can, moreover, be seen as a completely general
field-theoretic construction of TNC geometry at the linear
level (see e.g. [31–33] for this construction in the context of
general relativity).
A brief outline of the paper is as follows. In Sec. II we

review some of the most important aspects of TNC and
Galilean connections. We will then use the Noether
procedure to analyze Galilean and Bargmann cases sepa-
rately in Secs. III and IV.
In Sec.Vwe compare the results to the full nonlinear TNC

connection. Finally we study Galilean electrodynamics

(GED) as a concrete example in Sec. VI. A much more
complete analysis of GED will be presented in the
companion paper [34]. We perform in Appendix A the
analogous construction for relativistic theories, to compare
to this more familiar case. Finally, Appendix B contains
some details on the linearization of TNC geometry around
flat NC spacetime.

II. TORSIONAL NEWTON-CARTAN GEOMETRY

This section is designed to provide a brief overview of
Newton-Cartan geometry to set the stage for the later sections
on theNoether procedure and, in particular, to enable a direct
comparison between the geometrical approach reviewed
here and the field theory approach discussed in Secs. III
and IV. Most of this material is taken from [11].

A. Gauging the Galilean and Bargmann groups

The symmetry algebra of Galilean theories consists of
generators of time translation H, spatial translations Pi,
Galilean boosts Gi and spatial rotations Jij. The defining
nonzero commutation relations are given by

½Jij; Pk� ¼ −δikPj þ δjkPi ð2:1aÞ

½Jij; Jkl� ¼ δikJjl − δilJjk − δjkJil þ δjlJik ð2:1bÞ

½H;Gi� ¼ −Pi ð2:1cÞ

½Jij; Gk� ¼ −δikGj þ δjkGi: ð2:1dÞ

This algebra has a double direct sum structure, where the
boosts form a direct sum with the rotations, and translations
form a direct sum with both of these. Moreover translations
and boosts give rise to two Abelian subalgebras. The boosts
and momenta transform as vectors under rotations. The
latter form an soðdÞ subalgebra. The structure of the D ¼
dþ 1 dimensional Galilean group Galðd; 1Þ can thus be
summarized as

Galðd; 1Þ ¼ Rdþ1 ⋉ ðRd ⋉ SOðdÞÞ: ð2:2Þ

The Galilean group has a central extension in any
dimension known as the Bargmann group [28]. The group
structure that extends (2.2) is given by

Bargðd; 1Þ ¼ ðR ⋉ Rdþ1Þ ⋉ ðRd ⋉ SOðdÞÞ: ð2:3Þ

The commutator ½Pi; Gj� is no longer vanishing

½Pi; Gj� ¼ Nδij: ð2:4Þ

Here N is the central element called the mass or
particle number generator. For more details see for
example [35,36].

2See also [25,26] for recent work.
3The in between case in which τμ is hypersurface orthogonal is

called twistless torsional NC (TTNC) geometry.
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The goal of this paper is to derive torsional Newton-
Cartan (TNC) geometry from the Noether procedure
applied to Galilean and Bargmann invariant field theories.
However, before going into that we first summarize
previous work on TNC geometry that is based on a more
geometrical approach following [11,14,15,17,18]. This
involves manifolds whose tangent space symmetries are
dictated by the Gi, Jij and N generators of the Bargmann
algebra while the general coordinate transformations will
be obtained by a deformation of the transformations
generated by H and Pi.
In this geometrical approach we gauge the Bargmann

algebra (2.1), (2.4) by introducing gauge fields correspond-
ing to generators as in Table I. Let us introduce the Yang-
Mills connection Aμ and its field strength Fμν as4

Aμ ¼ Hτμ þ Pieiμ þ GiΩμ
i þ 1

2
JijΩμ

ij þ NMμ; ð2:5aÞ

Fμν ¼ 2∂ ½μAν� þ ½Aμ; Aν�
¼ HRμνðHÞ þ PiRμν

iðPÞ þ GiRμν
iðGÞ

þ 1

2
JijRμν

ijðJÞ þ NRμνðNÞ: ð2:5bÞ

The gauge field transforms in the adjoint

δAμ ¼ ∂μΛþ ½Aμ;Λ�: ð2:6Þ

The local algebra of transformations can be deformed in
such a way that the local translations of the gauge trans-
formation become the generators of infinitesimal general
coordinate transformations (GCTs). This is achieved by
setting Λ ¼ ξμAμ þ Σ where Σ does not contain the H and
Pi generators and by defining a new transformation as

δ̄Aμ ¼ δAμ − ξνFμν ¼ LξAμ þ ∂μΣþ ½Aμ;Σ�: ð2:7Þ

The Σ transformations correspond to local tangent space
transformations.
The connections eiμ and τμ are now interpreted as

vielbeins and we can thus introduce inverse vielbeins vμ,
eμi by requiring that they satisfy

vμτμ ¼ −1; vμeiμ ¼ 0;

eμi τμ ¼ 0; eμi e
j
μ ¼ δji : ð2:8Þ

From the δ̄-transformation we can deduce that the
Bargmann gauge fields, including the inverse vielbeins,
transform as

δ̄τμ ¼ Lξτμ ð2:9aÞ

δ̄eiμ ¼ Lξeiμ þ λije
j
μ − λiτμ ð2:9bÞ

δ̄vμ ¼ Lξvμ − eμi λ
i ð2:9cÞ

δ̄eμi ¼ Lξe
μ
i þ λi

jeμj ð2:9dÞ

δ̄Mμ ¼ LξMμ þ ∂μσ − eiμλi ð2:9eÞ

δ̄Ωμ
i ¼ LξΩμ

i − ∂μλ
i þ λijΩμ

j − λjΩμj
i ð2:9fÞ

δ̄Ωμ
ij ¼ LξΩμ

ij þ ∂μλ
ij − 2λ½ikΩμ

j�k: ð2:9gÞ

In the above λi is the local Galilean boost parameter, λij the
local rotation parameter and ξμ the generator of diffeo-
morphisms. The unique choice of covariant derivatives that
transform covariantly under general coordinate transfor-
mations as well as under the tangent space transformations
are given by

Dρτμ ¼ ∂ρτμ − Γλ
ρμτλ ð2:10aÞ

Dρeiμ ¼ ∂ρeiμ − Γλ
ρμeiλ −Ωρ

iτμ −Ωρ
i
je

j
μ ð2:10bÞ

Dρvμ ¼ ∂ρvμ þ Γμ
ρλv

λ − Ωρ
ieμi ð2:10cÞ

Dρe
μ
i ¼ ∂ρe

μ
i þ Γμ

ρλe
λ
i þ Ωρ

j
ie

μ
j ð2:10dÞ

DρMμ ¼ ∂ρMμ − Γλ
ρμMλ −Ωρieiμ: ð2:10eÞ

The connections Ωμ
i and Ωμ

ij play the role of frame gauge
fields. They are the Galilean analogue of the spin con-
nection in general relativity. The gauge field Mμ, also
known as the TNC vector field, corresponds to the Uð1Þ
mass gauge field in Bargmann theories. More details can be
found in the references given above.

TABLE I. Gauge fields and parameters in the gauging of the
Galilean and Bargmann groups.

Symmetry Generator
Gauge
field

Gauge
parameter Curvature

Time translations H τμ τμξ
μ RμνðHÞ

Space translations Pi eiμ eiμξμ Rμν
iðPÞ

Galilean boost Gi Ωμ
i ~λi Rμν

iðGÞ
Spatial rotations Jij Ωμ

ij ~λij Rμν
ijðJÞ

Central N Mμ σ RμνðNÞ

4Here and in the following we denote antisymmterization over
indices with [] and symmetrization with (). For instance
T ½i1;…in� ¼ 1

n!

