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We discuss the instanton-dyon liquid model withNf Majorana quark flavors in the adjoint representation
of color SUcð2Þ at finite temperature. We briefly recall the index theorem on S1 × R3 for twisted adjoint
fermions in a Bogomolny-Prasad-Sommerfeld (BPS) dyon background of arbitrary holonomy and use the
Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction to derive the adjoint antiperiodic zero modes. We
use these results to derive the partition function of an interacting instanton-dyon ensemble with Nf light
and antiperiodic adjoint quarks. We develop the model in details by mapping the theory on a three-
dimensional quantum effective theory with adjoint quarks with manifest SUðNfÞ × Z4Nf

symmetry. Using

a mean-field analysis at weak coupling and strong screening, we show that center symmetry requires the
spontaneous breaking of chiral symmetry, which is shown to only take place for Nf ¼ 1. For a sufficiently
dense liquid, we find that the ground state is center symmetric and breaks spontaneously flavor symmetry
through SUðNfÞ × Z4Nf

→ OðNfÞ. As the liquid dilutes with increasing temperature, center symmetry and

chiral symmetry are restored. We present numerical and analytical estimates for the transition temperatures.

DOI: 10.1103/PhysRevD.94.105012

I. INTRODUCTION

This work is a continuation of our earlier studies [1–3] of
the gauge topology in the confining phase of a theory with
the simplest gauge group SUð2Þ. We suggested that the
confining phase below the transition temperature is an
“instanton dyon” (and antidyon) plasma which is dense
enough to generate strong screening. The dense plasma is
amenable to standard mean field methods.
The key ingredients in the instanton-dyon liquid model are

the so-called Kraan-van-Baal-Lee-Lu (KvBLL) instantons
threaded by finite holonomies [4] split into their constituents,
the instanton dyons. Diakonov and Petrov [5,6] have shown
that the KvBLL instantons dissociate in the confined phase
and recombine in the deconfined phase, using solely the BPS
protected moduli space. The inclusion of the non-BPS-
induced interactions, through the so-called streamline set of
configuration, is important numerically, but it does not alter
this observation [7]. The dissociation of instantons into
constituents was advocated originally by Zhitnitsky and
others [8].
Unsal and collaborators [9] proposed a specially tuned

setting in which instanton constituents (they call instanton
monopoles) induced confinement even at exponentially
small densities, at which the semiclassical approximations
is parametrically accurate. The key feature of this setting is
the cancellation of the perturbative Gross-Pisarski-Yaffe
holonomy potential. More specifically, in Ref. [9], the
nontrivial center-symmetric phase emerges in the dilute
vacuum at weak coupling for periodic boundary conditions

of adjoint quarks where the instanton dyons combine into
pairs of “bions.” However, in the present work as we detail
below and also in the work presented in Refs. [5,6], the
nontrivial center-symmetric phase at low temperatures
emerges for antiperiodic boundary conditions for adjoint
quarks where the instanton dyons form a dense liquid.
The KvBLL instantons fractionate into constituents with

fractional topological charge 1=Nc. Their fermionic zero
modes do not fractionate but rather migrate between
various constituents [10]. This interplay between the zero
modes and the constituents is captured precisely by the
Nye-Singer index theorem [11]. For fundamental fermions,
we have recently shown in the mean-field approximation
that the center symmetry and chiral symmetry breaking are
intertwined in this model [2]. The broken and restored
chiral symmetry correspond to a center-symmetric or
center-asymmetric phases, respectively. Similar studies
were developed earlier in Refs. [12–14].
In this work, we would like to address this interplay

between confinement and chiral symmetry breaking using
Nf massless quarks in the adjoint representation of color
SUcð2Þ. We will detail the nature of the flavor symmetry
group of the effective action induced by dissociated KvBLL
calorons in the confined phase and investigate its change into
an asymmetric phase at increasing temperature. Throughout,
we will use the words “center-symmetric phase” and
“confining phase” interchangeably, although their meanings
convey different requirements. The former is a weaker form
of confinement as it requires only that the the vacuum
expectation value (vev) of the Polyakov line is zero.
Whenever used below, these words would mostly refer to
the former.
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Lattice simulations with adjoint quarks [15] have shown
that the deconfinement and restoration of center symmetry
occurs well before the restoration of chiral symmetry.
These lattice results show that the ratio of the chiral to
deconfinement temperatures is large and decreases with the
number of adjoint flavors. More recent lattice simulations
have suggested instead a rapid transition to a conformal
phase [16]. Effective Polyakov-Nambu-Jona-Lasinio mod-
els with adjoint fermions have also been discussed
recently [17,18].
The organization of the paper is as follows. In Sec. II, we

briefly review the index theorem on S1 × R3 for an adjoint
fermion with twisted boundary condition. In Sec. III, we
detail the ADHM construction and use it to derive the
antiperiodic adjoint fermion in self-dual BPS dyons. In
Sec. IV, we develop the partition function of an instanton-
dyon ensemble with one light quark in the adjoint
representation of SUcð2Þ. By using a series of fermioniza-
tion and bosonization techniques, we construct the
three-dimensional effective action, accommodating light
adjoint quarks with explicit SUðNfÞ × Z4Nf

flavor sym-
metry. In Sec. V, we discuss the nature of the confinement-
deconfinement in the quenched sector (Nf ¼ 0) of the
induced effective action. In Sec. VI, we show that for a
sufficiently dense instanton-dyon liquid with light adjoint
quarks the three-dimensional ground state is still center
symmetric and spontaneously breaks SUðNfÞ × Z4Nf

→
OðNfÞ flavor symmetry. Center symmetry is broken, and
chiral symmetry is restored only in a more dilute instanton-
dyon liquid, corresponding to higher temperatures. Our
conclusions are summarized in Sec. VII. In Appendix A, we
check that our ADHM construct reproduces the expected
periodic zero modes for BPS dyons. In Appendix B, we
derive the pertinent equations for the antiperiodic adjoint
fermions in a BPS monopole without using the ADHM
method. In Appendix C, we detail the ADHM construction
for the antiperiodic zero modes in a KvBLL caloron. In
Appendix D, we detail the Fock correction to the mean-field
analysis. In Appendix E, we briefly outline the one-loop
analysis for completeness. In Appendix F, we quote the
general result for the one-loop contribution to the holonomy
potential with Nf adjoint massless quarks.

II. INDEX THEOREM FOR TWISTED QUARKS

In this section, we revisit the general Nye-Singer index
theorem for fermions on a finite temperature Euclidean
manifold S1 × R3 for a general fermion representation.
For periodic fermions, a very transparent analysis was
provided by Popitz and Unsal [19]. We will extend it
to fermions with arbitrary “twist” (phase), which is the
used for our case of antiperiodic fermions in the adjoint
representation.

A. Index

Consider chiral Dirac fermions on S1 × R3 interacting
with an anti-self-dual gauge field A through

ðD≡ γμDμ ≡ γμð∂μ þ igTaAa
μÞÞΨðxÞ ¼ 0 ð1Þ

with twisted fermion boundary conditions (β ¼ 1=T)

Ψðx4 þ β;xÞ ¼ eiφΨðx4;xÞ: ð2Þ

Here, D satisfies

D†D ¼ −DμDμ þ 2σmBm ¼ DD† þ 2σmBm: ð3Þ

For monopoles, the difference between the zero modes of
different chiralities in arbitrary R representation is captured
by the Calias index [20]

IR ¼ lim
M→0

MTrhΨ†γ5Ψi ¼ lim
M→0

Tr

�
γ5

M
−DþM

�
ð4Þ

with the trace carried over spin-color-flavor and space-time.
Using the local chiral anomaly condition for the isosinglet
axial current J5μ ¼ Ψ†γ5γμΨ in Euclidean four-dimensional
space

∂μJ5μ ¼ −2MΨ†γ5Ψ −
TR

8π2
Fa
μν
~Fa
μν; ð5Þ

we can rewrite the index in the form

IR ¼ −
1

2

Z
S1×S2

dσ2khJ5ki −
TR

16π2

Z
S1×R3

Fa
μν
~Fa
μν ð6Þ

with TR the Casimir operator in the R representation. The
second contribution (I2) in (6) depends only on the gauge
field, but the first contribution (I1) in Eq. (6) depends on the
nature of the fermion field.

B. L, M Dyons

To evaluate (6) for twisted SUcð2Þ adjoint fermions in
the background of an anti-self-dual or M̄ dyon, we follow
Popitz and Unsal [19] and write

hJ5ki≡Trhxjγkγ5D
1

−D2þM2
jxi

¼ TrhxjiσkD4

�
1

−D2þM2þ 2σ ·B
−

1

−D2þM2

�
jxi:

ð7Þ

In the M̄ antidyon background, we have at asymptotic
spatial infinity

−D2 → −∇2 þ
�
hA4i þ

πð2pþ φ
πÞ

β

�
2

Bm → −
rm
r3

: ð8Þ
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The compact character of A4 on S1 breaks SUcð2Þ →
AbðSUcð2ÞÞ. After expanding the ratio with B in (7), only
the first term carries a nonvanishing net flux in (6) on S2

thanks to the asymptotic in (8). If we recall that the trace
now carries a summation over the windings along S1

labeled by p and use the identity

X∞
p¼−∞

sgnðxþ pÞ ¼ 1 − 2xþ 2½x�; ð9Þ

we have

I1 ¼ −
Xm¼1

m¼−1
m

X∞
p¼−∞

sgn

�
−
2πν

β
mþ πð2pþ φ

πÞ
β

�

¼ −4νþ 2

�
νþ φ

2π

�
− 2

�
−νþ φ

2π

�
: ð10Þ

For color SUcð2Þ, TR ¼ 1=2 in the fundamental represen-
tation, and TR ¼ 2 in the adjoint representation. For the
latter,

I2 ¼ −
2

16π2

Z
S1×R3

Fa
μν
~Fa
μν ¼ 4ν; ð11Þ

it follows that

IM ¼ I1 þ I2 ¼ 2

�
νþ φ

2π

�
− 2

�
−νþ φ

2π

�
: ð12Þ

We note that Eq. (12) was originally derived in Ref. [18].
For the L dyon, we note that the surface contributions

satisfy I1L ¼ −I1M since the asymptotics at spatial infinity
have the same A4 with Bm of opposite sign. Therefore, we
obtain

IL ¼ 4 − IM ð13Þ

whatever the twist φ as expected. For antiperiodic fermions
with φ ¼ π, we find that for ν < 1

2
the L dyon carries four

antiperiodic zero modes, and the M dyon carries no zero
mode. For 1

2
< ν < 1, the M dyon carries four zero modes,

and the L dyon carries no zero mode. The confining
holonomy with ν ¼ 1

2
is special as the zero modes are

shared equally between the L and M dyons, two on each.

III. ADHM CONSTRUCTION
OF ADJOINT ZERO MODES

In this section, we first remind the reader of the general
framework for the ADHM [4,6,21,22] construction for
adjoint fermions and then apply it to the special case of
adjoint fermions in the background field of BPS dyons. A
concise presentation of this approach can be found in
Refs. [6,22], the notations of which we will use below.

Throughout this section, we will set the circle circum-
ference β ¼ 1=T → 1, unless specified otherwise. We note
that our construction is similar in spirit to the one presented
in Ref. [23] for adjoint fermions in calorons but is different
in some details. In particular, it does not rely on the replica
trick and therefore does not double the size of the
ADHM data.

