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Ladder operators for the simplest version of a rationally extended quantum harmonic oscillator
(REQHO) are constructed by applying a Darboux transformation to the quantum harmonic oscillator
system. It is shown that the physical spectrum of the REQHO carries a direct sum of a trivial and an infinite-
dimensional irreducible representation of the polynomially deformed bosonized ospð1j2Þ superalgebra. In
correspondence with this the ground state of the system is isolated from other physical states but can be
reached by ladder operators via nonphysical energy eigenstates, which belong to either an infinite chain
of similar eigenstates or to the chains with generalized Jordan states. We show that the discrete chains of
the states generated by ladder operators and associated with physical energy levels include six basic
generalized Jordan states, in comparison with the two basic Jordan states entering in analogous discrete
chains for the quantum harmonic oscillator.
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I. INTRODUCTION

Darboux transformations, introduced originally as a
method to solve linear differential equations and general-
ized subsequently for Darboux-Crum(-Krein-Adler) trans-
formations [1–5], find many important applications in
physics. For a long period of time they were used in
quantum mechanics in the factorization method for
solving the Schrödinger equation [6–9]. Nowadays they
are exploited intensively in the context of supersymmetry.
These transformations lie at the heart of supersymmetric
quantum mechanics [10–14]. They are particularly
employed for the construction of new solvable and quasi-
exactly solvable quantum-mechanical systems. The Darboux
transformations play a fundamental role in the investigation
of nonlinear equations in partial derivatives and partial
difference equations, where they allow one to relate different
integrable systems and provide an effective method for the
construction of nontrivial solutions for them [5,15]. Periodic
Darboux chains generate finite-gap systems [16] in an
alternative way to the original algebro-geometric approach
[17,18]. Such chains also generate the quantum harmonic
oscillator (QHO) system and Painlevé equations [16,19,20],
which are intimately related with isomonodromic deforma-
tions of linear systems and integrability properties of non-
linear systems in partial derivatives. Recently, the
isomonodromic deformations [21,22] and Darboux trans-
formations played a key role in the discovery and inves-
tigation of the properties of the new class of exceptional
orthogonal polynomials [4,23–33]. One such family corre-
sponds to exceptional Hermite polynomials, which can be

obtained by applying Darboux and Darboux-Crum trans-
formations to the QHO system. The quantum-mechanical
systems appearing in such a way are described by certain
rational extensions of the harmonic potential.
The simplest rationally extended quantum harmonic

oscillator (REQHO) [23,24] can be obtained from the
QHO system by applying to it a Darboux transformation
generated by the “Wick-rotated” second excitation of the
ground state. The resulting system is characterized by an
infinite tower of equidistant bound states which are
separated from the ground state by a triple energy gap.
As a consequence, the general solution of the evolution
problem for REQHO, like for the quantum harmonic and
isotonic oscillators, is periodic in time with a constant (not
depending on energy) period [23,34,35]. For the discussion
of different aspects of this quantum mechanical system, see
Refs. [4,23–25,31–33].
It is known that the spectrum of the QHO carries an

infinite-dimensional irreducible representation of the
bosonized ospð1j2Þ superalgebra which can be generated
by means of the creation and annihilation operators
identified as fermionic generators [36,37].1 In this context
there appears a rather natural question: what are the ladder
operators in rationally extended quantum harmonic oscil-
lator systems and what spectrum-generating algebras do
they produce? In this paper we answer these questions
for the simplest case of the REQHO system by employing
the properties of the Darboux transformations. A special
role in the construction we obtain belongs to generalized
Jordan states.
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1For some recent investigations on superconformal quantum-
mechanical symmetry and its applications, see Refs. [38–42].
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The paper is organized as follows. In the next section we
review general properties of the Darboux transformations
and related Jordan states. In Sec. III we discuss discrete
flows generated by the ladder operators in the QHO system
and recall the bosonized superconformal ospð1j2Þ structure
appearing in it in the form of the spectrum generating
superalgebra. In Sec. IV we generate the simplest REQHO
by applying the Darboux transformation to the QHO. Then
we construct ladder operators for REQHO by a Darboux
dressing of the creation and annihilation operators of the
QHO system, consider discrete flows, and discuss a
polynomially deformed bosonized ospð1j2Þ structure in
the REQHO that reflects in a coherent way peculiarities of
its spectrum. Section V is devoted to the conclusion and
outlook. In the Appendix we describe the action of the
ladder operators on nonphysical eigenstates of the quantum
harmonic oscillator which are closely related to its physical
spectrum, and present the construction of the net of
associated Jordan and generalized Jordan states.

II. DARBOUX TRANSFORMATIONS
AND JORDAN STATES

Let ψ�ðxÞ be a solution of the stationary Schrödinger
equation Hψ� ¼ E�ψ�. For the moment we consider this
equation formally as an abstract second-order differential
equation in which H ¼ − d2

dx2 þ VðxÞ is a Hamiltonian
operator with a real potential VðxÞ that is nonsingular on
R. A real constant E� is treated here as an eigenvalue
without considering the questions of boundary conditions
and normalizability for ψ�ðxÞ. Consequently, we do not
distinguish functions ψðxÞ and CψðxÞ, where C ∈ C,
C ≠ 0, and assume that modulo such a multiplicative factor
ψðxÞ is chosen to be a real-valued function. A linearly
independent solution for the same eigenvalue E� can be
taken in the form

fψ�ðxÞ ¼ ψ�ðxÞ
Z

x dξ
ψ2�ðξÞ

: ð2:1Þ

Due to the integration with an indefinite lower limit, the
function fψ�ðxÞ is supposed to be defined up to an additive
term proportional to ψ�ðxÞ. We now assume that E� is
chosen so that the function ψ�ðxÞ is nodeless, ψ�ðxÞ ≠ 0,
and introduce the first-order differential operators