P
σ∈Snð−1ÞσTiσð1Þ…iσðnÞ .
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B. Connections in Newton-Cartan geometry

The vielbein postulates are

Dρτμ ¼ 0; Dρeiμ ¼ 0; ð2:11Þ

implying that Dρvμ ¼ 0 and Dρe
μ
i ¼ 0. From the vielbein

postulates it follows that τμ and hμν ¼ δijeμi e
ν
j are cova-

riantly constant, i.e.

∇ρτμ ¼ 0; ∇ρhμν ¼ 0; ð2:12Þ

where ∇ρ is the covariant derivative associated with the
affine connection Γλ

ρμ. In [11] (see also [19]) the most
general metric compatible [in the sense of (2.12)] affine
connection was constructed and the result is given by

Γλ
μν ¼ −vλ∂μτν þ

1

2
hλσð∂μhνσ þ ∂νhμσ − ∂σhμνÞ

þWλ
μν ð2:13aÞ

Wλ
μν ¼

1

2
hλσðτμKσν þ τνKσμ þ LσμνÞ ð2:13bÞ

Kμν ¼ −Kνμ; Lσμν ¼ −Lνμσ; ð2:13cÞ

where Kμν and Lσμν transform as tensors under general
coordinate transformations. They can be chosen arbitrarily
as long as they satisfy certain transformation properties
under Galilean boosts in order to leave the affine con-
nection boost invariant.
It follows that TNC connections (2.13) generically have

a nonzero torsion because for any K and L we have

2Γλ
½μν�τλ ¼ ∂μτν − ∂ντμ: ð2:14Þ

We distinguish three cases [4]: Newton-Cartan (NC)
geometry for which the torsion vanishes because
τμ¼∂μτ, twistless torsional Newton-Cartan (TTNC) geom-
etry for which τμ¼N∂μτ so that hμρhνσð∂μτν−∂ντμÞ¼0

and torsional Newton-Cartan (TNC) geometry for which
there are no constraints imposed on τμ.
It is useful to define

Γλ
ð0Þμν ¼ −vλ∂μτν þ

1

2
hλσð∂μhνσ þ ∂νhμσ − ∂σhμνÞ; ð2:15Þ

so that we can write the affine connection as Γλ
μν ¼

Γλ
ð0Þμν þWλ

μν. The object Γλ
ð0Þμν is expressed in terms of

vielbeins or metric quantities only and transforms correctly,
i.e. as an affine connection under GCTs, but it is not
invariant under local Galilean boosts. In order to construct a
Galilean boost invariant connection we must take Wλ

μν

to be nonzero. In analogy to Riemann-Cartan geometry
where we know that any connection can be written as the

Levi-Civita connection plus the contortion tensor it is
useful to think of Γλ

ð0Þμν as a (specific) pseudo connection

and Wλ
μν as a pseudo contortion tensor.

Likewise from the vielbein postulates it follows that we
can write the connections Ωμi and Ωμij as the sum of two
terms

Ωμi ¼ Ωð0Þμi þ Cμi ð2:16aÞ

Ωμij ¼ Ωð0Þμij þ Cμij; ð2:16bÞ

where

Ωð0Þμi ¼ vν∂ ½νeiμ� þ vνeσieμj∂ ½νe
j
σ� ð2:17aÞ

Ωð0Þμij ¼ eλ½ij∂λeμjj� − eλ½ij∂μeλjj� − eμkeσ½ie
λ
j�∂λekσ; ð2:17bÞ

Cμi ¼ −vνeλiWλ
μν ð2:17cÞ

Cμij ¼ eνjeλiW
λ
μν: ð2:17dÞ

Any choice of pseudocontortion tensor Wλ
μν with the right

transformation properties leads to a good TNC connection.
In particular there exists a unique connection linear in the
mass gauge field Mμ known in the TNC literature
[14,17,18]. In the above parametrization this is given by

Kσρ ¼ 2∂ ½σMρ� ð2:18aÞ

Lσμν ¼ 2Mσ∂ ½μτν� − 2Mμ∂ ½ντσ� þ 2Mν∂ ½στμ�: ð2:18bÞ

Except for the case of vanishing torsion the tensor Lσμν is
not invariant under the mass Uð1Þ gauge transformation
with parameter σ. [It is not possible to construct out of the
vielbeins and Mμ a metric compatible connection (2.12)
that is invariant under Galilean boosts andUð1Þmass gauge
transformations [14,17,18].] The affine connection associ-
ated with these choices of Kσρ and Lσμν is denoted by Γ̄λ

μν

and reads

Γ̄λ
μν ¼ −v̂λ∂μτν þ

1

2
hλσð∂μh̄νσ þ ∂νh̄μσ − ∂σh̄μνÞ ð2:19aÞ

v̂μ ¼ vμ − hμλMλ ð2:19bÞ

h̄μν ¼ hμν − 2τðμMνÞ: ð2:19cÞ

We shall prove using the Noether procedure that Γ̄λ
μν is, in a

sense to be made more precise below, the minimal TNC
connection.
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III. THE NOETHER PROCEDURE
FOR GALILEAN THEORIES

We start applying the Noether procedure to theories with
Galilean symmetries without the massive Bargmann exten-
sion. We do not need to assume that the theories have a
Lagrangian description for the entire discussion. In Sec. III
Awe analyze the symmetry currents for all the generators of
the Galilei algebra. It will be convenient to consider
improvements of these currents that simplify the structure
of the Galilean current multiplet. For example the stress
tensor can be made symmetric using an improvement
transformation. This will be the subject of Sec. III B.
The actual Noether procedure is then discussed in
Sec. III C. Here we introduce all the gauge connections
needed to make the theory invariant under local Galilean
transformations at lowest order. The gauge fields will
couple to the improved currents, and this has some
interesting consequences for the construction of dependent
connections. Finally in Sec. III D we discuss how the
Noether procedure gives rise to an affine (linearized)
Christoffel-type minimal connection.

A. Conserved symmetry currents

Consider a local field theory that is invariant under the
Galilean transformations (2.2). There exist conserved
currents Eμ, Tμi, bμi, jμij whose μ ¼ 0 components
integrate to time-independent charges satisfying the
algebra (2.1)

H ¼
Z

ddxE0 ð3:1aÞ

Pi ¼
Z

ddxT0i ð3:1bÞ

Gi ¼
Z

ddxb0i ð3:1cÞ

Jij ¼
Z

ddxj0ij: ð3:1dÞ

Eμ, Tμi, bμi, jμij are the energy, momentum, boost and
rotation currents respectively and constitute the general
current multiplet of any Galilean invariant theory perhaps
along with currents for additional symmetries. In particular
Tij is the spatial stress tensor, which at this stage is not
necessarily symmetric.
The commutation relations of Gi, Jij with the translation

generators H, Pi imply that bμi, jμij are of the form

bμi ¼ tTμi þ wμi ð3:2aÞ

jμij ¼ xiTμj − xjTμi þ sμij; ð3:2bÞ

where wμi and sμij ¼ −sμji are local and do not explicitly
depend on the coordinates but generically are not

conserved. We call the nonconserved current wμi the
internal boost-current while we refer to sμij ¼ −sμji as
the spin-current.
The conservation laws for the boost and rotation currents

in the form (3.2) lead, on shell, to the following identities
involving Tμi:

∂μbμi ¼ 0 ⇒ T0i ¼ −∂μwμi ð3:3aÞ

∂μjμij ¼ 0 ⇒ 2T ½ij� ¼ −∂μsμij: ð3:3bÞ

This shows that the stress tensor Tij is only symmetric if
sμij is conserved or trivial.

