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We discuss an extension of the instanton-dyon liquid model that includes twisted light quarks in the
fundamental representation with explicit ZNc

symmetry for the case with an equal number of colors Nc

and flavors Nf . We map the model on a three-dimensional quantum effective theory, and analyze it in the
mean-field approximation. The effective potential and the vacuum chiral condensates are made explicit for
Nf ¼ Nc ¼ 2, 3. The low temperature phase is center symmetric but breaks spontaneously flavor
symmetry with Nf − 1 massless pions. The high temperature phase breaks center symmetry but supports
finite and unequal quark condensates.
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I. INTRODUCTION

In the QCD ground state confinement and chiral sym-
metry breaking are intertwined as lattice simulations have
now established [1]. The loss of confinement with increas-
ing temperature as described by a jump in the Polyakov line
is followed by a rapid crossover in the chiral condensate for
2þ 1 flavors. When the quarks are in the adjoint repre-
sentation, the crossover occurs much later than the decon-
finement transition. There is increasing lattice evidence that
the topological nature of the underlying gauge configura-
tions may be key in understanding some aspects of these
results [2].
This work is a continuation of our earlier studies [3–6] of

the gauge topology using the instanton-dyon liquid model.
The starting point of the model is the Kraan-van-Ball-Lee-
Lu (KvBLL) instantons threaded by finite holonomies and
their splitting into instanton-dyon constituents [7], with
strong semiclassical interactions [8–10]. At low temper-
ature, the phase preserves center symmetry but breaks
spontaneously chiral symmetry. At sufficiently high tem-
perature, the phase restores both symmetries as the con-
stituent instanton-dyons regroup into topologically neutral
instanton-anti-instanton molecules. The importance of frac-
tional topological constituents for confinement was initially
suggested through instanton-quarks in [11], and more
recently using bions in [12].
The instanton-dyons carry fractional topological charge

1=Nc and are able to localize chiral quarks into zero modes.
For quarks in the fundamental representation, as the
KvBLL instanton fractionates, the zero mode migrates to
the heavier instanton-dyon constituent [13]. The random
hopping of these zero modes in the instanton-dyon liquid is
at the origin of the spontaneous breaking of chiral sym-
metry as has been shown both numerically [14,15] and

using mean-field methods [4]. In supersymmetric QCD
some arguments were presented in [16].
At finite temperature the light quarks are subject to

antiperiodic boundary conditions on S1 to develop the
correct occupation statistics in bulk. General twisted
fermionic boundary conditions on S1 amount to thermal
QCD with Bohm-Aharanov phases that alter fundamentally
the nature of the light quarks [17,18]. A particularly
interesting proposal consists of a class of ZNc

twisted
QCD boundary conditions with Nc ¼ Nf, resulting in a
manifestly ZNc

symmetric QCD dubbed ZNc
-QCD [19].

The confined phase is both center and chiral symmetric
even though the boundary conditions are flavor breaking.
The deconfined phase is center and chiral symmetry
broken [19,20].
The purpose of this paper is to address some aspects of

twisted fermionic boundary conditions in the context of the
instanton-dyon liquid model. Since the localization of the
zero modes on a given instanton species is very sensitive to
the nature of the twist on S1, this deformation offers an
insightful tool for the possible understanding of the funda-
mental aspects of the spontaneous breaking of chiral
symmetry through the underlying topological constituents.
Similar issues were addressed using Polyakov-Nambu-
Jona-Lasinio (PNJL)models [19] andmore recentlymonop-
ole-dyons and without antimonopole-dyons for small S1

[21]. A numerical analysis in the instanton-dyon liquid
model with Nf ¼ Nc ¼ 2 was recently presented in [22].
In Sec. II we briefly review the model and discuss

the general case of Nc ¼ Nf twisted boundary conditions.
The special cases of Nc ¼ Nf ¼ 2, 3 are given and the
corresponding normalizable zero modes around the center
symmetric point constructed. We derive explicitly the
pertinent hopping matrices between the instanton-dyons
and the instanton-antidyons for the case of Nc ¼ Nf ¼ 2, 3
which are central to the quantitative study of the sponta-
neous breaking of chiral symmetry. In Sec. III we use a
series of fermionization and bosonization transformations
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to map the instanton-dyon partition function on a
three-dimensional effective theory. For Nf > 2, additional
discrete symmetries combining charge conjugation and
exchange between conjugate flavor pairs are identified,
with the same chiral condensates at high temperature. In
Sec. IV we derive the effective potential for the ground state
of the three-dimensional effective theory. We explicitly
show that it supports a center symmetric state with
spontaneously broken chiral symmetry. The center asym-
metric phase at high temperature supports unequal chiral
condensates. Our conclusions are in Sec. V.

II. EFFECTIVE ACTION WITH TWISTED
FERMIONS

A. General setting

For simplicity we detail here the general setting for
Nc ¼ 2. The pertinent changes for any Nc will be quoted
when appropriate. For a fixed holonomy with A4ð∞Þ=
2ω0 ¼ ντ3=2 andω0 ¼ πT, the SU(2) KvBLL instanton [7]
is composed of a pair of instanton-dyons labeled by L, M
(instanton-antidyons by L;M). In general, there are Nc − 1
BPS instanton-dyons and only one twisted instanton-dyon.
As a result the global gauge symmetry is reduced
through SUðNcÞ → Uð1ÞNc−1.
For example, the grand-partition function for dissociated

Nc ¼ 2 KvBLL instantons and anti-instantons and Nf

massless flavors is

Z1½T�≡
X
½K�

YKL

iL¼1

YKM

iM¼1

YKL

iL¼1

YKM

iM¼1

×
Z

fLd3xLiL
KL!

fMd3xMiM

KM!

fLd3yLiL
KL!

fMd3yMiM

KM!

× detðG½x�Þ detðG½y�Þj det ~Tðx; yÞjNfe−VDDðx−yÞ:

ð1Þ

Here xmi and ynj are the three-dimensional coordinates of
the i-dyon of m-kind and j-antidyon of n-kind. Here G½x�
is a ðKL þ KMÞ2 matrix and G½y� a ðKL þ KMÞ2 matrix
whose explicit forms are given in [8,9]. VDD is the
streamline interaction between D ¼ L;M dyons and
D ¼ L;M antidyons as numerically discussed in [10].
For the SU(2) case it is Coulombic asymptotically with
a core at short distances [3]. We will follow our original
discussion with light quarks in [4], with the determinantal
interactions in (1) providing for an effective core repulsion
on average. We omit the explicit repulsion between the
cores as in [6], for simplicity. The fugacities fi are related
to the overall instanton-dyon density, and can be estimated
using lattice simulations [2]. Here they are external
parameters, with a dimensionless density

n ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffi
fLfM

p
ω2
0

≈Ce−
SðTÞ
2 : ð2Þ

For definiteness, the KvBLL instanton action to one loop is

SðTÞ≡ 2π

αsðTÞ
¼

�
11

Nc

3
− 2

Nf

3

�
ln

�
T

0.36TD

�
: ð3Þ

The fermionic determinant det ~Tðx; yÞ with twisted quarks
will be detailed below. In many ways (1) resembles
the partition function for the instanton-anti-instanton
ensemble [23].