A. ADHM construction

The basic building block in the ADHM construction
is the asymmetric matrix of data ΔðxÞ of dimension
½N þ 2k� × ½2k� for an SUðNÞ gauge configuration of topo-
logical charge k. The null vectors ofΔðxÞ can be assembled
into a matrix-valued complex matrix UðxÞ of dimension
½N þ 2k� × ½N�, satisfying Δ̄U ¼ 0 or specifically

Δ̄ _αλ
i Uλu ¼ 0 ð14Þ

with the ADHM label λ ¼ uþ iα running over 1 ≤ u ≤ N,
0 ≤ i ≤ k and α, _α ¼ 1, 2 referring to the Weyl-Dirac
indices which are raised by ϵ2. They are orthonormalized by
ŪU ¼ 1N . In terms of Eq. (14), the classical ADHM gauge
field Am with 1 ≤ m ≤ 4 reads

Am ¼ Ūi∂mU: ð15Þ

For k ¼ 0, it is a pure gauge transformation with a field
strength Amn that satisfies the self-duality condition
Amn ¼ �Amn. For k ≠ 0, it still satisfies the self-duality
condition provided that [22]

Δ̄
_βλ
i Δλj _α ¼ δ

_β
_αf

−1
ij ð16Þ

with f† ¼ f a positive matrix of dimension ½k� × ½k�.
The matrix of data is taken to be linear in the space-time
variable xn,

Δλi _α ¼ aλi _α þ bαλixα _α

Δ̄ _αλ
i ¼ ā _αλ

i þ x̄ _ααb̄λαi; ð17Þ

with the quaternionic notation xα _α ¼ xnðσnÞα _α and σn ¼
ð12; i~σÞ.

B. Antiperiodic adjoint fermion in general

Given the matrix of ADHM data as detailed above, the
adjoint fermion zero mode in a self-dual gauge configu-
ration of topological charge k reads [22]

λα ¼ ŪMfb̄αU − ŪbαfM̄U; ð18Þ

which can be checked to satisfy the Weyl-Dirac equation
provided that the Gassmanian matrix M ≡Mλi of dimen-
sion ½N þ 2k� × ½k� satisfies the constraint condition
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Δ̄ _αM þ M̄Δ _α ¼ 0: ð19Þ

To unravel the constraints (16) and (19), it is convenient
to rewrite the ADHM matrix of data ΔðxÞ in quaternionic
blocks through a pertinent choice of the complex matrices
a, b, i.e.,

ΔðxÞ ¼
�

ξ

B − x12

�
; ð20Þ

with

ξ≡ ξui _α ≡ ðξ _αÞui
B≡ ðBα _αÞij: ð21Þ

In quaternionic blocks, the null vectors (14) are

UðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffi
ϕðxÞp � −12

uðxÞ

�

¼ 1ffiffiffiffiffiffiffiffiffiffi
ϕðxÞp � −12

ðB† − x†12Þ−1ξ†
�

ð22Þ

with the normalization ϕðxÞ ¼ 1þ u†ðxÞuðxÞ. To solve the
constraint condition (19), we also define

M ≡
�

cuj
Mαij

�
ð23Þ

and its conjugate M̄≡ ðc̄ju; M̄α
jiÞ . Therefore, the solution

to (19) satisfies Mα ¼ M̄α and the new constraint between
the Grassmanians

½Mα; Bα _α� þ c̄ξ _α þ ξ̄ _αc ¼ 0: ð24Þ

Finally, for periodic gauge configurations on S1 × R3

such as the KvBLL calorons or BPS dyons, the index k is
extended to all charges in Z. It is then more convenient to
use the Fourier representations

fðzÞ ¼
X∞
k¼−∞

fkei2πkz

Bðz; z0Þ ¼
X∞

k;l¼−∞
Bkle2πiðkz−lz

0Þ; ð25Þ

which are z periodic of period 1.

C. Antiperiodic adjoint fermion in a BPS dyon

For BPS dyons, the previous arguments apply [24]. In
particular, for the SUð2Þ M dyon on S1 × R3, the preceding
construct is simplified. In particular, the quaternion blocks
in the ADHM matrix of data in Eq. (20) are simply

ξ ¼ 0

Bðz; z0Þ ¼ δðz − z0Þ 1

2πiν
∂
∂z : ð26Þ

The normalized null vector is readily found in the form

U ¼
�

0

uðx; zÞ

�
ð27Þ

with

uðx; zÞ ¼
�

2πvr
sinhð2πvrÞ

�1
2

ei2πzvðx4−iσ·xÞ ð28Þ

with the vev v ¼ ν=β.
The constraint (16) following from the self-duality

condition translates to the equation for the resolvent

�
i
∂
∂zþ 2πνx4

�
2

fðz; z0Þ þ ð2πνrÞ2fðz; z0Þ ¼ δðz − z0Þ:

ð29Þ

The solution is

fðz; z0Þ ¼ −
e2πivx4ðz−z0Þ

8πvr
ðsinhð2πvrjz − z0jÞ

þ cothðπvrÞ sinhð2πvrzÞ sinhð2πvrz0Þ
− tanhðπvrÞ coshð2πvrzÞ coshð2πvz0ÞÞ: ð30Þ

We have explicitly checked that Eq. (30) satisfies the
identities used in the ADHM construction as noted in
Ref. [22]. In our case, these identities read

2

Z 1
2

−1
2

dz1 ~fðz; z1Þ
� ∂
∂z1

�
~fðz1; z0Þ ¼ −ðz − z0Þ ~fðz; z0Þ

−
∂
∂xi

~fðz; z0Þ ¼ 2xið2πνÞ2
Z 1

2

−1
2

dz1 ~fðz; z1Þ ~fðz1; z0Þ ð31Þ

with the definition f= ~f ¼ e2πix4ðz−z0Þ, and

δðz − z0Þ − ∂2

∂z∂z0 fðz; z
0Þ

− 2πνrσ · r̂

� ∂
∂zþ

∂
∂z0

�
fðz; z0Þ − ð2πνrÞ2fðz; z0Þ

¼ 2νπr
sinhð2πνrÞ ðcoshð2πνrðzþ z0ÞÞ

þ σ · r̂ sinhð2πνrðzþ z0ÞÞÞ: ð32Þ
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We note that the periodicity on S1 translates to the
quasiperiodicities

uðx4 þ β; ~x; zÞ ¼ e2πiνzuðx4; ~x; zÞ
fðx4 þ β; ~x; z; z0Þ ¼ e2πiνðz−z0Þfðx4; ~x; z; z0Þ: ð33Þ

For the adjoint fermion zero mode, the Grassmanian
matrix also simplifies

Mðz − z0Þ ¼ Mðz0Þδ
�
z − z0 � 1

2ν

�
: ð34Þ

Inserting Eq. (34) in the constraint equation (24) and noting
that now ξ ¼ 0 yield

d
dz

MðzÞ ¼ 0 → MðzÞ ¼ M� ð35Þ

with normalized constant spinors M�. This allows us to
rewrite Eq. (34) in the explicit form

Mðz − z0Þ ¼ Mþδ
�
z − z0 þ 1

2ν

�
þM−δ

�
z − z0 −

1

2ν

�
:

ð36Þ
With the above in mind, the adjoint zero-mode solution

(18) in the SUcð2Þ BPS M dyon is simplified to

λ�α ðxÞ ¼ −
Z þ1

2

−1
2

dzdz0u†ðx; zÞϵM�f
�
z ∓ 1

2ν
; z0

�
uαðx; z0Þ

−
Z þ1

2

−1
2

dzdz0u†αðx; zÞfðz; z0ÞM�;Tu

�
x; z0 ∓ 1

2ν

�
:

ð37Þ
For ν > 1=2, the integrations can be undone. For that, we
translate the vectors in Eq. (37) to spinors using the
quaternionic form λ�m ¼ λ�αabσmba and make Eq. (37) more
explicit. The result is

λ�mðxÞ ¼ ðf1ðrÞσm þ f2ðrÞσ · r̂σmσ · r̂

� f3ðrÞσmσ · r̂� f4ðrÞσ · r̂σmÞχ ð38Þ
with f1;2;3;4 defined as

−16s2 sinhðsÞ coshðs=2Þ sinhðs=2Þf1 ¼ s2ð−ðx2 − 1ÞÞ coshðsðx − 1ÞÞ þ s2x2 coshðsðxþ 1ÞÞ
þ 2s2x coshðsxÞ − 2s2 coshðsxÞ − 2s2x coshðsðxþ 1ÞÞ þ s2 coshðsðxþ 1ÞÞ
− sx sinhðsðx − 2ÞÞ þ 2s sinhðsðx − 1ÞÞ þ sx sinhðsxÞ − 2s sinhðsxÞ
þ coshðsðx − 2ÞÞ − coshðsxÞ

16s2 sinhðsÞ coshðs=2Þ sinhðs=2Þf2 ¼ ð1 − 2s2ðx − 1ÞÞ coshðsxÞ þ sð−sðx2 − 1Þ coshðs − sxÞ
þ x sinhðsðx − 2ÞÞ − x sinhðsxÞ þ 2 sinhðsxÞ
− 2 sinhðs − sxÞ þ sðx − 1Þ2 coshðsðxþ 1ÞÞÞ − coshðsðx − 2ÞÞ

−16s sinhðsÞ coshðs=2Þ sinhðs=2Þf3 ¼ x coshðsðx − 2ÞÞ þ xð2sðx − 1Þ sinhðsÞ − 1Þ coshðsxÞ
− 2sðx − 1ÞðcoshðsÞ − 1Þ sinhðsxÞ

8s sinhðsÞ coshðs=2Þ sinhðs=2Þf4 ¼ sinhðsxÞðsð−xÞ þ coshðsÞðsð−xÞ þ x sinhðsÞ þ sÞ þ sÞ
− x sinhðsÞðsð−xÞ þ sþ sinhðsÞÞ coshðsxÞ; ð39Þ

where we have set s ¼ 2νω0r and x ¼ 1=2ν. Asymptoti-
cally, the zero modes (39) are simplified to

f1 ≈ −f2 ≈ f3 ≈ −f4 → ð2ν − 1Þ2eω0ð1−2νÞr; ð40Þ
and therefore Eq. (38) is asymptotically (r → ∞)

λ�mðxÞ ≈ ð1 ∓ σ · rÞσmð1� σ · rÞeω0ð1−2νÞrχ: ð41Þ
We will use this approximation to carry out explicitly the
analysis below. The four zero modes (41) are localized on
the M dyon for ν > 1=2 and by duality on the L-dyon for
ν < 1=2, in agreement with the index theorem reviewed
above. For ν < 1=2, the integration vanishes with λþ ≡ 0.

For ν > 1=2, we note that the four adjoint zero modes are
normalizable as they fall asymptotically with eω0ð1−2νÞr.
Equation (37) can be explicitly checked to be normalized asZ
R3

d3xTrðλ�α λ0∓β ϵαβÞ ¼
1

8ð2νω2
0Þ
Z
S2
d~S · ~∇TrzðM̄ðPþ 1Þ

×M0f þ M̄0ðPþ 1ÞMfÞ

¼ π2ð1 − 1
2νÞ

2ðνω0Þ3
M̄0ϵM̄: ð42Þ

We note that at ν ¼ 1=2 the normalization vanishes. This is
precisely where the zero modes reorganize equally between
the L- and M-instanton dyons, a pair on each.
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D. Antiperiodic adjoint fermion
in a BPS dyon with ν = 1

2

The case ν ¼ 1=2 for the adjoint zero mode is more
subtle. The preceding arguments show that the asymptotic
is 1, i.e.,: eω0ð1−1Þr ¼ 1. In this limit, the index theorem

states that two zero modes are localized on the M dyon
and two zero modes are localized on the L dyon. In this
section, we show that the reduction of the result (37) for
ν ¼ 1=2 simplifies. Specifically,

ðλ�α ÞabðrÞ ¼
1

sinhðω0rÞ
��

cosh

�
ω0r
2

�
� σ · r̂ sinh

�
ω0r
2

��
aβ
ðϵMÞβðfðω0rÞ � gðω0rÞσ · r̂Þαb

− ϵαβðfðω0rÞ ∓ gðω0rÞσ · r̂ÞaβMγ

�
cosh

�
ω0r
2

�
∓ σ · r̂ sinh

�
ω0r
2

��
γb

�
ð43Þ

with

fðω0rÞ ¼
1

4 coshðω0r
2
Þ ð−ω0r − sinhðω0rÞÞ

gðω0rÞ ¼
1

4 sinhðω0r
2
Þ ð−ω0rþ sinhðω0rÞÞ: ð44Þ

Equation (43) can be written in a more concise form by
translating the vectors to spinors using the quaternionic
form