1. Canonical Noether currents

We can give explicit expressions for the currents when
provided with a Lagrangian density Lðφl; ∂φlÞ. Here we
denote the field content of the theory by φl where the index
l distinguishes various internal components. In particular
we assume that the φl transform linearly under the
homogeneous part Rd ⋉ SOðdÞ of the Galilean group.

x0μ ¼ xμ þ δxμ; ð3:4aÞ

δt ¼ ϵ0; ð3:4bÞ

δxi ¼ ϵi þ λitþ λijxj; ð3:4cÞ

φ0
lðx0Þ ¼ φlðxÞ þ δφlðxÞ; ð3:4dÞ

δφlðxÞ ¼ λiðGiÞll0φl0 ðxÞ þ
1

2
λijðJijÞll0φl0 ðxÞ; ð3:4eÞ

where λij ¼ −λji are infinitesimal spatial rotation param-
eters, λi boost parameters and ϵ0, ϵi infinitesimal translation
parameters that together constitute all the Galilei trans-
formations. The generators of rotations ðJijÞll0 are in a
suitable linear representation of SOðdÞ realized on the
fields φl, and ðGiÞll0 furnishes a linear representation
specifying how the Galilean boosts act on the fields. One
can vary the corresponding Galilean-invariant action
Sð0Þ½φ� ¼ R

M dDxLðφl; ∂φlÞ directly to derive the canoni-
cal Noether currents [37]

Eμ
can ¼ ∂L

∂½∂μφl�
∂0φl − δμ0L ð3:5aÞ

Tμi
can ¼ ∂L

∂½∂μφl�
∂iφl − δμiL ð3:5bÞ

bμican ¼ tTμi
can þ wμi ð3:5cÞ

jμijcan ¼ xiTμj
can − xjTμi

can þ sμij; ð3:5dÞ
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where we defined

wμi ¼ −
∂L

∂½∂μφl�
ðGiÞll0φl0 ð3:6aÞ

sμij ¼ −
∂L

∂½∂μφl�
ðJijÞll0φl0 : ð3:6bÞ

The currents (3.5) are conserved on shell as required.

B. Improvement of the currents

The symmetry currents Eμ, Tμi, bμi, jμij of a general
Galilean theory are only defined up to a total divergence
that can be added without changing the conserved charges.
Hence, one can always improve the current multiplet of the
theory as follows:

Eμ
imp ¼ Eμ þ ∂ρAρμ ð3:7aÞ

Tμi
imp ¼ Tμi þ ∂ρBρμi ð3:7bÞ

bμiimp ¼ bμi þ ∂ρEρμi ð3:7cÞ

jμijimp ¼ jμij þ ∂ρDρμij; ð3:7dÞ

where all the improvement terms are antisymmetric in μ, ρ.
The choice of improvements, can be used to make the
currents simpler. For instance in the case of relativistic
theories, the Belinfante-Rosenfeld procedure (which we
review in Appendix A 1) allows us to define a symmetric
and gauge invariant energy-momentum tensor (see for
instance [38]).
In our case we want to do something similar and

construct improvements such that the currents correspond-
ing to Galilean boosts and rotations are as simple as
possible. This is achieved by parametrizing the improve-
ments in (3.7) in terms of sμij and wμi, in an essentially
unique way5 to simplify the conservation equations
∂μj

μij
imp ¼ ∂μb

μi
imp ¼ 0 the most

Bρμi ¼ 2δ½μk δ
ρ�
0

�
wðikÞ þ 1

2
s0ik

�
−
1

2
δμjδ

ρ
kðskji þ sijk þ sjikÞ

ð3:8aÞ

Dρμij ¼ xiBρμj − xjBρμi ð3:8bÞ

Eρμi ¼ tBρμi: ð3:8cÞ

This leads to

bμiimp ¼ tTμi
imp þ ψμi ð3:9aÞ

jμijimp ¼ xiTμj
imp − xjTμi

imp; ð3:9bÞ

where we have defined the current

ψμi ¼ δμ0w
0i þ 1

2
δμj ðwji − wij − s0ijÞ: ð3:10Þ

The conservation laws for the currents (3.9) now give the
following:

T0i
imp ¼ −∂μψ

μi ð3:11aÞ

T ½ij�
imp ¼ 0: ð3:11bÞ

Hence the stress tensor can always be made symmetric, and
T0i
imp is the total derivative of some generically noncon-

served current ψμi that is antisymmetric in its spatial
indices. It is important to note that the current ψμi is the
only combination of wμi and sμij that remains in any of the
symmetry currents.

C. Coupling the gauge fields to currents

Consider a theory in flat space that is invariant under
global Galilean transformations. Let it be described by the
action functional Sð0Þ½φ�. In this section we proceed to
gauge the Galilean group at linearized level. The variation
of Sð0Þ½φ� under local translations, boosts and rotations
reads

δSð0Þ½φ� ¼ −
Z
M
dDx

�
∂μϵ0Eμ þ ∂μϵiTμi

þ ∂μλibμi þ
1

2
∂μλijjμij

�
: ð3:12Þ

The expression above vanishes when the parameters do not
depend on position as required from invariance under
global Galilean transformations. It vanishes on shell for
any choice of the parameters by virtue of current con-
servation. It is useful to introduce the infinitesimal param-
eters ξ0 ¼ ϵ0, ξi ¼ ϵi þ tλi − λijxj, which we will relate to
temporal/spatial diffeomorphisms in the following, and
rewrite the variation of the action as

δSð0Þ½φ� ¼ −
Z
M
dDx

�
∂μξ0Eμ þ ð∂μξi − λiδ

0
μ þ λijδ

j
μÞTμi

þ ∂μλiwμi þ 1

2
∂μλijsμij

�
: ð3:13Þ

Next we introduce gauge fields τ̄μ, ēμi and Ω̄μi, Ω̄μij that
transform as follows under local Galilean transformations:

5There are further improvements of the momentum current that
leave T ½ij�

imp ¼ 0. These can be performed by adding an improve-
ment term ∂ρ

~Bρμi with ~Bρji ¼ ~Bρij to the momentum current.
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δð1Þτ̄μ ¼ ∂μξ0 ð3:14aÞ

δð1Þēμi ¼ ∂μξi − λiδ
0
μ þ λijδ

j
μ ð3:14bÞ

δð1ÞΩ̄μi ¼ −∂μλi ð3:14cÞ

δð1ÞΩ̄μij ¼ ∂μλij: ð3:14dÞ

Here the notation δð1Þ indicates that these expressions are
valid at first order in the variation parameters and the gauge
field and will be modified at higher orders.
We can add to the action Sð0Þ½φ� couplings of the gauge

fields to the components of the current multiplet as follows:

S½φ; ē; τ̄; Ω̄i; Ω̄ij� ¼ Sð0Þ½φ� þ Sð1Þ½φ; ē; τ̄; Ω̄i; Ω̄ij�; ð3:15Þ

where

Sð1Þ ¼
Z
M
dDx

�
τ̄μEμ þ ēμiTμi − Ω̄μiwμi þ 1

2
Ω̄μijsμij

�
:

ð3:16Þ

Under a local Galilean transformation the variation of Sð0Þ
given by (3.13) is canceled by terms coming from the
variation of the gauge fields in Sð1Þ even without use of the
equations of motion. The modified action is therefore
invariant off shell at first order. On shell the variation of
Sð0Þ½φ� is zero, and invariance of (3.16) follows from
current conservation [∂μTμi ¼ 0, ∂μEμ ¼ 0 and (3.3)].
The coupling of some gauge fields to nonconserved
currents in (3.16) is a special feature of gauging spacetime
symmetries and can be traced back to the nonderivative
terms in the variation of ēμi as in (3.14b).6

