
Basis tensor gauge theory: Reformulating gauge theories with basis
tensor fields

Daniel J. H. Chung* and Ran Lu†

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
(Received 10 October 2016; published 18 November 2016)

We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More
specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local
fields that transform linearly under the dual representation of the charged matter field. These local fields,
which naively have the interpretation of nonlocal operators similar to Wilson lines, satisfy constraint
equations. A set of basis tensor fields is used to solve these constraint equations, and their field theory is
constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local
and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what
we call the basis tensor gauge theory.
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I. INTRODUCTION

Gauge theories (see e.g. Refs. [1–8]) are extremely
robust and successful in describing fundamental inter-
actions of nature such as in the Standard Model (SM) of
particle physics [8–17]. In the usual gauge theoretic
formulation, the gauge field is a connection on principal
bundles (see e.g. Refs. [18,19]). In the usual formulation of
general relativity, Christoffel symbols are connections on
the tangent bundle and can be expressed nonlinearly in
terms of the metric. Another widely used formulation of
general relativity that is particularly useful when spinors
need to be defined in curved spacetime is the vierbein
formalism. In this formalism, N basis vector fields are
introduced as a way of taking the square root of the metric,
in which N is the dimension of spacetime. However, in the
case of gauge theories, there is no widely known analogous
vierbein formulation, presumably because there is no
obvious nontrivial metric analog that carries the gauge
field information. In this work, we construct a vierbeinlike
field theory of a Uð1Þ gauge theory coupled to complex
scalars.
Our approach is to construct an explicit representation of

the matter field direction in the group representation space
as a local Lorentz tensor field that is subject to constraints
that arise from matching to the ordinary gauge field
connection. This tensor transforms as a dual to the matter
representation, and the constraint equation is reminiscent of
the relationship between the spacetime vierbein field and
the Christoffel symbol. In this sense, this tensor field is the
analog of the general relativistic vierbein for our con-
struction. We then solve this constraint equation by
decomposing the log of this tensor in terms of N fields
that we call basis tensor fields. These fields effectively span

the Lie algebra that generates the tensor field. The field
theory of these basis tensor fields is local and has new local
symmetries that allow this theory to perturbatively match to
ordinary gauge theories.
More explicitly, the vierbeinlike field is taken to be a

Lorentz tensor GðxÞ that satisfies a constraint equation.
Since GðxÞ transforms in the gauge group representation
space as a dual to the matter field, if a matter field ϕ is
charged under Uð1Þ with charge 1, GðxÞ transforms with a
charge -1, and the object ϕðxÞGðxÞ is gauge invariant. We
show that the minimal Lorentz tensor rank of GðxÞ that has
this desired dual property and can accommodate the
local gauge field degrees of freedom is 2: i.e., Gα

βðxÞ.
The constraint equation ofGα

βðxÞ can be solved in terms of
another set of unconstrained fields fθaðxÞðHaÞμνja ∈
f0;…N − 1gg (similarly in spirit to sigma model con-
structions), which are the basis tensor fields. The field
theory of θaðxÞ is what we will call basis tensor gauge
theory (BTGT) and is an alternate to the gauge theory
description in terms of AμðxÞ. It is the theory of θa that will
exhibit a new local symmetry to maintain the (perturbative)
isomorphism between the usual gauge theory and BTGT.
Giving a vierbein expression of gauge fields in this work

makes gauge theories look more like general relativity,
which in some sense is similar in philosophy to Kaluza-
Klein theories [20], but the approach here is different in that
we try to minimize the disturbance to the theory. More
precisely, instead of trying to unify the gauge theory with
spacetime dynamics, the theory is merely rewritten such
that the gauge fields more closely resemble the matter
fields. In the usual model building description of gauge
theories, the gauge fields are put on a different footing than
the matter fields in that the gauge fields do not form a linear
representation of the gauge group while the matter fields
typically do. In our approach, theGα

βðxÞ fields, which have
the same information as the gauge fields, form a linear
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representation. The most interesting result arising from this
is the emergence of a local symmetry that is independent of
the ordinary gauge symmetry.
To our knowledge, the previous work that most closely

resembles our approach is that of Mandelstam [21], in
which the group space linear representation is given as an
object similar to a Wilson line (for several examples of
the vast literature on this topic, see e.g. Refs. [22–28] and
references therein). In some sense, this object can be
viewed as the analog of Gα

β.
1 However, in addition to

the fact that Wilson lines are manifestly nonlocal, the
purpose of Mandelstam’s work was to formulate gauge
theories without any gauge fields. In contrast, the purpose
of our work is to explicitly construct a gauge group
representation direction as a local spacetime Lorentz tensor
field, not to hide the group representation space.
The order of presentation is as follows. In Sec. II, we

derive the relationship between Gα
βðxÞ and AμðxÞ using an

ansatz analogous to the equivalence principle. This rela-
tionship serves as a constraint equation. We then solve this
constraint equation using the basis tensors θaHa. In Sec. IV,
we show how the integral over Aμ is related to the θa field.
The naive nonlocality will be eliminated by the symmetries
imposed when defining the partition function in Sec. V.
In Sec. VI, we go through the exercise of constructing a
BTGT model based on the recipe in Sec. V. We give
Feynman rules and apply them to a a simple scattering
computation. Section VII lists some of the peculiarities of
the model: a) each charged elementary field has its own
group direction field (that are all related to each other
through the same θa), and the covariant derivative can be
written as a peculiar divergence of a composite field; b) the
Hamiltonian is bounded from below despite the fact that
the θa theory is a higher derivative theory; c) BTGT
gives a novel way of computing nonlocal correlators.
We conclude by speculating on future research directions.
The Appendixes present explanations of the minimal rank
of the Lorentz tensor for BTGT as well as the relationship
of the new local symmetry to translational symmetry. The
last Appendix section explicitly displays the analogy
between Gα

βðxÞ and the general relativistic vierbein.