λ�m ¼ λ�αabσmba ð45Þ

with

ðλ�α ÞðrÞ ¼
1

sinhðω0rÞ
ðfðω0rÞ � gðω0rÞσ · r̂Þσm

×

�
cosh

�
ω0r
2

�
� σ · r̂ sinh

�
ω0r
2

��
ϵM

− ϵ

�
MT

�
cosh

�
ω0r
2

�
∓ σ · r̂ sinh

�
ω0r
2

��
× σmðfðω0rÞ � gðω0rÞσ · r̂ÞÞT: ð46Þ

Using σTm ¼ ϵσmϵ, the transpose of the second term in
Eq. (46) can be reduced. The result is

ðλ�α ÞðrÞ ¼
2

sinhðω0rÞ
ðfðω0rÞ � gðω0rÞσ · r̂Þσm

×

�
cosh

�
ω0r
2

�
� σ · r̂ sinh

�
ω0r
2

��
χ ð47Þ

with the identified spinor χ ¼ ϵM. The (color-)invariant
group norm of Eq. (47) is finite. Specifically, if we set
λ�m;α ¼ Bm�

αβ χβ, then

Trðλ�α λ�β ϵαβÞ ¼ χT
X
m

BmTϵBmχ

¼ −3χTϵχ
ðf2ðω0rÞ − g2ðω0rÞÞ

sh2ðω0rÞ
; ð48Þ

which is convergent in R3. Note the difference between the
Matsubara arrangements in Eqs. (48) and (42). For com-
pleteness, we note that Eq. (48) is the analog of the gluino
condensate using the antiperiodic zero modes. The periodic
zero modes are briefly discussed in Appendix A using the
same ADHM construct. In Appendix B, we verify explic-
itly that the ADHM zero modes are consistent with a direct
reduction of the Dirac equation. For completeness, we
detail in Appendix C the ADHM construct for the zero
modes around KvBLL instantons.

IV. PARTITION FUNCTION
WITH ADJOINT FERMIONS

In this section, we will use the adjoint zero modes
made explicit in Eqs. (37)–(41) to construct the partition
function for an ensemble of interacting dyons and
antidyons with adjoint fermions. We will show that the
partition function is amenable to a three-dimensional
effective theory. The derivation will be for the nonsym-
metric case with ν > 1=2, where all four adjoint zero modes
are localized on theM dyon (antidyon). The nonsymmetric
case with ν < 1=2 with the adjoint zero modes localized on
the L dyon (antidyon) is equivalent and follows by duality
L ↔ M and ν → ν̄ ¼ 1 − ν. The symmetric case with each
L and M dyon carrying two of the four adjoint zero modes
will be understood in the limit ν → 1=2.

A. Partition function

In the semiclassical approximation, the Yang-Mills par-
tition function is assumed to be dominated by an interacting
ensemble of instanton dyons (antidyons). They are constitu-
ents of KvBLL instantons (anti-instantons) with fixed
holonomy [4]. The SUcð2Þ grand-partition function with
Nf adjoint Majorana quarks is
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Z1½T�≡
X
½K�

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

×
Z

fLd3xLiL
KL!

fMd3xMiM

KM!

fLd3yL̄iL̄
KL̄!

fMd3yM̄iM̄

KM̄!

× detðG½x�Þ detðG½y�Þjdet ~Tðx; yÞj
Nf
2

× e−VDD̄ðx−yÞe−VLðx−yÞe−VMðx−yÞ: ð49Þ

Here, xmi and ynj are the three-dimensional coordinate of the
i dyon of m kind and j antidyon of n kind. Here, G½x� is a
ðKL þ KMÞ2 matrix, and G½y� is a ðKL̄ þ KM̄Þ2 matrix, of
which the explicit forms are given in Refs. [5,6]. The
fugacities fi are related to the overall dyon plus antidyon
density nD [25].
VDD̄ is the streamline interaction between D ¼ L, M

dyons and D̄ ¼ L̄; M̄ antidyons as numerically discussed in
Refs. [1,7]. For the SUð2Þ case, it is Coulombic asymp-
totically [1],

VDD̄ðx − yÞ → −
CD

αsT

�
1

jxM − yM̄j
þ 1

jxL − yL̄j

−
1

jxM − yL̄j
−

1

jxL − yM̄j
�
: ð50Þ

The strength of the Coulomb interaction in Eq. (50) is
CD ¼ 2. Following Ref. [12], we define the core inter-
actions VL;Mðx − yÞ between LL̄ and MM̄, respectively,
which we assume to be step functions of height V0 and
range x0,

VMðx − yÞ ¼ TV0θðx0 − 2ω0νjx − yjÞ
VLðx − yÞ ¼ TV0θðx0 − 2ω0ν̄jx − yjÞ; ð51Þ

with x0=2 normalized to the dimensionless unit volume

�
x0
2

�
3

¼ 4π

3
: ð52Þ

We recall that the LM̄ and ML̄ channels are repulsive.
A sketch of the interaction potentials is given in Fig. 1.
Below the core value of aDD̄, the streamline configuration
annihilates into perturbative gluons.

B. Determinant of the adjoint fermions

The fermionic determinant in Eq. (49) is composed of all
the hoppings between the dyons and antidyons through the
adjoint fermionic zero modes. To make the hopping
explicit, we consider in details the case Nf ¼ 1 and only
quote at the end the generalization to arbitrary Nf. To
explicit the hopping for Nf ¼ 1, we define

ΨðxÞ≡X
I;�

Ψ�ðx − xIÞχ�I

Ψ̄ðxÞ≡X
J̄;�

Ψ̄�ðx − xJ̄Þχ̄�J ; ð53Þ

with the sum running over all dyons and antidyons and the
two Matsubara frequencies �ω0 subsumed in the zero
modes. The adjoint dyon and antidyon zero modes are
labelled by

λ�DðxÞ≡Ψ�ðx − xDÞχ�D: ð54Þ

Here, χ�D is a two-component Grassmanian spinor, and Ψ�
is a 2 × 2 valued matrix, both of which refer to a D dyon
(antidyon). From Eqs. (37)–(41), the Fourier transforms of
Ψ� read

~ν−
3
2Ψþ

mðpÞ ¼ f1ðpÞσm þ if2ðpÞ½σm; σ · p̂� þ f3ðpÞp̂mσ · p̂

ð55Þ

with

f1ðpÞ ¼
~ν

ðp2 þ ~ν2Þ2 þ
1

p3

�
~νp

ð2p2 þ ~ν2Þ
ðp2 þ ~ν2Þ2 − tan−1

�
p
~ν

��

f2ðpÞ ¼
p

ðp2 þ ~ν2Þ2

f3ðpÞ ¼ −
1

p3

�
p~νð5 ~p2 þ 3~ν2Þ
ðp2 þ ~ν2Þ2 − 3tan−1

�
p
~ν

��
: ð56Þ

Here, p ¼ j~pj and ~ν ¼ ð2ν − 1Þω0.
In terms of Eqs. (53)–(54), the hopping action for

massive adjoint quarks takes the explicit form

i
Z

d4xðΨT; Ψ̄TÞ
�

m ϵσ · ∂
−ϵσ̄ · ∂ m

��
Ψ

Ψ̄

�

¼
X
�
ðχT�I ; χ̄T∓J Þ

�
im ~KðxII0 Þ T�ðxIJÞ
−TT�ðxIJÞ −im ~KðxJJ0 Þ

��
χ�I
χ̄∓J

�

ð57Þ
FIG. 1. Schematic description for the streamline (left) and core
(right) potentials between a pair of an SUcð2Þ instanton dyon and
anti-instanton dyon.
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with xIJ ≡ xI − xJ. We note that the matrix entries in
Eq. (57) are 2 × 2 valued or quaternionic and that the
matrix overall is antisymmetric under transposition. This
observation is consistent with the observations made in
Ref. [26]. The matrix entries in Eq. (57) satisfy

T�ðxIJÞ ¼ −ϵ ~T�ðxIJÞ
TT�ðxIJÞ ¼ −ϵ ~T∓†ðxIJÞ ð58Þ

~KðxII0 Þ ¼ − ϵKðxII0 Þ: ð59Þ

Using Eq. (58), we can rewrite Eq. (49) for massive
fermions in the basis ðχþ; χ−; χ̄þ; χ̄−ÞT as

jdet ~Tðx; yÞj12

≡ jdet

0
BBBBBB@

0 −ϵmKii0 0 iϵ ~Tþ
ij

−mϵKii0 0 −iϵ ~Tþ†
ji 0

0 −i ~Tþ⋆
ij ϵ 0 mϵKii0

i ~TþT
ji ϵ 0 mϵKii0 0

1
CCCCCCA

������������

1
2

;

ð60Þ

with dimensionality 4ðKI þ KĪÞ2. Each of the quaternionic
entries in ~Tþ

ij is a “hopping amplitude” for a fermion
between an instanton dyon and an instanton antidyon. Each
of the quaternion entries in Kii0 is an overlap between two
instanton dyons or two anti-instanton anti-lyons.

C. Hopping amplitudes

In momentum space, the quaternionic entries are
given by

T�ðpÞ ¼ ΨT�ð−pÞϵσ · p�Ψ̄∓ðpÞ ð61Þ

with again p� ¼ ð�ω0; ~pÞ. Since

ΨTðpÞ ¼ ϵΨðpÞϵ; ð62Þ

we also have the identities

T�ðpÞ ¼ −ϵΨ�ð−pÞð�ω0 þ iσ · pÞΨ̄∓ðpÞ
TT�ðpÞ ¼ −ϵΨ̄∓ðpÞð∓ω0 þ iσ · pÞΨ�ð−pÞ: ð63Þ

We note the relations

Ψ�ðpÞ ¼ Ψ̄∓ðpÞ
ðΨ�Þ†ð−pÞ ¼ Ψ∓ðpÞ; ð64Þ

and therefore we have the additional identities

T�ðpÞ ¼ −ϵ ~T�ðpÞ
TT�ðpÞ ¼ −ϵ ~T∓†ð−pÞ: ð65Þ

Here, we have

~TþðpÞ ¼ Ψþð−pÞðω0 þ iσ · pÞΨþðpÞ ð66Þ

or more explicitly

ω3
0 ~ν

−3 ~TþðpÞ ¼
�
3f21þf23þ 2f1f3 − 8f22þ 8f1f2

p
ω0

�
ω0

þ iσ ·p

�
−f21þf23þ 2f1f3þ 8f22

þ 8f1f2
ω0

p

�
: ð67Þ

We also have

KðpÞ ¼ Ψ−ð−pÞΨþðpÞ ¼ Ψþ†ðpÞΨþðpÞ
¼ ω−3

0 ~ν3ð3f21 þ f23 þ 2f1f3 þ 8f22Þ: ð68Þ

V. EFFECTIVE ACTION WITHOUT
ADJOINT FERMIONS

In this section, we will derive the three-dimensional
effective action in the case without the adjoint fermions, to
be referred to as the Nf ¼ 0 case below. We will analyze it
in the limit of weak coupling and large densities across the
transition region. We will explicitly derive the induced
effective potential for the SUcð2Þ holonomies ν, ν̄ and show
that for a critical density the ground state of the three-
dimensional effective theory is confined.