In principle one could go to higher orders in the gauge
fields and determine the transformation laws and terms to
add to the action to have local Galilean invariance at all
orders. However, beyond the linear level this procedure is
not unique and rather cumbersome.7 We will confine
ourselves to the analysis at linear order.
In Sec. V we will consider the precise relation between

the results of the Noether procedure and torsional Newton-
Cartan geometry. At this stage the gauge fields are a priori
unrelated to the TNC objects that we presented in Sec. II A.
However we will see that their relation is exactly as implied
by the notation we used.
Next we consider how improvements of the current

multiplet affect the discussion above. In the variation of Sð0Þ

given by (3.12) improvements are inconsequential as they
give rise to boundary terms that vanish in flat space. We can
then cancel the variation of Sð0Þ coupling the gauge fields to
the currents with any choice of improvement. In particular
we can select (3.8) which leads to

Sð1Þ ¼
Z
M
dDx½τ̄μEμþ ēμ0T0i

impþ s̄ijT
ij
imp− Ω̄μiψ

μi�; ð3:17Þ

where s̄ij ¼ ēðijÞ plays the role of a linearized spatial metric
coupling to the symmetric energy momentum tensor.8 The
discussion above implies that the difference between (3.17)
and (3.16) is invariant under local Galilean transformation
at first order. In the next section we will explore the
consequences of this fact. Before proceeding however,
we notice that in order to cancel the variation of Sð0Þ

coupling ψμi to Ω̄μi in (3.17) is overkill due to the fact that
ψ ij ¼ −ψ ji. Indeed we have

Z
M
dDxΩ̄μiψ

μi ¼
Z
M
dDx

�
Ω̄0iψ

0i þ 1

2
ðΩ̄ij − Ω̄jiÞψ ij

�
;

ð3:18Þ

and the variations of the relevant combinations of Ω̄ are

δð1ÞðΩ̄ij − Ω̄jiÞ ¼ ∂jλi − ∂iλj;

δð1ÞΩ̄0i ¼ −∂0λi: ð3:19Þ

Hence we can obtain the same result replacing Ω̄μi with the
curl of a one form Mμ

Z
M
dDxð∂μMi − ∂iMμÞψμi; ð3:20Þ

where the first order variation of Mμ under a Galilean
transformation is

δð1ÞMμ ¼ −δiμλi: ð3:21Þ

The coupling of Mμ is also invariant under local Uð1Þ
transformations that only act on Mμ as δMμ ¼ −∂μσ.
Because this extra Uð1Þ does not act on the fields in
Sð0Þ its presence does not constrain the theory under
consideration. Hence we can replace Sð1Þ in (3.17) with

Sð1Þ ¼
Z
M
dDx½τ̄μEμþ ē0iT0i

impþ s̄ijT
ij
imp−ð∂μMi−∂iMμÞψμi�

¼
Z
M
dDx½τ̄μEμþ ē0iT0i

impþ s̄ijT
ij
impþMμΦμ�; ð3:22Þ6When interpreting ēμi as a linearized (spatial) vielbein these

terms can be traced back to the fact that in flat space (at 0th order)
the vielbein is not invariant under Galilean frame rotations
(see Appendix B for details).

7See [32] for a discussion of these issues in a relativistic
framework.

8Note that the improved (spatial) stress tensor Tij
imp defined via

(3.7b), (3.8a) is symmetric on shell.
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where in the last line we integrated by parts and
introduced

Φρ ¼ −ð∂0ψ
0j þ ∂iψ

ijÞδρj þ ∂jψ
0jδρ0: ð3:23Þ

The current Φρ is identically conserved by the antisym-
metry of ψ ij. Its conserved charge is zero in flat space using
Stokes’ theorem and in this sense Φρ is a topological
current.
We argue that Sð1Þ in the form (3.22) is the minimal

coupling to gauge fields that is generically necessary to
ensure invariance of Sð0Þ þ Sð1Þ under local Galilean trans-
formations at linear order.

D. The minimal affine connection

Next we evaluate the difference between (3.22) and
(3.16). Integrating by parts we can recast it as

Z
M
dDx

�
Ȳμiwμi −

1

2
Ȳμijsμij

�
; ð3:24Þ

The two objects Ȳμi and Ȳμij are invariant under local
Galilean transformations at first order. Hence they are the
linearization about flat space of tensors onM. Their explicit
expressions are given by

Ȳμij ¼ Ω̄μij − ~Ωμij; Ȳμi ¼ Ω̄μi − ~Ωμi; ð3:25aÞ

~Ωμi ¼ −δkμ
�
1

2
∂0s̄ki þ ∂ðkv̄iÞ

�
− 2δ0μ∂ ½0Mi�

− δjμ∂ ½jMi�; ð3:25bÞ

~Ωμij ¼ −δ0μð∂0ē½ij� þ ∂ ½iv̄j� − ∂ ½iMj�Þ
þ δkμð−∂kē½ij� þ ∂ ½is̄j�kÞ; ð3:25cÞ

where we defined v̄i ¼ −ē0i while s̄ij ¼ ēðijÞ as above. It
can be checked explicitly that ~Ωμi and ~Ωμij transform as Ω̄μi

and Ω̄μij respectively under (first order) local Galilean
transformations. Hence their interpretation is clear: they are
linearized expressions for the connections Ω̄μi and Ω̄μij

written in terms of the remaining gauge fields τ̄μ, ēμi and
Mμ. In this respect they are equivalent to the Levi-Civita
expression for the spin connection in relativistic theories.
Indeed in a relativistic framework an argument parallel to
the above results in the linearized Levi-Civita spin con-
nection (see Appendix A for details). The interpretation of
Ȳμi and Ȳμij is then that of contortion tensors describing the
coupling to the nonconserved currents wμi and sμij.
We argued that the minimal current multiplet for generic

Galilean field theories is obtained with the choice of
improvements (3.8). Hence (3.22) (equivalently Ȳμi ¼ 0

and Ȳμij ¼ 0) is the minimal gauging of Galilean

symmetries. The argument above therefore singles out
~Ωμi and ~Ωμij as the minimal choice of connections (at
first order). We can obtain any other Galilean connection by
allowing nonzero “contortionlike” tensors Ȳμi, Ȳμij. This
will result in connections that couple nonminimally to the
internal boost and spin currents wμi, sμij. We will compare
these results, obtained at the linear order, with the results of
torsional Newton Cartan geometry at full nonlinear level
in Sec. V.

IV. THE NOETHER PROCEDURE
FOR BARGMANN THEORIES

We will now consider theories with Bargmann or
massive Galilean symmetries. The prototypical example
of such a theory is the Schrödinger model for a complex
scalar field whose equation of motion is the Schrödinger
equation. The massive extension is realized by a Uð1Þ
phase transformation of the complex scalar field. In the first
two Secs. IVA and IV B we repeat the analysis of the
previous section, but now for Bargmann theories.
The Bargmann central extension of the Galilei algebra

leads to an extra gauge connection Mμ for mass conserva-
tion. In Sec. IV C we study the role of this gauge field in
detail from the point of view of the Noether procedure, and
we give an interpretation for why, in the case of theories
with massless Galilean symmetries like Galilean electro-
dynamics, we still need to introduce the Newton-Cartan
vectorMμ to describe the coupling of the theory to a curved
background.

