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A particular framework for quantum gravity is the doubly special relativity formalism that introduces a
new observer-independent scale (the Planck scale). We resort to the methods of statistical mechanics in this
framework to determine how the deformed dispersion relation affects the thermodynamics of a photon gas.
The ensuing modifications to the density of states, partition function, pressure, internal energy, entropy, free
energy, and specific heat are calculated. These results are compared with the outcome obtained in the
Lorentz violating model of Camacho and Marcias [Gen. Relativ. Gravit. 39, 1175 (2007)]. The two types of
models predict different results due to different spacetime structures near the Planck scale. The resulting
modifications can be interpreted as a consequence of the deformed Lorentz symmetry present in the
particular model we have considered. In the low energy limit, our calculation coincides with the usual
results of photon thermodynamics in special relativity theory, in contrast to the study presented in an earlier
article [Phys. Rev. D 81, 085039 (2010)].
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I. INTRODUCTION

A simple paradox confronts us as we seek the quantum
theory of gravity. The combination of gravity (G), quantum
(h), and relativity (c) gives rise to the Planck length, lP, or
its inverse, the Planck energy EP [1,2]. These scales mark
thresholds beyond which the old description of spacetime
breaks down and qualitatively new phenomena are
expected to appear. But this proposition obviously opposes
the principle of special relativity (SR) theory, where the
length of an object varies for separate observers. Thus, an
extension of SR theory is needed where along with the
velocity of light, another observer-independent quantity, a
fundamental length scale, exists. As a result, we must
modify SR theory near the high energy (Planck energy).
One such modified theory is doubly special relativity
(DSR) [3,4], which has drawn a lot of interest as a possible
framework of quantum gravity [5,6]. There are mainly two
basic principles on which this theory rests: (i) the appear-
ance of a second observer-independent scale [1], which can
be the Planck length; and (ii) a naturally emerging non-
commutative (NC) spacetime [7,8]. All the models of
quantum gravity predict qualitatively different spacetime
beyond a certain energy (length) scale, generally consid-
ered to be the Planck energy (length). Also, it is now well
established [9–11] that a consistent marriage of ideas of
quantum mechanics and gravitation need a noncommuta-
tive description of spacetime to avoid the paradoxical

situation of creation of a black hole for an event that is
sufficiently localized in spacetime. So, DSR theory fits the
criterion for being a quantum gravity framework in this
respect [2,7]. Recently, DSR has also developed for curved
space [12].
Amelino-Camelia [4] first proposed a possible solution

to this problem. Another model, which is much simpler,
was given by Magueijo and Smolin (MS) [1] and is referred
to as the MS model in this paper. The stated paradox can be
solved if the Lorentz transformations can be modified so as
to preserve a single energy or momentum scale. It has been
reported that it is possible [8] to build models keeping the
principle of relativity for inertial frames intact and to simply
modify the laws by which energy and momenta measured
by different inertial observers are related to each other. By
adding nonlinear terms to the action of the Lorentz trans-
formations on momentum space, one can maintain the
relativity of inertial frames. And, then all observers will
agree that there is an invariant energy or momentum above
which the picture of spacetime as a smooth manifold breaks
down. Because there are two constants that are preserved,
this theory is named DSR [13]. So, added nonlinear terms
to the action of the Lorentz transformation makes it
possible to maintain the relativity of inertial frames and
to solve the paradox at the same time, but the quadratic
invariant of SR is now replaced by a nonlinear invariant,
which in turn leads to a modified dispersion relation. In the
MS model, the Lorentz algebra is still not deformed, and
there are no deformations in the brackets of rotations and
momenta [1,8]. Briefly, DSR theory possesses the follow-
ing simple but strong features: (i) First of all, in DSR the
relativity of inertial frames, as proposed by Galileo,
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Newton, and Einstein, is well preserved. (ii) Second, there
is an invariant energy scale κ, which is of the order of the
Planck scale. (iii) Third, in DSR theories, the notion of
absolute locality should be replaced by relative locality as
due to the presence of an energy-dependent metric, differ-
ent observers live in different spacetimes [14].
The well-known dispersion relation (or mass-shell con-

dition) for a particle [1,2] in SR theory is ðℏ ¼ c ¼ 1Þ
E2 ¼ p2 þm2; ð1Þ

which has to be modified in the MS model as [1]