Aψ� ¼ ψ�
d
dx

1

ψ�
¼ d

dx
−WðxÞ; WðxÞ ¼ ψ 0�

ψ�
; ð2:2Þ

and A†
ψ� ¼ − d

dx −WðxÞ, where a prime denotes a derivative

with respect to x. Note that because Aψ� and A†
ψ� are

first-order differential operators, their kernels are one
dimensional,

kerAψ� ¼ ψ�; kerA†
ψ� ¼

1

ψ�
: ð2:3Þ

These operators provide a factorization of the Hamiltonian
shifted for the constant E�, H − E� ¼ A†

ψ�Aψ� . The poten-
tial VðxÞ and superpotential WðxÞ are connected by the
relation VðxÞ − E� ¼ W2 þW 0. The product with the
permuted first-order operators, Aψ�A

†
ψ� ¼ H̆ − E�, defines

the associated partner system described by the Hamiltonian
H̆ ¼ − d2

dx2 þ V̆ðxÞ with V̆ðxÞ − E� ¼ W2 −W 0. From the
alternative factorization relations it follows immediately
that the first-order operators Aψ� and A†

ψ� intertwine the
quantum Hamiltonians H and H̆,

Aψ�H ¼ H̆Aψ� ; A†
ψ�H̆ ¼ HA†

ψ� : ð2:4Þ

If ψE is a physical (normalizable) or nonphysical
(non-normalizable) solution of the Schrödinger equation
HψE ¼ EψE for some eigenvalue E ≠ E�, then as a
consequence of Eq. (2.4), Aψ�ψE will be an eigenstate of
H̆ of the same (physical or nonphysical) nature for the same
eigenvalue E: H̆ðAψ�ψEÞ ¼ EðAψ�ψEÞ. In particular, for
the linearly independent solution fψE constructed from ψE

according to the rule (2.1), fψE ¼ ψEðxÞ
R
x dξ=ψ2

EðξÞ,
we have H̆ðAψ�fψEÞ ¼ EðAψ�fψEÞ. On the other hand, for
E ¼ E� and ψE ¼ fψ� we find that

Aψ�fψ� ¼
1

ψ�
: ð2:5Þ

The function 1
ψ�

is the kernel of the operator A†
ψ�, and

therefore it is an eigenstate of H̆, ðH̆ − E�Þ 1
ψ�

¼ 0.

Analogously, if ψ̆E is an eigenfunction of H̆ of eigenvalue
E ≠ E�, then A†

ψ� ψ̆E is an eigenstate of H of the same
eigenvalue,HðA†

ψ� ψ̆EÞ ¼ EðA†
ψ� ψ̆EÞ. For E ¼ E� the appli-

cation of A†
ψ� to an eigenfunction of H̆ that is linearly

independent from 1
ψ�

maps it into the kernel of Aψ� ,

A†
ψ�

g
�

1

ψ�

�

¼ ψ�; ð2:6Þ

which is the eigenstate of H.
The described structure of the Darboux transformations

reveals an essential difference between the cases E ≠ E�
and E ¼ E�. The action of the Darboux transformation
generators on the eigenstates with E ≠ E� is of the two-
cyclic nature in the following sense: if ψ is such that
Hψ ¼ Eψ , then Aψ� maps this state into an eigenstate of H̆,

Aψ�ψ ¼ ψ̆ , H̆ ψ̆ ¼ Eψ̆ , while the application of A†
ψ� to ψ̆

reproduces (up to a multiplicative factor) the initial state ψ .
At the same time, for E ¼ E� we have Aψ�fψ� ¼ 1

ψ�
,
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A†
ψ�

1
ψ�

¼ 0 and A†
ψ�

gð 1
ψ�
Þ ¼ ψ�, Aψ�ψ� ¼ 0, and no analo-

gous cyclic structure appears. In this case the functions

Ω2ðxÞ ¼ ψ�ðxÞ
Z

x 1

ψ�ðξÞ
g

�
1

ψ�

�

ðξÞdξ;

Ω̆2ðxÞ ¼
1

ψ�ðxÞ
Z

x
ψ�ðξÞfψ�ðξÞdξ ð2:7Þ

are the preimages of gð 1
ψ�
Þ and fψ�,

Aψ�Ω2 ¼
g

�
1

ψ�

�

≡ Ω̆1; A†
ψ�Ω̆2 ¼ fψ� ≡Ω1: ð2:8Þ

Similarly to the eigenstates of the form (2.1), the functions
Ω2ðxÞ and Ω̆2ðxÞ are defined modulo additive terms ψ�ðxÞ
and 1

ψ�ðxÞ, respectively. The wave functions (2.7) are not,

however, formal eigenfunctions of H and H̆, but as a
consequence of Eq. (2.8) they obey the relations
Aψ�A

†
ψ�Aψ�Ω2 ¼ 0 and A†

ψ�Aψ�A
†
ψ�Ω̆2 ¼ 0. Therefore,

ðH − E�Þ2Ω2 ¼ 0; ðH̆ − E�Þ2Ω̆2 ¼ 0; ð2:9Þ

and we conclude thatΩ2 and Ω̆2 are generalized eigenstates
ofH and H̆ of rank 2 corresponding to the same eigenvalue
E ¼ E�. Having in mind a generalization of relations of
the form (2.9) which appear in the following [in particular,
see Eq. (4.16) below], we refer to Ω2 and Ω̆2 as Jordan
states of order 2 [43,44]. The states (2.7) can be generalized
further by defining

ΩnðxÞ ¼ ψ�ðxÞ
Z

x 1

ψ�ðξÞ
Ω̆n−1ðξÞdξ;

Ω̆nðxÞ ¼
1

ψ�ðxÞ
Z

x
ψ�ðξÞΩn−1ðξÞdξ; ð2:10Þ

where n ¼ 2; 3;…. These states obey the relations
Aψ�Ωn ¼ Ω̆n−1, A†

ψ�Ω̆n ¼ Ωn−1. Consequently we find
that Ωn and Ω̆n are annihilated by differential operators
of order nþ 1 constructed in terms of Aψ� and A†

ψ� .
Namely, for even n ¼ 2k we have Aψ� ðA†

ψ�Aψ�ÞkΩ2k ¼ 0,
A†
ψ� ðAψ�A

†
ψ�ÞkΩ̆2k ¼ 0, while for odd n ¼ 2k − 1 we obtain

ðA†
ψ�Aψ� ÞkΩ2k−1 ¼ 0 and ðAψ�A

†
ψ� ÞkΩ̆2k−1 ¼ 0, k ¼ 1;….