A. Bosonic fields

Following Refs. [1,2,5], the moduli determinants in
Eq. (49) can be fermionized using four pairs of ghost
fields χ†L;M, χL;M for the dyons and four pairs of ghost fields
χ†L̄;M̄, χL̄;M̄ for the antidyons. The ensuing Coulomb factors
from the determinants are then bosonized using four boson
fields vL;M, wL;M for the dyons and similarly for the
antidyons. The result is

S1F½χ; v; w� ¼ −
T
4π

Z
d3xðj∇χLj2 þ j∇χMj2 þ∇vL · ∇wL

þ∇vM ·∇wMÞ þ ðj∇χL̄j2 þ j∇χM̄j2
þ∇vL̄ ·∇wL̄ þ∇vM̄ · ∇wM̄Þ: ð69Þ

For the interaction part VDD̄, we note that the pair
Coulomb interaction in Eq. (49) between the dyons and
antidyons can also be bosonized using standard methods
[27–29] in terms of σ and b fields. As a result, each dyon
species acquires additional fugacity factors such that
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M∶ e−b−iσ L∶ ebþiσ M̄∶ e−bþiσ L̄∶ eb−iσ ð70Þ

with an additional contribution to the free part (69),

S2F½σ; b� ¼ T
Z

d3xd3yðbðxÞV−1ðx − yÞbðyÞ

þ σðxÞV−1ðx − yÞσðyÞÞ: ð71Þ

The streamline interaction is asymptotically Coulombic
and attractive in the LL̄ and MM̄ channels with

VðrÞ ≈ −
CD

αs

1

Tr
¼ −

2

αs

1

Tr
ð72Þ

and repulsive in the L̄M and LM̄ channels as illustrated in
Fig. 1. At short distances, these four channels reduce to
perturbative gluons that should be subtracted. We follow
Ref. [14] and introduce a core interaction as illustrated in
Fig. 1 to achieve that. Specifically, for the core interactions
VL;MðrÞ, we have

S3F½ϕ1;ϕ2� ¼
Z

d3xðϕ†
1V

−1
M ϕ1 þ ϕ†

2V
−1
L ϕ2Þ; ð73Þ

and the interaction part is now

SI½v; w; b; σ; χ� ¼ −
Z

d3xfMð4πvm þ jχM − χLj2 þ vM − vLÞe−bþiσþiϕ†
1ewM−wL þ fLð4πvl þ jχL − χMj2 þ vL − vMÞ

× eþb−iσþiϕ†
2ewL−wM þ fM̄ð4πvm̄ þ jχM̄ − χL̄j2 þ vM̄ − vL̄Þe−b−iσþiϕ1ewM̄−wL̄

þ fL̄ð4πvl̄ þ jχL̄ − χM̄j2 þ vL̄ − vM̄Þe−b−iσþiϕ2ewL̄−wM̄ ð74Þ

without the fermions. The minimal modifications to
Eq. (74) due to the hopping fermions in the adjoint
representation will be detailed below.
In terms of Eqs. (69)–(74), the instanton-dyon partition

function (49) can be exactly rewritten as an interacting
effective field theory in three dimensions,

ZDD̄½T�≡
Z

D½χ�D½v�D½w�D½σ�D½b�D½ϕ�

× e−S1F−S2F−S3F−SI : ð75Þ

In the absence of the fields σ, b, ϕ, Eq. (75) describes a
three-dimensional effective field theory discussed
in Ref. [5], which was found to be integrable. In the
presence of σ, b, ϕ, the integrability is lost as the dyon-
antidyon screening upsets the hyper-Kahler nature of the
moduli space. Since the effective action in Eq. (75) is
linear in the vM;L;M̄;L̄, the latter are auxiliary fields that
integrate into delta-function constraints. However, and
for convenience, it is best to shift away the b, σ fields
from Eq. (74) through

wM − bþ iσ → wM

wM̄ − b − iσ → wM̄; ð76Þ

which carries unit Jacobian and no anomalies, and
recover them in the pertinent arguments of the delta
function constraints as

−
T
4π

∇2wM þ feiϕ
†
1ew − feiϕ

†
2e−w

¼ T
4π

∇2ðb − iσÞ − T
4π

∇2wL þ feiϕ
†
2e−w − few

¼ 0 ð77Þ

with w≡ wM − wL, f ≡ ffiffiffiffiffiffiffiffiffiffiffi
fMfL

p
, and similarly for the

antidyons.

B. Effective action with Nf = 0

In Ref. [5], it was observed that the classical solutions
to Eq. (77) can be used to integrate the w0s in Eq. (75) to
one loop. The resulting bosonic determinant was shown
to cancel against the fermionic determinant after also
integrating over the χ0s in Eq. (75). This holds for our
case as well. However, the presence of σ, b, ϕ makes
the additional parts of Eq. (75) still very involved in
three dimensions. To proceed further, we solve the
constraint (77)

b − iσ ¼ wþ 8πf
Tð−∇2 þM2

DÞ
ðeiϕ†

1ew − eiϕ
†
2e−wÞ

bþ iσ ¼ w̄þ 8πf
Tð−∇2 þM2

DÞ
ðeiϕ1ew̄ − eiϕ2e−w̄Þ ð78Þ

with a screening mass MD to be fixed variationally. In
terms of Eq. (78), the effective action without the
fermionic contributions (Nf ¼ 0) is
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S ¼ Sϕ þ Tw̄V−1wþ
�
−4πfνðeweiϕ†

1 þ ew̄eiϕ1Þ þ 8πf

�
eweiϕ

†
1

V−1

M2
D þ∇2

w̄þ eiϕ1ew̄
V−1

−∇2 þM2
D
w

��

þ ð−4πfν̄ðe−weiϕ†
2 þ e−w̄eiϕ2Þ − 8πf

�
e−weiϕ

†
2

V−1

−∇2 þM2
D
w̄þ e−w̄eiϕ2

V−1

M2
D −∇2

w

�

þ ð8πfÞ2
T

ðeiϕ†
1ew − eiϕ

†
2e−wÞ 1

M2
D −∇2

V−1 1

M2
D −∇2

ðeiϕ1ew̄ − eiϕ2e−w̄Þ

þ Tr ln

�
1þ 8πf

TðM2
D −∇2Þ ðe

iϕ†
1ew þ eiϕ

†
2e−wÞ

�
þ Tr ln

�
1þ 8πf

TðM2
D −∇2Þ ðe

iϕ1ew̄ þ eiϕ2e−w̄Þ
�
; ð79Þ

with vl ¼ vl̄ ¼ ν and vm ¼ vm̄ ¼ ν̄ ¼ 1 − ν. Thus, for constant w, we have

S ¼ Sϕ þ V3CDαsw̄wM2
D þ

Z
4πfð−νðeiϕ†

1ew þ eiϕ1ew̄Þ þ þ2CDαsðweiϕ1ew̄ þ w̄eiϕ
†
1ewÞÞ

þ
Z

4πfð−ν̄ðeiϕ†
2e−w þ eiϕ2e−w̄Þ − 2CDαsðweiϕ2e−w̄ þ w̄eiϕ

†
2e−wÞÞ þ ð8πfÞ2

T
ðeiϕ†

1ew − eiϕ
†
2e−wÞ 1

M2
D −∇2

V−1

×
1

M2
D −∇2

ðeiϕ1ew̄ − eiϕ2e−w̄Þ þ Tr ln

�
1þ 8πf

TðM2
D −∇2Þ ðe

iϕ†
1ew þ eiϕ

†
2e−wÞ

�

þ Tr ln

�
1þ 8πf

TðM2
D −∇2Þ ðe

iϕ1ew̄ þ eiϕ2e−w̄Þ
�
: ð80Þ

To proceed further, we will treat the core interaction using the cumulant expansion. In leading order, only the second
cumulant is retained, and the result is

lnZ
V3

≈þTαsCDM2
D

�
w̄þ 16πf

TM2
D
sinh w̄

��
wþ 16πf

TM2
D
sinhw

�
− 4πfðνðew þ ew̄Þ þ ν̄ðe−w þ e−w̄ÞÞ

þ
Z

d3rðe−V1 − 1ÞF1 þ
Z

d3rðe−V2 − 1ÞF2 þ
Z

d3p
ð2πÞ3 ln

�
1þ 8πf

T
ew þ e−w

M2
D þ p2

�

þ
Z

d3p
ð2πÞ3 ln

�
1þ 8πf

T
ew̄ þ e−w̄

M2
D þ p2

�
ð81Þ

with F2 ¼ F1ðw → −wÞ and

F1 ¼ 16π2f2ewþw̄

����− νþ 2CDαsw̄þ
Z

2

T
d3p
ð2πÞ3

1

p2 þM2
D

����2 þ ð8πfÞ2
T

ewþw̄

×
Z

d3r1d3r2GMD
ðr − r1ÞV−1ðr1 − r2ÞGMD

ðr2Þ: ð82Þ

C. Effective potential with Nf = 0

For small αs and strong screening, we may neglect the terms proportional to αs and drop the screening contributions.
Since w̄ ¼ w†, the effective potential associated to Eq. (81) and including the one-loop perturbative contribution for finite
holonomy is

−
PD

8πf
¼ − cos σðνeb þ ν̄e−bÞ þ n

�
e2b

ν
þ e−2b

ν̄

�
þ 4π2

3

T3

8πf
ν2ν̄2; ð83Þ

with b ¼ Rew and

n ¼ 2πfð1 − e−V0Þ
ð2πT=x0Þ3

≡ 2πf
T3

32

3π2
ð1 − e−V0Þ: ð84Þ
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The extremum in σ ≡ Imw in Eq. (83) occurs at σ ¼ 0. The
minimum with respect to b is fixed by the quartic equation
for eb,

2n

�
e2bðνÞ

ν
−
e−2bðνÞ

ν̄

�
¼ ðνebðνÞ − ν̄e−bðνÞÞ; ð85Þ

with bðνÞ as a solution. Equation (85) admits always the
symmetric solution bð1=2Þ ¼ 0 as an explicit solution for
large n. The quenched effective potential for the holonomy
with Nf ¼ 0 follows in the form

−
PD

8πf
→ −ðνebðνÞ þ ν̄e−bðνÞÞ þ n

�
e2bðνÞ

ν
þ e−2bðνÞ

ν̄

�

þ 4π2

3

T3

8πf
ν2ν̄2: ð86Þ

We note that Eq. (86) is similar but not identical to
the effective potential discussed in Ref. [12] using an
excluded volume approach. Equation (86) admits a critical
instanton-dyon density nC, above which the minimum of
the quenched potential (86) occurs for ν ¼ 1=2 or in the
confined phase and below which two minima develop,
moving away from ν ¼ 1=2 toward the ν ¼ 0, 1 or
deconfined phase. To proceed further, we fix V0 ¼ ln 2
with n ≈ πf=T3. Equation (86) reduces to

−
PD

8πf
→ n

�
e2bðνÞ

ν
þ e−2bðνÞ

ν̄

�

− ðνebðνÞ þ ν̄e−bðνÞÞ þ π2

6n
ν2ν̄2; ð87Þ

as shown in the upper part (n ¼ 1) and the lower part
(n ¼ 0.4) of Fig. 2. The critical density is found numeri-
cally to be nD ≈ 0.56 or 8πf=T3 ≈ 4.48. For n < nC,
Eq. (87) displays two minima at ν1< 1=2 and ν2 ¼ 1−ν1.
For n > nC, we have a single minimum at ν ¼ 1=2. The
alternative choice of the core V0 → νV0 yields a finite
effective potential at ν ¼ 0, 1. For νV0 ¼ 2ν, the critical
density occurs at a larger density with nC ≈ 3.7 and a
minimum at b ¼ 0 for n > nC,

−
PDmin

8πf
¼ 4n − 1þ π2

96n
: ð88Þ

D. Electric and magnetic masses with Nf = 0

In the center-symmetric phase with ν ¼ 1=2 with
Nf ¼ 0, we may define a class of electric and magnetic
masses as the curvatures of the induced potential −PD [12].
Specifically, we have

Tm2
E ¼ 1

2CDαs

∂2ð−PDÞ
∂2b

¼ 4nT3

αsCD
ð8n − 1Þ

Tm2
M ¼ 1

2CDαs

∂2ð−PDÞ
∂2σ

¼ 4nT3

αsCD
: ð89Þ

We note that M2
E=M

2
M ¼ 8n − 1 > 1 in the symmetric

phase since nD ≈ 0.56 > 1=4. These masses are distinct
from the electric and magnetic screening masses ME;M

following from the decorrelation of the electric and
magnetic fields in the instanton-dyon liquid as discussed
in Ref. [1]. The latter are spacelike poles in suitably defined
propagators.

