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Light adjoint quarks in the instanton-dyon liquid model. IV.
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We discuss the instanton-dyon liquid model with N ; Majorana quark flavors in the adjoint representation
of color SU,.(2) at finite temperature. We briefly recall the index theorem on S' x R? for twisted adjoint
fermions in a Bogomolny-Prasad-Sommerfeld (BPS) dyon background of arbitrary holonomy and use the
Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction to derive the adjoint antiperiodic zero modes. We
use these results to derive the partition function of an interacting instanton-dyon ensemble with N, light
and antiperiodic adjoint quarks. We develop the model in details by mapping the theory on a three-
dimensional quantum effective theory with adjoint quarks with manifest SU(N ;) x Zyy, symmetry. Using
a mean-field analysis at weak coupling and strong screening, we show that center symmetry requires the
spontaneous breaking of chiral symmetry, which is shown to only take place for Ny = 1. For a sufficiently
dense liquid, we find that the ground state is center symmetric and breaks spontaneously flavor symmetry
through SU(Ny) x Zyy P O(Ny). As the liquid dilutes with increasing temperature, center symmetry and
chiral symmetry are restored. We present numerical and analytical estimates for the transition temperatures.
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I. INTRODUCTION

This work is a continuation of our earlier studies [1-3] of
the gauge topology in the confining phase of a theory with
the simplest gauge group SU(2). We suggested that the
confining phase below the transition temperature is an
“instanton dyon” (and antidyon) plasma which is dense
enough to generate strong screening. The dense plasma is
amenable to standard mean field methods.

The key ingredients in the instanton-dyon liquid model are
the so-called Kraan-van-Baal-Lee-Lu (KvBLL) instantons
threaded by finite holonomies [4] split into their constituents,
the instanton dyons. Diakonov and Petrov [5,6] have shown
that the KvBLL instantons dissociate in the confined phase
and recombine in the deconfined phase, using solely the BPS
protected moduli space. The inclusion of the non-BPS-
induced interactions, through the so-called streamline set of
configuration, is important numerically, but it does not alter
this observation [7]. The dissociation of instantons into
constituents was advocated originally by Zhitnitsky and
others [8].

Unsal and collaborators [9] proposed a specially tuned
setting in which instanton constituents (they call instanton
monopoles) induced confinement even at exponentially
small densities, at which the semiclassical approximations
is parametrically accurate. The key feature of this setting is
the cancellation of the perturbative Gross-Pisarski-Yaffe
holonomy potential. More specifically, in Ref. [9], the
nontrivial center-symmetric phase emerges in the dilute
vacuum at weak coupling for periodic boundary conditions
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of adjoint quarks where the instanton dyons combine into
pairs of “bions.” However, in the present work as we detail
below and also in the work presented in Refs. [5,6], the
nontrivial center-symmetric phase at low temperatures
emerges for antiperiodic boundary conditions for adjoint
quarks where the instanton dyons form a dense liquid.

The KvBLL instantons fractionate into constituents with
fractional topological charge 1/N,. Their fermionic zero
modes do not fractionate but rather migrate between
various constituents [10]. This interplay between the zero
modes and the constituents is captured precisely by the
Nye-Singer index theorem [11]. For fundamental fermions,
we have recently shown in the mean-field approximation
that the center symmetry and chiral symmetry breaking are
intertwined in this model [2]. The broken and restored
chiral symmetry correspond to a center-symmetric or
center-asymmetric phases, respectively. Similar studies
were developed earlier in Refs. [12-14].

In this work, we would like to address this interplay
between confinement and chiral symmetry breaking using
N, massless quarks in the adjoint representation of color
SU.(2). We will detail the nature of the flavor symmetry
group of the effective action induced by dissociated KvBLL
calorons in the confined phase and investigate its change into
an asymmetric phase at increasing temperature. Throughout,
we will use the words “center-symmetric phase” and
“confining phase” interchangeably, although their meanings
convey different requirements. The former is a weaker form
of confinement as it requires only that the the vacuum
expectation value (vev) of the Polyakov line is zero.
Whenever used below, these words would mostly refer to
the former.

© 2016 American Physical Society
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Lattice simulations with adjoint quarks [15] have shown
that the deconfinement and restoration of center symmetry
occurs well before the restoration of chiral symmetry.
These lattice results show that the ratio of the chiral to
deconfinement temperatures is large and decreases with the
number of adjoint flavors. More recent lattice simulations
have suggested instead a rapid transition to a conformal
phase [16]. Effective Polyakov-Nambu-Jona-Lasinio mod-
els with adjoint fermions have also been discussed
recently [17,18].

The organization of the paper is as follows. In Sec. II, we
briefly review the index theorem on S' x R* for an adjoint
fermion with twisted boundary condition. In Sec. III, we
detail the ADHM construction and use it to derive the
antiperiodic adjoint fermion in self-dual BPS dyons. In
Sec. IV, we develop the partition function of an instanton-
dyon ensemble with one light quark in the adjoint
representation of SU,.(2). By using a series of fermioniza-
tion and bosonization techniques, we construct the
three-dimensional effective action, accommodating light
adjoint quarks with explicit SU(N) x Z,y, flavor sym-
metry. In Sec. V, we discuss the nature of the confinement-
deconfinement in the quenched sector (Ny = 0) of the
induced effective action. In Sec. VI, we show that for a
sufficiently dense instanton-dyon liquid with light adjoint
quarks the three-dimensional ground state is still center
symmetric and spontaneously breaks SU(Ny) x Zyy, —
O(Ny) flavor symmetry. Center symmetry is broken, and
chiral symmetry is restored only in a more dilute instanton-
dyon liquid, corresponding to higher temperatures. Our
conclusions are summarized in Sec. VII. In Appendix A, we
check that our ADHM construct reproduces the expected
periodic zero modes for BPS dyons. In Appendix B, we
derive the pertinent equations for the antiperiodic adjoint
fermions in a BPS monopole without using the ADHM
method. In Appendix C, we detail the ADHM construction
for the antiperiodic zero modes in a KvBLL caloron. In
Appendix D, we detail the Fock correction to the mean-field
analysis. In Appendix E, we briefly outline the one-loop
analysis for completeness. In Appendix F, we quote the
general result for the one-loop contribution to the holonomy
potential with N, adjoint massless quarks.

II. INDEX THEOREM FOR TWISTED QUARKS

In this section, we revisit the general Nye-Singer index
theorem for fermions on a finite temperature Euclidean
manifold S!' x R® for a general fermion representation.
For periodic fermions, a very transparent analysis was
provided by Popitz and Unsal [19]. We will extend it
to fermions with arbitrary “twist” (phase), which is the
used for our case of antiperiodic fermions in the adjoint
representation.

A. Index

Consider chiral Dirac fermions on S' x R* interacting
with an anti-self-dual gauge field A through
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(D=y,D,=y,(0, +igT"A;))¥(x) =0 (1)

with twisted fermion boundary conditions (8 = 1/T)
U(xy + B, x) = eV (xy, X). (2)
Here, D satisfies
D'D =-D,D, +26"B,, = DD" +26"B,,.  (3)

For monopoles, the difference between the zero modes of
different chiralities in arbitrary R representation is captured
by the Calias index [20]
M
) @

Ig = lim MTr(¥Tys¥) = limT o ———
g = ImMTr(PTys V) = lim r<ys_D+M
with the trace carried over spin-color-flavor and space-time.
Using the local chiral anomaly condition for the isosinglet
axial current J;, = W'ysy, ¥ in Euclidean four-dimensional
space

. T -
0,05 = —2MTUTysT — e R Fo,F,, (5)
T

we can rewrite the index in the form

T ~
_— 2 5 — R a a
0= D g [ P )

with T the Casimir operator in the R representation. The
second contribution (I,) in (6) depends only on the gauge
field, but the first contribution ([;) in Eq. (6) depends on the
nature of the fermion field.

B. L, M Dyons

To evaluate (6) for twisted SU.(2) adjoint fermions in
the background of an anti-self-dual or M dyon, we follow
Popitz and Unsal [19] and write

(J3) = Trlxly'ysD )

1

e

1 1 )

— X).
-D*+M?*+26-B -D*+M?

(7)

In the M antidyon background, we have at asymptotic
spatial infinity

=Tr(x|ic*D, (

B, == ®)
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The compact character of A, on S' breaks SU.(2) —
Ab(SU.(2)). After expanding the ratio with B in (7), only
the first term carries a nonvanishing net flux in (6) on S?
thanks to the asymptotic in (8). If we recall that the trace
now carries a summation over the windings along S!
labeled by p and use the identity

(5]

Z sgn(x + p) =1 -=2x+2[x], 9)
p=—o0
we have
Iy =— MZ:] m i sgn<—2’#m+”(2p7+%)>
m=—1  p=—oo
——41/—1—2[1/—{—%}—2{—1/4—%} (10)

For color SU,(2), Tgx = 1/2 in the fundamental represen-
tation, and T; = 2 in the adjoint representation. For the
latter,

2 .
= Fo Fe =4y, (11)

h=-—;
1671'2 SIxR3 A

it follows that

% 4
Iy =1 lhb=2 —| =2]= —1. 12
M 1+2 |:I/+2ﬂ_:| |:U+27'[:| ( )

We note that Eq. (12) was originally derived in Ref. [18].
For the L dyon, we note that the surface contributions
satisfy 1;; = —I;,, since the asymptotics at spatial infinity

have the same A, with B,, of opposite sign. Therefore, we
obtain

whatever the twist ¢ as expected. For antiperiodic fermions
with ¢ = 7, we find that for v < % the L dyon carries four
antiperiodic zero modes, and the M dyon carries no zero
mode. For% < v < 1, the M dyon carries four zero modes,
and the L dyon carries no zero mode. The confining
holonomy with v = % is special as the zero modes are

shared equally between the L and M dyons, two on each.