E2 ¼ p2 þm2

�
1 −

E
κ

�
2

: ð2Þ

Here E and p are the energy and the magnitude of the three-
momentum of the particle, respectively, whilem is the mass
of the particle. We will refer to this model as the MS model
in this manuscript. A lot of studies have been carried out on
this model including analogue gravity [15], noncommuta-
tive geometry [16], Bose-Einstein condensate [17], rela-
tivistic thermodynamics [10,18,19], cosmology [20] as
well as DSR formalism from the conformal group [21].
Recently, a lot of theoretical studies have been done on the
thermodynamics of relativistic quantum gas [22] as it plays
a crucial role in cosmology [23,24], as well as in condensed
matter [25]. A study on the thermodynamics of a photon
gas with an invariant energy scale using the MS model has
already been reported by Das and Roychowdhury [26]. In
their paper, they have constructed the formalism to do such
calculations within the MS model. But there is a severe
error in their calculation, as they have used Maxwell-
Boltzmann statistics while calculating the partition function
of photons, but it is well known that photons are integer
spin quantum particles [27]. So, they must obey the Bose-
Einstein distribution. As a consequence, one must use
Bose-Einstein statistics to calculate the thermodynamics of
the photon. Because of this serious error, the results
obtained by Das and Roychowdhury [26] do not coincide
with known results of the thermodynamic quantities of
photon gas in the SR theory [28,29]. For instance, their
obtained internal energy of photon gas depends upon
temperature, T linearly, but it is well known that the
internal energy E ∝ T4 (Stefan-Boltzman law) [28]. An
important point to note is that thermodynamics for photon
gas with a different dispersion relation has been studied by
Camacho and Marcias [30], where Bose-Einstein statistics
have been used as expected. Besides, the thermodynamics
of massive bosons and fermions with another different
dispersion relation has also been investigated [31]. But both
of these two modified dispersion relations appear from a
phenomenological point of view, whereas the dispersion
relation (2) has a more theoretical motivation.
Because of its very fundamental role in theoretical

physics, the Lorentz symmetry has been subjected to some

of the highest precision tests [32–34]. It has been advocated
by a number of physicists [4,5] that Lorentz invariance
(both global and local) is only an approximate symmetry,
which is broken at the Planck scale. Camacho and Marcias
[30] examined the consequence of Lorentz violation in their
Lorentz violating model in a unique but different approach
where they introduced a deformed dispersion relation as a
fundamental fact for the dynamics of photons and analyzed
the effects of this upon the thermodynamics of photon gas.
They showed that the breakdown of Lorentz symmetry
entails an increase in the number of microstates, and as a
consequence a growth of the entropy and other thermo-
dynamic quantities, with respect to the case of SR theory, is
observed. So, it will be really intriguing to check the status
of the thermodynamic quantities of photons in the MS
model, where the relativity of inertial frames, as proposed
by Galileo, Newton, and Einstein, is well preserved but at
the same time solves the paradox related to the appearance
of a second observer-independent scale [1]. The current
paper is organized as follows. In Sec. II, we review shortly
the nonlinear realization of the Lorentz group, which gives
rise to the modified dispersion relation of Eq. (2). In
Sec. III, we discuss the density of states and calculate the
partition function. In Sec. IV, we go on to study the
thermodynamic properties of photon gas using the derived
partition function. We do the whole calculation in arbitrary
dimensions but especially scrutinize the thermodynamic
properties for three-dimensional space. The different rela-
tions between the thermodynamic quantities of photons in
SR theory, such as the pressure-energy density relation and
the entropy-specific heat relation do not remain valid in the
Lorentz-violating model of Camacho and Marcias [30]. We
carefully check whether these identities are still valid in the
MS model, where Lorentz symmetry is still preserved.