VI. EFFECTIVE ACTION WITH ADJOINT
FERMIONS

A. Fermionic fields with Nf = 1

To fermionize the determinant (60) and for simplicity,
consider first the case of Nf ¼ 1 flavor and the lowest two
Matsubara frequencies �ω0. As we noted earlier, the
quaternionic matrix in Eq. (60) is real and antisymmetric
of dimensionality 4ðKI þ KĪÞ2. Its fermionization will only
require the use of a single species of Grassmanians with no
need for their conjugate. Specifically, we have

j det ~Tj12 ¼
Z

D½χ�eχT ~Tχ ð90Þ

with χ ¼ ðχþ; χ−; χ̄þ; χ̄−Þ. This is the analog of the
Majorana-like representation for our hopping matrix in
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V

FIG. 2. The holonomy potential (87) for the density n ¼ 1, in a
“symmetric phase” (above), compared to its shape at smaller
density n ¼ 0.4, in an “asymmetric phase” (below).
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Euclidean S1 × R3. We can rearrange the exponent in
Eq. (90) by defining a Grassmanian source JðxÞ ¼
ðJþðxÞ; J−ðxÞ; J̄þðxÞ; J̄−ðxÞÞT with

Jþα ðxÞ ¼
XKL

I¼1

χþI
α δ3ðx − xIÞ

J̄þ _βðxÞ ¼
XKĪ

J¼1

χ̄þ
_β

2J δ
3ðx − yJÞ ð91Þ

and by introducing two additional fermionic fields
ψðxÞ ¼ ðψþðxÞ;ψ−ðxÞ; ψ̄þ; ψ̄−ÞT . Thus,

eχ
T ~Tχ ¼

R
D½ψ � expð− R

ψT ~Gψ þ 2
R
JTψÞR

dD½ψ � expð− R
ψT ~GψÞ ð92Þ

with ~G a 4 × 4 chiral block matrix defined by

~G ~T ¼ 1: ð93Þ

For massless adjoint quarks, we have the explicit form

0
BBB@

0 0 0 iϵGTðy−xÞ
0 0 −iϵG⋆ðx−yÞ 0

0 −iG†ðy−xÞϵ 0 0

iGðx−yÞϵ 0 0 0

1
CCCA
ð94Þ

with entries TG ¼ 1. The Grassmanian source contribu-
tions in Eq. (92) generate a string of independent exponents
for the instanton dyons and instanton antidyons,

YKI

I¼1

e2χ
þT
I ψþðxIÞþ2χ−TI ψ−ðxIÞ

YKĪ

J¼1

e2χ̄
þT
J ψ̄þðyJÞþ2χ̄−TJ ψ̄−ðyJÞ: ð95Þ

The Grassmanian integration over the χi in each factor in
Eq. (95) is now readily done to yield

Y
I

½ψTþϵψþψT
−ϵψ−�

Y
J

½ψ̄Tþϵψ̄þψ̄T
−ϵψ̄−�

¼
Y
I

½ψTþϵψ−ψ
Tþϵψ−�

Y
J

½ψ̄Tþϵψ̄−ψ̄
Tþϵψ̄−� ð96Þ

for the instanton dyons and instanton antidyons. The
net effect of the additional fermionic determinant in
Eq. (49) is to shift the dyon and antidyon fugacities in
Eq. (74) through

fI → fIψTþϵψ−ðxIÞψTþϵψ−ðxIÞ
fĪ → fĪψ̄

Tþϵψ̄−ðxĪÞψ̄Tþϵψ̄−ðxĪÞ: ð97Þ

B. Resolving the constraints

In terms of Eqs. (69)–(74) and the substitution (97), the
dyon-antidyon partition function (49) for finite Nf can be
exactly rewritten as an interacting effective field theory in
three dimensions,

Z1½T�≡
Z

D½ψ �D½χ�D½v�D½w�D½σ�D½b�D½ϕ1�D½ϕ2�

× e−S1F−S2F−SI−Sψ−Sϕ ; ð98Þ

with the additional Nf ¼ 1 chiral fermionic contribution

Sψ ¼ ψT ~Gψ . Since the effective action in Eq. (98) is linear
in vM;L;M̄;L̄, the latter integrate to give the constraints

−
T
4π

∇2wM þ ðψTþϵψ−Þ2fMewM−wLþiϕ†
1

− fLewL−wMþiϕ†
2 ¼ T

4π
∇2ðb − iσÞ

−
T
4π

∇2wL − ðψ̄Tþϵψ̄−Þ2fMewM−wLþiϕ†
1

þ fLewL−wMþiϕ†
2 ¼ 0 ð99Þ

and similarly for the antidyons withM, L, ψ → M̄, L̄, ψ̄ . To
proceed further, the formal classical solutions to the
constraint equations or wM;L½σ; b� should be inserted back
into the three-dimensional effective action. The result is

Z1½T� ¼
Z

D½ψ �D½σ�D½b�D½ϕ�e−S ð100Þ

with the three-dimensional effective action

S ¼ SF½σ; b� þ S½ϕ� þ
Z

d3xψT ~Gψ ð101Þ

− 4πfMvm

Z
d3xðψTþϵψ−Þ2ewM−wLþiϕ†

1

− 4πfMvm

Z
d3xðψ̄Tþϵψ̄−Þ2ewM̄−wL̄þiϕ1

− 4πfLvl

Z
d3xðewL−wMþiϕ†

2 þ ewL̄−wM̄þiϕ2Þ: ð102Þ

Here, SF is S2F in Eq. (72) plus additional contributions
resulting from the wM;Lðσ; bÞ solutions to the constraint
equations (99) after their insertion back. The fermionic
contributions in Eq. (102) are Z4 symmetric.

C. Ground state with Nf = 1

We first consider the massless case with m ¼ 0. The
uniform ground state of the three-dimensional effective
theory described by Eqs. (98)–(102) corresponds to b, σ, w
constant, with a finite condensate with
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hψTþϵψ−i ¼ hψT
−ϵψþi ¼ Σ

hψ̄Tþϵψ̄−i ¼ hψ̄T
−ϵψ̄þi ¼ Σ ð103Þ

that breaks the Z4 symmetry of Eq. (102). This is the
mechanism by which the instanton-dyon liquid enforces
the anomalous UAð1Þ breaking with adjoint fermions. The
fermionic quadrilinears in Eq. (102) can be reduced by
introducing pertinent Lagrange multipliers Λ0s through the
identity as detailed in Ref. [2]. Assuming parity symmetry,
in the mean field or Hartree approximation, Eq. (102)
becomes

S → Sþ
Z

d3xψT ~Gψ þ
X
�

Z
d3xΛ1ðxÞðψT

�ϵψ∓ − ΣÞ

þ
X
�

Z
d3xΛ2ðxÞðψ̄T

�ϵψ̄∓ − ΣÞ: ð104Þ

We observe that the mean-field constraints in Eq. (104)
enforce the substitution ψTϵψ → Σ, and therefore the shift
for Σ ≠ 0

ewM−wL →

ffiffiffiffiffiffi
fL
fM

s
jΣjewM−wL

ewL−wM →

ffiffiffiffiffiffi
fM
fL

s
1

jΣj e
wL−wM: ð105Þ

For completeness, the exchange or Fock correction to the
mean-field approximation (103) is detailed in Appendix D.
Also, a one-loop alternative approximation is presented in
Appendix E.
To insure a smooth limit for ν → 1=2, we will redefine

the magnetic fugacity fMð2ν − 1Þ6 → fM throughout. As
half the zero modes jump when ν ¼ 1=2, the hopping is
singular in the ensemble made of constituent instanton
dyons and instanton antidyons. This singularity does not
appear if the constituents are jumping within the KvBLL
caloron as all infrared tails are tamed, as we have shown in
Appendix C. But again, because of the fact that the
delocalization of the zero modes makes use of the hopping
between instanton dyons and instanton antidyons with
opposite chirality, it is necessary to unlock the constituents
from their respective KvBLL calorons and anticalorons as
we have detailed.
With the above in mind, a repeat of the quenched

arguments shows that the unquenched pressure PD ¼
−V=V3 with adjoint and massless fermions is now

PDþF

T3
¼ −

~n2Σ
8

�
e2b

ν
þ e−2b

ν̄

�
þ ~nΣðνeb þ ν̄e−bÞ − 4 ~Σ ~Λ

þ π

Z
~p2d ~p lnð1þ ~Λ2FÞ þ 4π2

3
ν2ν̄2 ð106Þ

with ~nΣ ¼ 8πfΣ=T3 and ~Λ ¼ Λ=T2. We have defined

π4Fð ~p; 2ν − 1Þ
¼ ð3f21 þ f23 þ 2f1f3 − 8f22 þ 8f1f2 ~pÞ2

þ ~p2

�
−f21 þ f23 þ 2f1f3 þ 8f22 þ 8f1f2

1

~p

�
2

: ð107Þ

The fi are given in Eq. (56) after replacing p → ~p ¼ p=ω0

and ~ν → ~ν=ω0, all of which are now dimensionless. We
have numerically checked that the momentum integration
in Eq. (106) does not change much if we were to simplify
the fi in Eq. (56) to

f1 ≈ −
f3
3
→ −

1

~p3
tan−1

�
~p

2ν − 1

�

f2 →
~p

ð ~p2 þ ð2ν − 1Þ2Þ2 ð108Þ

so that

Fð ~p; 2ν − 1Þ ≈ 1

π4
ð6f21 − 8f22 − 8f1f2 ~pÞ2

þ ~p2

�
2f21 þ 8f22 − 8f1f2

1

~p

�
2

: ð109Þ

The integral contribution in Eq. (106) is that of a constitu-
ent adjoint quark, with a momentum-dependent mass
MAð ~pÞ given by

MAð ~pÞ
ω0

~Λ
¼ ðð1þ ~p2ÞFÞ12; ð110Þ

as shown in Fig. 3 for ν ¼ 0.7.

D. Confining symmetric phase

The center-symmetric state with b ¼ 0 and ν ¼ 1=2 is an
extremum of Eq. (106), provided that Σ ≠ 0. This means
that the spontaneous breaking of chiral symmetry is a
necessary (but not sufficient) condition for center symmetry
to take place in the instanton-dyon liquid model with

0.1 0.2 0.3 0.4 0.5

50

100

150

FIG. 3. Adjoint constituent mass for ν ¼ 0.7.

LIGHT ADJOINT QUARKS IN THE INSTANTON-DYON … PHYSICAL REVIEW D 94, 105012 (2016)

105012-13



massless adjoint quarks. This is similar to the observation
made in Ref. [2] for massless fundamental quarks. For fixed
~Λ, the fermionic contribution in Eq. (106) is maximal for
ν ¼ 1=2. The additional extremum with respect to Σ yields
the condition

4 ~Λ ~Σ ¼ ~nΣðνeb þ ν̄e−bÞ − ~n2Σ
4

�
eb

ν
þ e−b

ν̄

�
ð111Þ

with ~nΣ ¼ nΣ=T3. Equation (111) requires ~nΣ < 1 so that
~Λ ≠ 0 and is therefore a final quark condensate. We recall
that for Nf ¼ 0, ~nΣ > ~nD ¼ 0.56 is required for a center-
symmetric state. With this in mind, and for 0.56 < ~nΣ < 1,
the extremum in the ~Λ direction gives the gap equation

~nΣ − ~n2Σ ¼ 2π

Z
~p2d ~p

~Λ2F

1þ ~Λ2F
: ð112Þ

Equation (112) yields a finite ~Λ and thus a finite chiral
condensate. We note that a core strength V0 → 0 amounts
to a vanishingly small ~n2Σ → 0 contribution. Note that
in the center-symmetric phase phase with ~nD ≈ 1=2 the
core correction is about 50% of the free instanton-dyon
contribution. It decreases substantially in the center-
asymmetric phase as the instanton-dyon liquid is diluted.
More explicitlly, for small ~Λ, the dominant contributions

from the hopping fermions stem from the small momentum
sector of the p integrals in Eqs. (106) and (112) with

Fðp → 0; 0Þ ≈ 0.47
~p12

: ð113Þ

Inserting Eq. (113) into Eq. (112) allows for an explicit
solution to the gap equation in the form