II. GROUP SPACE MATTER DIRECTION FIELD

The purpose of this work is to construct an alternate
description to the usual gauge field that puts matter fields
and the gauge fields on a more similar mathematical
categorization. Because relativistic quantum field theory
naturally partitions into relativistic tensor field degrees of
freedom, any alternate local description of the gauge field
has a natural description in terms of Lorentz tensors. We

therefore define a local Lorentz tensor field in the dual
representation of the matter field which describes the
“direction” of the matter field in the group representation
space. For simplicity, we focus here on the Uð1Þ group,
although we foresee no insurmountable obstacles to gen-
eralize this to non-Abelian theories.
Given a field ϕ that is a complex scalar charged under

Uð1Þ as
ϕðxÞ → eiθðxÞϕðxÞ; ð1Þ

we wish to construct a Lorentz tensor object Gαβ and its
field theory that exhibits the Uð1Þ gauge group trans-
formation property

Gα
βðxÞ → Gα

βðxÞe−iθðxÞ; ð2Þ

such that ϕGα
β is gauge invariant. We note that we can view

Gα
β as the direction in gauge group linear representation

space. We discuss in Appendix A that a rank 2 Lorentz
tensor is the smallest rank for which such a local descrip-
tion alternate to the gauge field is possible. We also show in
Appendix C how Gα

βðxÞ is analogous to the general
relativistic vierbein. To construct the theory of Gα

β, we
will match to the known Aμ gauge theory. To this end, we
need to find a relationship between Gα

β and the ordinary
gauge field Aμ.
Some degree of rigidity in the construction can be

attained, and the spirit of making gauge theories look
more like general relativity can be followed if we use an
analog of the equivalence principle approach (see e.g.
Ref. [29]) of making a general coordinate transformation
away from the freely falling frame of the matter to define
the Christoffel symbol (the connection on the tangent
bundle).2 Here, the analog of the freely falling frame can
be defined to be the frame in which the Uð1Þ connection
AμðxÞ vanishes at a spacetime point x1, since Aμ enters
without any derivatives in the matter Lagrangian:

Lϕ ¼ ð∂μ þ iAμÞϕð∂μ − iAμÞϕ�: ð3Þ
(Note that this definition is in contrast with the gravitational
equivalence principle which relies on the equation of
motion rather than the Lagrangian.) In this frame, the
Lagrangian at point x1 looks like there is no gauge field
(just as locally, the Christoffel symbol vanishes in the freely
falling frame):

Lϕðx1Þ ¼ ∂μ
~ϕ∂μ ~ϕ�ðx1Þ: ð4Þ

We demand in this special gauge frame that the vierbeinlike
tensor field has the following value at point x1:

1A Wilson line transforms as a nonlocal adjoint. If one views
one end of the Wilson line to be at infinity and demands that the
gauge transformations vanish there, then it looks as if the Wilson
line transforms as a fundamental.

2Of course, this is simply an ansatz for defining the repre-
sentation since there is no universality of charge to mass ratio in
gauge theories.
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~Gαβðx1Þ ¼ Sαβðx1Þ: ð5Þ

Upon making a gauge transformation to move to the
general frame, we have

ϕðxÞ ¼ ~ϕðxÞeiθðxÞ; ð6Þ

which gives

Lϕðx1Þ ¼ ð∂μ − i∂μθÞϕð∂μ þ i∂μθÞϕ�: ð7Þ

Comparing this to the usual definition of the connection
covariant derivative

Dμ ¼ ∂μ þ iAμ ð8Þ

that appears in Eq. (3), we identify the connection as

Aμðx1Þ ¼ −∂μθðx1Þ: ð9Þ

Note that this does not mean AμðxÞ is a pure gauge
configuration everywhere, as this equation applies at only
one point x1. Since Gαβ is defined to obey the trans-
formation rule of Eq. (2), we have

Gαβðx1Þ ¼ Sαβðx1Þe−iθðx1Þ: ð10Þ

Because of Eq. (9), we want to solve for ∂μθðx1Þ in terms of
G evaluated at x1. To achieve this, we take derivatives of the
general gauge-transformed object

eiθðG−1Þαβ∂αðGβμe−iθÞ ¼ ðG−1Þαβ∂αGβμðxÞ − i∂μθðxÞ
ð11Þ

and evaluate this general expression at x1 in the special
gauge frame:

eiθð ~G−1Þαβ∂αð ~Gβμe−iθÞjx1 ¼ ð ~G−1Þαβ∂α
~Gβμðx1Þ− i∂μθðx1Þ:

ð12Þ

Because of Eq. (9), we conclude

Aμðx1Þ ¼ −i½ðG−1Þαβð∂αGβμÞjx1 − ð ~G−1Þαβð∂α
~GβμÞjx1 �;

ð13Þ

in which

GαβðxÞ≡ ~GαβðxÞe−iθðxÞ ð14Þ

is the general gauge field.
We can now simplify Eq. (13) further by noting that

Eq. (13) has an additional set of ~Uð1Þ symmetry trans-
formations,

Gαβ → Gαβe−iΛβðxÞ ~Gαβ → ~Gαβe−iΛβðxÞ; ð15Þ

that leaves Eq. (13) invariant. This means we can use it to
choose ∂α

~Gβμ ¼ 0 as follows. First, we execute a ~Uð1Þ
transform to go to the barred frame,

ðG−1Þαβð∂αGβμÞ ¼ ðG−1Þαβð∂αGβμÞ − i∂μΛμ

no sum over μ ð16Þ

ð ~G−1Þαβð∂α
~GβμÞ ¼ ð ~G−1Þαβð∂α

~GβμÞ − i∂μΛμ

no sum over μ; ð17Þ

where the yet-to-be-determined ΛμðxÞ parametrizes the
transformation to the barred frame. We can then impose
the condition

ð ~G−1Þαβð∂α
~GβμÞ ¼ 0 ð18Þ

to solve for Λμ. This implies that

ðG−1Þαβð∂αGβμÞ ¼ ðG−1Þαβð∂αGβμÞ − ð ~G−1Þαβð∂α
~GβμÞ:

ð19Þ

In this ~Uð1Þ fixed system, we have

AμðxÞ ¼ −iðG−1Þαβð∂αGβμÞ; ð20Þ

in which the bar indicates that we have fixed the ~Uð1Þ
gauge through Eq. (18). For notational convenience, we can
simply drop the bar: i.e., we then have

Aμ ¼ −iðG−1Þαβ∂αGβ
μ : ð21Þ

This equation gives the relationship between the vierbein-
like field Gα

β and the gauge field Aμ. We note that, because
of the way the Lorentz tensor indices are contracted, this is
not a pure gauge configuration. As explained in
Appendix A, this is in contrast with the situation with
lower rank tensors. It is also here that we see how Eq. (21)
is reminiscent of the relationship between the Christoffel
symbol and the vierbein. In the next section, we will
introduce new basis fields to decompose Gα

β.