In both cases of the even and odd values of n we have
ðH − E�Þnþ1Ω2n ¼ 0, ðH̆ − E�Þnþ1Ω̆2n ¼ 0, n ¼ 1; 2;…,
and ðH − E�Þnþ1Ω2nþ1 ¼ 0, ðH̆ − E�Þnþ1Ω̆2nþ1 ¼ 0,
n ¼ 0; 1;…. Thus, Ωk and Ω̆k with k ¼ 2n, 2nþ 1 are
Jordan states of order nþ 1. The described properties are
illustrated in Fig. 1.

III. DISCRETE FLOWS IN THE HARMONIC
OSCILLATOR SYSTEM AND THE ospð1j2Þ

Let us consider now the QHO system with VðxÞ ¼ x2. Its
physical bound eigenstates with eigenvalues En ¼ 2nþ 1
are described by normalizable wave functions ψnðxÞ ¼
HnðxÞe−x2=2, n ¼ 0; 1;…, where HnðxÞ are the Hermite
polynomials. The change x → ix transforms the
Hamiltonian of the QHO

H ¼ −
d2

dx2
þ x2 ð3:1Þ

into −H, from which it follows that the wave functions
ψ−
n ðxÞ ¼ HnðxÞex2=2 with HnðxÞ≡HnðixÞ correspond to

nonphysical (i.e., non-normalizable) eigenstates of H with
eigenvalues E−

n ¼ −ð2nþ 1Þ. The corresponding functions
fψn and fψ−

n are nonphysical (non-normalizable) eigenfunc-
tions of H with eigenvalues En ¼ 2nþ 1 and En ¼
−ð2nþ 1Þ, n ¼ 0; 1;…, respectively. They will play an
important role in the structure and properties of the
REQHO system [4,23–25,31–33].
The well-known peculiarity of the QHO system in the

context of the Darboux transformations is that the choice
of E� ¼ 1, ψ� ¼ ψ0 ¼ e−x

2=2 gives W ¼ −x, and with
the factorizing operators Aψ� and A†

ψ� we obtain the usual
(up to a multiplicative factor

ffiffiffi
2

p
) creation and annihilation

operators,

a− ¼ d
dx

þ x; aþ ¼ ða−Þ† ¼ −
d
dx

þ x; ½a−; aþ� ¼ 2:

ð3:2Þ

In this case, if N ¼ aþa− denotes the number operator for
the QHO [with the spectrum 2n, n ¼ 0; 1;…, correspond-
ing to a normalization chosen in Eq. (3.2)], we have

½N; a�� ¼ �2a�; H ¼ N þ 1: ð3:3Þ

As a result, the Darboux-partner system for the QHO turns
out to be H̆ ¼ H þ 2, which is the same quantum harmonic
oscillator but just with the spectrum of physical states
shifted by þ2. Since ψ−

0 ¼ 1=ψ0, another choice E� ¼ −1,
ψ� ¼ ψ−

0 changes the role of the Darboux-generating
operators, Aψ� ¼ aþ, A†

ψ� ¼ a−, and the partner system
H̆ ¼ H − 2 in this second case is again the quantum

=
Ω

ψ
*

*
ψ1

A+
E*Eψ

E

ψ

A

A A

=

Ω

ψ
*

(1 )*
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Ω

Ω
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A
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2
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3

3

E
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E*Ω=

=

A+
A+

ψ
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ψ
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*
ψ
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FIG. 1. Action of the Darboux transformation generators.
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harmonic oscillator but with the physical spectrum shifted
by −2. The action of the ladder operators on physical and
associated nonphysical eigenstates of the QHO and on the
related Jordan and generalized Jordan states is described in
the Appendix. The corresponding discrete flows generated
by a− and aþ are depicted in Fig. 2.
In general, because of the two-cyclic structure associated

with the Darboux transformations, there appears a super-
symmetry in the extended system composed fromH and H̆.
Since for the QHO with its equidistant spectrum the partner
generated by the Darboux transformation based on the
eigenfunction ψ� ¼ ψ0 (or on ψ� ¼ ψ−

0 ¼ 1=ψ0) is the
same system but just with the spectrum shifted exactly by
one energy step ΔE ¼ þ2 (or, ΔE ¼ −2), the Darboux
transformation generators responsible for the supersym-
metric structure transmute into the ladder operators for the
single harmonic oscillator system. In addition, instead of
the usual quantum-mechanical supersymmetry of the com-
posed system, the single quantum harmonic oscillator itself
is characterized by the bosonized superconformal ospð1j2Þ
structure. The ospð1j2Þ Lie superalgebra is generated here
by the set of operators

L� ¼ 1

4
a�; J0 ¼

1

8
faþ; a−g ¼ 1

4
H; J� ¼ 1

4
ða�Þ2;
ð3:4Þ

with nontrivial (anti)commutation relations

fLþ;L−g ¼ 1

2
J0; fLþ;Lþg ¼ 1

2
Jþ; fL−;L−g ¼ 1

2
J−;

ð3:5Þ

½J0;L�� ¼ � 1

2
L�; ½Jþ;L−� ¼ −Lþ; ½J−;Lþ� ¼ L−;

ð3:6Þ

½J0; J�� ¼ �J�; ½Jþ; J−� ¼ −2J0: ð3:7Þ

For this superalgebra the reflection operator R ¼
ð−1ÞN=2 ¼ eiπN=2 plays the role of a Z2-grading operator,
i.e.,

R2 ¼ 1; fR;L�g ¼ 0; ½R; J0� ¼ ½R; J�� ¼ 0:

ð3:8Þ
The operator

Cospð1j2Þ ¼ −J20 þ
1

2
ðJþJ− þ J−JþÞ þ 2ðLþL− − L−LþÞ

ð3:9Þ
is the quadratic Casimir of the ospð1j2Þ.
This corresponds to the well-known spectrum-generating

superalgebra of the QHO [36,37], on the physical eigen-
states ψnðxÞ of which the infinite-dimensional irreducible
representation of the ospð1j2Þ with Cospð1j2Þ¼− 1

16
is real-

ized. The generators of the soð2; 1Þ Lie subalgebra (3.7) act
irreducibly on the eigensubspaces of R spanned by the
states ψnðxÞ with even (n ¼ 2nþ) and odd (n ¼ 2n− þ 1,
n� ¼ 0; 1;…) values of n, where the operator J0 takes
eigenvalues nþ þ 1

4
and n− þ 3

4
, respectively. On both these

subspaces the soð2; 1Þ Casimir operator Csoð2;1Þ ¼ −J20 þ
1
2
ðJþJ− þ J−JþÞ takes the same value Csoð2;1Þ ¼ 3

16
.