III. ADHM CONSTRUCTION
OF ADJOINT ZERO MODES

In this section, we first remind the reader of the general
framework for the ADHM [4,6,21,22] construction for
adjoint fermions and then apply it to the special case of
adjoint fermions in the background field of BPS dyons. A
concise presentation of this approach can be found in
Refs. [6,22], the notations of which we will use below.
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Throughout this section, we will set the circle circum-
ference f = 1/T — 1, unless specified otherwise. We note
that our construction is similar in spirit to the one presented
in Ref. [23] for adjoint fermions in calorons but is different
in some details. In particular, it does not rely on the replica
trick and therefore does not double the size of the
ADHM data.

A. ADHM construction

The basic building block in the ADHM construction
is the asymmetric matrix of data A(x) of dimension
[N + 2k| x [2k| for an SU(N) gauge configuration of topo-
logical charge k. The null vectors of A(x) can be assembled
into a matrix-valued complex matrix U(x) of dimension
[N + 2k x [N], satisfying AU = 0 or specifically

A?MUM =0 (14)

with the ADHM label 4 = u + ia running over 1 < u < N,
0<i<k and a, a =1, 2 referring to the Weyl-Dirac
indices which are raised by ¢,. They are orthonormalized by
UU = 1y. In terms of Eq. (14), the classical ADHM gauge
field A,, with 1 < m <4 reads

A, = Uid,U. (15)

For k =0, it is a pure gauge transformation with a field
strength A, that satisfies the self-duality condition
A, = %A, For k#0, it still satisfies the self-duality
condition provided that [22]

N B
AN = 8f (16)

with fT = f a positive matrix of dimension [k] X [k].
The matrix of data is taken to be linear in the space-time
variable x,,,

Ajie = Aziq + b Xea
A¥ = g¢  x8ap! (17)

ai’

with the quaternionic notation x,, = x,(6,),
(1,,i0).

5 and 0, =

B. Antiperiodic adjoint fermion in general

Given the matrix of ADHM data as detailed above, the
adjoint fermion zero mode in a self-dual gauge configu-
ration of topological charge k reads [22]

Ay =UMfb,U - Ub,fMU, (18)

which can be checked to satisfy the Weyl-Dirac equation
provided that the Gassmanian matrix M = M}; of dimen-
sion [N + 2k] x [k] satisfies the constraint condition
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A*M + MA% = 0. (19)
To unravel the constraints (16) and (19), it is convenient

to rewrite the ADHM matrix of data A(x) in quaternionic
blocks through a pertinent choice of the complex matrices

a, b, 1.e.,
B ¢
2=, %0 ) (20
with
§=Cuia=(a)ui
B= (Bat'l)ij' (21)

In quaternionic blocks, the null vectors (14) are

U= ()
'__iﬁﬁ(uﬁ—;kﬁ*€> (22)

with the normalization ¢(x) = 1 + u' (x)u(x). To solve the
constraint condition (19), we also define

v= () =

and its conjugate M = (¢;,, M%) . Therefore, the solution
to (19) satisfies M* = M* and the new constraint between
the Grassmanians

[M®, By + ¢&; + &;c = 0. (24)

Finally, for periodic gauge configurations on S' x R3
such as the KvBLL calorons or BPS dyons, the index k is
extended to all charges in Z. It is then more convenient to
use the Fourier representations

@)=Y fre™

k=—00

B(Z,Z/): Z Bkl€2ﬂi(kz_lz/)’ (25)
k,l=—00

which are z periodic of period 1.

C. Antiperiodic adjoint fermion in a BPS dyon

For BPS dyons, the previous arguments apply [24]. In
particular, for the SU(2) M dyon on S' x R?, the preceding
construct is simplified. In particular, the quaternion blocks
in the ADHM matrix of data in Eq. (20) are simply

PHYSICAL REVIEW D 94, 105012 (2016)
¢=0
1 0

B(z.7) = 8(z—7)———. 2
(2.2) =8(z -2 2miv Oz (26)

The normalized null vector is readily found in the form

UZ(wﬁa) @)

with

2rvr 3 20 (xsmic)
,2) = - LZRZV(Xy4—10"X 28
u(x.2) (smh(2m)r)> ¢ (28)

with the vev v = v/f.
The constraint (16) following from the self-duality
condition translates to the equation for the resolvent

(ia% + vax4>2f (2.2) + Qmr)*f(z.2) = 8(z = 2).

(29)
The solution is

e2mivxy(z=2')

f(2.7) = ————

8nvr
+ coth(zvr) sinh(2zvrz) sinh(2zvr?’)

—tanh(zvr) cosh(2zvrz) cosh(2zvz')). (30)

(sinh(2zvr|z — 7'|)

We have explicitly checked that Eq. (30) satisfies the
identities used in the ADHM construction as noted in
Ref. [22]. In our case, these identities read

2 /_% dz, f(z.21) ((%)f(zl,z’) =—(z-2)f(z.7)

ol—

Q

e /) =250 [ daifez)TGD) G

with the definition f/f = e**(=%) and

- 2nvro - f’(% + 6%’)]((2’ ) = Qmvr)*f(z.7)

 2vmr
~ sinh(27vr)

+ o - #sinh(2zvr(z + 7))). (32)

(cosh(2zvr(z + 7))
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We note that the periodicity on S' translates to the
quasiperiodicities

u(xy + f.%,z) = ¥ u(x,, X, z)

flxg+p.%,2,7) = ¥ fxy,%,2,7). (33)

For the adjoint fermion zero mode, the Grassmanian
matrix also simplifies

M(z—z’):M(z’)5<z—z’j:2—ly). (34)

Inserting Eq. (34) in the constraint equation (24) and noting
that now ¢ = 0 yield

S M(z) =0~ M(z) = M* (33)

with normalized constant spinors M*. This allows us to
rewrite Eq. (34) in the explicit form
|
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1 1
Miz=7Z)=M"S§(z—-7 +— M$6lz-72—-—).
(z—=72) (z z +2u> + <z z 21/)
(36)

With the above in mind, the adjoint zero-mode solution
(18) in the SU.(2) BPS M dyon is simplified to

+3 1
i) == [ dea (v yem’ s (Z T Z') ol.7)

+3 1
- / " dzdz'ul(x, 2) f(z, )M Tu (x, 7F —)-

1 2v
2
(37)

For v > 1/2, the integrations can be undone. For that, we
translate the vectors in Eq. (37) to spinors using the
quaternionic form A = A%, 5,,,, and make Eq. (37) more
explicit. The result is

(%) = (f1(r)o, + fa(r)o - Fo,0 - F
j:](‘3(’”)6ma' f’if4(l’)0" ?Gm))( (38)

with f,34 defined as

—16s? sinh(s) cosh(s/2) sinh(s/2)f; = s?(—=(x*> — 1)) cosh(s(x — 1)) + s2x? cosh(s(x + 1))
+ 25%x cosh(sx) — 2s2 cosh(sx) — 2s%x cosh(s(x + 1)) + s% cosh(s(x + 1))
— sxsinh(s(x —2)) + 2ssinh(s(x — 1)) + sx sinh(sx) — 2s sinh(sx)

+ cosh(s(x —2)) — cosh(sx)

165 sinh(s) cosh(s/2) sinh(s/2)f, = (1 — 2s*(x — 1)) cosh(sx) + s(—s(x> — 1) cosh(s — sx)
+ xsinh(s(x — 2)) — xsinh(sx) + 2 sinh(sx)
— 2sinh(s — sx) + s(x — 1)? cosh(s(x + 1))) — cosh(s(x — 2))

—16s sinh(s) cosh(s/2) sinh(s/2)f3 = xcosh(s(x —2)) + x(2s(x — 1) sinh(s) — 1) cosh(sx)
—2s(x — 1)(cosh(s) — 1) sinh(sx)

8s sinh(s) cosh(s/2) sinh(s/2)f, = sinh(sx)(s(—x) + cosh(s)(s(—x) + xsinh(s) +s) + 5)

— xsinh(s)(s(—x) + s + sinh(s)) cosh(sx), (39)

where we have set s = 2vwyr and x = 1/2v. Asymptoti-
cally, the zero modes (39) are simplified to

firm=frmfsn—fi— Qu=1)%en172r (40)
and therefore Eq. (38) is asymptotically (r — o)
IR (1 Fo-r)o,(1 +o-r)e?=2y  (41)

We will use this approximation to carry out explicitly the
analysis below. The four zero modes (41) are localized on
the M dyon for v > 1/2 and by duality on the L-dyon for
v < 1/2, in agreement with the index theorem reviewed
above. For v < 1/2, the integration vanishes with 1™ = 0.

|
For v > 1/2, we note that the four adjoint zero modes are

normalizable as they fall asymptotically with e®(1-2)7,
Equation (37) can be explicitly checked to be normalized as

1 o o _
BPxTr(AZAF :—/dS-VT M(P+1
[ BT ) = s [ 4T )

XM'f + M (P+1)Mf)
_w(l-5)
© 2(vw,)?