III. DECOMPOSING THE VIERBEIN

In this section, we will show that demanding (a) the
reality condition implied by Eq. (21), (b) thatGα

β transform
like a ð 1 1 Þ Lorentz tensor, and (c) Gα

β → ηαβ in the
vacuum limit “uniquely” fixes

Gα
β ∈ ⨁

N

n¼1

Uð1Þ ; ð22Þ
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where N ¼ 4 for four spacetime dimensions and each
Uð1Þ in the sum means a one-dimensional representation.
Each of N phase fields are what we will call θaHa, which
are the basis tensors.
Since the Gα

β constrained by Eq. (21) are difficult to
work with, we will solve this constraint equation here in
terms of the unconstrained fields. Consider the representa-
tion (just as in sigma model constructions)

Gβ
μ ¼ ðeiθaðxÞHaÞβμ ð23Þ

ðG−1Þαβ ¼ ðe−iθaðxÞHaÞαβ; ð24Þ

in which θa is real without loss of generality, Ha is a
general set of constant matrices (maximally 2N2 such
matrices exist where N ¼ 4 for four spacetime dimen-
sions), and the repeated indices here are summed. We note
that Eq. (23) contains an assumption about going to a
manifestly Lorentz-invariant vacuum in the limit of
θðxÞ → 0; i.e., in the limit θðxÞ → 0, Gα

β becomes an
identity matrix, which is Lorentz invariant. To satisfy
Eq. (21), we expand for small θ:

Aμ ¼ ∂αθ
aðHaÞαμ þOðθ2Þ: ð25Þ

This says that Ha should be a real matrix.
If we keep the entire power series, we have

Gβ
μ ¼

�X∞
n¼0

1

n!
½iθaðxÞHa�n

�β

μ

: ð26Þ

We can take any generic m power term in this series as
follows:

θa1θa2…θamHa1Ha2…Ham: ð27Þ

We define each Ha to transform like a rank 2 tensor under
Lorentz transformations. Hence, each such term transforms
as

θa1θa2…θamΛHa1Λ−1ΛHa2Λ−1…ΛHamΛ−1; ð28Þ

which means that the matrix ansatz Eq. (23) does transform
like a ð 1 1 Þ tensor under Lorentz transformations.
Let us now consider the reality condition on the rest of

the terms in the power series. First, we use the Baker-
Campbell-Hausdorff formula to express the gauge field in
terms of a parametric integral:

∂αGβ
μ ¼ i∂αθ

f

Z
1

0

dt½eið1−tÞθaHa
Hfeitθ

aHa �βμ ð29Þ

Aμ ¼ ∂αθ
f

Z
1

0

dt½e−itθaHa
Hfeitθ

aHa �αμ: ð30Þ

Taking the complex conjugate of this yields

�
∂αθ

f

Z
1

0

dt½e−itθaHa
Hfeitθ

aHa �αμ
��

¼ ∂αθ
f

Z
1

0

dt½eitθaHa
Hfe−itθ

aHa �αμ: ð31Þ

Next, using the identity

eABe−A ¼
X∞
n¼0

1

n!
½A; ½A; ½…½A;B��…��; ð32Þ

we split even and odd powers

∂αθ
f

Z
1

0

dt½eitθaHa
Hfe−itθ

aHa �αμ

¼ ∂αθ
f

Z
1

0

dt
X∞
n¼odd

1

n!
½itθanHan ; ½…½itθa1Ha1 ;Hf�…��αμ

þ∂αθ
f

Z
1

0

dt
X∞

n¼even

1

n!
½itθanHan ; ½…½itθa1Ha1 ;Hf�…��αμ

ð33Þ

to separate the sign dependence. Although the even power
terms do not depend on the sign in front of itθaHa, the odd
power terms are odd under the sign change. Since θaðxÞ and
∂αθ

fðxÞ can have any value, we conclude that the only
representation for which Aμ can be represented this way is

∂αθ
f½θa2mþ1Ha2mþ1 ; ½…½θa1Ha1 ; Hf��…�αμ ¼ 0 ð34Þ

for every integer m ≥ 0. Hence, we conclude that the only
matrices Hf that can satisfy this are ð 1 1 Þ Lorentz
tensors that satisfy

½Ha;Hb� ¼ 0 : ð35Þ

These form a reducible representation of Uð1Þ given
by Eq. (22).
One explicit representation of Ha is furnished by the

following real polarization vectors,

ðHaÞμν ¼ ψμ
ðaÞψ ðaÞν; ð36Þ

in which

ψμ
ðaÞ ¼ Λμ

a ð37Þ

are components of the Lorentz transformation matrix Λ [the
fundamental representation of SOðN − 1; 1Þ]. The N fields

θaðxÞðHaÞμν no sum on a ð38Þ
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appearing in Eq. (23) span the spacetime tensor space and
can be used to expand the vierbeinlike field Gα

βðxÞ. On the
other hand, they span the Lie algebra of the gauge group
instead of the group representation itself. This makes them
more like gauge fields. The fact that Ha is a complete basis
is manifest in the identities

X
a

Ha ¼ I ð39Þ

TrðHaHbÞ ¼ δab: ð40Þ

We can summarize this section with the statement that
the vierbeinlike field which transforms as a dual of the
Uð1Þ matter representation is given by Eq. (23), in which
the Ha are real, commuting N × N matrices that transform
like a ð1 1Þ Lorentz tensor.

IV. θa AS AN INTEGRAL OVER Aμ

To gain intuition regarding the variable θa, it is instruc-
tive to express θa in terms of Aμ. Since the Ha are
commuting matrices, Eq. (21) gives

Aμ ¼
X
a

∂αθ
aðHaÞαμ : ð41Þ

This equation can be solved for θa,

θaðyÞ ¼
Z

y

Y0

dzμðHaÞλμAλðxðz; yÞÞ þ ZaðyÞ ð42Þ

xλðz; yÞ≡ ðHaÞλμzμ þ
X
b≠a

ðHbÞλνyν; ð43Þ

in which the dzμ integral is over a straight path connecting
Y0 and y and the ZaðxÞ are the zero modes of the derivative
operator in Eq. (41) and satisfy

ðHaÞαμ
∂
∂xα Z

aðxÞ ¼ 0 no sum over a: ð44Þ

This means Za is a function that depends on a three-
dimensional subspace of the four-dimensional space.
Another way of saying this is that ZaðxÞ is translationally
invariant,

Zaðyþ Taψ ðaÞÞ ¼ ZaðyÞ; ð45Þ

for any constant Ta. Hence, ZaðxÞ occupies a similar
amount of functional volume as the residual Uð1Þ gauge
symmetry associated with Lorentz gauge fixing: ∂μAμ ¼ 0.
Equation (41) states that the theory of the local field θaðxÞ
is related to the theory of a nonlocal operator if viewed from
the AμðxÞ perspective. On the other hand, the exact nature
of the relationship depends on how the data fZaðyÞ; Y0g are

handled in the partition function. This will be discussed
in Sec. V.
The substitution of Eq. (42) into Eq. (23) gives us

explicitly the relationship between Aμ and Gα
γ:

Gα
βðyÞ ¼ exp

�
i
XN
a¼1

�Z
y

Y0

dzμðHaÞλμAλðxðz; yÞÞ

þZaðyÞÞHa

�
α

β

: ð46Þ

Hence, when expressed in terms of AμðxÞ, this theory looks
manifestly like a nonlocal theory just as in the case of the
Wilson line field. However, when expressed in terms of
θaðyÞ without reference to Aμ, the theory is manifestly
local. The two seemingly conflicting viewpoints will be
reconciled later, where we will see that symmetries of
the theory in terms of θaðyÞ will cause the theory to be
insensitive to Y0 and Za, eliminating most of the non-
locality. At the same time, it is interesting that field
operators formed out of θaðyÞ exist which are multilocal
at a finite number of discrete points do not depend on Y0 or
Za but represent a sum of an infinite number of Aμ operators
(i.e., an integral over Aμ):

Oaðy; TaÞ≡
Z

yþTaψ ðaÞ

y
dzμðHaÞλμAλðxðz; yþ Taψ ðaÞÞÞ

ð47Þ
¼ θaðyþ Taψ ðaÞÞ − θaðyÞ no sum over a:

ð48Þ
Hence, it is interesting that BTGT allows us to collapse an
integral of local fields into evaluation of local fields at two
points. It is beyond the scope of this paper to see if this
feature lends itself to an interesting description of holog-
raphy (see e.g. Refs. [30,31]).

V. PARTITION FUNCTION

Now that we have identified the field that wewish to use to
describe the gauge theory, we need to construct the partition
function. What we can do to construct the partition function
is to start with the Aμ theory and make a change of variables
to the θa theory. After the construction, we can eliminate the
starting point of theAμ and give the path integral construction
rules just in terms of θa. However, wewill see that we need to
impose a new symmetry to carry out this program.
The procedure to start from the Aμ theory is as follows:
(1) Start with an ordinary gauge theory functional

measure and ordinary ξ-gauge fixing,

Z1 ¼ Nξ

Z
Dgj det□j

Z
DADϕDϕ�eiðSþSgfÞ;

ð49Þ
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in which

Sgf ¼
−1
2ξ

Z
d4xð∂μAμÞ2 ð50Þ

and S contains the matter field and ordinary gauge-
invariant combination of Aμ.

(2) Make a change of variables using Eq. (41),

Z1 ¼ Nξ

Z
Dgj det□jJ

Z
DθnzDϕDϕ�eiðSþSgfÞ;

ð51Þ

in which

J ¼
���� det

�
δAμðxÞ
δθanzðyÞ

����� ð52Þ

¼
���� det

�
ðHaÞαμ

∂
∂xα δ

ð4Þðx − yÞ
����� ð53Þ

and θanz stands for functions which are not annihi-
lated by

ðHaÞαμ
∂
∂xα : ð54Þ

(Note that if we do not separate the zero modes out,
then we would obtain J ¼ 0.) However, it is

difficult to restrict the integration to θnz, and it is
worthwhile to find a way to include the zero modes
of Eq. (54). One way to do this is to multiply byDθz,
which integrates over zero modes:

Z2 ¼
Z

DθzZ1 ð55Þ

¼ N
Z

DθDϕDϕ�eiðS½θ;ϕ;ϕ��þSgf ½θ�Þ ð56Þ

N ≡ Nξ

Z
Dgj det□jJ : ð57Þ

This should be as harmless as multiplying by the
residual gauge degrees of freedom in the Feynman
gauge. This is the main difference between the
ordinary gauge theory and the BTGT theory, and
it most likely will not show up in perturbative
computations, just as the residual gauge degree of
freedom in Feynman gauge does not destroy per-
turbation theory.

Hence, we now have the partition function Z2 describing
the theory of θa and ϕ.
At this point, we can forget that we started with the Aμ

theory and construct the theory of θa and ϕ using the
following procedure:
(1) Define the partition function in ξ-gauge as

Z3 ¼
Z

DθDϕDϕ� exp
�
i

�
S½θ;ϕ;ϕ�� − 1

2ξ

Z
d4x

�X
a
ðHaÞαμ∂μ∂αθ

a

�
2
��

: ð58Þ

(2) Choose S such that it is invariant under the usual
Lorentz-invariant local field theory symmetry and
the following two additional symmetries:
(a) Gauge invariant under the Uð1Þ transformations:

θaðxÞ → θaðxÞ − ΛðxÞ ð59Þ

ϕðxÞ → eiΛðxÞϕðxÞ ϕ�ðxÞ → e−iΛðxÞϕ�ðxÞ ð60Þ

(b) Invariant under a lower-dimensional functional
shift transformation,

θaðxÞ → θaðxÞ þ ZaðxÞ ; ð61Þ
where

ðHaÞαμ
∂
∂xα Z

aðxÞ ¼ 0 no sum over a: ð62Þ
This is manifestly a local symmetry without gauge
fields.

The gauge symmetry conditions Eqs. (59) and (60) in item
2 lead to the usual gauge couplings (but in terms of θa) once
one is guaranteed that θa only comes in the package of
AμðθaðyÞ; yÞ [i.e., through Eq. (41)]. As we explicitly check
in the next section, this packaging is partly enforced by the
local symmetry Eq. (61). Furthermore, this local symmetry
is very important in that it eliminates gauge theory
destabilizing terms ΔL1 of the form

ΔL1 ¼
μ2

16
jϕj2ðtrGÞðtrG−1Þ ð63Þ

≈ μ2jϕj2
�
1 −

3

16

X
a

ðθaÞ2 þ 1

16

X
b≠c

θbθc þOðθ4Þ
�
;

ð64Þ
which is gauge invariant in the sense of Eqs. (59) and (60)
but not Eq. (61). Note that this local symmetry also forbids
global charge violating terms such as
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ΔL2 ¼
μ2

16
½ϕ2ðtrGÞ2 þ H:c:�; ð65Þ

which means that the theory inherits the global charge
conservation as an accidental symmetry just as in ordinary
gauge theories once the ordinary gauge symmetry con-
dition is imposed. We note that, as long as the measure is
chosen such that Dθ is integrated over an unrestricted
function space, Eq. (61) is not anomalous, at least in flat
space.
Before closing this section, it is important to emphasize

that Eq. (61) is a symmetry that is new and intrinsic to
BTGT. This symmetry’s origin is in the derivative operator
appearing in Eq. (41), which does not have an analog in
ordinary gauge theories. As alluded to in Eq. (45), this
symmetry is the main reason why the integration origin Y0

and the arbitrary function ZaðyÞ appearing in Eq. (42) are
not meaningful. (More discussion of this in terms of
translational invariance is given in Appendix B). This in
turn means that, even though naively Gα