A. Conserved symmetry currents

Consider first a local field theory invariant under the
Bargmann group (2.3). In addition to the currents we have
in the Galilean case, there is also a conserved current Jμ

corresponding to the central charge N. The nonzero
commutator (2.4) implies that the form of the boost current
bμi is now

bμi ¼ tTμi − xiJμ þ wμi; ð4:1Þ

while the rest of the current multiplet are as in Sec. III A.
The conservation law for jμij still imply (3.3b), but the

new conservation law for bμi given by (4.1) now changes
significantly from (3.3a). It now implies a relation between
the flux Ji and momentum density given by

T0i ¼ Ji − ∂μwμi: ð4:2Þ

1. Lagrangian formulations and canonical currents

Consider now field theory with a Lagrangian description.
Bargmann representations are projective Galilean repre-
sentations with the fields transforming with the projective
factor [28]
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exp ð−ifðt; xÞNÞ; fðt; xÞ ¼ 1

2
v2tþ vtRx − σ: ð4:3Þ

The extra parameter compared to the Galilean case is
σ ∈ R corresponding to the global Uð1Þ symmetry of the
field theory, while v parametrizes a finite boost and R a
finite rotation. Thus the only difference to the Galilean
transformations (3.4) of the previous section is that now
there are two extra terms in the infinitesimal variation δφl
due to the representation of the central chargeN on the field
components. The infinitesimal version of the field trans-
formations (3.4e) is now replaced with

δφlðxÞ ¼ þiσðNÞll0φl0 ðxÞ − iλixiðNÞll0φl0 ðxÞ

þ λiðGiÞll0φl0 ðxÞ þ
1

2
λijðJijÞll0φl0 ðxÞ: ð4:4aÞ

We will refer to the conserved Uð1Þ current Jμ as the mass
current. The canonical currents take the expressions

Jμcan ¼ −i
∂L

∂½∂μφl�
ðNÞll0φl0 ð4:5aÞ

bμican ¼ tTμi
can − xiJμcan þ wμi; ð4:5bÞ

while the other currents remain as in (3.5).
It is useful to write the variation of the action under local

Bargmann transformations

δS½φ� ¼ −
Z
M

�
∂μξ0E

μ
can þ ð∂μξi − λiδ

0
μ þ λijδ

j
μÞTμi

can

þ ∂μσJ
μ
can þ ∂μλiwμi þ 1

2
∂μλijsμij

�
: ð4:6Þ

As in the Galilean case, modifying the currents above by
improvement terms would be of no consequence in
flat space.

B. Improvement of the currents

The new symmetry current Jμ brings in a new improve-
ment transformation of the current multiplet besides those
of (3.7)

Jμimp ¼ Jμ þ ∂ρCρμ: ð4:7Þ

We can now choose the new improvement Cρμ ¼ −Cμρ of
Jμ to simplify the constraint on the momentum current (4.2)
as much as possible. The improvement Eρμi of the boost
current bμi must be chosen in a different way than in the
Galilean case (3.8), but the remaining improvements are
identical. The currents are maximally simplified by

Cρμ ¼ 2δ½ρi δ
μ�
0 w

0i þ δρi δ
μ
jw

½ij� ð4:8Þ

Eρμi ¼ tBρμi − xiCρμ: ð4:9Þ

With this choice wμi does not enter the boost current

bμiimp ¼ tTμi
imp − xiJμimp: ð4:10Þ

The conservation of bμiimp now implies

T0i
imp ¼ Jiimp; ð4:11Þ

which is to say that the momentum density is the same as
the mass flux, a fact known from the general Ward
identities of field theories coupled to TNC backgrounds
[17,18]. We also conclude that the minimal set of inde-
pendent currents for a generic Bargmann invariant theory is
given by Eμ, Tμi

imp, J
μ
imp.

C. The coupling of Mμ revisited

We have shown in Sec. III D that Mμ couples to a
topological current Φμ in Galilean theories. We can learn
more about Φμ by examining the relationship to theories
with Bargmann symmetries. Again we will use the Noether
procedure starting with some globally invariant field theory
with action Sð0Þ½φ�. The extra Uð1Þ symmetry generated by
the central charge N introduces an extra coupling in the Sð1Þ

action involving a new gauge field Mμ that couples to the
mass current Jμcan given by (4.5)

S½φ; ē; τ̄; Ω̄i; Ω̄ij;M�
¼ Sð0Þ½φ� þ Sð1Þ½φ; ē; τ̄; Ω̄i; Ω̄ij;M�; ð4:12aÞ

where

Sð1Þ ¼
Z
M
dDx

�
τ̄μE

μ
can þ ēμiT

iμ
can −MμJ

μ
can

− Ω̄μiwμi þ 1

2
Ω̄μijsμij

�
: ð4:12bÞ

We assign to Mμ the first order transformation

δð1ÞMμ ¼ −∂μσ − δiμλi; ð4:13Þ

and the remaining fields transform in the sameway as in the
Galilean case (3.14).
Using the improvements of the boost and mass currents

discussed in the previous subsection we can express the
canonical currents in terms of the improved ones.
Comparing to the Galilean case we only need to study
the new improvements of the mass current. Performing
integration by parts on these extra terms, we find that we
can define new objects that couple to the internal boost and
spin current as
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Sð1Þ ¼
Z
M
dDx

�
τ̄μE

μ
imp þ ē0iTi0

imp þ
1

2
s̄ijT

ij
imp

−MμJ
μ
imp þ

1

2
Ȳμijsμij − Ȳμiwμi

�
; ð4:14aÞ

where we have

Ȳμi ¼ Ω̄μi þ δkμ

�
1

2
∂0s̄ki þ ∂ðkv̄iÞ

�
þ 2δ0μ∂ ½0Mi�

þ δjμ∂ ½jMi� ð4:14bÞ

Ȳμij ¼ Ω̄μij þ δ0μð∂0ē½ij� þ ∂ ½iv̄j�Þ − δkμð∂ ½is̄j�k − ∂kē½ij�Þ
− δ0μ∂ ½iMj�: ð4:14cÞ

The connection gauge fields Ω̄μi, Ω̄μij we obtain from
this procedure are identical to the minimal Galilean con-
nection (3.25) if we make the choice Ȳμi ¼ 0 and Ȳμij ¼ 0.
Sð1Þ is then similar to (3.22) with no coupling to the internal
boost and spin currents, but now withMμ coupling to Jimp.
The origin of Mμ is however different in the two cases. In
the Bargmann case it is a natural gauge field introduced by
the Noether procedure, while in the Galilean case it is
introduced ad hoc.
As their transformation laws and couplings are the same

we can regard the fields in the two constructions as being
identical, which gives a natural interpretation of Mμ in
Galilean theories: It is the would-be mass gauge field, with
the mass current vanishing in these theories. This inter-
pretation is strengthened by noticing that the topological
current Φμ is exactly of the same form as the improvements
of the mass current we have chosen above. Hence a unified
way of writing the coupling of Mμ, in Galilean and
Bargmann theories is to write the current it couples to as

Jμimp ¼ Jμcan þ Φμ: ð4:15Þ

Galilean theories have a vanishing canonical mass current
Jμcan and in this case Jμimp is pure improvement.

V. COMPARISON TO THE
NONLINEAR THEORY

A. Uniqueness of the minimal connection
at nonlinear level

The transformation properties of the gauge fields intro-
duced in the Noether procedure of Secs. III C and IV C
were chosen so that the action is invariant under local
Galilean transformations at lowest order. By comparison
they are seen to be identical to the linearized versions of
(torsional) Newton-Cartan geometry that we work out in
Appendix B. This shows that the Noether procedure, as
expected, produces TNC geometry at the linear level. It is
therefore appropriate to identify the various gauge fields of

the Noether procedure with those of Newton-Cartan geom-
etry as our use of notation suggests.
The connections that emerged from the analysis of the

improvement terms are readily identified with those of
TNC geometry. We see that the Galilean/Bargmann con-
nections ~Ωμi, ~Ωμij as given in (3.25) are identical to the
linearized version of the connections (2.16) with the choice
(2.18). This leads to the affine connection (2.19a) which
was proven in [14,17,18] to be the only one linear in Mμ.
We conclude that (2.19a) is the minimal choice of con-
nection for TNC.