To conclude this section we note that a structure with a
hidden bosonized supersymmetry [45,46] also appears in
periodic finite-gap and reflectionless quantum-mechanical
systems [47]. There, however, hidden supersymmetry has a
different origin associated with the presence of a nontrivial
Lax-Novikov integral in the quantum-mechanical systems
related to finite-gap and soliton solutions of the Korteweg–
de Vries equation.

IV. DISCRETE FLOWS IN THE REQHO
AND DEFORMED SUPERCONFORMAL

ospð1j2Þ STRUCTURE
Now we take a nonphysical eigenstate ψ−

2 ðxÞ ¼ ð2x2 þ
1Þex2=2 of the harmonic oscillator as the function ψ� to

0

ψ

1ψ2 0 ψ0 ψ ψ2

χχ +
222σ+ σ2

ψ
a

a

a
a

a a

a

a
a

a

+

+
+

+

+

χ3
+

3χ

ψ0 ψ ψ1 ψ2012

1ψψ

σ+
3

σ3

FIG. 2. Discrete flows of the ladder operators of the QHO. The operator a− acts left and up, and aþ acts right and up.
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generate the Darboux transformation. This is a nodeless
function, and the associated Darboux-transformed system
will be given by a potential that is nonsingular on R. For
the sake of simplicity we denote by A− the corresponding
first-order operator (2.2), in which the superpotential

WðxÞ ¼ d
dx

ðlnψ−
2 Þ ¼ xþ 4x

2x2 þ 1
¼ xþ 1

xþ iffiffi
2

p þ 1

x − iffiffi
2

p

ð4:1Þ

has simple poles at ∞ and � iffiffi
2

p . By construction,

A−ψ−
2 ¼ 0 and Aþð 1

ψ−
2

Þ ¼ 0, where Aþ ¼ ðA−Þ†. A simple

computation gives

AþA− ¼ −
d2

dx2
þ x2 þ 5 ¼ N þ 6≡HO; ð4:2Þ

A−Aþ ¼ −
d2

dx2
þ x2 þ 3þ 8

2x2 − 1

ð2x2 þ 1Þ2 ≡ H̆O; ð4:3Þ

where N is the number operator for the QHO, N ¼ aþa−.
Here HO represents the QHO Hamiltonian shifted by an
additive constant 5. The Hamiltonian operator H̆O
describes the REQHO system with the physical bound
states Ψ0 ¼ 1

ψ−
2

¼ A−fψ−
2 and Ψnþ1 ¼ A−ψn of energies

E0 ¼ 0 and Enþ1 ¼ 6þ 2n, n ¼ 0; 1;…, constructed from
the corresponding QHO states.
Let us introduce the third-order differential operators

A− ¼ A−a−Aþ; Aþ ¼ ðA−Þ† ¼ A−aþAþ: ð4:4Þ

These are the Darboux-dressed ladder operators of the QHO.
The operator Aþ maps a physical or nonphysical eigenstate
of H̆O into an eigenstate (of the same nature) of the QHO, to
which a− or aþ is then applied, and the eigenstate of HO
obtained in this way is mapped by A− into another eigenstate
of H̆O. The operators (4.4) satisfy the following commuta-
tion relations with the REQHO Hamiltonian:

½H̆;A�� ¼ �2A�; ð4:5Þ

for which from now on we use a simplified notation H̆.
To find Eq. (4.5) we used the intertwining relations
AþH̆ ¼ HOAþ, A−HO ¼ H̆A−, as well as Eq. (3.3).
Equation (4.5) is generalized further for

½H̆;A�n� ¼ �2nA�n; n ¼ 1; 2;…; ð4:6Þ

and fðH̆ÞA� ¼ A�fðH̆ � 2Þ for an arbitrary polynomial
function fðH̆Þ.
The operators Aþ and A− transform eigenstates of H̆

(which are not from their kernels) into eigenstates of H̆ with
the energy values increased and decreased by 2. In this

aspect they act analogously to the ladder operators aþ and
a− in the QHO system. There are, however, essential
differences. These third-order differential operators satisfy
the relations

AþA− ¼ H̆ðH̆ − 2ÞðH̆ − 6Þ≡ ΦðH̆Þ;
A−Aþ ¼ H̆ðH̆ þ 2ÞðH̆ − 4Þ ¼ ΦðH̆ þ 2Þ; ð4:7Þ

which follow from Eqs. (4.2), (4.3), and (3.3) and the
intertwining properties of A�, and include the degree-three
polynomial ΦðλÞ ¼ λðλ − 2Þðλ − 6Þ. From Eqs. (4.7) and
(4.6) we also obtain the following relations which will be
used below:

Aþ2A− ¼ ΦðH̆ − 2ÞAþ; A−Aþ2 ¼ ΦðH̆ þ 2ÞAþ;

ð4:8Þ

A−2Aþ ¼ ΦðH̆ þ 4ÞA−; AþA−2 ¼ ΦðH̆ÞA−; ð4:9Þ

Aþ2A−2 ¼ ΦðH̆ÞΦðH̆ − 2Þ;
A−2Aþ2 ¼ ΦðH̆ þ 2ÞΦðH̆ þ 4Þ: ð4:10Þ

Both third-order polynomials ΦðH̆Þ and ΦðH̆ þ 2Þ in
Eq. (4.7) include a factor H̆. This reflects the essential
peculiarity of the REQHO system: its ground state Ψ0 of
zero energy is annihilated by both operators A− and Aþ,