B. Twisted boundary conditions and normalizable
zero modes

Consider Nf ¼ Nc QCD on S1 × R3 with the following
antiperiodic boundary conditions modulo a flavor twist in
the center of SUðNcÞ,

ψfðβ; ~xÞ ¼ −zf−1ψfð0; ~xÞ; ð4Þ

with z ¼ ei2π=Nc and f ¼ 1; 2; 3;… ¼ u; d; s;… respec-
tively. Under a ZNc

twisted gauge transformation of the
type

Ωðβ; ~xÞ ¼ zkΩð0; ~xÞ; ð5Þ

(4) is ZNcþNf
symmetric following the flavor relabeling

f þ k → f. As a result the theory is usually referred to as
ZNc

-QCD [19]. In contrast, (4) breaks explicitly chiral
flavor symmetry through

ULðNfÞ ×URðNfÞ → U
Nf

L ð1Þ × U
Nf

R ð1Þ: ð6Þ

To construct explicitly the fermionic zero modes in a
Bogomolny-Prasad-Sommerfeld (BPS) or KK dyon with
the twisted boundary conditions (4), we consider the
generic boundary condition

ψðx4 þ β; ~xÞ ¼ −eiϕψðx4; ~xÞ ð7Þ

and redefine the quark field through ψ ¼ eiTϕx4 ~ψ . The latter
satisfies a modified Dirac equation with an imaginary
chemical potential −ϕT [17],

ðiγ ·D − γ4TϕÞ ~ψ ¼ 0: ð8Þ

In a BPS dyon with periodic boundary conditions, the
solution to (8) asymptotes

~ψ → e−πTνr�ϕTr ð9Þ

which is normalizable for jϕj < πν. For the antiperiodic
boundary condition, the requirement for the existence of a
normalizable zero mode in a BPS dyon is jϕ − πj < πν.
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C. Case: Nc =Nf = 3

For Nc ¼ Nf ¼ 3, the flavor twisted boundary condition
(4) takes the explicit form

uðβÞ ¼ −uð0Þ
dðβÞ ¼ e−iπ=3dð0Þ
sðβÞ ¼ eþiπ=3sð0Þ: ð10Þ

The d,s boundary conditions in (10) admit a discrete
symmetry under the combined charge conjugation and
the flavor exchange d ↔ s.
The normalizability condition for the quark zero modes

following from the flavor twisted boundary conditions in
(8)–(9) shows that f ¼ 1 ¼ u always supports a normal-
izable KK zero mode, while f ¼ 2; 3 ¼ d, s supports BPS
zero modes that are at the edge of the normalizability
domain in the symmetric phase with ν ¼ 1=3. The BPS

modes carry a time dependence of the form e�
iω0
3
x4 as

ν → 1=3, while the KK mode carries a time dependence of
the form eiω0x4 . In both cases, we are restricting the modes
to the lowest frequencies in Euclidean x4-time, for sim-
plicity. This means a moderately large temperature ranging
from the center symmetric to asymmetric phase.
The explicit form of the twisted zero modes in a BPS

dyon and satisfying the twisted boundary condition (7) can
be obtained in closed form in the hedgehog gauge,

~ψ∓;AαðrÞ ¼ ðα1ðrÞϵþ α2ðrÞσ · r̂ϵÞAα ð11Þ

in color-spin, with ϵAα ¼ −ϵαA and

α1;2ðrÞ ¼
χ1;2ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πνTr sinhð2πνTrÞp

χ1ðrÞ ¼ −
~ϕ

πν
sinhð ~ϕTrÞ þ tanhðπTνrÞ coshð ~ϕTrÞ

χ2ðrÞ ¼∓
�

~ϕ

πν
coshð ~ϕTrÞ − cothðπTνrÞ sinhð ~ϕTrÞ

�
:

ð12Þ

Here ~ϕ≡ ϕ − π and ∓ refers to M, M respectively.
Asymptotically, the BPS zero modes take the compact
form in the hedgehog gauge

ð ~ψMϵÞðrÞ →
1þ sgnð ~ϕÞσ · r̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πTνr sinhð2πTνrÞp ej ~ϕjTr

ð ~ψMϵÞðrÞ →
1 − sgnð ~ϕÞσ · r̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πTνr sinhð2πTνrÞp ej ~ϕjTr: ð13Þ

For the KK instanton-dyon, we recall the additional time-
dependent gauge transformation from the BPS instanton-
dyon. The explicit forms of the zero modes are also similar

(11)–(13) with now ~ϕ ¼ ϕ. We note that for the flavor
twisted boundary condition (4), f ¼ d, s corresponds to
~ϕ ¼∓ π=3 (mod 2π) in (13) which are not normalizable
BPS zero modes at exactly ν ¼ 1=3. Following our analysis
in [6], we choose to regulate the zero modes by approach-
ing the holonomies in the center symmetric phase as
follows (ϵ1;2 → þ0):

νM1 ¼
1

3
þ ϵ1

νM2 ¼
1

3
− ϵ2

νL ¼ 1

3
þ ϵ2 − ϵ1: ð14Þ

As a result, the M1-instanton-dyon carries two zero modes
(d,s); the M2-instanton-dyon carries none; and the L-dyon
carries one zero mode (u). This regularization enforces the
Nye-Singer index theorem for fundamental quarks [24]
and the discrete symmetry noted earlier.