We note that at v = 1/2 the normalization vanishes. This is
precisely where the zero modes reorganize equally between
the L- and M-instanton dyons, a pair on each.

M'eM. (42)
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D. Antiperiodic adjoint fermion
in a BPS dyon with v =1
The case v = 1/2 for the adjoint zero mode is more
subtle. The preceding arguments show that the asymptotic
is 1, i.e.,: e®(=1)r = [ TIn this limit, the index theorem
|
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states that two zero modes are localized on the M dyon
and two zero modes are localized on the L dyon. In this
section, we show that the reduction of the result (37) for
v = 1/2 simplifies. Specifically,

(32).,(r) = m <<cosh <¥> 4o 7sinh <%) ) (MyLFenr) £ olonrlo P

— eap(f(@0r) F glmor)o - #) sM, <cosh <%) F o - 7sinh (%) > ﬂ)) (43)

with
1 .
f(a)or) = Wh(a% (—Cl)or - smh(a)or))

1

= MT((UTM) (_60()7’ + Sinh(a)or))‘ (44)

g(wor)

Equation (43) can be written in a more concise form by
translating the vectors to spinors using the quaternionic
form

ﬂi = )*;tabgmba (45)

with

(A)(r) =

= m (f(wor) + g(a)or)g . })6’”

X <cosh <%> + ¢ - 7sinh <%> ) eM
2 2
—€ <MT (cosh (%) F ¢ - 7sinh (%) )

x 0,,(f(wor) £ g(wor)o - 7))". (46)

Using ¢!, = eo,,e, the transpose of the second term in
Eq. (46) can be reduced. The result is

(A2)(r) =

= o @07 £ won)o- P

X <cosh <%> + o - 7sinh <%) ))( (47)

with the identified spinor y = eM. The (color-)invariant
group norm of Eq. (47) is finite. Specifically, if we set
Ama = Bl xp, then

Tr(/l(jlejfeaﬁ) = )(TZB’”TGB"’)(

(f*(@or) = & (@or))

sh? (wor)

==3"ex . (48)

which is convergent in R*. Note the difference between the
Matsubara arrangements in Eqs. (48) and (42). For com-
pleteness, we note that Eq. (48) is the analog of the gluino
condensate using the antiperiodic zero modes. The periodic
zero modes are briefly discussed in Appendix A using the
same ADHM construct. In Appendix B, we verify explic-
itly that the ADHM zero modes are consistent with a direct
reduction of the Dirac equation. For completeness, we
detail in Appendix C the ADHM construct for the zero
modes around KvBLL instantons.

IV. PARTITION FUNCTION
WITH ADJOINT FERMIONS

In this section, we will use the adjoint zero modes
made explicit in Egs. (37)—(41) to construct the partition
function for an ensemble of interacting dyons and
antidyons with adjoint fermions. We will show that the
partition function is amenable to a three-dimensional
effective theory. The derivation will be for the nonsym-
metric case with v > 1/2, where all four adjoint zero modes
are localized on the M dyon (antidyon). The nonsymmetric
case with v < 1/2 with the adjoint zero modes localized on
the L dyon (antidyon) is equivalent and follows by duality
L <+ M and v - U = 1 — v. The symmetric case with each
L and M dyon carrying two of the four adjoint zero modes
will be understood in the limit v — 1/2.

A. Partition function

In the semiclassical approximation, the Yang-Mills par-
tition function is assumed to be dominated by an interacting
ensemble of instanton dyons (antidyons). They are constitu-
ents of KvBLL instantons (anti-instantons) with fixed
holonomy [4]. The SU,(2) grand-partition function with
N adjoint Majorana quarks is

105012-6
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K, Ky Kip Ky

=> 11111111

K] iL=1iy=1iz=1iz=1

de xLlL Md XMiy, fLd YLi; fud® Yiiy,
m! K;! Kj!

x det(Glx]) det(G[y])|detT(x, W

x e~ Vop(x=Y) o=V (x=y) o=V (x=y) (49)

Here, x,,; and y, ; are the three-dimensional coordinate of the
i dyon of m kind and j antidyon of n kind. Here, G[x] is a
(K., + K))? matrix, and G[y] is a (K} + Kj;)* matrix, of
which the explicit forms are given in Refs. [5,6]. The
fugacities f,; are related to the overall dyon plus antidyon
density np [25].

Vpp 1s the streamline interaction between D = L, M
dyons and D = L, M antidyons as numerically discussed in
Refs. [1,7]. For the SU(2) case, it is Coulombic asymp-
totically [1],

G 1 1
Von(x —
o =¥) = =07 <|xM val T =

1 1
- - ) (50)
lxp =yl x = vl

The strength of the Coulomb interaction in Eq. (50) is
Cp = 2. Following Ref. [12], we define the core inter-
actions V; y/(x —y) between LL and MM, respectively,
which we assume to be step functions of height V,, and
range xg,

= TVOQ(XO -
= TVOQ(XO -

Vy(x—y)
Vi(x—=y)

2w0v|x = y|)
2w07|x = y|), (51)

with xy/2 normalized to the dimensionless unit volume

34
X0 T
— ] =—. 52
(%) -% (52)
Vpp(r) Var,o(r)
Vo
Vi (rc) Z‘z

Te
ﬁ
~Vpp(re) MM

FIG. 1. Schematic description for the streamline (left) and core
(right) potentials between a pair of an SU,.(2) instanton dyon and
anti-instanton dyon.
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We recall that the LM and ML channels are repulsive.
A sketch of the interaction potentials is given in Fig. 1.
Below the core value of app, the streamline configuration
annihilates into perturbative gluons.

B. Determinant of the adjoint fermions

The fermionic determinant in Eq. (49) is composed of all
the hoppings between the dyons and antidyons through the
adjoint fermionic zero modes. To make the hopping
explicit, we consider in details the case Ny = 1 and only
quote at the end the generalization to arbitrary N To
explicit the hopping for Ny = 1, we define

W) = 30— v
X) = 30 (- )7 (53)
J, £

with the sum running over all dyons and antidyons and the
two Matsubara frequencies +w, subsumed in the zero
modes. The adjoint dyon and antidyon zero modes are
labelled by

T(x) = U (x - xp)rs. (54)
Here, 3 is a two-component Grassmanian spinor, and W+
is a 2 x 2 valued matrix, both of which refer to a D dyon
(antidyon). From Eqs. (37)—(41), the Fourier transforms of
U+ read

5(p) = f1(p)ow + if2(p)low o DL+ F2(p)puo b
(55)

with

_ (50 (P
fl(P)—(pz+,;z)2+p3<p(p2+172)2 t (’7>>

Y

fa(p) = (p —|—1/)

_ L (PO AT (2
fa(p) = — < TEENEE 3tan <13>> (56)

Here, p = |p| and U = (2v — 1)wy.
In terms of Egs. (53)—(54), the hopping action for
massive adjoint quarks takes the explicit form

Jowwan( 2, ()

=y e T (1)
(57)

~—
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with x;; = x; — x;. We note that the matrix entries in
Eq. (57) are 2 x 2 valued or quaternionic and that the
matrix overall is antisymmetric under transposition. This
observation is consistent with the observations made in
Ref. [26]. The matrix entries in Eq. (57) satisfy

T* (xy) = —eT* (x1s)

T (xy) = _€T$T(XU) (58)

K(x;) = — eK(xyp). (59)

Using Eq. (58), we can rewrite Eq. (49) for massive
fermions in the basis (y*,y . ¢ .77)7 as

|det T(x, )|
. 1
0 —emK;y 0 €T}, \ [
—meK;y 0 —ie’i';T 0
= |det s ,
0 iT;; e 0 meK;y
i'i‘;Te 0 meK,y 0

(60)

with dimensionality 4(K; + K;)% Each of the quaternionic
entries in 'i‘;; is a “hopping amplitude” for a fermion
between an instanton dyon and an instanton antidyon. Each
of the quaternion entries in K;; is an overlap between two
instanton dyons or two anti-instanton anti-lyons.

C. Hopping amplitudes

In momentum space, the quaternionic entries are
given by

T*(p) = U™ (=p)es - p.V7(p) (61)
with again p, = (), p). Since
UT(p) = e¥(p)e., (62)
we also have the identities

T*(p) = —eW*(—p)(Lwy + ic - p)UF(p)
T (p) = —e¥7 (p)(Fwy + ic - p)VE(=p).  (63)

We note the relations

U*(p) = ¥F(p)
(T5)'(-p) = ¥F(p), (64)

and therefore we have the additional identities
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T*(p) = —eT*(p)
T7*(p) = —€T7 (-p). (65)

Here, we have

T (p) = U (=p)(wy +ic-p)T*(p)  (66)

or more explicitly

3T (p) = <3f% +3+2f1f3-8f3 +8f1f2w£0>w0
vio-p(~f+ 42105483
+8f1f> %) : (67)

We also have

K(p) =¥ (=p)¥*(p) =¥ (p)¥*(p)
=P BfT + f3+21f3+8f3).  (68)

V. EFFECTIVE ACTION WITHOUT
ADJOINT FERMIONS

In this section, we will derive the three-dimensional
effective action in the case without the adjoint fermions, to
be referred to as the Ny = 0 case below. We will analyze it
in the limit of weak coupling and large densities across the
transition region. We will explicitly derive the induced
effective potential for the SU.(2) holonomies v, o and show
that for a critical density the ground state of the three-
dimensional effective theory is confined.