A−Ψ0 ¼ AþΨ0 ¼ 0; ð4:11Þ

because Ψ0 ¼ 1
ψ−
2

is the kernel of Aþ.
Now we consider other properties of the lowering ladder

operator A−. It also annihilates the first excited physical
state Ψ1ðxÞ ¼ A−ψ0ðxÞ, A−Ψ1 ¼ 0 due to the sequential
action of the operators Aþ and a−. Moreover, it annihilates
a nonphysical eigenstate A−ψ−

1 of H̆ by means of trans-
forming it by the second-order operator a−Aþ into the
kernel of A−. As the kernel of the third-order differential
operator A− is three dimensional, it is spanned by the three
eigenstates of H̆,

kerA− ¼ spanfΨ0; A−ψ−
1 ;Ψ1g; ð4:12Þ

whose eigenvalues E ¼ 0, 2, 6 correspond to zeros of the
third-degree polynomial ΦðH̆Þ in the first equality in
Eq. (4.7). The operator A− acts as a lowering ladder
operator, and it is also interesting to look for kernels of
powers ðA−Þn with n ¼ 2; 3;…. A priori, it is clear that—
due to the presence of another physical state in the kernel of
A− (which is the first exited state Ψ1 in the spectrum of H̆)
and of the nonphysical state A−ψ−

1 with eigenvalue E ¼ 2

located between the energies E ¼ 0 and E ¼ 6 of the
physical zero modes of A−—some additional peculiarities
have to appear in comparison with the case of the QHO.
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Note first that Eq. (4.6) implies that kerðA−Þ2 must be
invariant under the action of H̆. On the other hand, we
remark that kerA− ⊂ kerðA−Þ2. Moreover, ψ ∈ kerðA−Þ2
if and only if A−ðψÞ ∈ kerA−, and therefore kerðA−Þ2 is
generated by kerA− and the preimages under A− of Ψ0,
A−ψ−

1 and Ψ1, i.e., one finds that

kerðA−Þ2 ¼ spanfkerA−; A−fψ−
1 ; A

−ψ−
0 ;Ψ2g: ð4:13Þ

Here Ψ2 ¼ A−ψ1 is a physical eigenstate at the next energy
level E ¼ 8, and two other states A−fψ−

1 and A−ψ−
0 are

nonphysical eigenstates of H̆ of energies E ¼ 2 and E ¼ 4.
Under the action of A− the states A−fψ−

1 , A
−ψ−

0 , and Ψ2 are
transformed into the states Ψ0, A−ψ−

1 , and Ψ1 from the
kernel (4.12). One can proceed in this way and identify
the action of the decreasing operator on all the physical
eigenstates of the system and on the associated nonphysical
eigenstates of the special form fΨ0, A−fψn, n ¼ 0; 1;…, and
A−ψ−

n , A−fψ−
n , n ¼ 0; 1; 3; 4; 5;…. This action is depicted in

Fig. 3. The figure also shows that the preimages of all the
indicated physical and nonphysical eigenstates of H̆ with
eigenvalues En ¼ 2n, n ∈ Z, are contained in the same set
of eigenstates with the exception of the three nonphysical

states A−fψ−
0 , fΨ0 ¼ gð 1

ψ−
2

Þ, and A−fψ−
3 of the eigenvalues

E ¼ 4, E ¼ 0, and E ¼ −2, respectively. These eigenval-
ues coincide with the set of zeros of the polynomial
ΦðH̆ þ 2Þ that appears in the second relation in
Eq. (4.7). The preimages of the indicated states are the
states χ−a , a ¼ α, β, γ, which have the structure

χ−a ðxÞ ¼
1

ψ−
2 ðxÞ

Z
x
ψ0ðξÞψ−

2 ðξÞ
�Z

ξ
ψ−
0 ðηÞρ−a ðηÞdη

�

dξ:

ð4:14Þ

Here ρ−α ¼ fψ−
0 , ρ

−
β ¼ Ωψ−

2
, ρ−γ ¼ fψ−

3 , and A−χ−α ¼ A−fψ−
0 ,

A−χ−β ¼ fΨ0, A−χ−γ ¼ A−fψ−
3 . The states χ−a are not eigen-

states of H̆ but satisfy the relations

H̆ðH̆ − 6Þχ−α ¼ A−ψ0; H̆ðH̆ − 2ÞðH̆ − 6Þχ−β ¼ A−ψ−
1 ;

H̆ðH̆ − 6Þχ−γ ¼ Ψ0: ð4:15Þ

This implies that the following polynomials in the
Hamiltonian H̆ annihilate the states χ−a :

H̆ðH̆ − 6Þ2χ−α ¼ 0; H̆ðH̆ − 2Þ2ðH̆ − 6Þχ−β ¼ 0;

H̆2ðH̆ − 6Þχ−γ ¼ 0: ð4:16Þ

In correspondence with Eq. (4.16), which generalizes the
relations (2.9), we call the states χ−a the generalized Jordan
states of the REQHO since they are destroyed by the
polynomials in H̆ with different roots. Note also that

ðA−Þ3χ−α ¼ Ψ0 ⇒ χ−α ∈ kerðA−Þ4; ð4:17Þ

whereas χ−β and χ−γ are not annihilated by any degree of the
ladder operatorA− and in this aspect they are similar to the
Jordan state χ−2 in the QHO system; see Eq. (A6).
The kernel of the raising ladder operator is

kerAþ ¼ spanfA−ψ−
3 ;Ψ0; A−ψ−

0 g: ð4:18Þ

The action of Aþ is also illustrated in Fig. 3. The
corresponding generalized Jordan states χþa , a ¼ α, β, γ,
shown there are given by relations similar to Eq. (4.14),