D. Case: Nc =Nf = 2

For the case of Nf ¼ Nc ¼ 2, a more general set of
twisted boundary conditions will be analyzed with

uðβÞ ¼ eiθð−uð0ÞÞ
dðβÞ ¼ eiθð−eiπdð0ÞÞ ð15Þ

which is (4) for θ ¼ 0. (15) is seen to have the additional
discrete symmetry when θ → π − θ and u ↔ d at ν ¼ 1=2.
Thus, only the range θ < π=2 will be considered. In this
case, the M-instanton-dyon carries one zero mode (d),
while the L-instanton-dyon carries one zero mode (u). For
(15) the normalizable zero modes are asymptotically of the
form (13) with ϕ ¼ θ.
For completeness we note the Roberge-Weiss boundary

condition [17]

uðβÞ ¼ eiθuð0Þ
dðβÞ ¼ eiθdð0Þ: ð16Þ

In the range 0 < θ < π=2, the M-instanton-dyon carries
two zero modes with none on the L-instanton-dyon. In the
range π

2
< θ < 3π

2
, the two zero modes jump onto the

L-instanton-dyon. In the range 0 < 3π
2
< θ < 2π they jump

back on the M-instanton-dyon. We note that for θ ¼ θ0 þ
π=2 with 0 < θ0 < π=2, the M-zero mode moves to be an
L-zero mode with the asymptotic

ð1 − σ · r̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r sinhðπTrÞp eðπ=2−θ0ÞTreiðθ0−π=2ÞTx4eiπTx4 : ð17Þ

This is to be compared to the case with θ ¼ π
2
− θ0 with the

asymptotic
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ð1þ σ · r̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r sinhðπTrÞp eðπ=2−θ0ÞTreiðπ2−θ0ÞTx4 : ð18Þ

E. Twisted fermionic determinant

The fermionic determinant can be viewed as a sum of
closed fermionic loops connecting all instanton-dyons and
instanton-antidyons. Each link—or hopping—between an
instanton-dyon and L-anti-instanton-dyon is described by
the hopping chiral matrix

~Tðx; yÞ≡
�

0 iTij

iTji 0

�
: ð19Þ

Each of the entries in Tij is a “hopping amplitude” of a
fermionic zero mode φD from an instanton-dyon to a zero
mode φD (of opposite chirality) of an instanton-antidyon:

TLRðxLRÞ ¼
Z

d4xφ†
Lðx − xLÞið∂4 − iσ ·∇ÞφRðx − xRÞ

TRLðxLRÞ ¼
Z

d4xφ†
Rðx − xLÞið∂4 þ iσ ·∇ÞφLðx − xRÞ

ð20Þ

with xLR ≡ xL − xR, and similarly for the other components.
In the hedgehog gauge, these matrix elements can be made
explicit in momentum space. Their Fourier transform is

TLRðpÞ ¼ Trðφ†
LðpÞð−ΦT − iσ · pÞφRðpÞÞ ð21Þ

with ΦT the contribution from the lowest Matsubara mode
retained.We recall that the use of the zeromodes in the string
gauge to assess the hopping matrix elements introduces only
minor changes in the overall estimates as we discussed in [4]
(see Appendix A).

1. Case Nc =Nf = 3

For general ν, we use the Fourier transform of the zero
modes (11) in (21) to obtain

TiðpÞ ¼ ΦiTðF2
2iðpÞ − F2

1iðpÞÞ þ sgnð ~ϕiÞ2pF1iðpÞF2iðpÞ:
ð22Þ

The key physics in the Fourier transforms F1;2ðpÞ is
captured by retaining only the flux-induced masslike
contribution in the otherwise massless asymptotics, i.e.

F1iðpÞ ≈
1

3
F2iðpÞ ≈

ω0

ðp2 þ ððν − j ~ϕij=πÞω0Þ2Þ54
: ð23Þ

The i-assignments are respectively given by

i≡ ðLL;M1M1;M2M2Þ
� ~ϕi ¼ ð0;− π

3
;þ π

3
Þ

Φi ¼ ðπ;− π
3
;þ π

3
Þ : ð24Þ

In the center symmetric phase with ν ¼ 1=3, (22) is long-
ranged for the M-instanton-dyons,

T3ðpÞ ¼ −T2ðpÞ ≈ ΦT
8C2

p5
þ sgnð ~ϕÞ 6C

2

p4
: ð25Þ

Here C is a normalization constant fixed by the regulari-
zation detailed in (14).

2. Case Nc =Nf = 2

For Nc ¼ Nf ¼ 2, the Fourier transform of the lowest
Matsubara zero mode for both boundaries (15)–(16) is

ψMðpÞ ¼ f1ðpÞ − isgnðθÞf2ðpÞσ · p̂: ð26Þ

The corresponding hopping matrix is (0 ≤ θ < π=2)

TLRðpÞ ¼ ~θTðf22ðpÞ − f21ðpÞÞ þ sgnðθÞ2pf1ðpÞf2ðpÞ
ð27Þ

with the assignments

~θ ¼
�
θ − π∶u
θ∶d

: ð28Þ

and

f1ðpÞ ≈
1

3
f2ðpÞ ≈

ω0

ðp2 þ ððνi − θ=πÞω0Þ2Þ54
: ð29Þ

It follows that

TLRðpÞ ≈ f1ðpÞ2ð8~θT þ 6sgnðθÞpÞ: ð30Þ

Using (17)–(18) we note that the hopping matrix element
(30) satisfies the antiperiodicity condition

TLRðp; θ0 þ π=2Þ ¼ −TLRðp; θ0 − π=2Þ ð31Þ

with the θ-argument exhibited for clarity.

III. SUðNcÞ ENSEMBLE

Following [3,4,8] the moduli determinants in (1) can be
fermionized using 2Nc pairs of ghost fields χm; χ

†
m for the

instanton-dyons and 2Nc for the instanton-antidyons. The
ensuing Coulomb factors from the determinants are then
bosonized using 2Nc boson fields vm, wm for the instanton-
dyons and similarly for the instanton-antidyons. The result is
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S1F½χ; v; w� ¼ −
T
4π

Z
d3x

×
XNc

m¼1

ðj∇χmj2 þ∇vm ·∇wmÞ

þ
XNc

m¼1

ðj∇χmj2 þ∇vm ·∇wmÞ: ð32Þ

For the streamline interaction partVDD, we note that as a pair
interaction in (1) between the instanton-dyons and instanton-
antidyons, it can be bosonized using standard methods

[25,26] in terms of ~σ and ~b fields. As a result each dyon
species acquires additional fugacity factors of the form

M∶ e−~αi·~bþi~αi·~σ M∶ e−~αi·~b−i~αi·~σ ð33Þ

with ~αi and i ¼ 1; 2;…Nc − 1 the ith root of theSUðNcÞLie
generator, and i ¼ Nc its affine root due to its compacted-
ness. Therefore, there is an additional contribution to the
free part (32)

S2F½σ; b� ¼
T
8

Z
d3xð∇~b ·∇~bþ∇~σ ·∇~σÞ ð34Þ

where for simplicity we approximated the streamline by a
Coulomb interaction, and the interaction part is now

SI½v; w; b; σ; χ�

¼ −
Z

d3x

�XNc

i¼1

e−~αi·~bþi~αi·~σfi

× ð4πvi þ jχi − χiþ1j2 þ vi − viþ1Þewi−wiþ1

þ
XNc

i¼1

e−~αi·~b−i~αi·~σfi

× ð4πvi þ jχi − χiþ1j2 þ vi − viþ1Þewi−wiþ1

�
ð35Þ

without the fermions. We now show the minimal modifica-
tions to (35) when the fermionic determinantal interaction is
included.