βðxÞ when
expressed in terms of the gauge field [i.e., Eq. (42)] seems
to be just as nonlocal as a Wilson line operator, it is not. At
the same time, as shown in Eq. (48), θaðxÞ has a different
degree of locality when compared to the gauge field AμðxÞ,
since two points are effectively mapped to an integral of
AμðxÞ (i.e., a sum over an infinite number of points).
Incidentally, we call the shift function ZaðxÞ a lower-
dimensional function because Eq. (62) implies Eq. (45).
One naive downside of this construction is that power

counting is more difficult because θa is a dimensionless
variable. Unlike a sigma model parametrization where the
kinetic term for the analog of θa is of the form ð∂μθÞ2 which
would allow θ to acquire dimension upon canonical normali-
zation, the θa kinetic term is quartic in derivatives. However,
due to the new local symmetryEq. (61), θa always enters with
derivatives. Hence, there does not seem to be real harm done
to bottom up model constructions by the loss of power
counting. Incidentally, we show in Sec. VII B that, even
though the higher derivative nature of the theory might seem
to imply that we shouldworry about the stability of the theory
(Ostrogradsky instability [32]), the theory is stable as the
Hamiltonian is bounded from below. This stability is related
to the fact that the additional local symmetry of Eq. (61)
makes the Hamiltonian identical to ordinary gauge theories.

VI. ELEMENTARY COMPUTATION

Let us consider a simple example theory and compute a
simple scattering process as a basic check of the formalism.
Consider a scalar field ϕ charged under a Uð1Þ gauge
charge e. The quadratic term for the ϕ field that is invariant
under the global Uð1Þ subgroup is

Lk1 ¼ j∂ϕj2 −m2jϕj2: ð66Þ

(We can of course add quartic self-interactions at the
marginal operator level, but we will omit it since we will
not be using it.) As noted in Eqs. (67) and (68), we have to
impose a separate gauge invariance given by

eθaðxÞ → eθaðxÞ − eΛðxÞ ð67Þ

ϕðxÞ → eieΛðxÞϕðxÞ ϕ�ðxÞ → e−ieΛðxÞϕ�ðxÞ ð68Þ

as well as the new local symmetry [Eq. (61)]

eθaðxÞ → eθaðxÞ þ eZaðxÞ: ð69Þ

To consider the ramifications of Eq. (69) a bit more
explicitly, consider the θa dependent terms in the
Lagrangian to be a Lorentz-invariant function combination
F ðθ; ∂μθ; ∂μ∂νθ;…Þ, where we can truncate the “...” at a
finite derivative order due to power counting, and restrict
the new local gauge invariance to imply the invariance of
the Lagrangian instead of the action. The variation in the
Lagrangian due to Eq. (69) is

δF ðθ; ∂μθ; ∂μ∂νθ;…Þ ¼ ZaðxÞ ∂F∂θa þ ∂μZaðxÞ ∂F
∂∂μθ

a

þ ∂μ∂νZaðxÞ ∂F
∂∂μ∂νθ

a þ � � � ;

ð70Þ

where the sum over a is implied. Since there is an infinite
number of constraints imposed on the finite number of
terms, each of these terms must vanish independently.
This implies

∂F
∂θa ¼ 0: ð71Þ

The condition that the next term vanishes,

∂μZaðxÞ ∂F
∂∂μθ

aðxÞ ¼ 0; ð72Þ

can be solved by

∂F
∂∂μθ

a ¼ ðHaÞμδVδ; ð73Þ

in which Vδ is a ð 1 0 Þ Lorentz tensor. This means that
every ∂μθ

a dependence in F must come in the form with
ðHaÞμδ attached since, if there were any other solutions, then
Za would have to satisfy other independent constraints.
Now, suppose the next term ∂μ∂νZaðxÞ ∂F

∂∂μ∂νθa vanishes
without ∂F

∂∂μ∂νθa being proportional to ðHaÞμδ or ðHaÞνδ.
Then, we must impose a new constraint on Za,
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F μν
ðbÞ∂μ∂νZbðxÞ ¼ 0 no sum over b; ð74Þ

where F μν
ðbÞ is a tensor. Since we do not want to contradict

the fact that the only constraint on Za is Eq. (62) and it is
otherwise arbitrary, Eq. (74) can be possible if F μν

ðbÞ is

antisymmetric. However, that would imply

∂F
∂∂μ∂νθ

a ð75Þ

is antisymmetric in μ ↔ ν, which is impossible for the
smooth θa relevant for perturbation theory. Similar argu-
ments apply for higher derivatives.
Hence, we conclude we can only write θa in the

combination of Eq. (41) for the Lorentz-invariant local
Lagrangian satisfying the invariance of Eq. (69). The
renormalizable dimension coupling between θa and ϕ
that obeys Eq. (69) is

LI ¼ −ig1ϕ�∂μϕ∂αθ
aðHaÞαμ þ H:c:

þ g2jϕj2∂αθ
aðHaÞαμ∂βθ

bðHbÞβμ: ð76Þ

In addition, the renormalizable kinetic terms would be

Lk2 ¼ c2ð∂αθ
aðHaÞαμÞð∂βθ

bðHbÞβμÞ
þ c41∂μð∂αθ

aðHaÞανÞ∂μð∂βθ
bðHbÞβνÞ

þ c42∂μð∂αθ
aðHaÞανÞ∂νð∂βθ

bðHbÞβμÞ; ð77Þ

in which the repeated indices are summed. Imposing
Eqs. (67) and (68) onL ¼ Lk1 þ Lk2 þ LI results in setting
c2 ¼ 0, c41 ¼ −c42 ¼ 2c (where c is a constant determined
by Coulomb scattering), g1 ¼ e, and g2 ¼ e2. We note that,
after imposing the invariance of Eq. (69), the rest of the
invariances fixing these coefficients are identical to ordi-
nary gauge invariance.
To simplify the computations, it is useful to go to a

Lorentz frame in which θaHa is diagonal:

X
a

θaðHaÞμν ¼
X
a

θaδμðaÞδðaÞν: ð78Þ

In this gauge, the hθβθλi analog of the hAμAνi propagator
giving the Feynman rule iημν=ð4ck2Þ ¼ −iημν=k2 [where
ημν ¼ diagð1;−1;−1;−1Þ] is

Z
d4xeik·ðx−yÞhθβðxÞθλðyÞi ¼

i ηβλ

kβkλ

4ck2
no sum; ð79Þ

where one can count the minus signs as ðiÞ2 coming from
kβkλ and an extra minus sign from integrating by parts one
of the factors ∂δθ

δ to obtain the quartic differential operator
to invert. The cubic and quartic vertices are

∂
∂ϕ

∂
∂ϕ�

∂
∂θγ iLIj ¼ ½pþ k�γqγe no sum ð80Þ

∂
∂ϕ

∂
∂ϕ�

∂
∂θγ

∂
∂θλ iLIj ¼ −2iqλrλδλγe2 no sum ð81Þ

according to the usual prescription. The noncovariant
notation here comes from having made a frame choice
that Ha are diagonal matrices. For example, a more
manifestly covariant tree-level propagator is

Z
d4xeik·ðx−yÞhθbðxÞθaðyÞi ¼ i

4c
δba

ðHbÞμδkμkνðHaÞνγηδγ
1

k2
;

ð82Þ

which reverts to Eq. (79) when

ðHaÞαβ ¼ δαðaÞδðaÞβ: no sum over a: ð83Þ

The t-channel tree-level Coulomb scattering gives the
amplitude

iM ¼ −ie2
1

4cðk1 − p1Þ2
½p1 þ k1� · ½p2 þ k2�; ð84Þ

which matches the usual scalar field theory result with
c ¼ −1=4 as expected.