B. Other relevant connections with Mμ

Interestingly enough there is an entire class of affine
connections that are constructed from only the vielbeins
and Mμ. To construct more general affine connections, one
notices that

~Φ ¼ −vμMμ þ
1

2
hμνMμMν ð5:1Þ

is invariant under local Galilean boosts. This field can be
used to construct a more general class of affine connections
that is no longer linear in Mμ and that can be constructed

from the objects v̂μ, h̄μν and ~Φ [11] (see also [19] for a
discussion of general TNC connections)

Γλ
μν ¼−v̂λ∂μτνþ

1

2
hλσð∂μHνσðαÞþ ∂νHμσðαÞ− ∂σHμνðαÞÞ;

ð5:2aÞ

HμνðαÞ ¼ h̄μν þ α ~Φτμτν: ð5:2bÞ

Choosing α ¼ 0 gives the minimal connection (2.19a). The
α ≠ 0 connections are evidently not identified as minimal
Galilean connections by the Noether procedure, even
though they contain the same number of fields as
(2.19a). This is because for these connections Mμ does
not couple only to the mass or topological current, which
was an assumption in the Noether procedure.
Another example of a nonminimal connection is given

in [39]

Γ̌λ
μρ ¼ −v̂λ∂μτρ þ

1

2
hνλð∂μĥρν þ ∂ρĥμν − ∂νĥμρÞ

þ 1

2
hνλτρLv̂ĥμν; ð5:3Þ

where ĥμν ¼ h̄μν þ 2 ~Φτμτν which is such that v̂μĥμν ¼ 0.
This latter connection has the nice property that ∇̌μτν ¼ 0,

∇̌μv̂ν ¼ 0, ∇̌μhνρ ¼ 0 and ∇̌μĥνρ ¼ 0. All of these more
general connections correspond to different choices of the
contortionlike objects Ȳμi and Ȳμij in (4.14).
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VI. GALILEAN ELECTRODYNAMICS

In this section we will discuss an explicit example of a
massless Galilean theory, namely Galilean electrodynam-
ics, to illustrate the general results presented before. Our
discussion of the theory will be succinct, and we refer to the
reader to the companion paper [34] where we study various
versions of nonrelativistic electrodynamics and their cou-
plings to TNC geometry in detail.

A. Action and equations of motion

There are a number of ways to obtain nonrelativistic
theories starting from known relativistic ones. One may
simply take the nonrelativistic limit c → ∞, rescaling the
fields properly with powers of c, while another way is to
perform null reductions on Lorentz invariant theories. It has
been known for some time [40] that Maxwellian electro-
dynamics allows for two nonrelativistic limits, called the
electric and magnetic limits, respectively. It is possible to
embed both of these limits into a larger theory, that we will
call Galilean electrodynamics (GED) and to which we
restrict for simplicity. This theory consists of three fields ai,
φ, ~φ that are all needed in order to describe dynamical
nonrelativistic electrodynamics. The fields furnish an
indecomposable (but not irreducible) vector representation
of the homogeneous Galilean group. ai here transforms as a
(D − 1)-vector under rotations and mixes with φ under
boosts, while φ is a spacetime scalar. ~φ mixes with the two
other fields under boosts (see below).
The covariant action of GED coupled to TNC is given

by [34]

SGED ¼
Z

ddþ1xe

�
−
1

4
hμρhνσFμνFρσ − hμνv̂ρFρν∂μφ

− ~Φhμν∂μφ∂νφþ 1

2
ðv̂μ∂μφÞ2

�
; ð6:1Þ

where Fμν ¼ ∂μAν − ∂νAμ with Aμ ¼ aμ − ~φτμ − φMμ

expressed in terms of the GED fields aμ, ~φ, φ (with
vμaμ ¼ 0). aμ, ~φ are the gauge potentials entering the
magnetic field and electric field, and transform under local
Galilean boosts and Uð1ÞΛ gauge transformations as

aμ ∼ aμ þ τμvν∂νΛ; δaμ ¼ φeaμλa þ τμaνeνaλa;

~φ ∼ ~φþ vν∂νΛ; δ ~φ ¼ aνeνaλa: ð6:2Þ

The field φ is an extra scalar field, called the mass potential,
which is invariant under these transformations. It follows
that Aμ is inert under local Galilean boosts and conse-
quently the action (6.1) is manifestly boost invariant. The
action is also invariant under Uð1Þσ transformations with
δMμ ¼ ∂μσ, δAμ ¼ −φ∂μσ.

The equations of motion obtained by varying the GED
action (6.1) take the form

∂μðe ~FμνÞ ¼ 0; ∂μðe ~GμÞ ¼ 0; ð6:3Þ
where ~Fμν and ~Gμ are defined as

~Fμν ¼ hμρhνσFρσ þ ðv̂μhνρ − v̂νhμρÞ∂ρφ; ð6:4Þ

~Gμ ¼ hμνv̂ρFρν þ 2Φ̂hμν∂νφ − v̂μv̂ν∂νφ; ð6:5Þ

and one can verify that the set of Eqs. (6.3) are invariant
under both Uð1Þ transformations. We note that an efficient
way of obtaining the action of GED on a general TNC
background is via a null reduction of Maxwellian electro-
magnetism in one dimension higher [34].
We will also need the form of the action on flat TNC

spacetime, for which τμ ¼ δtμ, eμa ¼ δμa, vμ ¼ −δμt and
eaμ ¼ δaμ. The flat space GED fields are given by
ai ¼ aμe

μ
i , ~φ, and φ. The GED action (6.1) then reduces to

S ¼
Z

ddþ1x

�
−
1

4
fijfij − ~Ei∂iφþ 1

2
ð∂tφÞ2

�
; ð6:6Þ

where fij ¼ ∂iaj − ∂jai and ~Ei ¼ −∂i ~φ − ∂tai. This
action was first introduced in [41], and the limit from
which it arises is described in [42]. In particular, it can be
obtained from an appropriate nonrelativistic limit of
Maxwell theory on flat space coupled to a massless free
scalar field.

B. Noether currents and linearization of the action

GED is a massless Galilean field theory, and we now
proceed by presenting the results of Sec. III for this specific
theory and show that we recover the linearized version of
the GED action (6.1) on a general TNC background.

1. Canonical Noether currents

We first use the results of Sec. III A to determine the
canonical Noether currents and internal boost and spin
currents. The calculations are straightforward given the
transformation laws of the fields (see [34] for details) and
the results are

E0
can ¼

1

2
∂tφ∂tφ − ∂i ~φ∂iφþ 1

2
ð∂jak∂jak − ∂jak∂kajÞ

ð6:7aÞ

Ej
can ¼ ∂jφ∂t ~φþ∂j ~φ∂tφþ∂taj∂tφ−∂jak∂takþ∂kaj∂tak

ð6:7bÞ

T0i
can ¼ ∂tφ∂iφþ ∂kφ∂iak ð6:7cÞ
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Tji
can ¼ ∂jφ∂i ~φþ ð∂j ~φþ ∂tajÞ∂iφ

þ ð∂iak∂kaj − ∂iak∂jakÞ ð6:7dÞ

þ
�
1

2
ð∂nak∂nak − ∂nak∂kanÞ

− ð∂n ~φþ ∂tanÞ∂nφ −
1

2
ð∂tφÞ2

�
δij ð6:7eÞ

bμican ¼ tTμi þ wμi ð6:7fÞ

w0i ¼ −φ∂iφ ð6:7gÞ

wji ¼ −ai∂jφþ 2φ∂ ½jai� ð6:7hÞ

jμijcan ¼ xiTμj
can − xjTμi

can þ sμij ð6:7iÞ

s0ij ¼ 2a½j∂i�φ ð6:7jÞ

skij ¼ 2a½i∂ jkjAj� − 2a½i∂j�ak: ð6:7kÞ

The canonical currents are all of the correct form. Notice
that the stress tensor is not symmetric, the boost current
contains the nonconserved internal boost current wμi and
the rotation current contains the spin-current sμij. Moreover
these currents are not Uð1ÞΛ invariant.
An easy way to derive the expressions above is to

perform a null reduction of the (Dþ 1)-dimensional
canonical Maxwell EM tensor. One then finds that the
energy and momentum currents above are those corre-
sponding to the firstD dimensions while the extra (Dþ 1)-
component of the current will be identical zero. The latter
component corresponds in general to the mass current in
the reduced theory, which is naturally zero in GED.