A. Fermionic fields

To fermionize the determinant in (1) and for simplicity,
consider first the case of Nf ¼ 1 fermionic zero modes
attached to the kth instanton-dyon, and define the addi-
tional Grassmanians χ ¼ ðχi1; χj2ÞT with i; j ¼ 1; ::; Kk;k

so that

j det ~Tj ¼
Z

D½χ�eχ† ~Tχ : ð36Þ

We can rearrange the exponent in (36) by defining a
Grassmanian source JðxÞ ¼ ðJ1ðxÞ; J2ðxÞÞT with

J1ðxÞ ¼
XKL

i¼1

χi1δ
3ðx − xkiÞ

J2ðxÞ ¼
XKL

j¼1

χj2δ
3ðx − ykjÞ ð37Þ

and by introducing two additional fermionic fields ψkðxÞ ¼
ðψk1ðxÞ;ψk2ðxÞÞT . Thus

eχ
† ~Tχ ¼

R
D½ψ �expð−R

ψ†
k
~Gψkþ

R
J†ψkþ

R
ψ†
kJÞR

dD½ψ �expð−R
ψ†
k
~GψkÞ

ð38Þ

with ~G a 2 × 2 chiral block matrix

~G ¼
�

0 −iGðx; yÞ
−iGðx; yÞ 0

�
ð39Þ

with entries TG ¼ 1. The Grassmanian source contribu-
tions in (38) generate a string of independent exponents for
the L-instanton-dyons and L-instanton-antidyons

YKk

i¼1

eχ
i
1
†ψk1ðxkiÞþψ†

k1ðxkiÞχi1

×
YKk

j¼1

eχ
j
2
†ψk2ðykjÞþψ†

k2ðykjÞχ
j
2 : ð40Þ

The Grassmanian integration over the χi in each factor
in (40) is now readily done to yield

Y
i

½−ψ†
k1ψk1ðxkiÞ�

Y
j

½−ψ†
k2ψk2ðykjÞ� ð41Þ

for the k-instanton-dyon and k-instanton-antidyon. The net
effect of the additional fermionic determinant in (1) is to
shift the k-instanton-dyon and k-instanton-antidyon fugac-
ities in (35) as follows:

fk → −fkψ†
k1ψk1 ≡ −fLψ†

kγþψk

fk → −fkψ
†
k2ψk2 ≡ −fkψ

†
kγ−ψk ð42Þ

where we have now identified the chiralities with
γ� ¼ ð1� γ5Þ=2. Note that for the instanton-dyons and
instanton-antidyons with no zero mode attached, the
fugacities remain unchanged.

B. Resolving the constraints

In terms of (32)–(35) and the substitution (42), the
instanton-dyon partition function (1) for finite Nf can be
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exactly rewritten as an interacting effective field theory in
three dimensions,

Z1½T�≡
Z

D½ψ �D½χ�D½v�D½w�D½σ�D½b�

× e−S1F−S2F−SI−Sψ ð43Þ

with the additional chiral fermionic contribution Sψ ¼
ψ† ~Gψ . Since the effective action in (43) is linear in the
vM;L;M;L, the latter integrate to give the following
constraints,

−
T
4π

∇2wk þ fke~αk·ð−
~bþi~σÞY

f

ψ†
kfγþψkfewk−wkþ1

− fk−1e~αk−1·ð−
~bþi~σÞY

f

ψ†
k−1fγþψk−1fewk−1−wk ¼ 0; ð44Þ

and similarly for the antidyons.
To proceed further the formal classical solutions to the

constraint equations or w½σ; b� should be inserted back into
the three-dimensional effective action. The result is

Z1½T� ¼
Z

D½ψ �D½σ�D½b�e−S ð45Þ

with the three-dimensional effective action

S ¼ SF½σ; b� þ
Z

d3x
X
f

ψ†
f
~Gfψf

þ
XNc

k¼1

4πfkvk

Z
d3x

Y
f

ψ†
kfγþψkfewk−wkþ1þ~αk·ð−~bþ~iσÞ

þ
XNc

k¼1

4πfkvk

Z
d3x

Y
f

ψ†
kf
γ−ψkfe

w
k
−w

kþ1
þ~α

k
·ð−~bþ~iσÞ:

ð46Þ

Here SF is S2F in (34) plus additional contributions
resulting from the wðσ; bÞ solutions to the constraint
equations (44) after their insertion back. This procedure
for the linearized approximation of the constraint was
discussed in [3,4].
For the general case with

~G1 ≠ ~G2 ≠ � � � ≠ ~GNf
ð47Þ

these contributions in (46) are only U
Nf

L ð1Þ ×U
Nf

R ð1Þ
symmetric, which is commensurate with (6). The determi-
nantal interactions preserve the individual ULþRð1kÞ vector
flavor symmetries, but upset the individual UL−Rð1kÞ axial
flavor symmetries. However, the latter induce the shifts

ψ†
kfγ�ψkf → e2ξkψ†

kfγ�ψkf ð48Þ

which can be reabsorbed by shifting back the constant
magnetic contributions

~αk · ð−~bþ ~iσÞ → ~αk · ð−~bþ ~iσÞ − 2ξk ð49Þ

thanks to the free form in (34). This observation is
unaffected by the screening of the magneticlike field, since

a constant shift ~b → ~bþ 2ξk can always be reset by a field
redefinition. This hidden symmetry was noted recently in
[21]. We note that this observation holds for the general
form of the streamline interaction used in [4] as well, due to
its vanishing form in momentum space. From (49) it
follows that

P
kξk ¼ 0, so that only the axial flavor singlet

UL−Rð1Þ is explicitly broken by the determinantal contri-
butions in (46) as expected in the instanton-dyon-antidyon

ensemble. As a result, (46) is explicitly Uð1ÞNf

L × U
Nf

R ð1Þ=
UL−Rð1Þ symmetric.