VII. PECULIARITIES OF THE FORMALISM

A. Charge dependent axes

It is interesting to note that we can rewrite the covariant
derivative as an ordinary divergence acting on a composite
field consisting of Gα

β and a matter field ϕ1,

� ∂
∂xμ þ iq1AμðxÞ

�
ϕ1ðxÞ ¼

∂
∂yαðq1Þ

Ψα
ðq1ÞμðxÞ; ð85Þ

in which

dyαðq1Þ ¼ Gα
ðq1ÞμðxÞdxμ ð86Þ

and

Ψα
ðq1Þ μðxÞ≡ ϕ1ðxÞGα

ðq1Þ μðxÞ; ð87Þ

where there is a mismatch between the derivative variable
yðq1Þ on the right-hand side of Eq. (85) and the argument of
Ψλ

ðq1ÞδðxÞ. We note that, since Ψλ
ðq1Þδ is a covariant tensor,

the tensor components in the y coordinate system is
different from that in the x coordinate system. Furthermore,
unlike before, we have displayed the charge assignment of
the gauge group explicitly. Hence, if the G tensor is treated
as a spacetime axis, then there are as many axes in
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spacetime as there are number of different charges. On the
other hand, there is only one set of basis tensor fields θa that
decomposes all of the axes, at least when matching to
standard gauge theories.

B. Hamiltonian is bounded from below

It is well known that higher derivative theories generally
exhibit an instability associated with the Hamiltonian being
unbounded from below (for a review, see e.g. Refs. [33–
37]). This instability is sometimes referred to as the
Ostrogradsky instability. Here, we will show that, although
BTGT is a higher derivative theory, it has a Hamiltonian
that is bounded from below. This can be partially explained
by the novel local symmetry Eq. (61) which effectively
eliminates the θa degree of freedom from the action in favor
of ðHaÞμν∂μθ

a.
The energy density for a gauged massive scalar field is

T00 ¼ TðϕÞ
00 þ TðθÞ

00 ; ð88Þ

where

TðϕÞ
00 ¼ j∂0ϕþ iA0ðθÞϕj2 þ

X3
i¼1

j∂iϕ − iAiðθÞϕj2 þm2jϕj2

ð89Þ

TðθÞ
00 ¼ 1

2

X3
i¼1

ð∂0AiðθÞ þ ∂iA0ðθÞÞ2

þ 1

2

X3
l¼1

� X3
m;n¼1

ϵlmn∂mAnðθÞ
�2

ð90Þ

AδðθÞ ¼
X
a

∂μθ
aðHaÞμδ; ð91Þ

which is positive definite. Hence, we do not expect the
Ostrogradsky instability to arise in this theory. Again, this
protection partly comes from the novel local symmetry
Eq. (61). As discussed around Eq. (70), other ingredients
include locality and Lorentz invariance, which all play a
role in having θa come in the form of Eq. (91).

C. Computing nonlocal correlators

We can in principle use the new formalism to compute
nonlocal correlators in novel ways. For example, consider
the correlator

Ga1a2 ≡ hOa1ðx1; Ta1ÞOa2ðx2; Ta2Þi; ð92Þ

in whichOa are the operators defined in Eq. (48). Note that
Ga1a2 is invariant under the local transformations of
Eq. (61). This correlator is easy to compute in the BTGT
formalism. At tree level, it is given by

Ga1a2 ¼ −i
Z

d4k
ð2πÞ4

e−ik·ðx1−x2Þδa1a2
ðk2 þ iϵÞðHa1ÞμδkμkνðHa2Þνγηδγ

× ðeiTa1
k·ψ ða1Þ − 1Þðe−iTa2

k·ψ ða2Þ − 1Þ; ð93Þ

in which we have used Eq. (82). This result in the usual Aμ

formalism corresponds to

Ga1a2 ¼
Z

x1þTa1
ψ ða1Þ

x1

dzμ1ðHa1Þλμ
Z

x2þTa2
ψ ða2Þ

x2

dzν2ðHa2Þβν
× hAλðxðz1; x1 þ Ta1ψ ða1ÞÞÞ
× Aβðxðz2; x2 þ Ta2ψ ða2ÞÞÞi: ð94Þ

Hence, this offers a novel way to compute correlators.
In the limit Ta1 ¼ Ta2 ¼ T → 0, Eq. (93) becomes

Ga1a2 ¼ −iT2

Z
d4k
ð2πÞ4

e−ik·ðx1−x2Þηa1a2

k2 þ iϵ
; ð95Þ

recovering the photon propagator information. Hence, Ga1a2
is a nonlocal object that in the local limit gives back the
photon propagator. It is interesting that the local limit of
the fundamental nonlocal Green’s function3 of BTGT is the
ordinary photon Green’s function.

VIII. CONCLUSIONS

In this paper, we have constructed a novel formulation for
gauge theories based on analogies with the vierbein formu-
lation of general relativity. For simplicity, we have focused
on a simple Uð1Þ theory in this work. This has led us to
introduce a vierbeinlike field Gα

βðxÞ (indicating the direc-
tion in the gauge group representation space) that can be
further decomposed (to solve constraint equations) in terms
of another set of basis tensor fields θaðxÞðHaÞμν. Unlike the
Wilson line, θaðxÞ is a local field. The basis tensor field θaðxÞ
has new local symmetries given by Eq. (61) that are
important for preserving translational invariance as dis-
cussed in Appendix B andmaintaining stability as discussed
in Sec. VII B. Intuitively, the field theory of θa contains the
gauge theory information by way of Eq. (94).
There are many future research directions that are

suggested by this work. Perhaps most obviously, BTGT
should be generalizable to non-Abelian theories.4 It would
also be interesting to find practical applications for this
theory in computing nonlocal correlators similar to
Eq. (93). The novelty in part is related to the different

3It is fundamental since it is invariant under the new local
symmetry of Eq. (61) defining BTGT.