2. Improved currents

Using the improvements that maximally simplify the
conserved currents as discussed in Sec. III B, we find the
relevant improved currents to be

T0i
imp ¼ ∂tφ∂iφþ 2∂kφ∂ ½iak� ð6:8aÞ

Tji
imp ¼ 2∂ðiφ∂jÞ ~φþ 2∂taði∂jÞφþ 2∂kaði∂jÞak

− ∂ðiak∂jÞak − ∂kaði∂kajÞ − Lδij ð6:8bÞ

bμiimp ¼ tTμi
imp þ ψμi ð6:8cÞ

ψ0i ¼ w0i ¼ −φ∂iφ ð6:8dÞ

ψki ¼ w½ki� −
1

2
s0ik ¼ 2φ∂ ½kai� ð6:8eÞ

jμijimp ¼ xiTμj
imp − xjTμi

imp; ð6:8fÞ

all of which are gauge invariant. Note that Tij
imp is

manifestly symmetric as it should be. The nonconserved
part given by ψμi cannot be removed entirely from the boost
current, while the spin current is not present in the
improved rotation current, in accordance with previous
results.
The improvement of the energy current is not determined

by the methods of Sec. III B, but requiring it to be gauge
invariant leads to a unique current given by

E0
imp ¼ L − ∂0φ∂0φ − ∂iφð∂0ai þ ∂i ~φÞ ð6:9aÞ

Ei
imp ¼ 2ð∂0aj þ ∂j ~φÞ∂ ½iaj� − ∂0φð∂0ai þ ∂i ~φÞ: ð6:9bÞ

Performing null reduction of the (Dþ 1)-dimensional
improved Maxwell EM tensor will also give the above
currents. One further sees that the improvements of the
(Dþ 1)-component corresponding to the would-be mass
current is identical to the topological current Φμ defined in
(3.23), which takes the form

Φρ ¼ −ð∂0ðφ∂jφÞ − ∂ið2∂ ½iAj�φÞÞδρj
þ ∂iðφ∂iφÞδρ0: ð6:10Þ

3. Linearization and Noether procedure

Finally, we wish to show that linearizing the action (6.1)
we obtain the same as compared to using the Noether
procedure of Sec. III C. Using the linearized version of
TNC geometry given in Appendix B, we find after
straightforward but tedious calculations that the linearized
action (6.1) becomes9 of the form (3.22) with the improved
currents as in (6.8), (6.9) and the topological current given
by (6.10).

VII. DISCUSSION

With the Noether procedure it is easier to answer
questions about how field theories couple to geometry.
For Bargmann theories it was well-known from the gauging
procedure of Sec. II A that Mμ would have to couple to a
(covariantly) conserved mass current [17,18]. What was not
clear from previous work was the role of Mμ in massless
Galilean theories. The Noether procedure clears this cou-
pling up completely. WhenMμ does not couple to the mass
current, it remains a background field that couples to the
topological current Φρ which is written in terms of the
nonconserved spin- and internal boost currents.
In the companion paper [34] we confirm these results for

Galilean electrodynamics, which together with its matter

9There is also an extra term ð∂iφ∂0aj þ ∂iak∂kajÞē½ij� −
2aj∂ ½kai�∂kē½ij� þ aj∂iφ∂0ē½ij� involving terms that are antisym-
metric in the vielbein, ∝ ē½ij�, which vanishes upon using the flat
space GED equations of motion.
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couplings is analyzed extensively there. We in particular
work out the coupling to TNC geometry beyond the
linearized level studied here. As shown in this paper, when
we linearize these couplings we find perfect agreement
with the general results of the Noether method performed
here.
An important bonus of the Noether procedure provides is

that it makes a natural proposal for what we call the
minimal affine connection that comes the closest to being
an analog of the Levi-Civita connection in (T)NC geom-
etry. It comes about by improving the canonical Noether
currents such that the Galilean boost and rotation Ward
identities are made manifest, i.e. the fact the momentum
flux equals the mass flux and that the stress tensor is
symmetric. If we then only couple the TNC variables τμ, eiμ
and Mμ to these energy, momentum and mass currents, we
obtain a form of the affine connection (2.19a) that we refer
to as the minimal connection whose nonlinear version is the
unique TNC connection that is linear in Mμ.
It would be interesting to extend these ideas and

calculations to theories with broken Galilean symmetries
such as Lifshitz theories or to theories with Carrollian boost
invariance10 and to see if the Noether procedure leads to the
Carrollian geometry of [21,39]. Further it would be
interesting to see if the Noether procedure could be helpful
for the construction of nonrelativistic supersymmetric
gravity theories [44–47].
In [11] it has been shown that dynamical (TT)NC

geometry corresponds to (non)projectable Hořava-
Lifshitz gravity [48–50]. It has been noted that making
TTNC geometry dynamical almost always leads to a
breaking11 of the Uð1Þ symmetry associated with the
Bargmann extension. It is presently not very clear why
this is what happens generically. The only known excep-
tions are in three dimensions corresponding the Chern-
Simons versions of Hořava-Lifshitz gravity [51]. It would
be interesting to see if the Noether procedure can shine
some light on this issue either by explaining why this
happens or by making clear that there must exist a larger
space of Hořava-Lifshitz type theories that does have a
Uð1Þ gauge symmetry.
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APPENDIX A: THE NOETHER PROCEDURE
FOR LORENTZIAN THEORIES

For the convenience of comparison with a more
familiar setting we review here the Noether procedure
for Lorentzian theories.

1. Conserved Noether currents

It is insightful to see how the Noether procedure works in
the more familiar case of theories with Poincaré spacetime
symmetries. The starting point for this is again an analysis
of the current multiplet of these theories, (see for instance
[38]). We assume here a Lagrangian description with action
Sð0Þ½φ� ¼ R

M dDxLðφ; ∂φ; xÞ and linear transformations
given by

δxμ ¼ ϵμ þ λμνxν ðA1aÞ

δφl ¼ 1

2
λμνðJμνÞll0φl0 ; ðA1bÞ

where λμν ¼ −λνμ is just an infinitesimal Lorentz trans-
formation and ϵμ an infinitesimal translation that together
are all of the parameters of the transformation. The
generators of rotations ðJμνÞll0 act on the fields φl in
some suitable linear representation.
The corresponding conserved Noether currents are given

by

Tρμ
can ¼ ∂L

∂½∂ρφl�
∂μφl − ημρL ðA2aÞ

jρμνcan ¼ xμTρν
can − xνTρμ

can þ sρμν ðA2bÞ

sρμν ¼ −
∂L

∂½∂ρφl�
ðJμνÞll0φl0 ; ðA2cÞ

where Tρμ
can is the canonical energy-momentum tensor and

jρμνcan is the total angular momentum containing the non-
conserved spin-current sρμν. The conservation ∂ρj

ρμν
can ¼ 0

implies

2T ½μν�
can ¼ −∂ρsρμν; ðA3Þ

so in general Tμν
can ≠ Tνμ

can.
We can write a variation of the action in terms of

arbitrary local parameters λμνðxÞ and ξμðxÞ≡ ϵμ þ λμνxν as

10We note that in two dimensions, Carrollian and Galilean
boost invariance are dual to each other under interchange of time
and space. An example of a 2D theory with this boost symmetry
is warped CFT, which was shown in Ref. [43] to couple to warped
geometry. The latter can be seen either as TNC geometry or as
Carrollian geometry, which are thus dual to each other in two
dimensions [39].