C. Special cases: Nc =Nf = 2, 3

For the case Nc ¼ Nf ¼ 3 with the twisted boundary
condition (10), the fermionic terms in the effective action
(46) are explicitly

ψ†
u ~G1ψu þ ψ†

d
~G2ψd þ ψ†

s ~G3ψ s

þ 4πf1ν1ψ
†
uγþψuew1−w2

þ 4πf2ν2ψ
†
dγþψdψ

†
sγþψ sew2−w3 þ 4πf3ν3ew3−w1

þ 4πf1ν1ψ
†
uγ−ψuew1−w2

þ 4πf2ν2ψ
†
dγ−ψdψ

†
sγ−ψ sew2−w3 þ 4πf3ν3e

w3−w1

ð50Þ

following the regularization (14) around the center sym-
metric point. As noted earlier, (50) is explicitly symmetric
under the combined charge conjugation and the flavor
exchange d ↔ s since ~G2 ¼ − ~G3 ≠ ~G1. With this in mind,
(50) is symmetric under ðU3

Lð1Þ ×U3
Rð1ÞÞ=UL−Rð1Þ.

For the case Nc ¼ Nf ¼ 2 with the twisted boundary
condition (15), the fermionic terms in the effective action
(46) are now

fMvMψ
†
dγþψdewM−wL þ fLvLψ

†
uγþψuewL−wM

þ fMvMψ
†
dγ−ψde

wM−wL þ fLvLψ
†
uγ−ψue

wL−wM ð51Þ

while for the Roberge-Weiss boundary condition (16)
they are

fMvMψ
†
uγþψuψ

†
dγþψdewM−wL þ fLvLewL−wM

þ fMvMψ
†
uγ−ψuψ

†
dγ−ψde

wM−wL þ fLvLe
wL−wM : ð52Þ
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IV. EQUILIBRIUM STATE

To analyze the ground state and the fermionic fluctua-
tions we bosonize the fermions in (45)–(46) by introducing
the identities

Z
D½Σk�δðψ†

kðxÞψkðxÞ þ 2ΣkðxÞÞ ¼ 1 ð53Þ

and by reexponentiating them to obtain

Z1½T� ¼
Z

D½ψ �D½σ�D½b�D½~Σ�D½~λ�e−S−SC ð54Þ

with

−SC ¼
Z

d3xiΛkðxÞðψ†
fðxÞψkðxÞ þ 2ΣkðxÞÞ: ð55Þ

The ground state is parity even so that fL;M ¼ fL;M.
By translational invariance, the ground state corresponds

to constant σ; b; ~Σ; ~Λ. We will seek the extrema of (54) with
finite condensates in the mean-field approximation, i.e.

hψ†
kðxÞψ lðxÞi ¼ −2δklΣk: ð56Þ

With this in mind, the classical solutions to the constraint
equations (44) are also constant:

fk
DY

f

ψ†
kfγþψkf

E
ewk−wkþ1

¼ fkþ1

DY
f

ψ†
kþ1fγþψkþ1f

E
ewkþ1−wkþ1 ð57Þ

with

DY
f

ψ†
kfγþψkf

E
¼

Y
f

Σkf ð58Þ

and similarly for the antidyons. The expectation values in
(57)–(58) are carried in (54) in the mean-field approxima-
tion through Wick contractions. We now proceed to
determine the pressure by imposing the successive con-
straints (57) only after varying and eliminating the w’s.

A. Nc =Nf = 3 in symmetric phase

In the center-symmetric phase, with all holonomies
being equal, ν1;2;3 ¼ 1=3, the pressure simplifies to

Puds − Pper ¼ 8πðf1f2f3Þ13ðΣuΣdΣsÞ13 − 2~Λ · ~Σ

þ
X3
i¼1

Z
d3p
ð2πÞ3 lnð1þ Λ2

i jTij2ðpÞÞ ð59Þ

with the individual fermionic terms being

Pi ≡
Z

d3p
ð2πÞ3 lnð1þ Λ2

i jTij2ðpÞÞ

≡ ω3
0

Z
d3 ~p
ð2πÞ3 ln

�
1þ

~Λ2
i

~p8

�
1þ 4j ~ϕij

3π ~p

�2�
: ð60Þ

Here ~p ¼ p=ω0 and ~Λi ¼ Λ=ω2
0 are dimensionless. From

(24), we recall the assignment of quark phases
ð ~ϕ1; ~ϕ2; ~ϕ3Þ ¼ ðπ;−π=3;þπ=3Þ, for ðu; d; sÞ respectively.
The center symmetric phase breaks spontaneously chiral
symmetry, as the gap equations have nonzero solutions.
Each of the flavor chiral condensates is found to be

hqqi ~ϕi

T3
¼ 2π2 ~Λi

Z
d3 ~p
ð2πÞ3

5
3 ~p5

1þ ~Λ2
i

~p8 ð1þ 4j ~ϕij
3π ~pÞ

2
: ð61Þ

We now note that at asymptotically low temperatures, the
1=p4 contribution in the hopping matrix element (25) is
dominant.

B. Nc =Nf = 3 in general asymmetric phase

In the general asymmetric phase the holonomies have
values away from the center:

ν1 ¼
1

3
þ ϵ1

ν2 ¼
1

3
− ϵ2

ν3 ¼ 1 − ν1 − ν2: ð62Þ

Note that in general, the parameters ϵ1;2 are not small.
With these choices for the holonomies (62), the u-flavor
rides the L-instanton-dyon, and the ds-flavors ride the
M1;M2-instanton-dyons. For the ds-flavors, the hopping
matrix elements between the instanton-dyon and anti-
instanton-dyon are given by

TdðpÞ ¼ −TsðpÞ

¼ πT
3

ðF2
2ðpÞ − F2

1ðpÞÞ þ 2ipF1ðpÞF2ðpÞ ð63Þ

with

F1ðpÞ ≈
1

3
F2ðpÞ ≈

ω0

ðp2 þ ððν1 − 1=3Þω0Þ2Þ54
ð64Þ

while for the u-quarks it is

TuðpÞ ¼ πTðf22ðpÞ − f21ðpÞÞ þ 2ipf2ðpÞf1ðpÞ ð65Þ

with
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f1ðpÞ ≈
1

3
f2ðpÞ ≈

ω0

ðp2 þ ðν3ω0Þ2Þ54
: ð66Þ

In the mean-field approximation, the modification of the
effective pressure is

Puds − Pper ¼ þ24πðf1f2f3ν1ν2ν3Σ2
dΣuÞ13

− 4ΣdΛd − 2ΣuΛu

þ
Z

d3p
ð2πÞ3 lnðð1þ Λ2

djTdj2Þ2

× ð1þ Λ2
ujTuj2ÞÞ ð67Þ

where Pper is the perturbative contribution with twisted
quark boundary conditions [17]. For ν1 → 1=3 the holon-
omy -induced masslike contribution in (64) becomes
arbitrarily small. As we noted earlier, we use it to regulate
the infrared sensitivity of the ds-contributions in (67)
through a suitable redefinition of the fugacities f2;3 as in
[6]. With this in mind, the extrema of (67) with respect to Σ,
Λ yield the respective gap equations