A. Bosonic fields

Following Refs. [1,2,5], the moduli determinants in
Eq. (49) can be fermionized using four pairs of ghost
fields )(’L w»> X 1.u for the dyons and four pairs of ghost fields
;(z i XL, Tor the antidyons. The ensuing Coulomb factors
from the determinants are then bosonized using four boson
fields vy p, wpp for the dyons and similarly for the
antidyons. The result is

T
Surly. o0l == [ XV + Faul + o - T

+ Vo - V) + (Ve + [Vl
+ Vi - Vwg + Vo - V). (69)

For the interaction part Vpp, we note that the pair
Coulomb interaction in Eq. (49) between the dyons and
antidyons can also be bosonized using standard methods
[27-29] in terms of ¢ and b fields. As a result, each dyon
species acquires additional fugacity factors such that
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M: e7b=ic L ebtic M e7btie [ ebmic (70)

with an additional contribution to the free part (69),

Sylob] =T / Pxdy(b(x)V(x = y)b(y)
o)V (x - y)o(y))- (71)

The streamline interaction is asymptotically Coulombic
and attractive in the LL and MM channels with

Cp 1 21
Do — - (72

V(r)~
(r) o, Tr

a, Tr
|

PHYSICAL REVIEW D 94, 105012 (2016)

and repulsive in the LM and LM channels as illustrated in
Fig. 1. At short distances, these four channels reduce to
perturbative gluons that should be subtracted. We follow
Ref. [14] and introduce a core interaction as illustrated in
Fig. 1 to achieve that. Specifically, for the core interactions
Vi m(r), we have

Syeldr. o] = / PGV + BV, (13)

and the interaction part is now

Silv.w.b,o.y] = _/d3fo(47”)m + ew — x|+ o — UL)E_bHHiﬂeWM_WL + fr(@mv,+ [yp = xml* + v — vy)

. A _ b . -
X e+h ”’J”‘/’ngL Wy +f]l71(47”)rh 4 I)(l\_/l _){Z|2 +oy - Uz)e b—io+igy pWi—Wp

+fr(dmvy + ler = xul + vp — vg)e TR (74)

without the fermions. The minimal modifications to
Eq. (74) due to the hopping fermions in the adjoint
representation will be detailed below.

In terms of Egs. (69)—(74), the instanton-dyon partition
function (49) can be exactly rewritten as an interacting
effective field theory in three dimensions,

ZpplT] = / D|D[v]|D[w|De]D[b]D[¢]

X e~ Sur=S2r=S3r=S1 | (75)

In the absence of the fields o, b, ¢, Eq. (75) describes a
three-dimensional effective field theory discussed
in Ref. [5], which was found to be integrable. In the
presence of o, b, ¢, the integrability is lost as the dyon-
antidyon screening upsets the hyper-Kahler nature of the
moduli space. Since the effective action in Eq. (75) is
linear in the vy, j 1. the latter are auxiliary fields that
integrate into delta-function constraints. However, and
for convenience, it is best to shift away the b, ¢ fields
from Eq. (74) through

Wy —b+ic— wy

wi — b —ic — wy, (76)

which carries unit Jacobian and no anomalies, and
recover them in the pertinent arguments of the delta
function constraints as

[

T . .
——VPwy, + fe”ﬂew - fe"’%e‘w
4
T T o
= V2(b—ic) — — V2w, + feiie™ — fe*
¥s ¥4
~0 (77)

with w=wy —w;, f=+fufr, and similarly for the
antidyons.

B. Effective action with Ny =0

In Ref. [5], it was observed that the classical solutions
to Eq. (77) can be used to integrate the w's in Eq. (75) to
one loop. The resulting bosonic determinant was shown
to cancel against the fermionic determinant after also
integrating over the y’s in Eq. (75). This holds for our
case as well. However, the presence of o, b, ¢ makes
the additional parts of Eq. (75) still very involved in
three dimensions. To proceed further, we solve the
constraint (77)

. 87[f [1' w i-‘. —w
boio=w g oy (e ehe™)

. _ 8z f iy W _ ity =
b‘f’lG:W‘Fm(ed)le —e¢-e ) (78)

with a screening mass Mp to be fixed variationally. In
terms of Eq. (78), the effective action without the
fermionic contributions (N, = 0) is
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o g V! o o V!
S=8;+TwVlw+ (—4nfu(ewe’¢: + ") + 8xnf (ewe“p: mv‘v + e ewmvv>>

o o Vol e
—Arfi(e~Vel?s + o~Weitr) — 8 “woith T g Wity
+ (—4rfo(e™e'?2 + e "e'?) — 8nf| e Ve —V2+M§)W+e e M%—Vzw
(87f)*

+ 22 (eitie — it ! 1

% et e — oih2 oW
T M3 —-V? " M} —V? ( )

8
—|—Trln<1—|—T zf

il w il —w Sﬂf
W(é""e +€¢2€ )>+Trln(l+T

L))

with v; = v; =v and v,, = v; = U = 1 —v. Thus, for constant w, we have

S =S, + ViCpawwMp + /47rf(—1/(e"‘/’iew + e e™) + +2Cpa, (we ™ + wetie"))

1

-yl
ML — V2

g . _ . _ g 8xf)? Lt
+ /47rf(—17(e"f’;e_w + e e™") = 2Cpa,(we2e™ + welt2e™)) + ( J;f) (eitie” — eitre™)
1

b ; . 8
X ———s(eh1e” — ¢i2¢7") + Trln (1 + 7 i

eih) eV 4 it gw >
=V - )

8xzf

Trl 14+ —
" < T, - V)

(ere™ + ei¢ze‘w)>. (80)

To proceed further, we will treat the core interaction using the cumulant expansion. In leading order, only the second
cumulant is retained, and the result is

InZ lonf . _ l6rnf . - 7
Vo F +Ta,CpM3, <v‘v + TA;T{ sinh w) <w + ”'Qf sinh w> —4rnf(v(e” +ev) +v(e™ +e™))

3 D TMD
B B d*p 8afe’ +e™
+/d3r(e Vi —I)Fl +/d3r(e VZ—I)F2+/(2”)31n (IJFTI\/I%)—I—I)Z)
dp 8rfe” 4 e
Inll+——— 81
+/(271)3n< T M%+p2> (51

with F2 = FI(W - —W) and

i 2 &*p 12 (8zf)? .-
F, = 167%f2e""| —v 4+ 2Cpa,w + /— + evtv
! ! b T (27)° p* + M3, T
X /d3r1d3r2GMD (r—r)V=>'(r - r2)Gu, (12). (82)

C. Effective potential with N;=0

For small ,; and strong screening, we may neglect the terms proportional to a, and drop the screening contributions.
Since w = w', the effective potential associated to Eq. (81) and including the one-loop perturbative contribution for finite
holonomy is

€2b e—2b 471.2 T3
v v

- = —cosa(ueb—l—ﬂe_b)—l—n(——l-— + —— 2, (83)

with b = Rew and

_ 2zf(1—e™") _ 2nf 32

T R (84)
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The extremum in 6 = Imw in Eq. (83) occurs at 6 = 0. The

minimum with respect to b is fixed by the quartic equation

for P,

2b(v) —2b(v)
o (e e > = (veP® —pe M), (85)
v v

with b(v) as a solution. Equation (85) admits always the
symmetric solution b(1/2) = 0 as an explicit solution for
large n. The quenched effective potential for the holonomy
with Ny = 0 follows in the form

2b(v) —2b(v)
—;—l} - —(veP¥) + ped)) 4 n<e +2 > )
47> T3 9.9
— D7 86
+ 3 Sﬂfl/ U (86)

We note that Eq. (86) is similar but not identical to
the effective potential discussed in Ref. [12] using an
excluded volume approach. Equation (86) admits a critical
instanton-dyon density n., above which the minimum of
the quenched potential (86) occurs for v = 1/2 or in the
confined phase and below which two minima develop,
moving away from v=1/2 toward the v =0, 1 or
deconfined phase. To proceed further, we fix Vj=1n2
with n =~ zf/T3. Equation (86) reduces to

V(v)

8

0.0 0.2 0.4 0.6 0.8 1.0
V(v)
1.4
1.3
1.2
11
1.0
0.9
0.8

v
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The holonomy potential (87) for the density n = 1, in a
“symmetric phase” (above), compared to its shape at smaller
density n = 0.4, in an “asymmetric phase” (below).
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'PD eZb(v) €—2b(u)
- > n +
8rf ( v v )

2
— (veP®) 4+ pe ™)) 4 g—uzﬂz, (87)
n

as shown in the upper part (n = 1) and the lower part
(n = 0.4) of Fig. 2. The critical density is found numeri-
cally to be np~0.56 or 8zf/T>~4.48. For n < ng,
Eq. (87) displays two minima at v; <1/2 and v, =1 —v;.
For n > ne, we have a single minimum at v = 1/2. The
alternative choice of the core Vy — vV, yields a finite
effective potential at v = 0, 1. For vV, = 2u, the critical
density occurs at a larger density with n- = 3.7 and a
minimum at b = 0 for n > ng,

2

PDmin A
_IDmin _ 4, 142 88
szf T T oen (88)

D. Electric and magnetic masses with Ny= 0

In the center-symmetric phase with v = 1/2 with
Ny =0, we may define a class of electric and magnetic
masses as the curvatures of the induced potential —Pp, [12].
Specifically, we have

1 0*(-Pp) 4nT?
2Cpa, O*b  a,Cp
1 0*(-Pp) 4nT?
2Cpa, O’c

Tm

(8n—1)

o

(89)

2
Tmy, =y
We note that M%/M3, =8n—1>1 in the symmetric
phase since nj ~0.56 > 1/4. These masses are distinct
from the electric and magnetic screening masses Mgy
following from the decorrelation of the electric and
magnetic fields in the instanton-dyon liquid as discussed
in Ref. [1]. The latter are spacelike poles in suitably defined
propagators.