4There are also certain technical details of the construction in
this paper that can be improved. For example, although the
argument surrounding Eq. (70) is sufficient for constructing an
action only in terms of AμðθÞ, it does not address the possibility of
the action having variations of a total derivative term.
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degree of locality due to the higher derivative nature of this
theory as noted around Eq. (48). Loop corrections, BRST
invariance, and Ward identities associated with the new
local symmetry of Eq. (61) may be interesting to explore.
Instantons, sphalerons, and other nonperturbative excita-
tions in BTGT may be a bit different in ordinary gauge
theories since the gauge theory has been nonperturbatively
modified through the measure [see Eq. (55)]. This formal-
ism should also be tested by embedding it into curved
spacetime.
It is interesting that matter fields and gauge fields in this

formalism can be packaged in the same category of
mutually dual objects in group representation space.
However, one satisfies a constraint equation, and the other
does not. If there can be a way to spontaneously generate
this asymmetry starting from an even more symmetric
framework, that would open up new avenues for construct-
ing physics beyond the SM.
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APPENDIX A: LOWER RANK TENSOR

Instead of a rank 2 tensor as in Eq. (10), suppose we
postulated a Lorentz scalar transforming under Uð1Þ as a
matter dual field representing the matter direction in
representation space. There are then not enough local
functional degrees of freedom to replace an N-vector field.5

The next-smallest rank to consider is 1. Suppose we
choose

Gγðx1Þ ¼ Sγe−iθðx1Þ: ðA1Þ

Because of Eq. (9), we want to solve for ∂μθðx1Þ in terms of
G evaluated at x1. To this end, we can take derivatives of the
general gauge-transformed object,

eiθðG−1Þγ∂μðGγe−iθÞ ¼ ðG−1Þγ∂μGγ − i∂μθ; ðA2Þ

in which ðG−1ÞγGγ ≡ 1 defines the inverse. Evaluating this
general expression at x1 in the special gauge frame yields

ðG−1Þγ∂μGγjx1 ¼ ð ~G−1Þγ∂μ
~Gγðx1Þ − i∂μθðx1Þ: ðA3Þ

Because of Eq. (9), we conclude

Aμðx1Þ ¼ −i½ðG−1Þγð∂μGγÞjx1 − ð ~G−1Þγð∂μ
~GγÞjx1 �; ðA4Þ

in which

GαðxÞ≡ ~GαðxÞe−iθðxÞ ðA5Þ

is the general gauge field.
We can now simplify Eq. (A4) further by noting that

Eq. (A4) has an additional ~Uð1Þ symmetry transformation,

Gγ → Gγe−iθ2ðxÞ ðA6Þ

~Gγ → ~Gγe−iθ2ðxÞ; ðA7Þ

that leaves Eq. (A4) invariant. This means we can use it to
choose ∂μ

~Gγ ¼ 0 as follows. First, we execute a ~Uð1Þ
transform,

ðG−1Þγð∂μGγÞ ¼ ðG−1Þγð∂μGγÞ − i∂μθ2 no sum ðA8Þ

ð ~G−1Þμγð∂μ
~GγδÞ ¼ ð ~G−1Þμγð∂μ

~GγδÞ − i∂μθ2 no sum;

ðA9Þ

parametrized by a yet-to-be-determined θ2. We then impose
the condition

ð ~G−1Þγð∂μ
~GγÞ ¼ 0 ðA10Þ

to solve for θ2. This implies

ðG−1Þγð∂μGγÞ ¼ ðG−1Þγð∂μGγÞ − ð ~G−1Þγð∂μ
~GγÞ: ðA11Þ

In this ~Uð1Þ gauge fixed system, we have

AμðxÞ ¼ −iðG−1Þγð∂μGγÞ; ðA12Þ

where the bar indicates that we have fixed the ~Uð1Þ gauge
through Eq. (A10). For notational convenience, we can
simply drop the bar; i.e.,

Aμ ¼ −iðG−1Þγ∂μGγ ðA13Þ

¼ −i
Gγ

GγGγ
∂μGγ ðA14Þ

¼ −i
2
∂μ lnGγGγ; ðA15Þ

which is a pure gauge configuration.
Hence, we must go to higher rank tensors for a basis

tensor. The next rank tensor is rank 2, and this is what we
present in this work.

5We note that the approach of Ref. [21] effectively has a
nonlocal function that is a scalar: i.e., hPðx; xiÞ ¼

R
x
xi;P

dXμAμðXÞ
where P is a path. The manifest nature of the nonlocality can be
seen by the fact that it is a path dependent functional and the field
strength is derived from hP through hPþδPðx; xiÞ − hPðx; xiÞ ¼
Fμνσ

μν, where σμν represents the area of the path difference δP.
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APPENDIX B: SPACETIME TRANSLATION
SYMMETRY

Here, we discuss one way to motivate the requirement of
local symmetry as given in Eq. (61). Suppose we start with
a theory S½A� of local AμðxÞ, and in view of making a
change of variables to θa starting from S½A�, suppose we
add a nonlocal interaction ΔS involving θaðAμÞ in the form
of Eq. (42),

ΔS ¼ ΔSðθaðAμÞÞ; ðB1Þ

which is ordinary Uð1Þ gauge invariant [e.g. see Eq. (63)]
but not invariant under Eq. (61). This means that the
partition function

Z0 ¼
Z

DAμDϕDϕ�eiðSþΔSÞ ðB2Þ

is sensitive to Y0 in Eq. (42). However, this breaks
spacetime translational invariance, since the interactions
have a preferred point. Hence, one way to eliminate ΔS
from the theory is to impose the local symmetry Eq. (61).
One cannot for example try to use Oaðy; TaÞ defined in

Eq. (48) as a substitute for the θaðxÞ field in making a
change of variables from AμðxÞ to obtain a local field theory
because Oaðy; TaÞ is manifestly nonlocal (although trans-
lationally invariant in y). The local symmetry Eq. (61)
also has the advantage of helping to protect against the
Ostrogradsky instability.

APPENDIX C: VIERBEIN ANALOGY

In this Appendix, we explicitly list the analogy between
Gα

βðxÞ formalism and the general relativistic vierbein ðeaÞμ
formalism, where the index a is the fictitious Minkowski
space index and μ is the spacetime coordinate index. As a
start, the vierbeinlike field correspondence is

Gα
β ↔ ðeaÞμ; ðC1Þ

where effectively the real and imaginary elements of
Gα

β [i.e., the real and imaginary elements of Uð1Þ maps
to SOð2Þ] are analogs of the label μ and ðα; βÞ labels
are the analogs of a. The analogy of the constraint
equation is

Aλ ¼ −iðG−1Þαβ∂αGβ
λ ↔ Γγ

λβ

¼ ðeaÞγ∂ðλðeaÞβÞ þ gϵγðecÞðβ∂λÞðecÞϵ
− gϵγðecÞðβ∂ jϵjðecÞλÞ ðC2Þ

gαβ ≡ ðeaÞαðebÞβηab: ðC3Þ

The reason why Gα
βðxÞ cannot be considered to be

analogous to an ordinary dual basis element such as a
coordinate basis object ∂μ is because such objects do not
carry metric information by themselves.