II. NONLINEAR REALIZATION OF LORENTZ
ALGEBRA AND MODIFIED DISPERSION

RELATION

In this section, while working in the MS model [1] we
briefly review [8] the nonlinear realization of Lorentz
algebra in (dþ 1)-dimensional spacetime. The interested
reader can go through [8] for more details. Starting from the
familiar (linear) SR Lorentz transformation, the LSR coor-
dinate space variable,

X00 ¼ LSRðX0Þ ¼ γðX0 − νX1Þ;
X01 ¼ LSRðX1Þ ¼ γðX1 − νX0Þ;
X02 ¼ LSRðX2Þ ¼ X2;

X03 ¼ LSRðX3Þ ¼ X3;

:::::::::::::::::::::

:::::::::::::::::::::

X0d ¼ LSRðXdÞ ¼ Xd; ð3Þ
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where γ ¼ ð1 − ν2Þ−1=2 and the boost is along the X1

direction with velocity νi ¼ ðν; 0; 0;…; 0Þ. Continuing in
the same way for the momentum space variable we get

P00 ¼ LSRðP0Þ ¼ γðP0 − νP1Þ;
P01 ¼ LSRðP1Þ ¼ γðP1 − νP0Þ;
P02 ¼ LSRðP2Þ ¼ P2;

P03 ¼ LSRðP3Þ ¼ P3;

:::::::::::::::::::::

:::::::::::::::::::::

P0d ¼ LSRðPdÞ ¼ Pd: ð4Þ

In Eqs. (2) and (3), (Xμ, Pμ) are the phase space variables
that obey normal Poisson bracket algebra, commuting or,
more precisely, canonical degrees of freedom. Let us now
declare κ-Minkowski phase space elements ðxμ; pμÞ,
where xμ and pμ are the position and momentum space
coordinates, respectively, that satisfy noncommutative κ-
Minkowski phase space algebra and DSR-Lorentz trans-
formations [8]. Now defining an invertible map F such
that [8,10]

FðXμÞ → xμ;

F−1ðxμÞ → Xμ; ð5Þ

which in explicit form reads

FðXμÞ ¼ xμ
�
1 −

p0

κ

�
; ð6Þ

F−1ðxμÞ ¼ Xμ

�
1þ p0

κ

�
; ð7Þ

FðPμÞ ¼ pμ

ð1 − P0

κ Þ
; ð8Þ

F−1ðpμÞ ¼ Pμ

ð1þ P0

κ Þ
: ð9Þ

Now the DSR-Lorentz transformation LDSR is formally
expressed as

x0μ ¼ LDSRðxμÞ ¼ F∘LSR∘F−1ðxμÞ; ð10Þ

p0μ ¼ LDSRðpμÞ ¼ F∘LSR∘F−1ðpμÞ: ð11Þ

In the case of x0,

x00 ¼ LDSRðx0Þ ¼ F∘LSR∘F−1ðx0Þ

¼ F∘LSR

�
X0

�
1þ P0

κ

��

¼ FðγðX0 − νX1Þ
�
1þ γ

κ
ðP0 − νP1Þ

�

¼ γαðx0 − νx1Þ; ð12Þ

where

α ¼ 1þ κ−1ððγ − 1ÞP0 − γνP1Þ: ð13Þ

In the same way we find out that

x01 ¼ γαðx1 − νx0Þ; ð14Þ

p00 ¼ γ

α
ðp0 − νp1Þ; ð15Þ

p01 ¼ γ

α
ðp1 − νp0Þ: ð16Þ

And the transverse component of xμ and pμ transforms as

x0i ¼ αxi; ð17Þ

p0i ¼ pi

α
; ð18Þ

where i ¼ 2; 3;…; d. It is very interesting to see how in the
present formulation [8], noncommutative effects enter
through these generalized (nonlinear) transformation rules.
Most importantly, the transverse components also trans-
form due to the nonlinear realization of the Lorentz group,
unlike the usual SR transformation [Eq. (3)]. As expected,
in the limit κ → ∞, the generalized transformation rule
coincides with the SR transformation. Therefore, the phase
space quantity invariant under the DSR-Lorentz trans-