VI. EFFECTIVE ACTION WITH ADJOINT
FERMIONS

A. Fermionic fields with Ny = 1

To fermionize the determinant (60) and for simplicity,
consider first the case of Ny = 1 flavor and the lowest two
Matsubara frequencies +w,. As we noted earlier, the
quaternionic matrix in Eq. (60) is real and antisymmetric
of dimensionality 4(K; + K7)?. Its fermionization will only
require the use of a single species of Grassmanians with no
need for their conjugate. Specifically, we have

| det Tt = / Dlyler' T (90)

with y = (y",x7,7".%"). This is the analog of the
Majorana-like representation for our hopping matrix in
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Euclidean S' x R®. We can rearrange the exponent in
Eq. (90) by defining a Grassmanian source J(x)=
(JF (x), J=(x), I*(x), J=(x))" with

Z)(+153 X— X1
3 (x Zf” & (x—y) (91)

and by introducing two additional fermionic fields

y(x) = (w(x).y_(x). ;. %_)". Thus,
iy _ ] Dlwlexp(= [y Gy +2 [ Jy) ©2)
[ dDly]exp(= [w"Gy)
with G a 4 x 4 chiral block matrix defined by
GT=1. (93)

For massless adjoint quarks, we have the explicit form

0 0 0 ieGT (y—x)
0 0 —ieG*(x—y) 0
0 —-iG'(y—x)e 0 0
G(x—y)e 0 0 0
(94)

with entries TG = 1. The Grassmanian source contribu-
tions in Eq. (92) generate a string of independent exponents
for the instanton dyons and instanton antidyons,

H 62)([ l//+ X1 +2)(]

The Grassmanian integration over the y; in each factor in
Eq. (95) is now readily done to yield

(x) He% v )+225"0-00) - (95)
J=1

[Twlew wley ] [0k ew v ep_)
1 J

= [[whew_wlew |] [0l ew_wlew_] (96)
1 J

for the instanton dyons and instanton antidyons. The
net effect of the additional fermionic determinant in
Eq. (49) is to shift the dyon and antidyon fugacities in
Eq. (74) through

fi— f[llliell/— (X1)ll’§€‘//— (x7)
f1 = [l ew_(xp)y'ep_(x;). (97)
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B. Resolving the constraints

In terms of Egs. (69)—(74) and the substitution (97), the
dyon-antidyon partition function (49) for finite N, can be
exactly rewritten as an interacting effective field theory in
three dimensions,

Z,[T] E/D[w]DMD[v]D[WJD[o]D[b]D[d)I]D[d)z]
X e—SIF—SZF—S,—S.,,—S,/,’ (98)

with the additional N =1 chiral fermionic contribution

Sy = wT(}t//. Since the effective action in Eq. (98) is linear
in vy, g1 the latter integrate to give the constraints

r Wy —wptid"
_Evsz + (whew )2yt

v T
— frevivntih, — — V2(h — jc)
4r

T .
s Viw, — (1,7’16117—)Zf/vﬂfw"er+'¢I
Vs
+ frenmtity = o (99)

and similarly for the antidyons with M, L,y — M, L, . To
proceed further, the formal classical solutions to the
constraint equations or wy, ; [o, b] should be inserted back
into the three-dimensional effective action. The result is

z(1)= [ DiDlDBIDe  (100)
with the three-dimensional effective action
S:SF[G,b]+S[¢]+/d3x1//Téy/ (101)

- 4nvam / d3x<l//£€y/_)zewM—WL+i¢T
_471'fMUm/dSX(l/_/_{el/_/_)zeWM—wLH(/)l
_477,'fL7)l/d3x(ewL—wM+i¢§+ewi_wM+i¢2)‘ (102)

Here, S is S,r in Eq. (72) plus additional contributions
resulting from the wy, (o, b) solutions to the constraint
equations (99) after their insertion back. The fermionic
contributions in Eq. (102) are Z, symmetric.

C. Ground state with Ny=1

We first consider the massless case with m = 0. The
uniform ground state of the three-dimensional effective
theory described by Eqs. (98)—(102) corresponds to b, o, w
constant, with a finite condensate with
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(Whew ) = (yley,) =X

(whew ) = (pley,) =2 (103)
that breaks the Z, symmetry of Eq. (102). This is the
mechanism by which the instanton-dyon liquid enforces
the anomalous U, (1) breaking with adjoint fermions. The
fermionic quadrilinears in Eq. (102) can be reduced by
introducing pertinent Lagrange multipliers A’s through the
identity as detailed in Ref. [2]. Assuming parity symmetry,
in the mean field or Hartree approximation, Eq. (102)
becomes

S— S+ / By Gy + Z / dBxA (x)(yley: — %)
I

+ g / dxMy (x)(plepy - Z). (104)

We observe that the mean-field constraints in Eq. (104)
enforce the substitution y” ey — X, and therefore the shift
for X#0

fi

VMWL _|Z|eWM_WL

‘fM 1 WL=Wum
—_ —_——
frlz|

eVL—Wu

(105)

For completeness, the exchange or Fock correction to the
mean-field approximation (103) is detailed in Appendix D.
Also, a one-loop alternative approximation is presented in
Appendix E.

To insure a smooth limit for v — 1/2, we will redefine
the magnetic fugacity f,,(2v —1)% — f,, throughout. As
half the zero modes jump when v = 1/2, the hopping is
singular in the ensemble made of constituent instanton
dyons and instanton antidyons. This singularity does not
appear if the constituents are jumping within the KvBLL
caloron as all infrared tails are tamed, as we have shown in
Appendix C. But again, because of the fact that the
delocalization of the zero modes makes use of the hopping
between instanton dyons and instanton antidyons with
opposite chirality, it is necessary to unlock the constituents
from their respective KvBLL calorons and anticalorons as
we have detailed.

With the above in mind, a repeat of the quenched
arguments shows that the unquenched pressure P, =
—Y/V; with adjoint and massless fermions is now

Ppir ng (e e
T3 8

——l—T) + iig(ve® + De) —4Z A
v v
2

- 4
+n/jﬂdﬁln(1 +A2[F)+%v2172 (106)
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Ma(p)/ wol A
150
100
50
0.1 0.2 0.3 0.4 0.5 p
FIG. 3. Adjoint constituent mass for v = 0.7.

with /iy = 87fL/T3 and A = A/T2. We have defined

*F(p,2v—1)
= (B3f1+ f3+2/1f3—8f3+8f1/2b)*

2
Tp (—f?+f§+2f1f3+8f%+8f1fz%> (o)

The f; are given in Eq. (56) after replacing p — p = p/w
and U — U/w,, all of which are now dimensionless. We
have numerically checked that the momentum integration
in Eq. (106) does not change much if we were to simplify
the f; in Eq. (56) to

/3 L (P
e T Th N e

(108)
so that
F(p, 2~ 1)~ 5 (63 ~ 83— 811 /2)°
+p <2f% + 8f3 — 8f1f2;)>2. (109)

The integral contribution in Eq. (106) is that of a constitu-
ent adjoint quark, with a momentum-dependent mass
M,(p) given by

MA%?) = ((1+ p)F)E

(110)

2]

as shown in Fig. 3 for v = 0.7.

D. Confining symmetric phase

The center-symmetric state withb = Oand v = 1/2is an
extremum of Eq. (106), provided that X # 0. This means
that the spontaneous breaking of chiral symmetry is a
necessary (but not sufficient) condition for center symmetry
to take place in the instanton-dyon liquid model with
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massless adjoint quarks. This is similar to the observation
made in Ref. [2] for massless fundamental quarks. For fixed

A, the fermionic contribution in Eq. (106) is maximal for
v = 1/2. The additional extremum with respect to X yields
the condition

~ o n% (e e
4A2:fzz(ueb+f/e‘b)——z<—+T> (111)
4 \v 1%
with 71y = ny/T>. Equation (111) requires iy < 1 so that
A # 0 and is therefore a final quark condensate. We recall
that for Ny = 0, ny > np = 0.56 is required for a center-
symmetric state. With this in mind, and for 0.56 < ny < 1,

the extremum in the A direction gives the gap equation
AF
1+ A°F

iy — i} = 2;;/ p2dp (112)

Equation (112) yields a finite A and thus a finite chiral
condensate. We note that a core strength V; — 0 amounts
to a vanishingly small 72 — O contribution. Note that
in the center-symmetric phase phase with 71, ~ 1/2 the
core correction is about 50% of the free instanton-dyon
contribution. It decreases substantially in the center-
asymmetric phase as the instanton-dyon liquid is diluted.
More explicitlly, for small A, the dominant contributions
from the hopping fermions stem from the small momentum
sector of the p integrals in Egs. (106) and (112) with

0.47

F(p - 0,0) x —5-.
i

(113)

Inserting Eq. (113) into Eq. (112) allows for an explicit
solution to the gap equation in the form

An (M2oim)
1.92

E. Magnitude of the chiral condensate

(114)

For massive adjoint quarks, the fermionic part of
Eq. (106) is
n/pzd,aln((1+ﬂ1tﬁ)2+AZ[F), (115)

where all contributions are dimensionless. We have defined

(116)

The chiral condensate for massless adjoint fermions fol-
lows from the general relation
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. 1 (OlnZ
<lTr(ﬂl)> B T—V3 < om >m=0

2tA
:T3/[92d13 .
1+ A%F

(117)

Again, the integration in Eq. (117) is dominated by small
momenta for small A. In the confined state with v = 1/2,
we can use Eq. (113) and the small momentum limit of
Eq. (116),

2.31

t(p - 0) v —5,

= (118)

to obtain

iTr(A4 =

%z%/Xz (g — 72). (119)
Again, we note that for a vanishingly small core with
Vo — 0 the contribution n — 0 in Eq. (114) with a chiral
condensate for adjoint fermions of order n, which is the
rescaled instanton-dyon density. This result is totally
consistent with the result derived in Ref. [2] for massless
fundamental quarks with no core. The transition from a
symmetric state with v = 1/2 to an asymmetric state with
v < 1/2 takes place ny < np as the instanton-dyon liquid
is diluted, and the chiral condensate (119) also vanishes
(see below).