[1] H. Weyl, A new extension of relativity theory, Ann. Phys.
(Berlin) 364, 101 (1919).

[2] H. Weyl, Electron and Gravitation. 1, Z. Phys. 56, 330
(1929) (in German); Surv. High Energy Phys. 5, 261
(1986).

[3] C.-N. Yang and R. L. Mills, Conservation of isotopic spin
and isotopic gauge invariance, Phys. Rev. 96, 191 (1954).

[4] E. S. Abers and B.W. Lee, Gauge theories, Phys. Rep. 9, 1
(1973).

[5] C. Itzykson and J. B. Zuber, Quantum Field Theory,
International Series In Pure and Applied Physics
(McGraw-Hill, New York, 1980).

[6] A. M. Polyakov, Gauge Fields and Strings (Harwood
Academic Publisher, Chur, 1987), Vol. 3.

[7] G. ’t Hooft, Under the Spell of the Gauge Principle (World
Scientific Publishing, Singapore, 1994), Vol. 19.

[8] S. Weinberg,Modern Applications, The Quantum Theory of
Fields (Cambridge University Press, Cambridge, England,
2013), Vol. 2.

[9] S. L. Glashow, Partial symmetries of weak interactions,
Nucl. Phys. 22, 579 (1961).

[10] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264
(1967).

[11] A. Salam, Weak and electromagnetic interactions, Conf.
Proc. C680519, 367 (1968).

[12] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Non-
abelian Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973).

[13] H. D. Politzer, Reliable Perturbative Results for Strong
Interactions?, Phys. Rev. Lett. 30, 1346 (1973).

[14] P. Ramond, Journeys Beyond the Standard Model (Perseus
Books, New York, 1999).

[15] P. Langacker, The Standard Model and Beyond (CRC Press,
Boca Raton, FL, 2010).

[16] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[17] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[18] M. Nakahara, Geometry, Topology and Physics (Taylor &
Francis, London, 2016).

BASIS TENSOR GAUGE THEOR: REFORMULATING ... PHYSICAL REVIEW D 94, 105016 (2016)

105016-11

http://dx.doi.org/10.1002/andp.19193641002
http://dx.doi.org/10.1002/andp.19193641002
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1080/01422418608228774
http://dx.doi.org/10.1080/01422418608228774
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1016/0370-1573(73)90027-6
http://dx.doi.org/10.1016/0370-1573(73)90027-6
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021


[19] T. T. Wu and C. N. Yang, Concept of nonintegrable phase
factors and global formulation of gauge fields, Phys. Rev. D
12, 3845 (1975).

[20] J. M. Overduin and P. S. Wesson, Kaluza-Klein gravity,
Phys. Rep. 283, 303 (1997).

[21] S. Mandelstam, Quantum electrodynamics without poten-
tials, Ann. Phys. (N.Y.) 19, 1 (1962).

[22] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[23] R. Giles, The reconstruction of gauge potentials from
Wilson loops, Phys. Rev. D 24, 2160 (1981).

[24] A. A. Migdal, Loop equations and 1/N expansion, Phys.
Rep. 102, 199 (1983).

[25] J. Terning, Gauging nonlocal Lagrangians, Phys. Rev. D 44,
887 (1991).

[26] D. J. Gross, A. Hashimoto, and N. Itzhaki, Observables of
noncommutative gauge theories, Adv. Theor. Math. Phys. 4,
893 (2000).

[27] A. Kapustin, Wilson-’t Hooft operators in four-dimensional
gauge theories and S-duality, Phys. Rev. D 74, 025005
(2006).

[28] I. O. Cherednikov and N. G. Stefanis, Wilson lines and
transverse-momentum dependent parton distribution

functions: A renormalization-group analysis, Nucl. Phys.
B802, 146 (2008).

[29] S. Weinberg, Gravitation and Cosmology (Wiley,
New York, 1972).

[30] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[31] H. Nastase, Introduction to AdS-CFT, arXiv:0712.0689.
[32] M. Ostrogradsky, Mémoires sur les équations différentielles,

relatives au probléme des isopérimétres, Mem. Acad. St.
Petersbourg 6, 385 (1850).

[33] S. W. Hawking and T. Hertog, Living with ghosts, Phys.
Rev. D 65, 103515 (2002).

[34] R. P. Woodard, Avoiding dark energy with 1/r modifications
of gravity, Lect. Notes Phys. 720, 403 (2007).

[35] I. Antoniadis, E. Dudas, and D. M. Ghilencea, Living with
ghosts and their radiative corrections, Nucl. Phys. B767, 29
(2007).

[36] T.-j. Chen, M. Fasiello, E. A. Lim, and A. J. Tolley, Higher
derivative theories with constraints: Exorcising Ostrogradski’s
ghost, J. Cosmol. Astropart. Phys. 02 (2013) 042.

[37] A. Salvio and A. Strumia, Quantum mechanics of
4-derivative theories, Eur. Phys. J. C 76, 227 (2016).

DANIEL J. H. CHUNG and RAN LU PHYSICAL REVIEW D 94, 105016 (2016)

105016-12

http://dx.doi.org/10.1103/PhysRevD.12.3845
http://dx.doi.org/10.1103/PhysRevD.12.3845
http://dx.doi.org/10.1016/S0370-1573(96)00046-4
http://dx.doi.org/10.1016/0003-4916(62)90232-4
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.24.2160
http://dx.doi.org/10.1016/0370-1573(83)90076-5
http://dx.doi.org/10.1016/0370-1573(83)90076-5
http://dx.doi.org/10.1103/PhysRevD.44.887
http://dx.doi.org/10.1103/PhysRevD.44.887
http://dx.doi.org/10.4310/ATMP.2000.v4.n4.a4
http://dx.doi.org/10.4310/ATMP.2000.v4.n4.a4
http://dx.doi.org/10.1103/PhysRevD.74.025005
http://dx.doi.org/10.1103/PhysRevD.74.025005
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.011
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.011
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arXiv.org/abs/0712.0689
http://dx.doi.org/10.1103/PhysRevD.65.103515
http://dx.doi.org/10.1103/PhysRevD.65.103515
http://dx.doi.org/10.1007/978-3-540-71013-4
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.019
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.019
http://dx.doi.org/10.1088/1475-7516/2013/02/042
http://dx.doi.org/10.1140/epjc/s10052-016-4079-8