Λd ¼ 4πfðν1ν2ν3Þ13
�
Σu

Σd

�1
3

Λu ¼ 4πfðν1ν2ν3Þ13
�
Σd

Σu

�2
3

Σi ¼
Z

d3p
ð2πÞ3

ΛijTiðpÞj2
1þ Λ2

i jTiðpÞj2
: ð68Þ

Using (68) in (67) results in the shifted pressure at the
saddle point

Puds − Pper

¼
Z

d3p
ð2πÞ3 ln

�
ð1þ Λ2

djTdj2Þ2ð1þ
� ~Λ3

0

Λ2
d

Þ2jTuj2
��

ð69Þ

with ~Λ0 ¼ 4πfðν1ν2ν3Þ13. We note that the gap equation
follows from dP=dΛd ¼ 0. The chiral condensates follow
from standard arguments as

hddi ¼ hssi ¼ 2ΛdT
Z

d3p
ð2πÞ3

F2
1ðpÞ þ F2

2ðpÞ
1þ Λ2

djTdðpÞj2

huui ¼ 2ΛuT
Z

d3p
ð2πÞ3

f21ðpÞ þ f22ðpÞ
1þ Λ2

ujTuðpÞj2
: ð70Þ

In contrast and at asymptotically high temperatures, the
1=p5 contribution in the hopping matrix element (25) is
dominant. Therefore the u-hopping is different from the
d- and s-hoppings with T1ðpÞ ≈ 3T2ðpÞ. The extrema of
the pressure in Λ1;2;3 are now found to be

3Λ1 ¼ Λ2 ¼ Λ3 ¼
4πT
3

ð3ν1ν2ν3f1f2f3Þ13 ð71Þ

with distinct chiral condensates

3huui ≈ hddi ≈ hssi ≈ 0.78T3ð ~Λ2Þ35: ð72Þ

The high temperature phase breaks flavor symmetry but
preserves the discrete combined charge conjugation sym-
metry and the exchange d ↔ s. As a check on these
observations, we note that for ~Λ ≈ 1, the chiral condensates
in (61) are numerically close:

hqqi ~ϕ¼π ≈ 0.61T3

hqqi ~ϕ¼π
3
≈ 0.76T3: ð73Þ

The remaining task is to solve the gap equations for the
four remaining parameters Λd;Λu; ϵ1; ϵ2. The numerical
analysis of those equations will be presented elsewhere.

C. Nc =Nf = 2 in symmetric phase

The analysis of Nf ¼ Nc ¼ 2 follows similar arguments
using the twisted boundary conditions (15) for πν > θ. In
this case the u-flavor rides the L-dyon, and the d-flavor
rides the M-dyon with the hopping matrices

TuðpÞ ¼ ðπ − θÞTð ~f22ðpÞ − ~f21ðpÞÞ þ 2ip ~f1ðpÞ ~f2ðpÞ
TdðpÞ ¼ θTðf2ðpÞ2 − f21ðpÞÞ þ 2ipf1ðpÞf2ðpÞ ð74Þ

with

f1ðpÞ ≈
1

3
f2ðpÞ ≈

ω0

ðp2 þ ððν − θ=πÞω0Þ2Þ54
: ð75Þ

~f1;2 follows from f1;2 using the substitution θ → −π þ θ.
We note that for θ ¼ 0, the first contribution in Td vanishes,
since the d-boundary is periodic with zero Matsubara
frequency. It is proportional to the Matsubara frequency
in Tu, since the u-boundary is antiperiodic. This difference
is in addition to the different masslike contributions
induced by the holonomy (νω0 for d and ~νω0 and for
u), which regulate the small-momenta (large-distance)
behavior of the hopping amplitudes and causes the flavor
condensates to be relatively different.
In the mean-field limit, the nonperturbative pressure is

Pud − Pper ¼ 16πfðν1ν2Σ1Σ2Þ12 − 2Λ1Σ1 − 2Λ2Σ2

þ
X
i¼1;2

Z
d3p
ð2πÞ3 lnð1þ Λ2

i jTiðpÞj2Þ ð76Þ

while the perturbative one (with our twisted boundary
conditions) is given by
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Pper ¼ −
4π2T3

3
ðν1ν2Þ2

−
4T3

π2
X
f

X∞
n¼1

ð−1Þneiθfn
n4

TrfLn: ð77Þ

The first contribution comes from the gluons, while the
second contribution comes from the twisted quarks. The
Polyakov line L is in the fundamental representation, with
the flavor twist explicitly factored out. The dominant
contribution in the sum stems from the n ¼ 1 term. Note
that for θ1 ¼ 0 and θ2 ¼ π, the fermionic contribution
almost cancels.
The gap equations related to the parameters Λi, Σi are

Λ1 ¼ 4πfðν1ν2Þ12
�
Σ2

Σ1

�1
2

Λ2 ¼ 4πfðν1ν2Þ12
�
Σ1

Σ2

�1
2

Σi ¼
Z

d3p
ð2πÞ3

ΛijTij2
1þ Λ2

i jTiðpÞj2
: ð78Þ

The chiral condensates are readily obtained as

hqiqii ¼ 2ΛiT
Z

d3p
ð2πÞ3

f21ðpÞ þ f22ðpÞ
1þ Λ2

i jTiðpÞj2
: ð79Þ

We note that for large Λ or asymptotically small temper-
atures, the second term in (30) proportional to p is
dominant. In this case, the hopping matrix elements for
M, L are equal. It follows that the extrema of the pressure
(76) are also equal,

Λ≡ Λ1 ¼ Λ2 ¼ 2πðfLfMÞ12: ð80Þ

In this limit, the chiral condensates are also the same:

huui ≈ hddi ≈ 2ΛT
Z

d3p
ð2πÞ3

f21ðpÞ þ f22ðpÞ
1þ Λ2jT1;2ðpÞj2

ð81Þ

with f1;2ðpÞ given in (29).
Before we discuss the general asymmetric case, let us

make the following comments on the so-called Roberge-
Weiss symmetry [17]. Since the hopping matrix elements
satisfy the antiperiodicity condition (31), the pressure (76)
satisfies the so-called half-periodicity condition

Pðθ þ π=2Þ ¼ Pðθ − π=2Þ ð82Þ

in the center symmetric phase. Using the explicit form (30),
we find that

�
dP
dθ

�
θ→π=2

¼ 0 ð83Þ

which is cusp free despite the switching of the zero mode
from the M- to the L-instanton-dyon. These observations
are in agreement with those put forth by Roberge andWeiss
[17] at low temperatures. At high temperature (83) devel-
ops a cusp in the center asymmetric phase [17]. We have
checked that these properties hold also for the twisted
boundary condition (15).