formation is ημνpμpνð1 − p0

κ Þ−2, where ημν ¼ diagð−1; 1;
1;…; 1Þ, writing this as

m2 ¼ ημνpμpν

�
1 −

p0

κ

�
−2
: ð19Þ

This yields the well-known dispersion relation due to
Magueijo and Smolin in Eq. (2). It is shown in [35] that
a modified dispersion relation does not necessarily imply a
varying (energy dependent) velocity of light. But there are
models [30,31] that admit a varying speed of light.
However, in the case of the MS model, for photons
(m ¼ 0) the dispersion relation (2) is the same as in the
SR theory. So, a very important point to notice is that the
speed of light c is an invariant quantity in the MS model.
Another interesting fact is that the models described in [30]
have no finite upper bound on the energy of the photons
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though they have a momentum upper bound. On the other
hand, in the MS model [1,8], though the dispersion relation
for the photons is unchanged, there is a finite upper bound
on the photon energy that is the Planck energy. But the
problem of the addition of momenta is not well established
in DSR, so a classical addition law is compatible with the
model, but it is not the unique possibility (see, for
example, [36]).

III. DENSITY OF STATES AND PARTITION
FUNCTION

To study the thermodynamic behavior of photon gas, we
first find out the partition function, as it enables us to
calculate the thermodynamics. From the modified
dispersion relation we find the energy expression for the
massless particle as

E ¼ pc; ð20Þ

where c is the velocity of photons. Considering a
d-dimensional box of volume V containing photon gas,
we follow the standard procedure as given in [28].
The number of microstates available to the system (

P
)

in the position range from r to rþ dr and in the momentum
range from p to pþ dp is given by

X
¼ 1

hd

Z Z
ddpddr; ð21Þ

where h is the phase space volume of a single lattice andR R
ddpddr is the total volume of the phase space. It should

be mentioned that in SR theory the invariant quantities

under Lorentz transformation are ddp
E and Eddx. As a result,

Eq. (21) remains invariant under Lorentz transformation.
In the case of the κ-Lorentz transformation, we find out that
the NC phase space volume transforms as

ddx0ddp0 ¼ αdγddx
γ

αd

�
1 −

νP1

E

�
ddp ¼ ddxddp: ð22Þ

So, following the way in [28] we find the density of
states as

gðEÞdE ¼ BðV; dÞEd−1dE; ð23Þ

where

B ¼ 21−ddπ−d=2V
Γðd

2
þ 1Þhdcd : ð24Þ

Here ΓðjÞ ¼ R
∞
0 xj−1e−xdx. Putting d ¼ 3, one can find

that Eq. (23) coincides with Ref. [28]. Now in the grand
canonical ensemble (GCE) the partition function for
massless Bose gas can be written as [28]

logZ ¼ −
X
E

logð1 − e−βEÞ: ð25Þ

Here β ¼ 1
kBT

, kB is the Boltzmann constant, and T is the
temperature of the particle. Changing the sum by integral
we find out that in SR theory [28]

logZ ¼ −
Z

∞

0

gðEÞ logð1 − e−βEÞdE: ð26Þ

Here we have used the Bose-Einstein distribution, which is
the correct statistics for bosons [28] such as photon [30],
but we need to make a modification in Eq. (26) to calculate
thermodynamics of photons in DSR theory using the MS
model. Because of the presence of an energy upper bound
of particles κ in the DSR theory, we have to make a
modification in the above expression as below following
the spirit of Ref. [26],

logZ ¼ −
Z

κ

0

gðEÞ logð1 − e−βEÞdE: ð27Þ

Note that the upper limit of integration is ∞ in Eq. (26), as
there is no upper bound of energy in the SR theory but the
upper limit of integration is κ in (27). In the MS model that
we are considering, the photon dispersion relation is not
modified at all as m ¼ 0. But still there is modification in
the partition function due to the existence of an energy
upper bound of particles κ in the theory. In the limit κ → ∞,
we get back the normal SR theory results.

IV. THERMODYNAMICS OF PHOTON GAS

We have obtained the expression for partition function.
In this section we calculate the thermodynamics of photon
gas in a Lorentz symmetry conserving the DSR scenario.