Finally, we note that the case of Ny = 1 adjoint quarks at
zero temperature corresponds to N = 1 supersymmetric
theory with a nonvanishing gluino condensate [30]. While
our finite-temperature analysis of N, =1 breaks super-
symmetry explicitly, Eq. (119) can be viewed as the
remnant of the gluino condensate at finite temperature.
Since Eq. (119) was derived under the condition that
0.56 < ny <1, the zero-temperature limit cannot be
reached in our case.

F. General case with Ny >1

The preceding analysis generalizes to N, =2 and
N > 1 adjoint fermions through the substitution

1
yley_ — Nif' detyy’ ey, (120)

in Eq. (102) with all other labels unchanged. As a result,
the fermionic terms are SU(Ny) x Zyy, flavor symmetric.
The Uu(1) symmetry for adjoint QCD is explicitly
broken by the instanton-dyon liquid model. The flavor
symmetry is further broken spontaneously through
SU(Ns) x Z4y, = O(Ny) with the appearance of a
condensate,

<W<Tyf€l//—g> = Z(ng, (121)
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the dual of the chiral condensate. Equation (121) is
explicitly symmetric under the transformations ., —

Ofgw:bg and l/_/if d l[/i(Ing
A rerun of the preceding arguments yields the instanton
dyon plus adjoint fermions pressure for arbitrary N,

A2 252N/ (¢ o2

=g 2.2
T

+ 8z fZNr (ve? + De™) —4AN ;AZ

Ppirp=-— U 7

d*p -
+Nf/Wln(l +A2T+2) +P100P(Nf)' (122)

The last contribution is briefly detailed in Appendix F and
is seen to be dominated by the first term in the expansion. If
we were to define iy, = 87fZN7/ T3, then the results from
Eq. (122) for arbitrary N, map onto those from Eq. (106)
for Ny = 1, now with

P 1712 2b —2b B
FE= (T ) e s

— 4N ZA+aN, / p2dpIn(1 + A°F)
—— (1 + Ny~ (123)

The ground state is center symmetric for a sufficiently
dense instanton-dyon liquid, provided that chiral symmetry
is spontaneously broken with £ # 0, and symmetric in the

dilute limit. Here, A and £ follow from the extrema of
Eq. (123) as coupled gap equations,

~ T [N\[F
=2 [ prdp——s
2/p PRy

- 72 2b -2b o
AL=-2X <e—+e—> +%(yeb + e ).

(124)

The solutions Z(b, z) and A(b,v) to Eq. (124) should be
inserted back in Eq. (123) to maximize numerically the
pressure in the parameter space v, b.

In Fig. 4, we show the numerical results for the dimen-
sionless pressure (dotted middle line), Polyakov line (solid
line), and chiral condensate (dotted upper line) with increas-
ing 87f/T? (decreasing temperature), for N r=11n the
symmetric phase. The breaking of chiral symmetry is lost for
8nf/T? < 2.6, which causes all topological effects to vanish
in the chiral limit. For N > 2, Eqs. (123) and (124) do not
support a solution that breaks chiral symmetry.

Finally, the restoration of chiral symmetry can be
estimated analytically from Eqs. (123) and (124), by
dropping the first or core contribution and noting that
the resulting expression maps onto the one derived for

PHYSICAL REVIEW D 94, 105012 (2016)
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FIG. 4. Dimensionless pressure (middle dotted line), Polyakov
line (solid line), and chiral condensate (upper dotted line) vs
87f/T? (decreasing temperature) for Ny=1

fundamental quarks in Ref. [2] [see Eq. (80) there]
with N.N. This mapping shows that Eqgs. (123) and (124)
do not sustain a chiral condensate for N.N;/N. > 2, or
N; > 2 Majorana quarks.

G. Critical temperature estimates

For general N, we can estimate the critical temperature
for the restoration of center symmetry 7, by neglecting
both the core and fermionic contributions in Eq. (123), i.e.,

4 2
P?;F — iy (ve® + ve™?) — %(1 + NP2

(125)

An estimate of the deconfining temperature 7, follows by
balancing the first contribution in the center-symmetric
phase with b =0 and v =0 = 1/2 against the last one-
loop contribution stemming from the adjoint free gluons
and quarks. The result is

2

nzf T
—~— (1 +Ny).
T3, 12( +Ny)

(126)
In the presence of adjoint quarks, the fundamental string
tension does not vanish, 6/7% = ny;/T°. For N, = 2 QCD
with N, adjoint Majorana quarks, the ratio of the critical
temperature for center-symmetry loss normalized by the
fundamental string tension decreases with N, as

Tp 2 3 \:

N <1 +N f) ’

It would be useful to check Eq. (127) against current lattice
simulations with adjoint quarks.

The estimate of the chiral symmetry restoration temper-

ature for the chirally broken phase with N, <2 is more

subtle. For that, we recall that the delocalization of the

adjoint zero modes generates the so-called zero-mode
zone with a finite eigenvalue density p(4) normalized to

(127)
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the 4-volume V5 /T. The details of the interactions in the
small virtuality A limit do not matter [31], as the distribution
follows a Wigner semicircle,

dny, 22 3
D = G (l ‘a;aw)) |

(128)

The normalization is fixed by the overall number of zero
modes in the instanton-dyon liquid. Here, 24,,,,(T) is the
size of the zero-mode zone at finite 7. Combining Eq. (119)
with the Banks-Casher relation [32], we have

gy — ﬁ%ﬂ ~ 7p(0). (129)
which fixes x(T) = Apax(T)/(#T) as
2
nyr~ 1 ———. 130
an X(T) ( )

The chiral transition temperature 7' is fixed by the quarks
turning massless or £ — 0, which implies that the instan-
ton-dyon density 72z, — 0, as all topological contributions
are suppressed. From Eq. (130), this occurs when

T
TC _ Ama;if C) )

(131)

We now note that at the chiral transition temperature the
quark hopping stalls into topologically neutral molecules.
As aresult, T in Eq. (49) becomes banded, and 4, (T¢) is
comparable to the strength of the nearest neighbor
hopping (67)

/lmax(TC) = |T+(x11 = 0)|

&p
= WT (p) :Kﬂ.'Tc|21/C—1|, (132)

with k = 0.557. Using Eqgs. (131) and (132), it follows that
chiral restoration occurs when the holonomy reaches
ve=1/2+1/k =0.3 (mod 1), and in general T > Tp.

Using the quenched effective potential discussed earlier
for an estimate, this corresponds to an instanton-dyon
density for chiral restoration 71 = 0.48, which is surpris-
ingly close to the quenched instanton-dyon density for
the breaking of center symmetry 7, = 0.56. Using the
instanton-dyon density for the N, =2 and N;=1
Majorana quark

- 03675\ %
A(T) e CemrlaT) o c(#) )

we find that

PHYSICAL REVIEW D 94, 105012 (2016)

Tc\ _ (0.56\5 .

T,) \048) "~
which is much smaller than the ratio reported in lattice
simulations [15].

(134)

VII. CONCLUSIONS

We have presented a mean-field analysis of key char-
acteristics of the instanton-dyon liquid with adjoint light
quarks. The index theorem on S! x R® shows that dis-
sociated instanton dyons support four antiperiodic zero
modes that localize on the M-instanton dyon in the center-
asymmetric phase with v > 1/2, or alternatively on the
L-instanton dyon for v < 1/2. These two cases are dual to
each other, so only one can be considered. In the symmetric
phase, the four antiperiodic zero modes are shared equally
(two on each) by the L- and M-instanton dyons. We have
used the ADHM construction to derive the explicit form of
these zero modes.

We have detailed the construction of the partition
function for the dissociated KvBLL calorons with N, light
adjoint quarks, including the classical streamline inter-
actions and the quantum Coulomb interactions induced by
the coset manifold. We have retained a core interaction
between the like instanton dyon and antidyons to distin-
guish them from perturbative fluctuations. By a series of
fermionization and bosonization techniques, we have
mapped this interacting many-body system on a three-
dimensional effective theory. We have presented a
mean-field analysis of the dense phase that exhibits both
confinement with center symmetry and spontaneously
broken chiral symmetry.