D. Nc =Nf = 2: General asymmetric case

To proceed, we first note that the gap equations (78) can
be simplified by noting that Λ1Λ2 ¼ n2 and that
Λ2Σ2 ¼ Λ1Σ1. We have set n ¼ 4πfðν1ν2Þ12 with ν1 ¼ ν
and ν2 ¼ 1 − ν. With this in mind, (78) reduces to a single
gap equation,

Z
d3 ~p

j ~T1j2
1= ~Λ2

1 þ j ~T1j2
¼

Z
d3 ~p

j ~T2j2
~Λ2
1= ~n4 þ j ~T2j2

: ð84Þ

After rescaling of all variables ~p ¼ p=ω0, ~Λ1;2 ¼ Λ1;2=ω2
0

and ~n ¼ n=ω2
0 with ω0 ¼ πT, the hopping matrices (74)

simplify:

j ~T1j2 ≈
ð6 ~pÞ2

ð ~p2 þ ν21Þ5

j ~T2j2 ≈
64þ ð6 ~pÞ2
ð ~p2 þ ν22Þ5

: ð85Þ

After using the gap equations (78) and the rescaling, the
pressure (76) becomes

Pud

ω3
0

¼
Z

d3 ~p
ð2πÞ3 ln

�
ð1þ ~Λ2

1j ~T1j2Þ
�
1þ

�
~n2

~Λ1

�
2

j ~T2j2
��

−
4π2

3

T3

ω3
0

ðν1ν2Þ2: ð86Þ

Its extremum in Λ is the gap equation ∂Pud=∂ ~Λ1 ¼ 0,
which is (84). Similarly, there is the gap equation for the
holonomy ν. The task is to solve them together. We found
that (86) leads to the momentum-dependent constituent
masses for the d-, u-quarks:

MdðpÞ
ω0

≡ ð1þ ~p2Þ12 ~Λ1j ~T1ðpÞj

MuðpÞ
ω0

≡ ð1þ ~p2Þ12 ~n
2

~Λ1

j ~T2ðpÞj: ð87Þ

The u-quark is substantially heavier than the d-quark at low
momentum because of its antiperiodic boundary condition,
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with the d-quark turning massless at zero momentum owing
to its periodic boundary condition.
The results for the numerical solution of the gap

equations are shown in Figs. 1 and 2. In Fig. 1, we show
the dependence of the Polyakov line L ¼ cosðπν½n�Þ on the
input parameter n ¼ 4πf=ω2

0 (blue squares) in the lower
line. For comparison we also show the behavior of the same
Polyakov line (red circles) in the upper line, for the
untwisted (QCD) theory with both u- and d-quarks being
antiperiodic fermions. The input parameter n is a definite
monotonously decreasing function of the temperature as
defined in (2). The rightmost part of the plot corresponds to
the dense low-T case, in which we find a confining or
L → 0 behavior. The main conclusion from this plot is that
confinement (or restoration of center symmetry) occurs at a
lower density n for the twisted theory, as compared to the
QCD-like one.

In Fig. 2 we show the behavior of the flavor condensates
jhddij=T3 (blue diamonds), jhuuij=T3 (green squares) for
the twisted u-, d-quarks versus n ¼ 4πf=ω2

0. For compari-
son, we also show the value of jhuuij=T3 ¼ jhddij=T3

(magenta triangles) for the untwisted (antiperiodic) boun-
dary conditions. It follows closely the line for the anti-
periodic d-quark in the twisted case. The value of the
Polyakov line for the twisted quarks is shown also (red
circles), to indicate the transition region. At moderately
high densities or low temperatures, center symmetry is
restored but the quark condensates are still distinct for the
twisted boundary condition. The induced effective masses
in (87) show that the d-quark is much lighter than the
u-quark, resulting in a much larger chiral condensate. Only
at vanishingly small temperatures, the relation (81) is
recovered as both hoppings become identical. The nature
of the boundary condition becomes irrelevant at zero
temperature. However, as the temperature decreases the
truncation of our analysis of the zero modes to their lowest
Matsubara frequencies is no longer valid, as higher mode
contributions become significant. As noted earlier in
Sec. II C, the results in Fig. 2 for the various condensates
cannot be extrapolated reliably to zero temperature or very
high densities. At low densities or high temperatures, center
symmetry is broken and the chiral condensate jhddij is still
substantially larger than jhuuij.

E. Comparison to simulations

Our mean-field results are in qualitative but not quanti-
tative agreement with recent simulations carried out in [22].
In particular, we found that Nc ¼ Nf ¼ 2 Z2 twisted QCD
has two distinct phases, the center symmetric and center
asymmetric ones. However, the simulation in [22] observes
a significant jump in the Polyakov line, concluding that the
deconfinement transition is first order. Our numerical
mean-field solutions of the gap equations as shown in
(1)–(2) do not find a jump. They suggest that the transition
is perhaps second order.
We find that the chiral condensates uu and dd are

different from each other in both phases. In the asymmetric
phase this result is in agreement with the one obtained in
[22]. However, this agreement does not carry to the
symmetric phase where in [22] the chiral condensates
appear to be the same within error bars. Also, in our
mean-field analysis, the smallest of the condensates
induced by the L-dyons in twisted Z2 QCD and ordinary
QCD are very close. In [22] both condensates are found to
be much larger than in ordinary QCD. In agreement with
[22], we observe that in the interval of densities studied
none of the chiral condensates vanishes. Both results see no
chiral restoration transitions in Z2 QCD.
Unfortunately, a qualitative comparison between our

analysis and that of [22] is not yet possible. One reason
for this is that in [22] the simulations were carried out
using a simplified hopping matrix element (in coordinate

FIG. 1. Polyakov line versus the dimensionless density
n ¼ 4πf=ω2

0 for Nf ¼ Nc ¼ 2. The lower line (blue squares)
is for the Z2 twisted quarks, while the upper line (red circles) is
for the usual antiperiodic quarks.