A. Free energy

In GCE, the free energy can be evaluated from the
partition function,

F ¼ −kBT logZ

¼ kBT
Z

κ

0

ρðEÞ logð1 − e−βEÞdE

¼ −
21−dc−dVℏ−dβ−ðdþ1Þζð1þ dÞπ−d

2

Γðd
2
þ 1Þ fðκ; dÞ; ð28Þ

where fðκ; dÞ ¼ Γð1þ dÞ − Γð1þ d; κÞ. Γðj; kÞ is the
incomplete gamma function, Γðj; kÞ ¼ R∞

k lj−1e−ldl. We
have removed the logarithm through an integration by
parts. Most important, the contribution of the observer-
independent fundamental energy scale enters through
incomplete gamma function.
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Taking κ → ∞, we can find the SR result in d dimension,

F ¼ −
21−dc−dVℏ−dβ−ðdþ1Þζð1þ dÞπ−d=2

Γðd
2
þ 1Þ Γðdþ 1Þ; ð29Þ

and putting d ¼ 3we can recover the familiar result for free
energy of photon gas [28],

F ¼ −
Vπ2

45ℏ3c3
ðkBTÞ4: ð30Þ

We should point out that the free energy as well
as other thermodynamic quantities obtained by Das and
Roychowdhury [26] is unable to reproduce the known
results [28] of photon gas in three-dimensional space. Free
energy of photons in three dimensions has temperature
dependency as F ∝ −T4, but they obtained F ¼ NkBT,
which is not correct but rather the result of classical ideal
gas. But this is not surprising as they have used the
Maxwell-Boltzmann distribution, which is valid for
classical particles only.

B. Internal energy

Another important thermodynamic quantity internal
energy E,

U ¼ −
∂
∂β logZ

¼ 21−dc−dVℏ−ddβ−ðdþ1Þζð1þ dÞπ−d
2

Γðd
2
þ 1Þ fðκ; dÞ: ð31Þ

Again as κ tends to infinity we retrieve the SR results,

U ¼ −
21−dc−dVℏ−dβ−ðdþ1Þdζð1þ dÞπ−d=2

Γðd
2
þ 1Þ Γðdþ 1Þ:

ð32Þ

In the case of d ¼ 3 the above equation coincides with
known result as well [28]. In Fig. 1, we plotted the internal
energy of photon gas against its temperature for the cases of
both the MS model and the SR theory in d ¼ 3. It is clearly
noticed from the plot that the internal energy grows at a
much slower rate in the case of our result than in the SR
theory and as temperature increases. This is due to the fact
that Lorentz symmetry is further restricted in the MS
model. As a result of this, we expect to have a fewer
number of microstates and less internal energy in the MS
model. Note that in both cases of SR and MS models,
internal energy has T4 dependency but in the MS model,
the internal energy is less due to the presence of κ through
incomplete gamma function. It should also be mentioned
that internal energy in the MS model is related to free
energy by

F ¼ −
1

d
U; ð33Þ

just as in SR theory [28]. But this relation is not maintained
in the Lorentz violating model of Camacho and
Marcias [30].

C. Entropy

We can easily calculate the entropy from free energy,

S ¼ −
�∂F
∂T

�
T

¼ 21−dc−dVℏ−dðdþ 1Þβ−ðdþ1ÞT−1ζð1þ dÞπ−d
2

Γðd
2
þ 1Þ fðκ; dÞ:

ð34Þ

Again in the limit κ → ∞, we find the d-dimensional result
for SR theory,

S ¼ 21−dc−dVℏ−dðdþ 1Þβ−ðdþ1ÞT−1ζð1þ dÞπ−d
2

Γðd
2
þ 1Þ Γðdþ 1Þ;

ð35Þ

which coincides with the known result when d ¼ 3 is
chosen [28]. In Fig. 2, entropy against temperature for the
MS model and normal SR theory are plotted in three-
dimensional space. As before, the entropy grows at a much
slower rate in the case of our result than in the SR theory,
and as temperature increases, the entropy in our considered