χþa ðxÞ ¼
1

ψ−
2 ðxÞ

Z
x
ψ−
0 ðξÞψ−

2 ðξÞ
�Z

ξ
ψ0ðηÞρþa ðηÞdη

�

dξ;

ð4:19Þ

where ρþα ¼ Ωψ−
2
, ρþβ ¼ fψ−

1 , ρ
þ
γ ¼ fΨ0, and Aþχþα ¼ fΨ0,

Aþχþβ ¼ A−fψ−
1 , A

þχþγ ¼ A−fΨ0. The nonphysical eigen-

states fΨ0, A−fψ−
1 and A−fΨ0 of H̆ appearing here have

eigenvalues E ¼ 0, E ¼ 2, and E ¼ 6, respectively, which
correspond to zeros of the polynomial ΦðH̆Þ in Eq. (4.7).
The states χþa satisfy the relations

0 0

1ψA

1ψA

1ψ
0Ψ

Ψ0

0ψAA

A ψ
1 A ψ0

ψ34
ψA

A 3ψA

A ψ0

0ψA4ψ

A+

+

+

+

+

χ χχ + χ
β

χ χ γα
++

γ β α

FIG. 3. Discrete flows of the ladder operators of the REQHO. The operator A− acts left and up, and Aþ acts right and up.
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H̆ðH̆ þ 2ÞðH̆ − 4Þχþα ¼ A−ψ−
3 ; H̆ðH̆ − 4Þχþβ ¼ Ψ0;

H̆ðH̆ − 4Þχþγ ¼ A−ψ−
0 : ð4:20Þ

As a consequence,

H̆ðH̆ þ 2Þ2ðH̆ − 4Þχþα ¼ 0; H̆2ðH̆ − 4Þχþβ ¼ 0;

H̆ðH̆ − 4Þ2χþγ ¼ 0. ð4:21Þ

Note that we have here

ðAþÞ3χþα ¼ A−ψ−
0 ⇒ χþα ∈ kerðAþÞ4; ð4:22Þ

cf. Eq. (4.17). The notations for the generalized Jordan
states χ�a are chosen so that the ordering in the lower
index a ¼ α, β, γ in the wave functions χþa corresponds
to the ordering in the energies of the associated
nonphysical eigenstates fΨ0, A−fψ−

1 , and A−fΨ0. The
generalized Jordan state χ−α is characterized by the
property (4.17) to be similar to the property (4.22)
for χþα . Under subsequent application of the ladder
operator Aþ to the state χþβ and of the operator A−

to χ−β , these states are lifted up to the highest horizontal
level shown in Fig. 3 to which physical eigenstates
belong, while the generalized Jordan states χþγ and χ−γ
are lifted up by analogous action of the corresponding
ladder operator to the lower horizontal level where only
nonphysical eigenstates of H̆ appear. As in the case of
the QHO system, one can proceed and construct
iteratively the net of the related generalized Jordan
states by finding the preimages and images of the six
basic generalized Jordan states χ�a , and of the new states
generated in such a way under the sequential action of
the ladder operators A�.
A complete isolation of the ground state Ψ0 from other

normalizable eigenstates Ψn with n ¼ 1; 2;…, reflects
here the fact that two irreducible representations of the
polynomially deformed superconformal algebra ospð1j2Þ
are realized on the physical bound states of the REQHO
system. The operators L̆� ¼ 1

4
A� can be identified as

the odd generators of the superalgebra, fR; L̆�g ¼ 0,
while J̆0 ¼ 1

4
H̆ and J̆� ¼ 1

4
A�2 are its even generators,

½R; J̆0� ¼ ½R; J̆�� ¼ 0. Here, as in the case of the QHO,
the operator R ¼ ð−1ÞN=2 with N ¼ aþa− is the Z2-
grading operator, R2 ¼ 1. The nontrivial commutation
and anticommutation relations of the deformed ospð1j2Þ
superalgebra of the REQHO can be found with the help
of Eqs. (4.5)–(4.10). They can be presented in the form

fL̆þ; L̆−g ¼ 1

2
CLLðJ̆0ÞJ̆0; fL̆þ; L̆þg ¼ 1

2
J̆þ;

fL̆−; L̆−g ¼ 1

2
J̆−; ð4:23Þ

½J̆0; L̆�� ¼ � 1

2
L̆�; ½J̆þ; L̆−� ¼ −CJLðJ̆0ÞL̆þ;

½J̆−; L̆þ� ¼ L̆−CJLðJ̆0Þ; ð4:24Þ

½J̆0; J̆�� ¼ �J̆�; ½J̆þ; J̆−� ¼ −2CJJðJ̆0ÞJ̆0: ð4:25Þ

The operator-valued coefficients

CLLðJ̆0Þ ¼ 2ð8J̆20 − 10J̆0 þ 1Þ;
CJLðJ̆0Þ ¼ 16ðJ̆0 − 1Þð3J̆0 − 1Þ;
CJJðJ̆0Þ ¼ 16ð2J̆0 − 1ÞðJ̆0 − 1Þð24J̆20 − 14J̆0 þ 7Þ

appear here instead of the unit coefficients in the ospð1j2Þ
superalgebra (3.5), (3.6), and (3.7) of the QHO. The ground
state Ψ0 is annihilated by all the generators of the super-
algebra and carries its trivial one-dimensional representa-
tion. On the higher bound states Ψn, n ¼ 1; 2;…, an
infinite-dimensional irreducible representation of the super-
algebra is realized. The structure with two irreducible
representations is reflected coherently in the discrete flows
of the ladder operators depicted in Fig. 3.
To conclude this section we note that the case of the

deformed ospð1j2Þ superalgebra of the REQHO as well as
the ospð1j2Þ Lie superalgebra of the QHO system can be
considered as particular cases of the algebra generated by
the three elements h, αþ, and α− subject to the relations

½h; α�� ¼ �2α�; fαþ; α−g ¼ FðhÞ þ Fðhþ 2Þ;
ð4:26Þ

where FðhÞ is some polynomial [37]. Such an algebra is
characterized by the central element