11This breaking is described in [11] by adding a Stückelberg
scalar χ to the theory.
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δSð0Þ ¼ −
Z
M
dDx

�
ð∂ρξμ − λμρÞTρμ

can þ 1

2
∂ρλμνsρμν

�
: ðA4Þ

Global transformations correspond to constant ϵμ
and λμν.

2. Improvements of currents

The improvements of the EM tensor and angular
momentum current take the form

Tρμ
imp ¼ Tρμ

can þ ∂λAλρμ; ðA5aÞ

Jρμνimp ¼ xμTρν
can − xνTρμ

can þ sρμν þ ∂λBλρμν; ðA5bÞ

where Aλρμ ¼ −Aρλμ and Bλρμν ¼ −Bρλμν are the improve-
ment terms. If we choose

Aλρμ ¼ 1

2
ðsλρμ þ sρμλ − sμλρÞ ðA6aÞ

Bλρμν ¼ xμAλρν − xνAλρμ; ðA6bÞ

then the conservation law for angular momentum reads

Tμν
imp ¼ Tνμ

imp: ðA7Þ
This improved energy-momentum tensor is known as the

Belinfante-Rosenfeld energy-momentum tensor.

3. Coupling the gauge fields to currents

If we want local Poincaré invariance of our theory at
lowest order, we need a first-order term in the action that
cancels the noninvariance of (A4). We define two gauge
fields that couple to the currents in Sð1Þ

Sð1Þ ¼
Z
M
dDx

�
ēμνT

μν
can þ 1

2
ω̄ρμνsρμν

�
: ðA8Þ

These are the linearization of the vielbein ēμν and the spin-
connection ω̄ρμν and transform at first order as

δð1Þēμν ¼ ∂μξν þ λμν ðA9aÞ

δð1Þω̄ρμν ¼ ∂ρλμν: ðA9bÞ

Writing Tνμ
can in terms of the improved current (A5) gives

after some algebra

Sð1Þ ¼
Z
M
dDx

�
1

2
h̄μνT

μν
imp þ

1

2
Ȳρμνsρμν

�
ðA10aÞ

Ȳρμν ¼ ω̄ρμν − ω̄ð0Þρμν; ðA10bÞ

ω̄ð0Þρμν ¼
1

2
ð∂ρh̄μν − ∂νh̄μρÞ þ ∂μē½νρ�; ðA10cÞ

where h̄μν ¼ 2ēðμνÞ is the perturbation of the Minkowski
metric, and one may check that ω̄ð0Þρμν is the linearization
of the Levi-Civita connection. What one should appreciate
is that contrary to the Galilean case, it is possible to realize
the geometry on the vielbeins alone (or equivalently the
metric gμν ¼ ημν þ h̄μν þ…).
Minimal coupling corresponds to Ȳρμν ¼ 0. In this case,

we know from the fundamental theorem of Riemannian
geometry that the Levi-Civita connection is the unique
metric compatible and torsionless connection. This allows
us to conclude, even at the nonlinear level, that the Levi-
Civita connection is the minimal connection of Riemannian
geometry. Ȳρμν therefore is interpreted as the (linearized)
contortion tensor (which can be expressed in terms of the
torsion tensor). Thus minimal coupling to gravity, metric
compatibility and torsionlessness of the spin-connection
are equivalent for Poincaré invariant theories.

APPENDIX B: LINEARIZATION
OF NEWTON-CARTAN GEOMETRY

The TNC geometry was reviewed in Sec. II. It simplifies
substantially when we only consider it at the linear level,
which is sufficient to see the effects of gravity.
We will consider small perturbations to global inertial

frames of the flat geometry considered in [13] and keep
everything at first order. We take

τμ ¼ δ0μ þ τ̄μ ðB1aÞ

vμ ¼ −δμ0 − v̄μ ðB1bÞ

eiμ ¼ δiμ þ ēiμ ðB1cÞ
eμi ¼ δμi − ēμi ; ðB1dÞ

where ēiμ, ē
μ
i , τ̄μ, v̄

μ are the perturbations. The completeness
relation must still hold at first order, which implies some
relations between the vielbeins and their inverses

τ̄0 ¼ −v̄0 ðB2aÞ

ē0i ¼ τ̄i ðB2bÞ
ēi0 ¼ −v̄i: ðB2cÞ

This shows that the linearized inverse vielbeins are propor-
tional to the linearized vielbeins themselves. The spatial
metric can then be expressed in terms of the vielbeins up to
first order as

h̄μν ¼ δijδ
i
μδ

j
ν þ s̄μν ¼

�
0 −v̄j
−v̄i δij þ s̄ij

�
ðB3aÞ

h̄μν ¼ δijδμi δ
ν
j − s̄μν ¼

�
0 −τ̄j

−τ̄i δij − s̄ij

�
; ðB3bÞ
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where we have defined the perturbations of the spatial
metrics as

s̄μν ¼ ēiμδνi þ δiμēνi ¼ 2δiðμēνÞi ðB4aÞ

s̄μν ¼ ēμi δ
νi þ δμi ē

νi ¼ 2δðμi ē
νÞi: ðB4bÞ

All spatial indices may be raised or lowered with the flat
spatial metric δij, δij.
With these results we can linearize the affine pseudo-

connection (2.15) and the corresponding gauge fields.
The results are

Γ̄λ
ð0Þμν ¼ δλ0∂μτ̄ν þ

1

2
δλiδσi ð∂μs̄νσ þ ∂νs̄μσ − ∂σ s̄μνÞ; ðB5aÞ

Ω̄ð0Þμi ¼
� Ω̄ð0Þ0i
Ω̄ð0Þji

�
¼

�
0

− 1
2
∂0s̄ji − ∂ðiv̄jÞ

�
ðB5bÞ

Ω̄ð0Þμik ¼
� Ω̄ð0Þ0ik
Ω̄ð0Þjik

�
¼

� −∂0ē½ik� − ∂ ½iv̄k�
−∂jē½ik� þ ∂ ½is̄k�j

�
: ðB5cÞ

The full gauge fields can then be written as

Ω̄μi ¼ Ω̄ð0Þμi þ C̄μi ðB6aÞ

Ω̄μij ¼ Ω̄ð0Þμij þ C̄μij; ðB6bÞ

C̄μi ¼ δλiW̄λ
μ0 ðB6cÞ

C̄μij ¼ δλiW̄λ
μj: ðB6dÞ

The relevant transformation laws (2.9) are

δτ̄μ ¼ ∂μξ
0; ðB7aÞ

δēiμ ¼ ∂μξ
i þ λijδ

j
μ − λiδ0μ ðB7bÞ

δΩ̄μi ¼ −∂μλi ðB7cÞ

δΩ̄μij ¼ ∂μλij: ðB7dÞ

For the minimal connection (2.19a) we take the mass/
background gauge field Mμ ¼ Mμ and give it the trans-
formation law

δMμ ¼ −∂μσ − λieμi: ðB8Þ

We then find that the pseudocontortions become

C̄μi ¼ −
�
2∂ ½0Mi�
∂ ½jMi�

�
ðB9aÞ

C̄μij ¼
� ∂ ½iMj�

0

�
: ðB9bÞ
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