0 1 2 3 4 5

0

100

200

300

400

T

U

FIG. 1. Plot of internal energy of photon E against temperature
T for both the SR theory and the MS model in three-dimensional
space; the dashed line corresponds to the SR theory result, and the
thick line represents the corresponding quantity in our result. We
have used the Planck units, and the corresponding parameters
take the following values: κ ¼ 5, kB ¼ 1, V ¼ 1, h ¼ 1 in this
plot as well as in all other plots in the paper. In this scale, T ¼ 5 is
the Planck temperature. The dashed line corresponds to the SR
theory result, and the thick line represents the quantity in
the MS model.
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model deviates more from the entropy in the SR theory. It is
well known that [29] the total number of microstates
available to a system is a direct measure of the entropy
for that system. Therefore our result merely reflects the fact
that due to the existence of an energy upper bound κ, the
number of microstates gradually decreases near Planck
temperature. But it should be noted that this is not the case
in the models with different dispersion relations where
Lorentz symmetry is broken [30]. In [30] it is shown that
the entropy becomes larger as an unavoidable consequence
of this kind of Lorentz violation. But this is not the case in
the MS model, as Lorentz symmetry is well preserved here.
But nevertheless, in both types of model as T → 0 we find
S → 0, indicating the Nernst postulate is always main-
tained, if the Lorentz symmetry is broken or not.

D. Pressure

The pressure of photon gas,

P ¼
�∂F
∂T

�
V
¼ 21−dc−dℏ−dβ−ðdþ1Þζð1þ dÞπ−d

2

Γðd
2
þ 1Þ fðκ; dÞ:

ð36Þ

In the limit κ → ∞, we find the pressure in d-dimensional
SR theory is

P ¼ 21−dc−dℏ−dβ−ðdþ1Þζð1þ dÞπ−d
2

Γðd
2
þ 1Þ Γðdþ 1Þ: ð37Þ

In d ¼ 3, we redeem the known result P ¼ π2k4B
45ℏ3c3 T

4. The
pressure of photon gas has a remarkable contribution in
early universe cosmology, as it was well dominated by
photons [23,24]. A very well known relation in SR theory
between pressure and internal energy in three dimensions is
P ¼ U

3V. Comparing Eq. (32) and (36) we find out that the

same relation is also maintained in the MS model. In the
MS model, the d-dimensional relation between pressure
and internal energy is

U ¼ P
d
V: ð38Þ

But this relation is not maintained in the other modified
dispersion relation [30] due to the breakdown of Lorentz
symmetry in their model. As it turns out, the breakdown of
Lorentz symmetry manifests as a repulsive interaction.
Indeed, the presence of a repulsive interaction (among the
particles of a gas) entails the increase of the pressure,
compared against the corresponding value for an ideal gas.
But we notice the opposite in the MS model in Fig. 1 [37];
i.e., pressure increases in a slower rate with increasing
temperature.

E. Specific heat

Specific heat (CV) is defined as

CV ¼
�∂U
∂T

�
V

¼ 21−dc−dVℏ−ddðdþ 1ÞT−1ζð1þ dÞπ−d
2

βdþ1Γðd
2
þ 1Þ fðκ; dÞ: ð39Þ

Also, when κ → ∞, we recover the d-dimensional result for
the specific heat of photons,

CV ¼
�∂U
∂T

�
V

¼ 21−dc−dVℏ−ddðdþ 1ÞT−1ζð1þ dÞπ−d
2

βdþ1Γðd
2
þ 1Þ Γðdþ 1Þ:

ð40Þ

The above equation coincides with the known result when
d ¼ 3. In our calculation, CV in both the MS model and the
SR theory has Td dependency in d dimension, unlike [26]
that has reported a constant value of specific heat in SR
theory. This is completely wrong as it is well established
that CV of photon gas has T3 dependency in three
dimensions [28]. The constant specific heat is rather a
result of ideal nonrelativistic classical gas. In our study we
have noticed from Eqs. (34) and (39) that specific heat is
related to entropy as

S ¼ CV

d
: ð41Þ

This relation is a well-established result in SR [28]. So the
above relation along with Fig. 2 dictates that like the other
thermodynamic quantities in the MS model, specific heat
changes in a slow rate with temperature compared to

0 1 2 3 4 5

0

20

40

60

80

100

T

S

FIG. 2. Plot of entropy of photon S against temperature T for
both in the SR theory and in the MS model with the same scaling
as Fig. 1. The dashed line corresponds to the SR theory result, and
the thick line represents the quantity in the MS model.
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SR theory. On the other hand, we find the opposite in the
Lorentz violating model of Camacho and Macias [30].
Their interpretation of the breakdown of Lorentz symmetry
as the appearance of a repulsive interaction, results in a
larger specific heat in SR theory. As CV is a measurable
quantity [30], which in principle could be employed in the
experimental quest for violations of Lorentz symmetry, our
present calculation is a significant justification of the
theoretical status.