Ξ ¼ αþ2α−2 þ αþα−ðFðhÞ − Fðh − 2ÞÞ − ðFðhÞÞ2:
ð4:27Þ

In the case of the QHO we have the correspondences
α� ¼ a�, h ¼ N þ 1, and FðhÞ ¼ N. The quadratic
Casimir (3.9) of the Lie superalgebra ospð1j2Þ generated
by the rescaled operators α�, α�2, and h is nothing but the
central element Ξ rescaled and shifted for an additive
constant, Cospð1j2Þ ¼ 1

16
ðΞ − 1Þ. For the REQHO system the

operators α� correspond to the ladder operatorsA�, and we
have h ¼ H̆, FðhÞ ¼ ΦðH̆Þwith ΦðH̆Þ defined in Eq. (4.7).
The superalgebra (4.23)–(4.25) in this case can be consid-
ered as a polynomial deformation of the ospð1j2Þ super-
algebra. Using Eqs. (4.7) and (4.10), one can easily check
that the central element Ξ reduces identically to zero.

V. CONCLUSION AND OUTLOOK

To conclude, we list some problems that may be
interesting for further investigation.
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We have constructed ladder operators for the simplest
version of the REQHO system by the Darboux dressing of
the creation and annihilation operators of the QHO. This
was done by means of the first-order differential operators
A− and Aþ which intertwine the REQHO and QHO
Hamiltonians and factorize both of them. The procedure
applied here is analogous to the procedure by which
nontrivial Lax-Novikov integrals for reflectionless quan-
tum systems are constructed by the Darboux dressing of the
free particle’s momentum operator [48]. But the same
REQHO system can also be constructed by means of the
Darboux-Crum-Krein-Adler procedure based on the use of
several eigenstates of the QHO. In such a case the
intertwiners will be higher-order differential operators.
One can expect that the existence of different Darboux
and Darboux-Crum-Krein-Adler transformations should
reveal some new interesting aspects in the construction
of the ladder operators for the REQHO and related
dynamical symmetries (spectrum-generating algebras).
There exist other rational extensions of the QHO system.

First, the analogs of the REQHO considered here can be
generated by taking the nonphysical nodeless eigenstate
ψ−
2n with n > 1 as a function ψ� to generate the Darboux

transformations. The ladder operators for such systems can
be constructed in a similar way, by the Darboux dressing of
the ladder operators of the QHO. We can also generate a
corresponding polynomially deformed bosonized ospð1j2Þ
superalgebra, whose trivial and infinite-dimensional rep-
resentations will be realized on physical states of the
corresponding rationally extended quantum harmonic
oscillator. It would be interesting to see if there is any
essential difference in the structure of the discrete flows
generated by the ladder operators in such systems in
comparison with the REQHO system considered here.
The construction of the ladder operators by taking into
account the existence of different Darboux-Crum-Krein-
Adler transformations to generate such systems should also
reveal a dependence on the order of the polynomial that
appears in the structure of the generating function ψ−

2nðxÞ
and on the size of the gap between the isolated ground state
and the infinite tower of equidistant bound states.
A more complicated and rich picture from the point of

view of the ladder operators and related symmetries can be
expected in rationally extended quantum harmonic oscillator
systems with a number l > 1 of isolated bound states in the
spectrum. There, a priori two essentially different cases
should be distinguished. One case is when l > 1 bound
states will be separated from the infinite tower of equidistant
bound states without any additional gaps between those
l states. Another, more general case is when isolated states
include some additional gaps between themselves.
It is known that Jordan states appear in confluent

Darboux-Crum transformations [44]. In particular, they
were employed recently for the design of the PT-symmetric
optical systems with invisible periodicity defects as well as

completely invisible reflectionless PT-symmetric systems
[43]. It would be interesting to look for possible physical
applications of the generalized Jordan states considered
here.
The considered REQHO system as well as its general-

izations also seem to be interesting from the point of
view of possible physical applications since—unlike other
known deformations of the QHO, e.g., those related to the
minimal length uncertainty relation [49,50]—they provide
a very specific change of the spectrum. Namely, they
effectively add a finite number of bound states in the lower
part of the QHO spectrum, separated by an additional
(adjustable) gap, without disturbing the equidistant char-
acter of the rest of the infinite tower of the discrete levels. In
this aspect they are very similar (as has been noted above in
different but related context) to the quantum reflectionless
systems which add a finite number of discrete bound states
to the spectrum of the free particle. Such reflectionless
systems are directly related to the soliton solutions to the
Korteweg–de Vries and modified Korteweg–de Vries
equations, and they find a lot of interesting applications
in very diverse areas of physics including QCD, cosmol-
ogy, solid states physics, the physics of polymers, plasma
physics, and quantum optics, just to mention a few.2 Further
results related to the ladder operators in rationally extended
harmonic oscillator systems, which exploit the indicated
similarity, will be presented elsewhere [52].
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APPENDIX: DISCRETE CHAINS
OF THE STATES OF THE QHO

We describe here the action of the ladder operators aþ

and a− on nonphysical eigenstates fψn and fψ−
n of the QHO

and the construction of the associated Jordan and gener-
alized Jordan states.
Making use of the identities H0

n ¼ 2nHn−1 and
Hn ¼ 2xHn−1 −H0

n−1 for Hermite polynomials, we obtain
the relations

Z
x eξ

2

H2
nðξÞ

dξ ¼ −
1

2n

Z
x eξ

2

Hn−1ðξÞ
d

�
1

HnðξÞ
�

¼ −
ex

2

2nHnHn−1
þ 1

2n

Z
x eξ

2

H2
n−1

dξ; ðA1Þ

2See, e.g., Refs. [15,48,51] and references therein.
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from which we find that

a−fψn ¼ gψn−1; n ¼ 1; 2;…: ðA2Þ

Applying the operator aþ to both sides of this equality
gives

aþfψn ¼ gψnþ1; n ¼ 0; 1;…: ðA3Þ
Changing x → ix in Eqs. (A2) and (A3), and taking into
account that a− → iaþ, we also obtain

aþfψ−
n ¼ gψ−

n−1; n ¼ 1; 2;…; a−fψ−
n ¼ gψ−

nþ1;

n ¼ 0; 1;…: ðA4Þ
In correspondence with Eqs. (2.5) and (2.6),

a−fψ0 ¼
1

ψ0

¼ ψ−
0 ; aþfψ−

0 ¼ ψ0: ðA5Þ

We also have

χ−2 ðxÞ ¼ ψ0ðxÞ
Z

x
ψ−
0 ðξÞfψ−

0 ðξÞdξ; a−χ−2 ðxÞ ¼ fψ−
0 ≡ χþ1 :