We have shown that in such an approximation the
deconfinement with breaking of center symmetry and
the restoration of chiral symmetry occur about simulta-
neously. Furthermore, the latter is always unbroken for
N; > 2. In contrast, exploratory lattice simulations [15]
have shown that SU,(2) gauge theory with N, =0, 1, 4
adjoint Majorana fermions still supports chiral symmetry,
which may point to a major shortcoming of the mean-field
analysis. A numerical simulation of the dyon-liquid model
would be welcome.

The mean-field analysis we have presented also has a
major shortcoming as the instanton-dyon liquid is diluted.
It does not account for the molecular pairing of the
instanton dyon-antidyon configurations through light
adjoint pairs. We have presented a qualitative argument
for the chiral transition using the assumption of pairing, but
a more reliable analysis is likely numerical as the analysis
goes beyond the mean-field results presented here.
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APPENDIX A: PERIODIC ZERO MODES

In this Appendix, we briefly detail the ADHM construct
as applied to the periodic adjoint zero modes. This is partly
a check on our general ADHM construction. For that, we
note that the Grassmanian matrix for periodic adjoint
fermions simplifies to

M(z,7)=68(z—7)M. (A1)
A rerun of the preceding arguments yields the periodic zero
modes

1
’1m<r) = sh(wor) (a(a)or)am + b(a)or)a . f’dmo' . ?)GM
—e(M" a(wyr)o,, + M"b(wgr)o - to,0 - 7)),

(A2)

For wyr — o0, we have a ~ b ~ —sinh(wyr)/(wyr)?* so that

Ap(r = ) == (0, + 070,067y

Fm0 - Ty, (A3)

\m| o \m| —

with y = eM. Equations (A3) are in agreement with the
known periodic zero modes in the hedgehog gauge [6,22].

APPENDIX B: ZERO MODES IN A BPS DYON
WITHOUT ADHM

In this Appendix, we explicitly derive the Dirac equation
for antiperiodic adjoint fermions in the state of lowest total
angular momentum, without using the ADHM construc-
tion. We will use the equations to investigate the nature of
the fermionic zero mode at the origin and asymptotically.
Without the ADHM construct, the equations are only
solvable numerically.

Without loss of generality, we will consider the M-dyon
gauge configuration given by

(A%, A7) = (7¢(r). €4i;7jA(r)) (B1)
with the boundary values
A(r—-0)=0 A(r—>oo):—%
Pp(r—-0)=0 ¢(r - o0) =2xTw. (B2)

In the adjoint representation of SU.(2), the color matrices
are T4, = i€,n,- In the chiral basis, the adjoint Dirac
fermions will be sought in the form

s
U= ( m).
v,

(B3)
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The Dirac equation (1) for the two lowest Matsubara
frequencies +wy is given by
(iG ' v511m + i(an?‘m - Gm?'n)A(r)

+ €nam?a¢(r))\pl:15 = le\IIni (B4)

To solve Eq. (B4) explicitly, we decompose the vector-
valued chiral components in Eq. (B3) using the indepen-
dent vector basis [33]

(1,6 -#)(#, (Fx p),(Fx p) x 7), (B5)

which is seen to commute with the total angular momentum

J :7+§. We seek the zero modes in the state of zero
orbital angular momentum or J = 1/2. Therefore,

V5 (F) = 7005 + (F X p),, (0 - 7)OF

+ Ppo - POF +i((Fx p) x 7),,(c- 1)OF  (B6)
with the scalar radial spinor functions
OF =) Fi(r.s)ls). (B7)
s=%
Inserting Egs. (B6) and (B7) into Eq. (B4) yields
d 2
i—kl:t(,b Fy — pFf = oy Ff
dr r 2 ! 4
iFi +2pF; = wyFT
dr3 4 1
d 1
<5+;:|:¢>Ff+pF3i:a)oF2i. (B3)

Here, p = (A4) + 1/r, with the label s subsumed. Using
the asymptotics, it is readily found at infinity that

+ _ —wyr +wyr
Fi5(r = 00) = cje™™" 4 cpe™

F£,(r = 00) = c3e~(IE2)r 4 ¢ pton(172)r  (BY)
while at the origin, we have
Fi4(r—0) =bsyr+ b4% — byr
Fiy(r—0)=b + bz% + byr?
* b4% = bi+by%. (BI0)

For F* with fixed s = £, we always have two (b; ;) out
of four (by,34) total dimensions of solutions, which are
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normalizable at zero. We have two (c;3) out of four
(c12.3.4) total dimensions of solutions, which are normal-
izable at infinity for v S% and 3 (cy34) for v > 1/2. We
conclude that for v > % there exists at least one zero mode.

For v < %, the existence cannot be proven on general
grounds, and a numerical analysis is required. However,
their existence is supported by the index theorem reviewed
earlier. For v > 1/2, the dominant contribution at large
distances stems from the asymptotic in Eq. (B9) or
cqe~@=Noor  Ag y — 1/2, it asymptotes a constant which
is not square integrable. This analysis for v = 1/2 requires
more care, as we discussed earlier in the ADHM
construction.

APPENDIX C: ADJOINT FERMIONS
IN A KVBLL CALORON

The adjoint fermions in the classical background of
KvBLL calorons can be constructed using the general
ADHM construct presented above. For an alternative
derivation using the replica trick for adjoint fermions in
calorons, we refer to Ref. [23]. We recall that the BPS dyon
results follow by taking various limits. The matrix of
ADHM data is more involved in a KvBLL caloron. For
the SU(2) KvBLL caloron with a holonomy P, = 27
and w = v/2f — v/2, we have for the quaternionic blocks

AMz) = (PL8(z—w) + P_8(z+ w))g

1 0
A A !
Ba?) =0 2)(gabtAG)). (CD)
with P, as projectors and
A(Z> = X|-w.0] (Z) +qw- Gq()([—w,w] (Z) - 2(1)) <C2)

The periodicity of the gauge field A,,(xs + ) = A,,(x4)
(modulo a gauge transformation) and the antiperiodicity of
the adjoint fermions yield

Cp = _e2mw-acm_1
Em — _Z.me—Zm'wﬂ
an - _Mm—l,n—l- (C3)

Their Fourier transforms are

)= (P.o(smwsl)era(svor))e
=e(rslceg)irafere))

M(z,z’)zﬁ(z—z’—i—%)M(z'). (C4)

Inserting Eq. (C4) in the adjoint zero mode constraint gives

PHYSICAL REVIEW D 94, 105012 (2016)
1 d

M) (AT(Z) —A" (Z + %))M(Z)

1 1
—e,qP cod (z +w + 5) —e,gP_céd (z -+ 5)

—q"PTe"5(z+ w) — q"PLeT5(z — w) = 0. (C5)
The explicit form of the zero modes is
=
Goab(x) = [ dzdz (~ea(=2) + ap(z+ 1/2)
x (eM)(2))f (2. 2 )ua(2')
— uby(D)eapf (2.2)(=2p(2 +1/2)
+ M, (2 )uyp(2'))) (Co)

Ib(x) = / 7 dzde x (u()f* (2 2)om(—c(~2)

+u'(z+1/2)(eM)(z)) — e((—=¢(z' +1/2)
+M" (2 u(Z))onf (2,2 )u'(2))"),

ol—

(C7)

with ¢p(x) = 1 + u'(x)u(x). Here, the m summation and z
integration are subsumed. The x argument in u(x, z) has
been omitted for convenience.

1. Special case v =]

For the center-symmetric case with w = 1/2v = 1/4, we
set w - 6 = 73/4 and ¢ = ip7; and identify the coordinates
of the constituents M, L of the KvBLL caloron as

r=x-0+ap’ty/2

S =x-0—ap’t3/2, (C8)
in terms of which
A(z) = x = —isy (1741741 (2) = i0x(174.3/4 (2)
= —iR(z). (C9)
In this case, the equation for M simplifies,
eM = e™'M, —1/4<z<1/4
eM = e~ UM 4 1/4<z<3/4,  (C10)
and ¢’ = —ec. The C zero mode and M zero mode

decouple, with, respectively,

i) = [ e 614, utn Do

2

+
+/1 dzf(1/4,2)u(x,z)o,,P_c (C11)

2
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and

o) = [ sl mute e+ 172

x e(M(z;) + M(~z, — 1/2))dz,dz,. (C12)

Here, u(z) is the solution to the inhomogeneous and linear
differential equation with piecewise potential

= —it3p(P.6(—z + 1/4) + P_5(-z —1/4)),  (C13)

with the projectors P, = (1 + 73)/2. The explicit solutions
are

u(x,z) = e 2?5 (x) —1/4<z<1/4
M(X,Z) :eZnix4(z—l/2)eZﬂr(z—l/Z)Bz(x) +1/4<z7<3/4
(C14)

and satisfy the completeness relations

e—nix4/26—nr/4Bz(x) _ eﬂiX4/zeﬂS/4Bl (x> — —|—27er+
e—nix4/26—ns/4Bl(x) _ enix4/26ﬂr/4B2(x> — —27[,0P_-

(C15)

Here, B|,(x) are defined in Appendix C. The solutions
obey the quasiperiodicity conditions

u(xy + 1,X,2) = €2mu(x,, X, 2)e /2

By (x4 + 1,x) = By (x4, X) e/

By (x4 4+ 1,X) = =B (x4, X)e™"5/2, (Cl16)

With the above in mind, the explicit form of the C zero
mode is

25¢(x) = (f1 +3-0f2)Bio,Pic

(C17)

where we have set s = wy|s| and r = wy|7|. Also, we have
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sty (s, 1, x4) f1(x4, 7, 5)
e—%in’x4