~Λ ≈
�
~nΣ − ~n2Σ
1.92

�
2

: ð114Þ

E. Magnitude of the chiral condensate

For massive adjoint quarks, the fermionic part of
Eq. (106) is

π

Z
~p2d ~p ln ðð1þ ~mt ~ΛÞ2 þ ~Λ2FÞ; ð115Þ

where all contributions are dimensionless. We have defined

tðpÞ ¼ ω3
0

π2
KðpÞ

~m ¼ m
ω0

: ð116Þ

The chiral condensate for massless adjoint fermions fol-
lows from the general relation

hiTrðλλÞi ¼ 1

TV3

�∂ lnZ
∂m

�
m¼0

¼ T3

Z
~p2d ~p

2t ~Λ

1þ ~Λ2F
: ð117Þ

Again, the integration in Eq. (117) is dominated by small
momenta for small ~Λ. In the confined state with ν ¼ 1=2,
we can use Eq. (113) and the small momentum limit of
Eq. (116),

tðp → 0Þ ≈ 2.31
~p6

; ð118Þ

to obtain

hiTrðλλÞi
T3

≈ 2
ffiffiffiffi
~Λ

p
≈ ð ~nΣ − ~n2ΣÞ: ð119Þ

Again, we note that for a vanishingly small core with
V0 → 0 the contribution n2Σ → 0 in Eq. (114) with a chiral
condensate for adjoint fermions of order ~n, which is the
rescaled instanton-dyon density. This result is totally
consistent with the result derived in Ref. [2] for massless
fundamental quarks with no core. The transition from a
symmetric state with ν ¼ 1=2 to an asymmetric state with
ν < 1=2 takes place nΣ < nD as the instanton-dyon liquid
is diluted, and the chiral condensate (119) also vanishes
(see below).
Finally, we note that the case of Nf ¼ 1 adjoint quarks at

zero temperature corresponds to N ¼ 1 supersymmetric
theory with a nonvanishing gluino condensate [30]. While
our finite-temperature analysis of Nf ¼ 1 breaks super-
symmetry explicitly, Eq. (119) can be viewed as the
remnant of the gluino condensate at finite temperature.
Since Eq. (119) was derived under the condition that
0.56 < ~nΣ < 1, the zero-temperature limit cannot be
reached in our case.

F. General case with Nf ≥ 1

The preceding analysis generalizes to Nc ¼ 2 and
Nf ≥ 1 adjoint fermions through the substitution

ψTþϵψ− →
1

Nf!
detfgψT

þfϵψ−g ð120Þ

in Eq. (102) with all other labels unchanged. As a result,
the fermionic terms are SUðNfÞ × Z4Nf

flavor symmetric.
The UAð1Þ symmetry for adjoint QCD is explicitly
broken by the instanton-dyon liquid model. The flavor
symmetry is further broken spontaneously through
SUðNfÞ × Z4Nf

→ OðNfÞ with the appearance of a
condensate,

hψT
þfϵψ−gi ¼ Σδfg; ð121Þ
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the dual of the chiral condensate. Equation (121) is
explicitly symmetric under the transformations ψ�f →
Ofgψ�g and ψ̄�f → ψ̄�gOT

gf.
A rerun of the preceding arguments yields the instanton

dyon plus adjoint fermions pressure for arbitrary Nf,

PDþF ¼−
8π2f2Σ2Nf

T3

�
e2b

ν
þ e−2b

ν̄

�
þ 8πfΣNfðνebþ ν̄e−bÞ− 4NfΛΣ

þNf

Z
d3p
ð2πÞ3 lnð1þΛ2 ~Tþ2ÞþPloopðNfÞ: ð122Þ

The last contribution is briefly detailed in Appendix F and
is seen to be dominated by the first term in the expansion. If
we were to define ~nΣf ¼ 8πfΣNf=T3, then the results from
Eq. (122) for arbitrary Nf map onto those from Eq. (106)
for Nf ¼ 1, now with

PDþF

T3
¼ −

~n2Σf
8

�
e2b

ν
þ e−2b

ν̄

�
þ ~nΣfðνeb þ ν̄e−bÞ

− 4Nf
~Σ ~ΛþπNf

Z
~p2d ~p lnð1þ ~Λ2FÞ

−
4π2

3
ð1þ NfÞν2ν̄2: ð123Þ

The ground state is center symmetric for a sufficiently
dense instanton-dyon liquid, provided that chiral symmetry
is spontaneously broken with Σ ≠ 0, and symmetric in the
dilute limit. Here, ~Λ and ~Σ follow from the extrema of
Eq. (123) as coupled gap equations,

~Σ ¼ π

2

Z
~p2d ~p

~ΛF

1þ ~Λ2F

~Λ ~Σ ¼ −
~n2Σf
16

�
e2b

ν
þ e−2b

ν̄

�
þ ~nΣf

4
ðνeb þ ν̄e−bÞ: ð124Þ

The solutions ~Σðb; νÞ and ~Λðb; νÞ to Eq. (124) should be
inserted back in Eq. (123) to maximize numerically the
pressure in the parameter space ν, b.
In Fig. 4, we show the numerical results for the dimen-

sionless pressure (dotted middle line), Polyakov line (solid
line), and chiral condensate (dotted upper line) with increas-
ing 8πf=T2 (decreasing temperature), for Nf ¼ 1 in the
symmetric phase. The breaking of chiral symmetry is lost for
8πf=T2 < 2.6, which causes all topological effects to vanish
in the chiral limit. For Nf > 2, Eqs. (123) and (124) do not
support a solution that breaks chiral symmetry.
Finally, the restoration of chiral symmetry can be

estimated analytically from Eqs. (123) and (124), by
dropping the first or core contribution and noting that
the resulting expression maps onto the one derived for

fundamental quarks in Ref. [2] [see Eq. (80) there]
with NcNf. This mapping shows that Eqs. (123) and (124)
do not sustain a chiral condensate for NcNf=Nc ≥ 2, or
Nf ≥ 2 Majorana quarks.

G. Critical temperature estimates

For general Nf, we can estimate the critical temperature
for the restoration of center symmetry TD, by neglecting
both the core and fermionic contributions in Eq. (123), i.e.,

PDþF

T3
→ ~nΣfðνeb þ ν̄e−bÞ − 4π2

3
ð1þ NfÞν2ν̄2: ð125Þ

An estimate of the deconfining temperature TD follows by
balancing the first contribution in the center-symmetric
phase with b ¼ 0 and ν ¼ ν̄ ¼ 1=2 against the last one-
loop contribution stemming from the adjoint free gluons
and quarks. The result is

nΣf
T3
D
≈
π2

12
ð1þ NfÞ: ð126Þ

In the presence of adjoint quarks, the fundamental string
tension does not vanish, σ=T2 ¼ nΣf=T3. For Nc ¼ 2 QCD
with Nf adjoint Majorana quarks, the ratio of the critical
temperature for center-symmetry loss normalized by the
fundamental string tension decreases with Nf as

TDffiffiffi
σ

p ≈
2

π

�
3

1þ Nf

�1
2

: ð127Þ

It would be useful to check Eq. (127) against current lattice
simulations with adjoint quarks.
The estimate of the chiral symmetry restoration temper-

ature for the chirally broken phase with Nf < 2 is more
subtle. For that, we recall that the delocalization of the
adjoint zero modes generates the so-called zero-mode
zone with a finite eigenvalue density ρðλÞ normalized to

2.8 3.0 3.2 3.4 3.6 3.8 4.0

8

T2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Dimensionless pressure (middle dotted line), Polyakov
line (solid line), and chiral condensate (upper dotted line) vs
8πf=T2 (decreasing temperature) for Nf ¼ 1.
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the 4-volume V3=T. The details of the interactions in the
small virtuality λ limit do not matter [31], as the distribution
follows a Wigner semicircle,

ρðλÞ ¼ 4nΣf
ðλmaxðTÞ=TÞ

�
1 −

λ2

λ2maxðTÞ
�1

2

: ð128Þ

The normalization is fixed by the overall number of zero
modes in the instanton-dyon liquid. Here, 2λmaxðTÞ is the
size of the zero-mode zone at finite T. Combining Eq. (119)
with the Banks-Casher relation [32], we have

j ~nΣf − ~n2Σfj ≈ πρð0Þ; ð129Þ

which fixes xðTÞ ¼ λmaxðTÞ=ðπTÞ as

~nΣf ≈ 1 −
2

xðTÞ : ð130Þ

The chiral transition temperature TC is fixed by the quarks
turning massless or Σ → 0, which implies that the instan-
ton-dyon density ~nΣf → 0, as all topological contributions
are suppressed. From Eq. (130), this occurs when

TC ¼ λmaxðTCÞ
2π

: ð131Þ

We now note that at the chiral transition temperature the
quark hopping stalls into topologically neutral molecules.
As a result, ~T in Eq. (49) becomes banded, and λþðTCÞ is
comparable to the strength of the nearest neighbor
hopping (67)

λmaxðTCÞ ¼ jTþðxIJ ¼ 0Þj

¼
����
Z

d3p
ð2πÞ3 T

þðpÞ
���� ¼ κπTCj2νC − 1j; ð132Þ

with κ ¼ 0.557. Using Eqs. (131) and (132), it follows that
chiral restoration occurs when the holonomy reaches
νC ¼ 1=2þ 1=κ ¼ 0.3 (mod 1), and in general TC > TD.
Using the quenched effective potential discussed earlier

for an estimate, this corresponds to an instanton-dyon
density for chiral restoration ~nC ¼ 0.48, which is surpris-
ingly close to the quenched instanton-dyon density for
the breaking of center symmetry ~nD ¼ 0.56. Using the
instanton-dyon density for the Nc ¼ 2 and Nf ¼ 1

Majorana quark

~nðTÞ ≈ Ce−π=αsðTÞ ≈ C

�
0.36TD

T

�21
6

; ð133Þ

we find that

�
TC

TD

�
≈
�
0.56
0.48

� 6
21

≈ 1; ð134Þ

which is much smaller than the ratio reported in lattice
simulations [15].

VII. CONCLUSIONS

We have presented a mean-field analysis of key char-
acteristics of the instanton-dyon liquid with adjoint light
quarks. The index theorem on S1 × R3 shows that dis-
sociated instanton dyons support four antiperiodic zero
modes that localize on the M-instanton dyon in the center-
asymmetric phase with ν > 1=2, or alternatively on the
L-instanton dyon for ν < 1=2. These two cases are dual to
each other, so only one can be considered. In the symmetric
phase, the four antiperiodic zero modes are shared equally
(two on each) by the L- and M-instanton dyons. We have
used the ADHM construction to derive the explicit form of
these zero modes.
We have detailed the construction of the partition

function for the dissociated KvBLL calorons with Nf light
adjoint quarks, including the classical streamline inter-
actions and the quantum Coulomb interactions induced by
the coset manifold. We have retained a core interaction
between the like instanton dyon and antidyons to distin-
guish them from perturbative fluctuations. By a series of
fermionization and bosonization techniques, we have
mapped this interacting many-body system on a three-
dimensional effective theory. We have presented a
mean-field analysis of the dense phase that exhibits both
confinement with center symmetry and spontaneously
broken chiral symmetry.
We have shown that in such an approximation the

deconfinement with breaking of center symmetry and
the restoration of chiral symmetry occur about simulta-
neously. Furthermore, the latter is always unbroken for
Nf ≥ 2. In contrast, exploratory lattice simulations [15]
have shown that SUcð2Þ gauge theory with Nf ¼ 0, 1, 4
adjoint Majorana fermions still supports chiral symmetry,
which may point to a major shortcoming of the mean-field
analysis. A numerical simulation of the dyon-liquid model
would be welcome.
The mean-field analysis we have presented also has a

major shortcoming as the instanton-dyon liquid is diluted.
It does not account for the molecular pairing of the
instanton dyon-antidyon configurations through light
adjoint pairs. We have presented a qualitative argument
for the chiral transition using the assumption of pairing, but
a more reliable analysis is likely numerical as the analysis
goes beyond the mean-field results presented here.
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APPENDIX A: PERIODIC ZERO MODES

In this Appendix, we briefly detail the ADHM construct
as applied to the periodic adjoint zero modes. This is partly
a check on our general ADHM construction. For that, we
note that the Grassmanian matrix for periodic adjoint
fermions simplifies to

Mðz; z0Þ ¼ δðz − z0ÞM: ðA1Þ

A rerun of the preceding arguments yields the periodic zero
modes

λmðrÞ ¼
1

shðω0rÞ
ðaðω0rÞσm þ bðω0rÞσ · r̂σmσ · r̂ÞϵM

−ϵðMTaðω0rÞσm þMTbðω0rÞσ · r̂σmσ · r̂ÞTÞ:
ðA2Þ

For ω0r → ∞, we have a ≈ b ≈ −sinhðω0rÞ=ðω0rÞ2 so that

λmðr → ∞Þ ¼ 1

r2
ðσm þ σ · r̂σmσ · r̂Þχ

¼ 2

r2
rmσ · r̂χ; ðA3Þ

with χ ¼ ϵM. Equations (A3) are in agreement with the
known periodic zero modes in the hedgehog gauge [6,22].