ðA6Þ

This is a Jordan state which obeys the relations
ðH − 1Þχ−2 ¼ ψ0, ðH − 1Þ2χ−2 ¼ 0, where H ¼ aþa− þ 1.
Analogously,

χþ2 ðxÞ ¼
1

ψ0

Z
x
ψ0ðξÞfψ0ðξÞdξ; aþχþ2 ¼ fψ0 ≡ χ−1 ;

ðA7Þ

and ðH þ 1Þχþ2 ¼ ψ−
0 , ðH þ 1Þ2χþ2 ¼ 0.

Proceeding from the states χþ2 and χ−2 , one can construct
an infinite net of Jordan and generalized Jordan states that
are related to them. First, as analogs of Ωn and Ω̆n defined
in Eq. (2.10) we have the states χ−n and χþn ,

χ−n ðxÞ ¼ ψ0ðxÞ
Z

x
ψ−
0 ðξÞχþn−1ðξÞdξ;

χþn ðxÞ ¼ ψ−
0 ðxÞ

Z
x
ψ0ðξÞχ−n−1ðξÞdξ; ðA8Þ

where the case n ¼ 1 is also included by assuming χ−0 ≡ ψ0

and χþ0 ≡ ψ−
0 . These are the higher-order Jordan states

(2.10) generated on the basis of ψ� ¼ ψ0. They satisfy
the relations a−χ−n ¼ χþn−1, aþχþn ¼ χ−n−1, and, conse-
quently, a−ðaþa−Þnχ−2n¼0, aþða−aþÞnχþ2n¼0. Therefore,
ðH−1Þnþ1χ−k ¼0 and ðHþ1Þnþ1χþk ¼0 for k¼2n, 2nþ1.

One can define σ−n ¼ aþχ−n , σþn ¼ a−χþn , n ¼ 2;….
These are Jordan states that obey the relations
ðH−3Þnσ−2n¼ψ1, ðH − 3Þnσ−2nþ1 ¼ fψ1, ðHþ3Þnσþ2n¼ψ−

1 ,
ðH þ 3Þnσþ2nþ1 ¼ fψ−

1 , and, therefore, ðH − 3Þnþ1σ−k ¼ 0,
ðH þ 3Þnþ1σþk ¼ 0 for k ¼ 2n, 2nþ 1.
In the same vein the family of Jordan states τ−n ¼ aþσ−n

and τþn ¼ a−σþn , n ¼ 2;… can be defined. They satisfy
the relations ðH−5Þnτ−2n ¼ψ2, ðH − 5Þnτ−2nþ1 ¼ ~ψ2, ðHþ
5Þnτþ2n¼ψ−

2 , ðHþ5Þnτþ2nþ1¼fψ−
2 , and ðH−5Þnþ1τ−k ¼0,

ðH þ 5Þnþ1τþk ¼ 0 for k ¼ 2n, 2nþ 1. These discrete
flows can be further continued “horizontally.”
On the other hand, the states defined via γ−n ¼ aþσ−n ,

γþn ¼ a−σþn , n ¼ 2;… are reduced to linear combinations
of the already introduced Jordan states. Namely, γ−n is a
linear combination of χ−n and χ−n−2, and γþn is a linear
combination of χþn and χþn−2.
Consider the states λ�n given by means of the relations

a−λ−n ¼ χ−n−1, a
þλþn ¼ χþn−1, n ¼ 3;…. The states λ−n can be

presented in a form similar to that for χ−n in Eq. (A8) but
with χþn−1 in the integrand changed for χ−n−1. Analogously,
λþn are presented similarly to χþn in Eq. (A8) with χ−n−1
in the integrand changed for χþn−1. For these states we
have the relations ðaþa−Þna−λ−2n ¼ 0, ða−aþÞnaþλþ2n ¼ 0,
a−ðaþa−Þna−λ−2nþ1 ¼ 0, aþða−aþÞnaþλþ2nþ1¼ 0. As a con-
sequence, ðH − 1Þλ−n ¼ χþn−2, ðHþ1Þλþn ¼ χ−n−2. Therefore,
these are generalized Jordan states which obey the relations
ðH − 1ÞðH − 3Þnλ−k ¼ 0, ðH þ 1ÞðH þ 3Þnλþk ¼ 0 with
k ¼ 2n, 2n − 1.
Similarly, generalized Jordan states μ�n ðxÞ can be

defined by proceeding from the states λ�n via the relations
aþμ−n ¼ λ−nþ1, a

−μþn ¼ λþnþ1, n ¼ 2;…. Then

μ−n ðxÞ ¼ ψ−
0 ðxÞ

Z
x
ψ0ðξÞλ−nþ1ðξÞdξ;

μþn ðxÞ ¼ ψ0ðxÞ
Z

x
ψ−
0 ðξÞλþnþ1ðξÞdξ: ðA9Þ

For these states we have χ−n ¼ ðH þ 1Þμ−n , χþn ¼
ðH − 1Þμþn . They are generalized Jordan states that obey
the relations ðH þ 1ÞðH − 1Þnþ1μ−k ¼ 0, ðH − 1ÞðH þ
1Þnþ1μþk ¼ 0 with k ¼ 2n, 2nþ 1.
The described procedure of the construction of the

Jordan and generalized Jordan states can be continued
further in the obvious way. The discrete flows corre-
sponding to the action of the ladder operators on the
physical and associated nonphysical eigenstates of the
QHO Hamiltonian and associated Jordan and generalized
Jordan states are illustrated in Fig. 2.
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