= (s + sinh(s))

X <sinh <%) (dsinh(r) + re? s + rcosh(r))

+ 5 sinh(r) cosh G) ) :

with y given below, d = p?, and

(C18)

sty (s, r,x4) f2(xq,7,5)

e—%iﬂx4
=0 (s — sinh(s))

x (— cosh (%) (dsinh(r) + r(—e¥®) + rcosh(r))

_ssinh(r) sinh (%) > :

with the following identities among the f, ]‘ g, g functions:

(C19)

fi=fi(=x4,x), fr=—fa(=x4.x)
91—}1()5475,”), 925}2(3@1»5”’)
91 = g1(=x4,X), G = —9o(—x4,X). (C20)

2. Adjoint zero mode for Dyon from KvBLL caloron

To isolate the adjoint zero modes on the constituents of
the KvBLL caloron, we take the limit , [F| — oo but with
fixed s, which means that r — co as shown in Fig. 5. Most
of the expressions simplify. Specifically, we have

e—%imu

£1(0) = ; (s + sinh(s)) sinh(5)

5% (cosh(s) + cos & sinh(s))
(s — sinh(s)) cosh(3)
252 (cosh(s) + cos @sinh(s))’

e—%iﬂX4

fa(x) = (C21)

with s = wy|s|, cosd =5 - 2, and

B, = 4np(—cos(zxy)) <cosh (;) 75 + sinh <%> s>

(cosh($) 4 sinh(5)573))
cosh(s) + cos @ sinh(s)
(C22)

. H _irm .
+ (™I gin(7xy)

BZ—)O,

with also
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Z

FIG. 5. L-M dyon at a distance d = zp? in a KvBLL caloron.

w = e”(cosh(s) + cos @sinh(s))
2d cosh(s)

s(cosh(s) 4 cos@sinh(s))

(C23)

Inserting Eqgs. (C21)—(C23) into Eq. (C17) yields the
asymptotic zero mode on the localized instanton dyon,

s cosh(s)(cosh(s) + cos @sinh(s))AS,

mrg x4

= e_i’%(sB+ + sinh(s)B_)e BamP+c

+ ¢ (sB_ + sinh(s)B, )=+ (C24)
with
B, =sinh <%) + § - ocosh <%>
s s\
B = cosh <§> 73 + sinh <5) §-0. (C25)

3. String gauge

The dyon reduced zero mode from the KvBLL caloron
(C24) carries a 6 dependence contrary to Eq. (47).
Equation (C24) is expressed in the quasistring gauge,
while Eq. (47) is in the hedgehog gauge. To express
Eq. (C24) in the string gauge, we first gauge transform
it using g = ¢’>*7 to obtain

PHYSICAL REVIEW D 94, 105012 (2016)
s sinh(s)(cosh(s) + cos @sinh(s))4,
= e~ (P, c),(sB,B + sinh(s)B_B),,

+ e (P_c),(sB_B + sinh(s)B_.B),,, (C26)
In the same gauge, the dyon gauge field reads
Ay =1303Ink+xt) -0, + 2073
A; = 136,303 Ink + k1) €40,
+ 4nwbk (515 — Sin71) (C27)
with
_ dnor
~ sinh(4zwr)
1
Ck , (C28)

- cosh(4zwr) + cos(6) sinh(4zwr)

which is still not in the string gauge. To bring the
configuration (94) to the string gauge, we make use of

_cosh(s/2)z; +sinh(s/2)c - s
B \/cosh(s) + cos(0) sinh(s)

which is unitary.

(C29)

4. Definitions

The matrices B, , and the function y are in agreement
with those used in Ref. [6]. We quote them here for
completeness. Specifically,

Bl — blzblle—izﬂx+4a)‘[3 [UT/W

By = bybye” P Henyt fy, (C30)

with U a unitary color rotation and
by, = i2np (cosh% + ?r3sinh%> el
b2] = 1271'p (C()Shé + §T3Sinhl> eiﬂ)mﬂ

by, = < cos(mxy (cosh%sinh% ?+coshisinh; ?’s)

&)

2

2

)
+ i sin(7xy <cosh|cosh1 + 57 s1nh1s1nh1>>

by = <— cos(7xy) (cosh% sinh; 7 +-coshysinh, 7

=

+ isin(zxy) <COShICOShl + 78 sinh;sinh

) e

and
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- o

w = —cos(2xx,) + cosh cosh + 2" Ginh sinh (C32)
sr
with the short notation
sinh; = sinh(wgvs)
cosh, = cosh(wyvs)
sinh; = sinh(wy(1 —v)r)
coshy = cosh(wy(1 —v)r). (C33)

APPENDIX D: FOCK CONTRIBUTION

In the main text, the mean-field analysis was presented
using the so-called Hartree approximation. Here, we show
how the Fock or exchange terms can be included. We first
omit the cross interaction in

(W ey (x)p e (y))e i +h ) (1)
can be retained by defining the 2 x 2 propagator
((w(x). () (ew” (y). —ew" (y))") =S(x—y) (D2)

in terms of which the effective action S is a functional
of (D2)

-S[S,b,v] = Tr(S;!'S) — Trin'S
TrS\ 2
+87f (%) ve® + 8xf ve

_lerfy (E)4 L—e™ o

T3 2 PR
22 - 22
_ 16;& 1 —¢ "o e 1 167;3fM o~Vo b
14

X
x / " P ATH(S ()8 (<))

X Tr(S1,(x)85,(=x))- (D3)
Here, S;; are the pertinent entries in Eq. (D2). The two gap
equations are now extrema of 6S/8S;; = 0. If we were to
approximate the term Tr(SS) with free propagators, then
the gap equations simplify, and we have for the dyonic part
of the pressure

PD e SﬂfMl/ZzeZb + Sﬂleje_b

3 167213, 54 1—e Vo o 167221 — e Vo

—-2b
73 v T3 7 ¢
16722 Tons
+ 7;ng e Voe?d /2 " BrTe(T(r)T(-r))
0
_4AT. (D4)
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APPENDIX E: ONE-LOOP APPROXIMATION

An alternative to the mean-field analysis is based on the
use of the one-loop fermionic contribution only. The one-
loop result is then used to compute the contractions induced
by the second cumulant contribution stemming from the
core. The result for the constraint equation is

A(b,v) =27/ f 1 fu(ve® 4 De™), (E1)
and the gap equation is
- AF
ZZA :ﬂ/~2d~7~. E2
(A) PP (E2)
To one loop, the dressed fermionic propagator is
0 1 O
S =G + A(b,v) Lo (E3)
= V)€
0 0 0 -1
00 -1 O

Equations (E1)—(E3) can be used to reduce the contractions
stemming from the second cumulant of the core, as we
detailed in Sec. V B. The result is an effective action solely
dependent on b, v, that is readily analyzed in the weak
coupling and strong screening limits. The results of this
analysis will be reported elsewhere.

APPENDIX F: HOLONOMY POTENTIAL

For completeness, the instanton-dyon pressure with
hopping fermions has to be supplemented with the one-
loop perturbative contributions from the adjoint periodic
gluons and antiperiodic fermions for a finite holonomy v
[17]. The result for N, massless adjoint quarks is

AT & Tr,L"
Prioop(Ny) :?Z(l = Ny(=1)") 24
n=1
1673 <« cos(4n + 2)mv
Plloop(l) ) Z ( ) (Fl)

= 2n+ 1)t

with L = ¢?™7s, The first contribution is from the
adjoint gluons, while the second contribution is from the
antiperiodic adjoint fermions. The perturbative minima of
Eq. (F1) at v =0, 1 yields a finite Polyakov line or an
asymmetric (nonconfining) ground state. Note that for
Ny =1 nperiodic adjoint fermions (—~1)"—1 in
Eq. (F1), and the bosonic and fermionic contributions
cancel out. This result is expected from supersymmetry.
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FIG. 6. Pressure (G1) vs v for n = 0.50, 0.53, 0.56 for lower-
blue, middle-orange, and upper-green curves, respectively.

APPENDIX G: CORE INTERACTION REVISITED

All of our analyses so far were carried out using the core
interactions V), ; in Eq. (51). If we were to remove them by
setting b =0 and consider only the induced repulsive
interactions from the determinantal interactions in Eq. (49),
a rerun of our preceding arguments yields Eq. (123) in the
form

Poir ( A >f—
=+(1=NpA 1
T3 ( 2 n(vo):

+;sz/132df;1n(1+]\2[F)

4n? _
- T (1 + Nf)l/zl/z,

(G1)
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FIG. 7. Chiral condensate vs n = 2zf/T* for N; = 1.

with n = 2zfT"Ns/T?. We note that in deriving Eq. (G1)
we have enforced the constraints (99) only after eliminating
the w' s by variation. For N, = 1, the first contribution in
Eq. (G1) is absent, and A = n(v0)2. For Ny > 1, Ais fixed
by the extremum of Eq. (G1).

In Fig. 6, we display Eq. (G1) for Ny = 1, which shows a
first-order transition from a center symmetric for n > 0.5
(low temperature) to a center asymmetric for n < 0.5 (high
temperature). The center-symmetric phase spontaneously
breaks chiral symmetry with the chiral condensate shown in
Fig. 7. Chiral symmetry is restored when center symmetry
is lost. We have checked that this behavior persists for
all Ny > 1, in contrast to the case with the core interaction
discussed above, which does not support a chiral con-
densate for Ny > 1.
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