APPENDIX B: ZERO MODES IN A BPS DYON
WITHOUT ADHM

In this Appendix, we explicitly derive the Dirac equation
for antiperiodic adjoint fermions in the state of lowest total
angular momentum, without using the ADHM construc-
tion. We will use the equations to investigate the nature of
the fermionic zero mode at the origin and asymptotically.
Without the ADHM construct, the equations are only
solvable numerically.
Without loss of generality, we will consider the M-dyon

gauge configuration given by

ðAa
4; A

a
i Þ ¼ ðr̂aϕðrÞ; ϵaijr̂jAðrÞÞ ðB1Þ

with the boundary values

Aðr → 0Þ ¼ 0 Aðr → ∞Þ ¼ −
1

r
ϕðr → 0Þ ¼ 0 ϕðr → ∞Þ ¼ 2πTν: ðB2Þ

In the adjoint representation of SUcð2Þ, the color matrices
are Ta

mn ¼ iϵamn. In the chiral basis, the adjoint Dirac
fermions will be sought in the form

Ψ≡
�
Ψþ

m

Ψ−
m

�
: ðB3Þ

The Dirac equation (1) for the two lowest Matsubara
frequencies �ω0 is given by

ðiσ · ∇δnm þ iðσnr̂m − σmr̂nÞAðrÞ
� ϵnamr̂aϕðrÞÞΨ�

m ¼ iω0Ψ�
n : ðB4Þ

To solve Eq. (B4) explicitly, we decompose the vector-
valued chiral components in Eq. (B3) using the indepen-
dent vector basis [33]

ð1; ~σ · r̂Þðr̂; ð~r × ~pÞ; ð~r × ~pÞ × r̂Þ; ðB5Þ

which is seen to commute with the total angular momentum
~J ¼ ~lþ ~s. We seek the zero modes in the state of zero
orbital angular momentum or J ¼ 1=2. Therefore,

Ψ�
mð~rÞ≡ r̂mΘ�

3 þ ð~r × ~pÞmðσ · r̂ÞΘ�
4

þ r̂mσ · r̂Θ�
1 þ iðð~r × ~pÞ × r̂Þmðσ · r̂ÞΘ�

2 ðB6Þ

with the scalar radial spinor functions

Θ�
i ≡X

s¼�
F�
i ðr; sÞjsi: ðB7Þ

Inserting Eqs. (B6) and (B7) into Eq. (B4) yields

�
d
dr

þ 2

r

�
F�
1 − 2ρF�

2 ¼ ω0F�
3�

d
dr

þ 1

r
� ϕ

�
F�
2 − ρF�

1 ¼ ω0F�
4

d
dr

F�
3 þ 2ρF�

4 ¼ ω0F�
1�

d
dr

þ 1

r
� ϕ

�
F�
4 þ ρF�

3 ¼ ω0F�
2 : ðB8Þ

Here, ρ≡ hA4i þ 1=r, with the label s subsumed. Using
the asymptotics, it is readily found at infinity that

F�
1;3ðr → ∞Þ ¼ c1e−ω0r þ c2eþω0r

F�
2;4ðr → ∞Þ ¼ c3e−ω0ð1�2νÞr þ c4eþω0ð1∓2νÞr; ðB9Þ

while at the origin, we have

F�
3;4ðr → 0Þ ¼ b3rþ b4

1

r2
→ b3r

F�
1;2ðr → 0Þ ¼ b1 þ b2

1

r3
þ b3r2

þ b4
1

r
→ b1 þ b3r2: ðB10Þ

For Fþ with fixed s ¼ �, we always have two (b1;3) out
of four (b1;2;3;4) total dimensions of solutions, which are
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normalizable at zero. We have two (c1;3) out of four
(c1;2;3;4) total dimensions of solutions, which are normal-
izable at infinity for ν ≤ 1

2
and 3 (c1;3;4) for ν > 1=2. We

conclude that for ν > 1
2
there exists at least one zero mode.

For ν < 1
2
, the existence cannot be proven on general

grounds, and a numerical analysis is required. However,
their existence is supported by the index theorem reviewed
earlier. For ν > 1=2, the dominant contribution at large
distances stems from the asymptotic in Eq. (B9) or
c4e−ð2ν−1Þω0r. As ν → 1=2, it asymptotes a constant which
is not square integrable. This analysis for ν ¼ 1=2 requires
more care, as we discussed earlier in the ADHM
construction.

APPENDIX C: ADJOINT FERMIONS
IN A KVBLL CALORON

The adjoint fermions in the classical background of
KvBLL calorons can be constructed using the general
ADHM construct presented above. For an alternative
derivation using the replica trick for adjoint fermions in
calorons, we refer to Ref. [23]. We recall that the BPS dyon
results follow by taking various limits. The matrix of
ADHM data is more involved in a KvBLL caloron. For
the SUð2Þ KvBLL caloron with a holonomy P∞ ¼ ei2πω·σ

and ω ¼ ν=2β → ν=2, we have for the quaternionic blocks

λðzÞ ¼ ðPþδðz − ωÞ þ P−δðzþ ωÞÞq

Bðz; z0Þ ¼ δðz − z0Þ
�

1

2πi
∂
∂z0 þ Aðz0Þ

�
; ðC1Þ

with P� as projectors and

AðzÞ ¼ χ½−ω;ω�ðzÞ þ q̄ω · σqðχ½−ω;ω�ðzÞ − 2ωÞ: ðC2Þ

The periodicity of the gauge field Amðx4 þ βÞ ¼ Amðx4Þ
(modulo a gauge transformation) and the antiperiodicity of
the adjoint fermions yield

cm ¼ −e2πiω·σcm−1

c̄m ¼ −c̄me−2πiω·σ

Mmn ¼ −Mm−1;n−1: ðC3Þ

Their Fourier transforms are

cðzÞ ¼
�
Pþδ

�
z − ωþ 1

2

�
þP−δ

�
zþ ωþ 1

2

��
c

c̄ðzÞ ¼ c̄

�
Pþδ

�
−z − ωþ 1

2

�
þP−δ

�
−zþ ωþ 1

2

��

Mðz; z0Þ ¼ δ

�
z − z0 þ 1

2

�
Mðz0Þ: ðC4Þ

Inserting Eq. (C4) in the adjoint zero mode constraint gives

1

2πi
d
dz

MðzÞ þ
�
ATðzÞ − AT

�
zþ 1

2

��
MðzÞ

− ϵ2q̄Pþcδ
�
zþ ωþ 1

2

�
− ϵ2q̄P−cδ

�
z − ωþ 1

2

�
− qTPTþc̄Tδðzþ ωÞ − qTPT

−c̄Tδðz − ωÞ ¼ 0. ðC5Þ

The explicit form of the zero modes is

ðλαÞabϕðxÞ ¼
Z þ1

2

−1
2

dzdz0ðð−cað−zÞ þ u†aβðzþ 1=2Þ

× ðϵMÞβðzÞÞfðz; z0Þuαbðz0Þ
− u†aβðzÞϵαβfðz; z0Þð−c̄bðz0 þ 1=2Þ
þMγðz0Þuγbðz0ÞÞÞ ðC6Þ

λmϕðxÞ ¼
Z þ1

2

−1
2

dzdz0 × ððuðz0Þf⋆ðz0; zÞσmð−cð−zÞ

þ u†ðzþ 1=2ÞðϵMÞðzÞÞ − ϵðð−c̄ðz0 þ 1=2Þ
þMTðz0Þuðz0ÞÞσmfðz; z0Þu†ðzÞÞTÞ; ðC7Þ

with ϕðxÞ ¼ 1þ u†ðxÞuðxÞ. Here, the m summation and z
integration are subsumed. The x argument in uðx; zÞ has
been omitted for convenience.

1. Special case ν= 1
2

For the center-symmetric case with ω ¼ 1=2ν ¼ 1=4, we
set ω · σ ¼ τ3=4 and q ¼ iρτ3 and identify the coordinates
of the constituents M, L of the KvBLL caloron as

r ¼ x · σ þ πρ2τ3=2

s ¼ x · σ − πρ2τ3=2; ðC8Þ

in terms of which

AðzÞ − x ¼ −isχ½−1=4;1=4�ðzÞ − irχ½1=4;3=4�ðzÞ
≡ −iRðzÞ: ðC9Þ

In this case, the equation for M simplifies,

ϵM ¼ eπρ
2τ3zM0 − 1=4 < z < 1=4

ϵM ¼ e−πρ
2ðz−1=2ÞM0 þ 1=4 < z < 3=4; ðC10Þ

and c̄T ¼ −ϵc. The C zero mode and M zero mode
decouple, with, respectively,

λCmϕðxÞ ¼
Z þ1

2

−1
2

dzfð3=4; zÞuðx; zÞσmPþc

þ
Z þ1

2

−1
2

dzfð1=4; zÞuðx; zÞσmP−c ðC11Þ
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and

λMmϕðxÞ ¼
Z þ1

2

−1
2

fðz1; z2Þuðx; z2Þσmu†ðx; z1 þ 1=2Þ

× ϵðMðz1Þ þMð−z1 − 1=2ÞÞdz1dz2: ðC12Þ

Here, uðzÞ is the solution to the inhomogeneous and linear
differential equation with piecewise potential

�
1

2πi
∂
∂zþ iRðzÞ − x4

�
uðx; zÞ

¼ −iτ3ρðPþδð−zþ 1=4Þ þ P−δð−z − 1=4ÞÞ; ðC13Þ

with the projectors P� ¼ ð1� τ3Þ=2. The explicit solutions
are

uðx;zÞ¼e2πix4ze2πszB1ðxÞ −1=4<z<1=4

uðx;zÞ¼e2πix4ðz−1=2Þe2πrðz−1=2ÞB2ðxÞ þ1=4<z<3=4

ðC14Þ

and satisfy the completeness relations

e−πix4=2e−πr=4B2ðxÞ − eπix4=2eπs=4B1ðxÞ ¼ þ2πρPþ
e−πix4=2e−πs=4B1ðxÞ − eπix4=2eπr=4B2ðxÞ ¼ −2πρP−:

ðC15Þ

Here, B1;2ðxÞ are defined in Appendix C. The solutions
obey the quasiperiodicity conditions

uðx4 þ 1;x; zÞ ¼ e2πizuðx4;x; zÞe−πτ3=2
B1ðx4 þ 1;xÞ ¼ B1ðx4;xÞe−πτ3=2
B2ðx4 þ 1;xÞ ¼ −B2ðx4;xÞe−πτ3=2: ðC16Þ