FIG. 2. Dimensionless condensates jhd̄dij=T3 (blue diamonds),
jhūuij=T3 (green squares) for twisted boundary conditions, with
increasing dimensionless density or lower temperatures 4πf=ω2

0.
For comparison we show jhūuij=T3 (magenta triangles) for the
antiperiodic quarks. The Polyakov line (red squares) shows a
rapid crossing from a center broken to a center symmetric phase
for the twisted quarks.
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representation) for numerical convenience, as opposed to
the one derived above directly from the exact zero modes.
But even if all the settings were made identical, the
agreement perhaps could only be expected in the very
dense regime. As the ensemble of dyons and antidyons
becomes dilute, clustering is expected with a breakdown of
the mean-field assumption. This behavior is better studied
using numerical simulations, where one can easily enforce
randomization of the positions of the instanton-dyons.

F. Mesonic spectrum

The excitation spectrum with twisted boundary condi-
tions can be calculated following the analysis in [4]. For the
Nc ¼ Nf ¼ 2 case, this follows by substituting

Λðψ†γ�ψ þ 2Σ�Þ →
X
fg

Λ�
fgðψ†

fγ�ψg þ 2Σ�
fgÞ ð88Þ

in (55) with

Λ� ≡ Λ0 � iπps þ πs ¼ diagðΛ1;Λ2Þ � iπps þ πs: ð89Þ

Here πs;ps refer to the scalar and pseudoscalar Uð2Þ-valued
mesonic fields.
For the chargeless chiral partners σ3, π0, the effective

actions to quadratic order are respectively given by

Sðπ3psÞ ¼
1

2f2π

Z
d3p
ð2πÞ3 π

3
psðpÞΔ3

−ðpÞπ3psð−pÞ

Sðπ3sÞ ¼
1

2f2π

Z
d3p
ð2πÞ3 π

3
sðpÞΔ3þðpÞπ3sð−pÞ ð90Þ

with the corresponding propagators (p� ¼ q� p=2)

Δ3
�ðpÞ¼

1

2

Z
d3q
ð2πÞ3

ðT1ðpþÞ�T1ðp−ÞÞ2
ð1þΛ2

1jT1ðpþÞj2Þð1þΛ2
1jT1ðp−Þj2Þ

þ1

2

Z
d3q
ð2πÞ3

ðT2ðpþÞ�T2ðp−ÞÞ2
ð1þΛ2

2jT2ðpþÞj2Þð1þΛ2
2jT2ðp−Þj2Þ

ð91Þ

with the hopping matrices T1;2 labeled as 1≡ d and 2≡ u.
In deriving (90)–(91) we made explicit use of the gap
equations (78). We note that Δ3

−ð0Þ ¼ 0 translates to a
massless π0 ¼ π3ps, whileΔ3þð0Þ ≠ 0 translates to a massive
σ, for both the center symmetric and broken phases. The
masslessness of π0 is ensured by the hidden symmetry
displayed in (48)–(49), and reflects on the remaining
spontaneously broken symmetry for Nf ¼ 2.
The charged mesons π�s ; π�ps follow a similar analysis

with now the propagators for the quadratic contributions
given by

Δ1;2
� ðpÞ ¼ ðΣ1Σ2Þ12

πf
− 2

Z
d3q
ð2πÞ3 F∓ðp; qÞ: ð92Þ

HereΔ1;2
− refer to the charged scalars π�s , whileΔ1;2

þ refer to
their charged chiral partners π�ps, with

F�ðp; qÞ ¼
T1ðpþÞT2ðp−ÞðΛ1Λ2T1ðpþÞT2ðp−Þ � 1Þ
ð1þ Λ2

1jT1ðpþÞj2Þð1þ Λ2
2jT2ðp−Þj2Þ

:

ð93Þ

In the exactly center symmetric phase, with Λ1 ¼ Λ2, the
charged pions π�ps are also massless. But in general, in the
asymmetric phase Λ1 ≠ Λ2, and both π� are massive (but
degenerate).
The singlet meson σ ¼ πs0; η ¼ πps;0 propagators follow

similarly:

2ΔσðpÞ ¼
nD
2

þ Δ3þðpÞ

2ΔηðpÞ ¼
nD
2

þ Δ3
−ðpÞ ð94Þ

with nD the mean instanton-dyon density defined through
the gap equation

nD
4

¼ 1

2

X2
i¼1

Z
d3p
ð2πÞ3

Λ2
i jTij2

1þ Λ2
i jTij2

: ð95Þ

V. CONCLUSIONS

We have constructed the partition function for the
instanton-dyon liquid model with twisted flavor boundary
conditions, and derived and solved the resulting gap
equations in the mean-field approximation. In addition to
manifest UNFð1Þ ×UNfð1ÞÞ=UL−Rð1Þ flavor symmetries,
for ZNc

-QCD some discrete charge conjugation plus flavor
exchange symmetries were identified.
The central constructs are the so-called hopping matrix

elements between instanton-dyon and anti-instanton-dyon
zero modes. One technical point is to note that some of these
hoppings may become singular at large distances (small
momenta) when the contribution from theZNc

-twists and the
holonomies cancel the exponentially decreasing asymp-
totics. These singularities are readily regulated through a
suitable redefinition of the pertinent fugacities [6].
The low temperature phase is center symmetric with zero

Polyakov line. It also breaks chiral symmetry, with still
sizably different chiral condensates in our mean-field
analysis. The latter are about equal at very small temper-
atures. The high temperature phase is center asymmetric
with always unequal chiral condensates. Our results are
qualitatively consistent with the lattice results reported
recently in [20], although with a more pronounced differ-
ence between the flavor chiral condensates across the
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transition region caused mostly by the differences in the
leading (twisted) Matsubara modes in the center symmetric
phase. In the symmetric ground state we observe the
emergence of one massless pion π0 (two-flavor case).
The instanton-dyon model offers a very concise frame-

work for discussing the interplay of twisted boundary
conditions (also known as flavor holonomies) with center
symmetry and chiral symmetry in the QCD-like models. A
further comparison between the mean-field results derived

in this paper, with the direct simulations [22] of the
instanton-dyon model and lattice results [20], is obviously
of great interest.
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