V. CONCLUSION

In this paper we successfully calculated the thermody-
namics of photon gas in a theory where an observer-
independent fundamental energy scale is present. The most
important part of the present work is the derivation of the
partition function in the MS model in arbitrary dimensions.
Because of the deformed dispersion relation, this task
becomes highly nontrivial to find the partition function
analytically. However, for photons, we find out an exact
analytic expression for the partition function, enabling us to
calculate thermodynamic quantities such as the free energy,
pressure, entropy, internal energy, and specific heat for the
MS model, and compare them with the known results of SR
theory in three-dimensional space. It should be noted that
the influence of the Planck scale enters through incomplete
gamma function. As expected, our results match with the
known results [28] of SR theory in the limit κ → ∞ unlike
Ref. [26]. But due to the presence of an invariant energy
upper bound in this theory, the microstates can avail
energies only up to a finite cutoff, whereas in the SR
theory, the microstates can attain energies up to infinity. As
a result, the number of the microstates in this MS model is
fewer than that in SR theory. This is clear from the result we
obtained for entropy (Fig. 2) as entropy indicates the total
number of the microstates available. This happens since
Lorentz symmetry is not broken but is rather more
restricted in the MS model. Just the opposite happens in
the model [30], where Lorentz symmetry is not preserved.
It is shown in [30] that the number of the microstates
available to the corresponding equilibrium state grows,
compared to the SR theory. The entropy becomes larger as
an unavoidable consequence of this kind of Lorentz
violation. Additionally, the breakdown of Lorentz sym-
metry entails a larger value of pressure, internal energy, or
any other thermodynamic quantity [30] compared to the SR
results. As noticed, an entirely different scenario is obtained
in the current study with the MS model. But it is very
intriguing to note that the Nernst postulate, i.e., the third

law of thermodynamics, is maintained in both the MS
model and the Lorentz violating study of Camacho and
Marcias. So in conclusion, in the MS model, the Lorentz
algebra is still intact in the presence of the observer-
independent fundamental energy scale and yields that
the thermodynamic quantities grow slowly against temper-
ature compared to the SR theory, whereas in the Lorentz
violating study, they tend to increase more quickly with
temperature than in the SR theory. Also some very well
established relations [28] among different thermodynamic
quantities of photons in SR theories are Eqs. (33), (38), and
(41). These equations are valid in the MS model but not in
[30]. These are the key differences in the study of photon
thermodynamics in Lorentz symmetry violating and
Lorentz symmetry obeying models, which will play an
important role in examining space-time structure near the
Planck scale [38]. It would be interesting if these key
differences are also maintained in the case of massive
quantum gases.
Since the modification of the dispersion relation has

changed the thermodynamics of photons drastically, we
need to explicitly examine the thermodynamics of massive
quantum gases in the MS model. Since the so-called Bose-
Einstein condensation and Fermi degeneracy are purely
bosonic and fermionic effects, respectively, we may wonder
what happens to this feature if we introduce the generali-
zation to (2) for massive particles. It would certainly change
the condensation temperature for Bose gas as well as the
Fermi temperature for Fermi gas. The former case is
intriguing in the scalar field dark matter model, where
the dark matter particle is a spin-0 boson [23,24]. But the
latter case is important since the Chandrasekhar mass-
radius relation [39] for white dwarfs is a direct consequence
of the fermionic statistics. Hence we expect a modification
in these studies due to the presence of an observer-
independent fundamental energy scale. Besides, one can
study the cosmological aspects of the MS model using the
Friedmann equations. But, this still remains another open
issue to be further studied.
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