With the above in mind, the explicit form of the C zero
mode is

λCmϕðxÞ ¼ ðf1 þ ŝ · σf2ÞB1σmPþc

þ ð ~f1 þ ŝ · σ ~f2ÞB1σmP−c

þ ðg1 þ r̂ · σg2ÞB2σmPþc

þ ð~g1 þ r̂ · σ ~g2ÞB2σmP−c; ðC17Þ

where we have set s≡ ω0j~sj and r ¼ ω0j~rj. Also, we have

srψðs; r; x4Þf1ðx4; r; sÞ

¼ e−
1
2
iπx4

4s
ðsþ sinhðsÞÞ

×

�
sinh

�
s
2

�
ðd sinhðrÞ þ re2iπx4 þ r coshðrÞÞ

þ s sinhðrÞ cosh
�
s
2

��
; ðC18Þ

with ψ given below, d ¼ πρ2, and

srψðs; r; x4Þf2ðx4; r; sÞ

¼ −
e−

1
2
iπx4

4s
ðs − sinhðsÞÞ

×

�
− cosh

�
s
2

�
ðd sinhðrÞ þ rð−e2iπx4Þ þ r coshðrÞÞ

−s sinhðrÞ sinh
�
s
2

��
; ðC19Þ

with the following identities among the f, ~f, g, ~g functions:

~f1 ≡ f1ð−x4;xÞ; ~f2 ≡ −f2ð−x4;xÞ
g1 ≡ ~f1ðx4; s; rÞ; g2 ≡ ~f2ðx4; s; rÞ
~g1 ≡ g1ð−x4;xÞ; ~g2 ≡ −g2ð−x4;xÞ: ðC20Þ

2. Adjoint zero mode for Dyon from KvBLL caloron

To isolate the adjoint zero modes on the constituents of
the KvBLL caloron, we take the limit d, j~rj → ∞ but with
fixed s, which means that r → ∞ as shown in Fig. 5. Most
of the expressions simplify. Specifically, we have

f1ðxÞ ¼
e−

1
2
iπx4

2s2
ðsþ sinhðsÞÞ sinhðs

2
Þ

ðcoshðsÞ þ cos θ sinhðsÞÞ

f2ðxÞ ¼
e−

1
2
iπx4

2s2
ðs − sinhðsÞÞ coshðs

2
Þ

ðcoshðsÞ þ cos θ sinhðsÞÞ ; ðC21Þ

with s≡ ω0j~sj, cos θ ¼ ~s · ẑ, and

B1 ¼ 4πρð− cosðπx4ÞÞ
�
cosh

�
s
2

�
τ3 þ sinh

�
s
2

�
ŝ

�

þ ieπix4τ3−
iπ
2
τ3x4 sinðπx4Þ

ðcoshðs
2
Þ þ sinhðs

2
Þŝτ3ÞÞ

coshðsÞ þ cos θ sinhðsÞ
B2 → 0; ðC22Þ

with also
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ψ ¼ erðcoshðsÞ þ cos θ sinhðsÞÞ

ϕ ¼ 2d coshðsÞ
sðcoshðsÞ þ cos θ sinhðsÞÞ : ðC23Þ

Inserting Eqs. (C21)–(C23) into Eq. (C17) yields the
asymptotic zero mode on the localized instanton dyon,

s coshðsÞðcoshðsÞ þ cos θ sinhðsÞÞλCm
¼ e−

iπx4
2 ðsBþ þ sinhðsÞB−Þe−

πiτ3x4
2 BσmPþc

þ e
iπx4
2 ðsB− þ sinhðsÞBþÞe−

πiτ3x4
2 BσmPþc; ðC24Þ

with

B� ¼ sinh

�
s
2

�
� ŝ · σ cosh

�
s
2

�

B ¼ cosh
�
s
2

�
τ3 þ sinh

�
s
2

�
ŝ · σ: ðC25Þ

3. String gauge

The dyon reduced zero mode from the KvBLL caloron
(C24) carries a θ dependence contrary to Eq. (47).
Equation (C24) is expressed in the quasistring gauge,
while Eq. (47) is in the hedgehog gauge. To express
Eq. (C24) in the string gauge, we first gauge transform
it using g ¼ ei2πω·τ to obtain

s sinhðsÞðcoshðsÞ þ cos θ sinhðsÞÞλb
¼ e−iω0x4ðPþcÞaðsBþBþ sinhðsÞB−BÞαb
þ eiω0x4ðP−cÞaðsB−Bþ sinhðsÞBþBÞαb: ðC26Þ

In the same gauge, the dyon gauge field reads

A4 ¼ τ3∂3 ln κ þ κτ⊥ · ∂⊥ζ þ 2ωτ3

Ai ¼ τ3ϵij3∂3 ln κ þ κτ⊥ · ϵ⊥ij∂jζ

þ 4πωθκðδi1τ2 − δi2τ1Þ ðC27Þ

with

ζ ¼ 4πωr
sinhð4πωrÞ

ζκ ¼ 1

coshð4πωrÞ þ cosðθÞ sinhð4πωrÞ ; ðC28Þ

which is still not in the string gauge. To bring the
configuration (94) to the string gauge, we make use of

U ¼ coshðs=2Þτ3 þ sinhðs=2Þσ · sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðsÞ þ cosðθÞ sinhðsÞp ; ðC29Þ

which is unitary.

4. Definitions

The matrices B1;2 and the function ψ are in agreement
with those used in Ref. [6]. We quote them here for
completeness. Specifically,

B1 ¼ b12b11e−i2πxþ4ωτ3U†=ψ

B1 ¼ b22b21e−i2πxþ4ωτ3U†=ψ ; ðC30Þ

with U a unitary color rotation and

b11 ¼ i2πρ

�
cosh1

2
þ r̂τ3sinh1

2

�
eiπx4τ3

b21 ¼ i2πρ

�
cosh1

2
þ ŝτ3sinh1

2

�
eiπx4τ3

b12 ¼
�
− cosðπx4Þ

�
cosh1

2
sinh1

2
r̂þcosh1

2
sinh1

2
r̂ s

�

þ i sinðπx4Þ
�
cosh1

2
cosh1

2
þ ŝ r̂ sinh1

2
sinh1

2

��

b22 ¼
�
− cosðπx4Þ

�
cosh1

2
sinh1

2
r̂þcosh1

2
sinh1

2
r̂ s

�

þ i sinðπx4Þ
�
cosh1

2
cosh1

2
þ r̂ ŝ sinh1

2
sinh1

2

��
ðC31Þ

and

FIG. 5. L-M dyon at a distance d ¼ πρ2 in a KvBLL caloron.
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ψ ≡ − cosð2πx4Þ þ cosh coshþ ~s · ~r
sr

sinh sinh ðC32Þ

with the short notation

sinh1
2
¼ sinhðω0νsÞ

cosh1
2
¼ coshðω0νsÞ

sinh1
2
¼ sinhðω0ð1 − νÞrÞ

cosh1
2
¼ coshðω0ð1 − νÞrÞ: ðC33Þ

APPENDIX D: FOCK CONTRIBUTION

In the main text, the mean-field analysis was presented
using the so-called Hartree approximation. Here, we show
how the Fock or exchange terms can be included. We first
omit the cross interaction in

hψTϵψðxÞψ̄Tϵψ̄ðyÞieiϕ†
1
ðxÞþiϕ1ðyÞ ðD1Þ

can be retained by defining the 2 × 2 propagator

hðψðxÞ; ψ̄ðxÞÞðϵψTðyÞ;−ϵψ̄TðyÞÞTi ¼ Sðx − yÞ ðD2Þ

in terms of which the effective action S is a functional
of (D2)

−S½S;b; ν� ¼ TrðS−1
0 SÞ − Tr lnS

þ 8πfM

�
TrS
2

�
2

νeb þ 8πfLν̄e−b

−
16π2f2M

T3

�
TrS
2

�
4 1 − e−V0

ν
e2b

−
16π2f2L
T3

1 − e−V0

ν̄
e−2b þ 16π2f2M

T3
e−V0e2b

×
Z x0

2ω0ν

0

d3xTrðSþ
12ðxÞSþ

21ð−xÞÞ

× TrðS−
12ðxÞS−

21ð−xÞÞ: ðD3Þ

Here, Sij are the pertinent entries in Eq. (D2). The two gap
equations are now extrema of δS=δSij ¼ 0. If we were to
approximate the term TrðSSÞ with free propagators, then
the gap equations simplify, and we have for the dyonic part
of the pressure

PD → 8πfMνΣ2e2b þ 8πfLν̄e−b

−
16π2f2M

T3
Σ4

1 − e−V0

ν
e2b −

16π2f2L
T3

1 − e−V0

ν̄
e−2b

þ 16π2f2M
T3

e−V0e2b
Z x0

2ω0ν

0

d3rTrðTðrÞTð−rÞÞ

− 4ΛΣ: ðD4Þ

APPENDIX E: ONE-LOOP APPROXIMATION

An alternative to the mean-field analysis is based on the
use of the one-loop fermionic contribution only. The one-
loop result is then used to compute the contractions induced
by the second cumulant contribution stemming from the
core. The result for the constraint equation is

Λðb; νÞ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
fLfM

p
ðνeb þ ν̄e−bÞ; ðE1Þ

and the gap equation is

2 ~ΣðΛÞ ¼ π

Z
~p2d ~p

~ΛF

1þ ~Λ2F
: ðE2Þ

To one loop, the dressed fermionic propagator is

S−1 ¼ ~G−1 þ Λðb; νÞϵ

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA: ðE3Þ

Equations (E1)–(E3) can be used to reduce the contractions
stemming from the second cumulant of the core, as we
detailed in Sec. V B. The result is an effective action solely
dependent on b, ν, that is readily analyzed in the weak
coupling and strong screening limits. The results of this
analysis will be reported elsewhere.

APPENDIX F: HOLONOMY POTENTIAL

For completeness, the instanton-dyon pressure with
hopping fermions has to be supplemented with the one-
loop perturbative contributions from the adjoint periodic
gluons and antiperiodic fermions for a finite holonomy ν
[17]. The result for Nf massless adjoint quarks is

P1loopðNfÞ ¼
4T3

π2
X∞
n¼1

ð1 − Nfð−1ÞnÞ
TrALn

n4

P1loopð1Þ ¼
16T3

π2
X
n¼0

cosð4nþ 2Þπν
ð2nþ 1Þ4 ; ðF1Þ

with L ¼ ei2πνT3 . The first contribution is from the
adjoint gluons, while the second contribution is from the
antiperiodic adjoint fermions. The perturbative minima of
Eq. (F1) at ν ¼ 0, 1 yields a finite Polyakov line or an
asymmetric (nonconfining) ground state. Note that for
Nf ¼ 1 periodic adjoint fermions ð−1Þn → 1 in
Eq. (F1), and the bosonic and fermionic contributions
cancel out. This result is expected from supersymmetry.
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APPENDIX G: CORE INTERACTION REVISITED

All of our analyses so far were carried out using the core
interactions VM;L in Eq. (51). If we were to remove them by
setting b ¼ 0 and consider only the induced repulsive
interactions from the determinantal interactions in Eq. (49),
a rerun of our preceding arguments yields Eq. (123) in the
form

PDþF

T3
¼ þð1 − NfÞ ~Λ

� ~Λ

nðνν̄Þ12
� 1

Nf−1

þ πNf

Z
~p2d ~p lnð1þ ~Λ2FÞ

−
4π2

3
ð1þ NfÞν2ν̄2; ðG1Þ

with n ¼ 2πfTNf=T3. We note that in deriving Eq. (G1)
we have enforced the constraints (99) only after eliminating
the w0 s by variation. For Nf ¼ 1, the first contribution in

Eq. (G1) is absent, and ~Λ ¼ nðνν̄Þ12. For Nf > 1, ~Λ is fixed
by the extremum of Eq. (G1).
In Fig. 6, we display Eq. (G1) forNf ¼ 1, which shows a

first-order transition from a center symmetric for n > 0.5
(low temperature) to a center asymmetric for n < 0.5 (high
temperature). The center-symmetric phase spontaneously
breaks chiral symmetry with the chiral condensate shown in
Fig. 7. Chiral symmetry is restored when center symmetry
is lost. We have checked that this behavior persists for
all Nf > 1, in contrast to the case with the core interaction
discussed above, which does not support a chiral con-
densate for Nf > 1.
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